
Objectif
Dans le tutoriel précédent, vous avez appris les bases du langage R. Vous avez entre autres
effectué des calculs, utilisé des fonctions ou encore assigné des résultats. Ce tutoriel va vous
permettre d’utiliser le logiciel R pour résoudre une question biologique sur l’obésité. Vous serez
guidé tout au long de ce travail.

Introduction
Dans ce tutoriel, nous utiliserons ensemble R pour résoudre une question biologique à travers
l’analyse d’un jeu de données concernant la biométrie humaine.

Manipuler
En partant d’un tableau de données relatif à de la biométrie humaine contenant 395 observations
et sept variables :

Chargement de SciViews::R
SciViews::R(lang = "fr")
Importation du jeu de données
biometry <- read("biometry", package = "BioDataScience")
Affichage des 10 premières lignes du tableau
tabularise(biometry, max.rows = 10)

Genre
Date de

naissance
Masse

[kg]
Taille
[cm]

Tour de
poignet
[mm]

Année de la
mesure

Age
[année]

M 1995-03-11 69 182 15.0 2013 18

M 1998-04-03 74 190 16.0 2013 15

M 1967-04-04 83 185 17.5 2013 46

M 1994-02-10 60 175 15.0 2013 19

W 1990-12-02 48 167 14.0 2013 23

W 1994-07-15 52 179 14.0 2013 19

W 1971-03-03 72 167 15.5 2013 42

W 1997-06-24 74 180 16.0 2013 16

M 1972-10-26 110 189 19.0 2013 41

M 1945-03-15 82 160 18.0 2013 68

385 more rows

Notez ceci :

Les encadrés gris dénotent des instructions entrées dans R. Si ce dernier renvoie des
résultats, ils sont présentés dans des encadrés blancs juste en dessous.

Toujours commencer par l’instruction SciViews::R() pour installer les différents outils
(rassemblés dans des extensions du programme, appelées “packages” R) dont nous aurons
besoin. Cette instruction peut comprendre des arguments comme lang = "fr" . Cet

argument va avoir pour effet de définir le français comme langue par défaut (là où cela est
supporté).

L’anglais est la langue la plus employée en science des données. Les jeux de données
employés sont encodés en anglais. En définissant le français comme langue par défaut, si
une traduction est disponible, certains graphiques et tableaux que l’on va réaliser auront
automatique des labels en français.

Le jeu de données est disponible dans un “package” R (un package est une sorte d’“addin”
pour R qui apporte de nouvelles fonctions et de nouveaux jeux de données à votre
environnement de travail) : {BioDataScience}, spécialement préparé pour ce cours. Notez
que le nom des packages est présenté toujours entre accolades.

La fonction read() permet de lire les données issues du package {BioDataScience}. La
fonction tabularise() a pour objectif de formater correctement un tableau (et bien plus
encore. Vous le découvrirez tout à long de ce cours).

Le point d’interrogation devant notre jeu de données renvoie vers une page d’aide, tout comme
pour les fonctions.

?biometry

Nous commençons par sélectionner des colonnes d’intérêt du tableau initial biometry .

bio <- select_(biometry, ~-day_birth, ~-wrist, ~-year_measure)

Notez ceci :

Nous réalisons cette sélection avec la fonction select_() en éliminant des colonnes du tableau
que nous n’utiliserons pas (les variables day_birth , wrist et year_measure). Pour indiquer
que nous voulons éliminer ces variables, nous les précédons d’un signe - , et enfin, nous utilisons

l’interface formule, donc nous précédons encore ces instructions d’un ~ . Le résultat de cette
fonction est assigné à bio grâce à l’opérateur d’assignation <- déjà vu dans le tutoriel
précédent.

Utilisons la fonction tabularise() du package {tabularise} maintenant pour présenter les huit
premières lignes de notre jeu de données.

tabularise(bio, max.rows = 8)

Genre
Masse

[kg]
Taille
[cm]

Age
[année]

M 69 182 18

M 74 190 15

M 83 185 46

M 60 175 19

W 48 167 23

W 52 179 19

W 72 167 42

W 74 180 16

387 more rows

Notez ceci :

Le “pipe” %>.% (prononcez “païpe” comme en anglais) et le chaînage que nous avons également
découvert à la fin du précédent tutoriel sont employés dans les instructions ci-dessus.

Considérons maintenant uniquement les femmes. On peut filtrer les lignes d’un tableau de
données en utilisant comme critère gender == "W" (attention : notez bien que dans un test de
condition, l’égalité s’écrit avec deux signes égaux dans R). Les autres options sont : != pour
différent de, > pour plus grand que, < pour plus petit que, ainsi que >= ou <= pour plus grand
ou égale et plus petit ou égal.

bio %>.%
 filter_(., ~gender == "W") %>.%
 tabularise(., max.rows = 8)

Genre
Masse

[kg]
Taille
[cm]

Age
[année]

W 48 167 23

W 52 179 19

W 72 167 42

W 74 180 16

W 61 154 47

W 57 164 49

W 58 162 76

W 61 168 53

189 more rows

Continuons à manipuler notre tableau en sélectionnant des colonnes et en filtrant les lignes en une
seule opération. Pour sélectionner les femmes gender == "W" et retirer la colonne age , nous
utiliserons :

bio %>.%
 filter_(., ~gender == "W") %>.% # Sélectionne les femmes
 select_(., ~-age) %>.% # Retire la colonne âge
 tabularise(., max.rows = 8)

Genre
Masse

[kg]
Taille
[cm]

W 48 167

W 52 179

W 72 167

W 74 180

W 61 154

W 57 164

W 58 162

W 61 168

189 more rows

Lorsque la succession des opérations à réaliser devient longue, il est difficile de débusquer les
erreurs dans le “pipeline” parce qu’en fait, toutes les opérations sont regroupées en une seule
longue et même instruction R. C’est un peu comme si vous écriviez un roman en une seule phrase
avec juste un point à la fin du livre ! Pour éviter cela, tout en conservant la clarté du code, agencé
de telle manière que l’on comprenne bien qu’il s’agit d’étapes successives d’un même traitement,
vous pouvez aussi utiliser la forme “bullet-point” avec le pseudo-opérateur .= . Le code précédent
s’écrira alors comme ceci (comparez attentivement les deux formes) :

.= bio

.= filter_(., ~gender == "W") # Sélectionne les femmes

.= select_(., ~-age) # Retire la colonne âge

.= tabularise(., max.rows = 8)

Les .= en début de ligne forment des espèces de puces (“bullet points” en anglais), ce qui permet
donc de présenter vos étapes successives comme un ensemble d’éléments d’une liste. Cela se
rapproche plus de ce que vous écririez naturellement pour présenter une recette (de cuisine, par
exemple) sous forme abrégée. Vous n’écrirez, en effet, jamais “éplucher les pommes de terre et
puis remplir une casserole d’eau et puis y placer les pommes de terre et puis faire bouillir l’eau…”
(le et puis représentant votre opérateur de pipe). Vous écrirez plutôt :

éplucher les pommes de terre

remplir une casserole d’eau

y placer les pommes de terre

faire bouillir l’eau

…

Cela se rapproche plus de la forme “bullet-point”, non ? De plus, dans cette dernière forme, chaque
ligne est une instruction indépendante et il est possible de suivre facilement le remaniement des
données en utilisant View(.) , puisqu’en réalité .= ne fait rien d’autre qu’assigner à l’objet . le
résultat du calcul à chaque étape.

Maintenant que nous avons vu comment lire, remanier et présenter des tableaux de données dans
R (nous reviendrons sur ces notions plus tard), nous pouvons explorer ses potentialités pour
réaliser des graphiques à la section suivante…

Continue

L’obésité
Plusieurs médias publient ou ont publié récemment des articles avec des titres accrocheurs
comme obésité, le mal du siècle, 13% de la population adulte mondiale est obèse, 20% pourraient
l’être en 2025 (https://www.lemonde.fr/sante/article/2016/04/01/13-de-la-population-adulte-
mondiale-est-obese-20-pourrait-bientot-l-etre_4893671_1651302.html) ou encore obésité et
malnutrition, fléaux du XXI siècle (http://www.natura-sciences.com/sante/obesite-
malnutrition.html). Ils se basent sur plusieurs déclarations de l’Organisation Mondiale de la Santé
(OMS) indiquant que la lutte contre l’obésité sera l’un des défis majeurs pour la santé publique au
21 siècle. L’OMS estime que 1,5 milliard de personnes sont en surpoids actuellement et ce chiffre
augmentera si rien ne change.

Une multitude d’indicateurs pour quantifier l’excédent de poids ont été employés au cours du
temps (formule de Lorentz (https://www.calculersonimc.fr/autres-calculs/poids-ideal-lorentz.html),
formule de Creff (https://www.calculersonimc.fr/autres-calculs/poids-ideal-creff.html) ou encore
formule de Broca (https://www.calculersonimc.fr/autres-calculs/poids-ideal-broca.html)).
Actuellement, c’est l’indice de masse corporelle (IMC, ou encore BMI en anglais) qui est
l’indicateur le plus employé. La formule est la suivante :

ou encore en anglais (puisque le nom des variables est en anglais dans notre jeu de données) :

Une fois la valeur de l’IMC obtenue, il faut la comparer au tableau ci-dessous pour connaitre son
état de santé.

IMC (kg/m2) Interprétation (selon l’OMS)

Inférieur 18.5 Sous-poids (en anglais underweight)

Entre 18.5 et 25 Corpulence normale (en anglais normal weight)

e

e

𝑖𝑚𝑐 [𝑘𝑔/] =𝑚2 𝑚𝑎𝑠𝑠𝑒 [𝑘𝑔]
𝑡𝑎𝑖𝑙𝑙𝑒[𝑚]2

𝑏𝑚𝑖 [𝑘𝑔/] =𝑚2 𝑤𝑒𝑖𝑔ℎ𝑡 [𝑘𝑔]
ℎ𝑒𝑖𝑔ℎ𝑡 [𝑚]2

Entre 25 et 30 Surpoids (en anglais overweight)

Supérieur à 30 Obésité (en anglais obese)

Nous allons maintenant avancer pas à pas dans cette première analyse avec R. Le but est de
calculer l’IMC (qui sera dans la variable bmi), et puis de visualiser comment cet indice se répartit
dans la population étudiée.

Calcul de l’IMC
Les observations relatives à la première personne mesurée se présentent comme ceci dans le jeu
de données :

id gender weight [kg] height [cm]

1 W 50 170

Rappelez-vous de la formule qui est :

Rappelez-vous aussi que vous pouvez employer les opérations mathématiques de base dans R.
Elles respectent l’ordre de priorité des opérateurs mathématiques. Au besoin, il est possible
d’indiquer explicitement, ou de modifier les priorités avec des parenthèses comme 3 * (2 + 1) .

Opérations de base Symboles

addition +

soustraction -

division /

multiplication *

puissance ^

La formule mathématique se traduit donc comme suit en une instruction que R peut utiliser :

50 / (170/100)^2

[1] 17.30104

Nous avons dû diviser la taille par 100 car elle est donnée en centimètres alors que nous devons
l’avoir en mètres. Rappelez-vous également que R indique un [1] devant la réponse. En fait, R
travaille avec des vecteurs (même si ici, le vecteur ne contient qu’un seul élément). Ainsi, le
nombre entre crochets devant indique la position dans le vecteur. Ce calcul sur vecteurs nous sera
très utile lorsque nous traiterons l’ensemble du tableau. En effet, le même calcul sera
automatiquement distribué sur tous les individus !

L’IMC de cette femme indique qu’elle est en sous-poids selon l’échelle de l’OMS.

Réalisez maintenant par vous-mêmes le calcul sur notre deuxième individu :

𝑏𝑚𝑖 [𝑘𝑔/] =𝑚2 𝑤𝑒𝑖𝑔ℎ𝑡 [𝑘𝑔]
ℎ𝑒𝑖𝑔ℎ𝑡 [𝑚]2

id gender weight [kg] height [cm]

2 M 93 191

L’espace ci-dessous est une zone où vous pouvez entrer du code R. Le bouton Run Code permet
ensuite de l’exécuter et de visualiser le résultat. Vous pouvez modifier autant de fois qu’il faut
l’expression, et utiliser plusieurs fois Run Code . Lorsque vous êtes satisfait du résultat, cliquez sur
Submit Answer . Dans les tutoriels, la Solution est également accessible, mais faites l’exercice

par vous-même d’abord ! Dans les tests, vous n’y aurez pas accès, évidemment.

Calculez l’IMC de l’homme ci-dessus de 191 cm et de 93 kg.

Code R ! Start Over ! Solution ▶ Run Code ☑ Submit Answer

1
2
3

Calcul de l’IMC sur plusieurs individus
Vous vous retrouvez rapidement avec cinq nouveaux individus, femmes et hommes.

id gender weight [kg] height [cm]

3 W 69 174

4 W 49 155

5 W 75 169

6 W 66 179

7 W 54 168

Le calcul un à un de l’IMC de chaque individu deviendra très rapidement fastidieux. Nous allons
créer des vecteurs contenant plusieurs nombres en les concaténant avec la fonction c() . Nous
utiliserons aussi l’assignation <- pour conserver le résultat du calcul dans un objet nommé
(comme weight_w ci-dessous) :

Assignation des valeurs de masses dans un vecteur nommé `weight_w`
weight_w <- c(69, 49, 75, 66, 54)
Assignation des valeurs de tailles dans un vecteur nommé `height_w`
height_w <- c(174, 155, 169, 179, 168)
Transformation du vecteur `height_w` de centimètre en mètre
height_w <- height_w / 100
Calcul de l'IMC/BMI
weight_w / height_w^2

[1] 22.79033 20.39542 26.25958 20.59861 19.13265

Important :

Choisissez bien les noms de vos objets. Ces noms doivent être courts, mais informatifs sur
leur contenu.

Rappelez-vous que des noms acceptables commencent par une lettre, et comportent
ensuite des lettres, des chiffres, le trait souligné _ ou le point . , mais évitez, si possible, le
point qui a une signification particulière dans divers contextes.

Comme il est difficile de mémoriser la casse d’un nom, il est conseillé d’utiliser uniquement
des lettres minuscules.

Si le nom est constitué de plusieurs mots, il est préférable de séparer ces mots par un trait
souligné. Pour rappel, l’espace n’est pas utilisable. Par exemple, tour_de_poignet .

Éviter d’utiliser des caractères accentués.

Si possible, utilisez des noms en anglais. Certainement si votre travail sera échangé avec
d’autres scientifiques en international… mais c’est une bonne habitude à prendre même sur
votre propre code. Pour reprendre l’exemple précédent wrist_circumference

Réalisez les mêmes opérations sur les individus 8 à 12 qui sont des hommes.

id gender weight [kg] height [cm]

8 M 82 174

9 M 73 186

10 M 105 203

11 M 61 172

12 M 95 190

Code R ! Start Over ! Hints ▶ Run Code ☑ Submit Answer

Assignation des valeurs de masses dans un vecteur nommé `weight_m`
weight_m <- c(___)
Assignation des valeurs de tailles dans un vecteur nommé `height_m`
height_m <- ___
Transformation du vecteur `height_m` de centimètre en mètre
height_m <- height_m / 100
Calcul de IMC

1
2
3
4
5
6
7
8

Encodage d’un tableau de données
Il devient rapidement évident qu’il est plus simple que nos observations de terrain soient
rassemblées en un jeu de données structuré. Pour cela vous allez créer ce qu’on appelle un objet
data.trame (qui se traduit en français par “tableau de données”) dans R. La fonction qui permet de
le créer dans SciViews::R est dtx() . Cette dernière fonction permet de combiner vos différents
vecteurs colonne par colonne dans un tableau.

Dans dtx() , vous entrerez vos différents vecteurs comme autant d’arguments de la fonction,
séparés par une virgule , . De plus, vous pouvez nommer vos colonnes en donnant des noms aux
arguments de type nom = valeur . Analysez avec attention l’exemple ci-dessous.

Création du tableau de données (data.table) avec dtx()
woman <- dtx(
 id = 3:7, # Valeurs numériques
 gender = rep("W", times = 5), # Chaines de caractères (! guillemets)
 weight = weight_w, # Vecteur de masses créé précédemment
 height = height_w # Vecteur de tailles créé précédemment
)
Afficher le tableau
woman

id
<int>

gender
<chr>

weight
<dbl>

height
<dbl>

3 W 69 1.74

4 W 49 1.55

5 W 75 1.69

6 W 66 1.79

7 W 54 1.68

5 rows

Avez-vous remarqué la différence dans la façon d’encoder des valeurs numériques et des chaînes
de caractères ?

Réalisez les mêmes opérations sur les individus de 8 à 12 (inspirez-vous des instructions ci-
dessus et du tableau ci-dessous) :

id gender weight [kg] height [cm]

8 M 82 174

9 M 73 186

10 M 105 203

11 M 61 172

12 M 95 190

Utilisez les vecteurs weight_m et height_m que vous avez créés à l’exercice précédent.

Calculez de nouveau l’IMC et ajoutez vos résultats dans le tableau de données. Vous avez à votre
disposition la fonction mutate_() qui requiert comme argument le jeu de données et le nom de la
nouvelle variable, suivie du signe égal = , puis de l’instruction qui calcule son contenu sous forme
d’une formule (donc, précédée d’un ~ .

Calculer l'IMC pour les femmes
woman <- mutate_(woman, bmi = ~weight / height^2)
Afficher le tableau de données
woman

id
<int>

gender
<chr>

weight
<dbl>

height
<dbl>

bmi
<dbl>

3 W 69 1.74 22.79033

4 W 49 1.55 20.39542

5 W 75 1.69 26.25958

6 W 66 1.79 20.59861

7 W 54 1.68 19.13265

5 rows

À retenir :

Vous pouvez vous référer à d’autres colonnes du tableau (= autres variables) en utilisant
leurs noms directement dans la formule,

La ou les nouvelles colonnes sont ajoutées à la fin du tableau et sont directement utilisables.

Réalisez par vous-mêmes les mêmes opérations sur le jeu de données man .

Code R ! Start Over ! Solution ▶ Run Code ☑ Submit Answer

Encoder le jeu de données
man <- dtx(
 id = ___,
 gender = ___,
 weight = ___,
 height = ___
)
Afficher le tableau (simplement sans utiliser tabularise)

Code R ! Start Over ! Solution ▶ Run Code ☑ Submit Answer

Calculer l'IMC pour les hommes

1
2
3
4
5
6
7
8
9

1

Vous pouvez observer que tout comme le tableau de données portant sur les femmes, vous
obtenez une nouvelle colonne au sein de votre tableau de données portant le nom bmi (pour
“Body Mass Index”, soit l’IMC en français).

Calculer l'IMC pour les hommes
man <- mutate_(man, bmi = ___)
Afficher le tableau de données (sans tabularise)

1
2
3
4

Fraction obèse de la population
Le monde titre que 13% de la population mondiale est obèse. Vérifiez cette affirmation avec le jeu
de données biometry qui regroupe les masses et les tailles de 395 personnes adultes vivant sur
le territoire belge (Hainaut, Belgique). Nous allons créer un tableau bio_100 qui contient les 100
premières lignes de biometry (l’opérateur [] extrait un sous-tableau). Nous vous montrerons
ensuite comment le travailler, et vous ferez de même sur le tableau complet biometry par vous-
mêmes.

biometry <- read("biometry", package = "BioDataScience")
Récupération des 100 premières lignes du tableau
bio_100 <- biometry[1:100,]

Vous pouvez observer que la taille est ici exprimée en centimètres, il faut en tenir compte lors du
calcul de l’IMC qui attend la taille exprimée en mètre. Un jeu de données réduit est employé pour
expliciter les suites d’instructions bio_100 qui ne reprend que 100 observations du jeu de
données complet biometry .

Pour calculer l’IMC sur le jeu de données bio_100 , nous employons à nouveau la fonction
mutate_() .

bio_100 <- mutate_(bio_100, bmi = ~weight / (height / 100)^2)
Afficher les premières lignes du tableau de données
head(bio_100, n = 5)

gender
<fct>

day_birth
<date>

weight
<dbl>

height
<dbl>

wrist
<dbl>

year_measure
<dbl>

a…
<dbl>

bmi
<dbl>

M 1995-03-11 69 182 15.0 2013 18 20.83082

M 1998-04-03 74 190 16.0 2013 15 20.49861

M 1967-04-04 83 185 17.5 2013 46 24.25128

M 1994-02-10 60 175 15.0 2013 19 19.59184

W 1990-12-02 48 167 14.0 2013 23 17.21109

5 rows

Calculez maintenant l’IMC sur le jeu de données biometry tout entier. Utilisez la fonction
mutate_() . Nommez cette nouvelle variable bmi et assignez votre résultat de nouveau à
biometry

Code R ! Start Over ! Hints ▶ Run Code ☑ Submit Answer

Calcul de l'IMC
___ <- ___
Affichage des 5 premières lignes du tableau de données

1
2
3

Affichage des 5 premières lignes du tableau de données

3
4

Signification de l’IMC
Une fois la valeur obtenue de l’IMC, il faut lui attribuer son interprétation pour connaitre son état de
santé. Rappel du tableau de l’OMS :

IMC (kg/m2) Interprétation (selon l’OMS)

Inférieur 18.5 Sous-poids (en anglais underweight)

Entre 18.5 et 25 Corpulence normale (en anglais normal weight)

Entre 25 et 30 Surpoids (en anglais overweight)

Supérieur à 30 Obésité (en anglais obese)

Vous avez à votre disposition la fonction case_when() qui permet d’attribuer l’interprétation de
l’OMS à la valeur d’IMC. Vous devez lui indiquer d’une part la condition (ex. : bmi < 18.5), et
d’autre part son interprétation (ex. : underweight), le tout séparé par un ~ (donc, dans une
formule). Vous pouvez retrouver les opérateurs de comparaison dans R ci-dessous.

Comparaison Représentation

Égal à ==

Différent de !=

Supérieur à >

Inférieur à <

Supérieur ou égal à >=

Inférieur ou égal à <=

Et (combinaison de tests) &

Ou (idem) |

Ajoutez une nouvelle variable qui tient compte de l’échelle de l’OMS dans le jeu de données
bio_100 dans la variable bmi_cat . Analysez la structuration de la suite d’instructions, les

conditions employées, la position des guillemets …

Ajouter la nouvelle variable
bio_100 <- mutate_(bio_100, bmi_cat = ~case_when(
 bmi < 18.5 ~ "underweight",
 bmi >= 18.5 & bmi < 25 ~ "normal weight",
 bmi >= 25 & bmi < 30 ~ "overweight",
 bmi >= 30 ~ "obese"
))
Afficher les 5 premières lignes du tableau
head(bio_100)

Ajoutez maintenant une nouvelle variable bmi_cat au jeu de données biometry en complétant
les informations manquantes. Affichez les premières lignes du tableau avec la fonction head() .

Votre nouvelle variable contient des chaînes de caractères (du texte). Elle est de classe character
dans R. Cependant c’est une variable non numérique. On parle encore de variable qualitative ou
variable “facteur” en statistiques. Si nous voulons qu’elle soit comprise comme tel dans R, nous
pouvons la convertir en un objet factor avec la fonction factor() . Avec l’argument levels = ,
nous spécifions l’ordre des différents niveaux de notre variable. Nous utilisons la fonction
mutate_() comme précédemment.

Pour convertir en factor notre nouvelle variable bmi_cat dans bio_100 , nous faisons donc :

bio_100 <- mutate_(bio_100, bmi_cat = ~factor(bmi_cat,
 levels = c("underweight", "normal weight", "overweight", "obese")))
bio_100

gen…
<fct>

day_birth
<date>

wei…
<dbl>

height
<dbl>

wrist
<dbl>

year_measure
<dbl>

a…
<dbl>

bmi
<dbl>

bmi_cat
<chr>

M 1995-03-11 69 182 15.0 2013 18 20.83082 normal weight

M 1998-04-03 74 190 16.0 2013 15 20.49861 normal weight

M 1967-04-04 83 185 17.5 2013 46 24.25128 normal weight

M 1994-02-10 60 175 15.0 2013 19 19.59184 normal weight

W 1990-12-02 48 167 14.0 2013 23 17.21109 underweight

W 1994-07-15 52 179 14.0 2013 19 16.22921 underweight

6 rows

Code R ! Start Over ! Solution ▶ Run Code ☑ Submit Answer

Ajouter la nouvelle variable
___ <- mutate_(___, bmi_cat = ~case_when(
 bmi ___ ___~ "underweight",
 bmi ___ ___~ "normal weight",
 bmi ___ ___~"overweight",
 bmi ___ ___~ "obese"
))
Afficher les 5 premières lignes du tableau
head(___)

1
2
3
4
5
6
7
8
9

En apparence, pas grand changement, mais maintenant, nous avons indiqué un ordre logique de
progression dans les différents niveaux (levels =) de la variable qui est maintenant comprise
comme factor. Ici, nous pourrions faire encore mieux. Si nous utilisons la fonction ordered() à la
place de factor() , avec les mêmes arguments, nous indiquons à R qu’en plus d’être une
variable qualitative, les différents niveaux sont classés du plus petit au plus grand (underweight
< normal weight < overweight < obese). Nous pouvons voir la façon dont les différents
niveaux sont encodés à l’aide de la fonction levels() .

Classer votre nouvelle variable avec le jeu de données biometry tout entier, et en utilisant
ordered() ici.

Next1 2 3 4 5 6 ... 10Previous

gen…
<fct>

day_birth
<date>

wei…
<dbl>

height
<dbl>

wrist
<dbl>

year_measure
<dbl>

a…
<dbl>

bmi
<dbl>

bmi_cat
<fct>

M 1995-03-11 69.0 182 15.0 2013 18 20.83082 normal weight

M 1998-04-03 74.0 190 16.0 2013 15 20.49861 normal weight

M 1967-04-04 83.0 185 17.5 2013 46 24.25128 normal weight

M 1994-02-10 60.0 175 15.0 2013 19 19.59184 normal weight

W 1990-12-02 48.0 167 14.0 2013 23 17.21109 underweight

W 1994-07-15 52.0 179 14.0 2013 19 16.22921 underweight

W 1971-03-03 72.0 167 15.5 2013 42 25.81663 overweight

W 1997-06-24 74.0 180 16.0 2013 16 22.83951 normal weight

M 1972-10-26 110.0 189 19.0 2013 41 30.79421 obese

M 1945-03-15 82.0 160 18.0 2013 68 32.03125 obese

1-10 of 100 rows

Code R ! Start Over ! Solution ▶ Run Code ☑ Submit Answer

biometry <- mutate_(biometry, bmi_cat = ~ordered(___,
 levels = c(___)))
Visualiser le vecteur
biometry$bmi_cat
Extraire les niveaux d'encodage des niveaux
___(biometry$bmi_cat)

1
2
3
4
5
6

Vérification
La fonction summary() permet d’obtenir un résumé complet d’un tableau de données. La fonction
table() renvoie ce que l’on appelle un tableau de contingence, soit un tableau qui dénombre

les occurrences de chaque catégorie d’une variable telle que bmi_cat du tableau bio_100 , ce
qui se note bio_100$bmi_cat :

Résumé des données
summary(bio_100)

 gender day_birth weight height wrist
 M:56 Min. :1937-04-13 Min. : 48.00 Min. :154.0 Min. :10.00
 W:44 1st Qu.:1965-10-06 1st Qu.: 60.00 1st Qu.:165.0 1st Qu.:16.00
 Median :1990-01-21 Median : 70.00 Median :171.5 Median :16.65
 Mean :1981-03-01 Mean : 72.18 Mean :171.6 Mean :16.65
 3rd Qu.:1994-07-12 3rd Qu.: 81.00 3rd Qu.:177.2 3rd Qu.:17.70
 Max. :1998-04-03 Max. :116.00 Max. :193.0 Max. :21.00
 NA's :2
 year_measure age bmi bmi_cat
 Min. :2013 Min. :15.00 Min. :16.23 underweight : 7
 1st Qu.:2013 1st Qu.:19.00 1st Qu.:20.79 normal weight:54
 Median :2013 Median :23.50 Median :23.78 overweight :25
 Mean :2013 Mean :32.48 Mean :24.48 obese :14
 3rd Qu.:2013 3rd Qu.:48.25 3rd Qu.:26.60
 Max. :2014 Max. :76.00 Max. :42.68

Tableau de contingence pour bmi
table(bio_100$bmi_cat)

 underweight normal weight overweight obese
 7 54 25 14

Utilisez la fonction summary() pour obtenir une description du tableau de données complet
biometry .

Pour déterminer le pourcentage d’obèses, nous pouvons générer un tableau de contingence sur
l’ensemble des données dans biometry . Faites-le maintenant et assignez cette table au nom
bmi_tab .

Code R ! Start Over ! Solution ▶ Run Code ☑ Submit Answer

Résumé des données
summary(___)

1
2
3

Vos résultats concordent-ils avec les valeurs avancées dans les médias ? Pour le savoir, vous
divisez le nombre d’obèses observés par le nombre total d’observations du tableau que vous
pouvez obtenir à l’aide de nrow() et vous multipliez le tout par 100 pour l’avoir en pourcentage.
Notez bien que vous vectorisez l’opération sur tout le tableau de contingence pour avoir les
pourcentages de toutes les catégories d’un seul coup :

bmi_tab / nrow(biometry) * 100

numeric(0)

Représentons graphiquement la distribution du bmi de nos individus sondés.

chart(data = bio_100, ~ bmi %fill=% gender) +
 geom_histogram(bins = 25) +
 geom_vline(xintercept = 30, color = "red")

Utilisez la fonction chart() pour représenter graphiquement la distribution des données par
rapport au bmi de tous les individus de biometry .

Code R ! Start Over ! Solution ▶ Run Code ☑ Submit Answer

Calculer le pourcentage d'obèses via un tableau de contingence
bmi_tab <- ___(___$___)
bmi_tab

Code R ! Start Over ! Solution ▶ Run Code ☑ Submit Answer

chart(data = ___, ~ ___ %fill=% gender) + # instruction du graphique
 geom_histogram(bins = 25) + # réaliser un histogramme
 geom_vline(xintercept = 30, color = "red") # ajouter une ligne à 30 de bmi

1
2
3

1
2
3

Conclusion
La fraction d’obèses dans notre jeu de données est de 12,7%, ce qui est très proche des 13%
annoncés dans l’article paru dans le Monde.

Bravo ! Vous venez de terminer cette petite analyse dans un tutoriel learnr. Durant cette séance,
vous avez découvert comment :

Approfondir vos calculs dans R

Vectoriser vos calculs

Rassembler des données dans un tableau “data.table”

Remanier un tableau de données

Créer des variables qualitatives ordonnées (ordered) ou non (factor)

Réaliser vos premiers graphiques dans R pour visualiser les données

Tout cela a été très vite et la quantité de nouveautés est importante. Rassurez-vous, vous ne
devez pas retenir tout le contenu de ce tutoriel pour l’instant. Il s’agit essentiellement d’un tour
rapide de ce que nous apprendrons à faire ensemble pendant le premier quadrimestre.

Laissez-nous vos impressions sur ce learnr

Entrez vos commentaires ici...

Soumettre une réponse

