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NORMALIZED VECTOR SOLUTIONS OF NONLINEAR
SCHRODINGER SYSTEMS

XIAOMENG HUANG, ANGELA PISTOIA, CHRISTOPHE TROESTLER, AND CHUNHUA WANG

ABSTRACT. Given p > 0 we look for solutions A € R and vy,...,vx € H'(RV) of the
system

k
—Avi + X + Vi(z)vs = Y Biyoiv;  inRY, i=1,...,k,
j=1

/N(v§+---+vi)dx:u,
R

where N = 1,2,3, V; : RY — R and Bi; € R satisfy 8i; = B4 and B; > 0. Under
suitable assumptions on the f;;’s, given a non-degenerate critical point &y of a suitable
linear combination of the potentials V;, we build solutions whose components concen-
trate at & as the prescribed global mass p is either large (when N = 1) or small (when
N = 3) or it approaches some critical threshold (when N = 2).

1. INTRODUCTION

A problem widely studied in the last decades concerns the existence of solutions
(Mi,v) € R x HYRN), i =1,..., k of the systems

k
—A’Ui + Nv; + VZ(.Z')’UZ = Zﬁijviv]? n RN, ;= 1, RN ]{7, (1.1)
Jj=1

with prescribed masses, namely
/ v =, i=1,... k. (1.2)
RN

Here N = 1,2,3, V; € CORN) N L>®(RY) and Bij € R satisfy B;; = Bji. We will
consider the focusing case, i.e. By > 0.
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Solutions to (1.1)—(1.2) naturally arise in the study of solitary waves to time-dependent
nonlinear Schrodinger equations as

k
10,0; + A®; — Vi()®; + Y Bi;®i|®;]° =0, xRN, teR, (1.3)
j=1

which has application in nonlinear optics and in the study of Bose-Einstein condensates
[10, 15]. Solitary wave solutions to (1.3) are obtained imposing the ansatz ®;(x,t) =
elhit v;(x), where the real constant \; and the real valued function v; satisfy Equa-
tion (1.1). Despite the problem having some relevance in physical problems, only a few
existence (or non-existence) results seem to be known.

The natural approach to produce solutions to (1.1)—(1.2) consists in finding critical
points of the energy

k k
J(vi,.. ., 0) = ;Z / (\VUZ-F + Vl(:v)v?) dz — i Z /ﬁijv?v? dz (1.4)
=1 RN ZvjleN
constrained on the product of spheres
S =8, x -+ x8,, with S, = {v e HY(RY) / > dz = u} (1.5)
RN
The Langrange multipliers are nothing but the unknown real numbers Ay, ..., Ag.

The study of existence of solutions to (1.1)—(1.2) strongly depends on the dimension N.
Indeed, when N = 2, the scaling u(z) = v(x/t) leaves both the ratio [|Vo|?dz/ [|v|* dx
and the mass invariant, which is why the power p = 3 when N = 2 is called L?-critical.
In the following, we agree that N = 2 is the critical regime and we say that N = 1 is
the subcritical regime and N = 3 is the supercritical regime.

The situation in the case of a single equation (i.e. k& = 1) is quite well understood.
A complete review of the available results in this context goes beyond the aim of this
paper. We only quote the pioneering paper by Jeanjean [I 1] where the author studies the
autonomous case (i.e. the potential is a constant) using a variational argument, which
have been widely employed in the successive literature. We also quote the recent paper
by Pellacci, Pistoia, Vaira and Verzini in [20], where the authors tackle the problem
using a different point of view. They use the well-known Lyapunov-Schmidt method
keeping the mass as the natural parameter in the reduction process and build solutions
with large mass in the subcritical regime, with small mass in the supercritical regime
and with mass close to a certain threshold value in the critical regime. We also refer the
interested reader to the references therein.

In striking contrast, very few papers concern with the existence of normalized solutions
to the system. Moreover, most of the known results only consider the case of 2 equations
in the autonomous case. To describe them it is useful to introduce the coupling parameter
B = P12 = Po21. The first result is due to Nguyen and Wang in [1%] in dimension
N = 1 in an attractive regime, i.e. § > 0. In 1D the growth of the nonlinearity is
subcritical so that the functional J in (1.4) is bounded from below on the constraint S
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in (1.5) and normalized solutions can be obtained by minimization. We observe that
in higher dimensions the functional is unbounded from below on the constraint when
B is positive, and hence their approach cannot be used. The supercritical regime (i.e.
N = 3) has been firstly studied by Bartsch, Jeanjean and Soave in [3] who developed
an accurate minimax argument to find a solution for suitable choices of the parameters
in the attractive case (i.e. § > 0). In particular, a solution to the system (1.1)—(1.2)
exists for every sufficiently small or sufficiently large 5. We also quote some further
generalizations obtained by Bartsch, Zhong and Zou [7], Bartsch and Jeanjean [2] and
Li and Zou [12]. The existence of a solution in the repulsive case (i.e. 8 < 0) has been
established by Bartsch and Soave [1, 5, (] who devise a different variational approach,
based upon the introduction of a further natural constraint. In the critical regime (i.e.
N = 2) the existence of normalized solutions is a very subtle issue, heavily depending
on the prescribed masses as can already be seen in the scalar case and it seems largely
open. Very recently, Mederski and Szulkin [16] consider the case of k > 2 equations
and show the existence of multiple solutions provided that all the parameters 3;;’s are
positive and satisfy a suitable condition. In particular, they prove that if 3 := 3;; for
any ¢ # j then the system has a solution when S is large enough. Finally, as far as we
know, there is only one paper concerning the non-autonomous case. Noris, Tavares and
Verzini in [19] consider the system (1.1)—(1.2) with only two equations in the presence
of positive continuous trapping potentials (i.e. V; — 400 as |x| — o0o) and prove via a
variational approach the existence of positive solutions with small masses.

In this paper, we study the system (1.1) when we prescribe the global mass of the
solution vy, ...,vg. More precisely, given u > 0 we look for solutions A € R and v :=
(v1,...,08), v; € H>(RY) of the system

k
—Av; + A + Vi(z)v; = Zﬁijvw? inRN, i=1,...k,
j=1 (1.6)

/RN (v%—l—-~+v,§) dz = p.

For sake of simplicity we will assume that V;,|VV;| € L®°(RY) for every i = 1,..., k.
Let us introduce the necessary ingredients to state our result. Let U be the positive
radial solution of
~AU+U=U% inR"Y.

It is well known that U and its first and second derivatives decay exponentially [13, 14].

We assume that U := (Uy,...,Uy) is a synchronized radial positive solution to the limit
system
k
AU+ U= ByUiU7 in RN, i=1,... .k, (1.7)
j=1
i.e. U; = o;U, with o; > 0 for i = 1,..., k solutions of the algebraic system

k
> Biyoi =1, i=1,...k (1.8)
j=1



NORMALIZED VECTOR SOLUTIONS OF NONLINEAR SCHRODINGER SYSTEMS 4

We also assume that it is non-degenerate, i.e. the set of the solutions of the linear system

k
—Agi+di — > Bi(Ulei +2UU;¢;) =0in RN, i=1,... .k, (1.9)
j=1

is a N —dimensional space generated by
oU oUy, oUu ou .
[OFRE e = — e Ok— |, =1,...,N. 1.1
< &%z 81’1 > <Ul 81’1 Tk 8 z) ‘ ( O)

Examples of this kind of solutions can be found in Examples A.2 and A.4.
Set

k

k
o ::Z/Uf(a:)dx:'yZUiQ With’y:/NUde. (1.11)
i=1
RN

i=1 R

Next, we introduce the global potential (see (1.11))

k
D(2) =7 Y o?Vi(a). (112)
=1

We assume that & € RY is a non-degenerate critical point of I'. Without loss of
generality we can suppose that, in a neighborhood of &,

N 921 92T
D) = T(&) + ;2 52 @) — &2+ 0 (= &f) . with 55(60) 0. (113)

We will also assume that each single potential V; is C* in a neighbourhood of &.

Finally, we say that a family v = v, of solutions of (1.6), indexed on p, concentrates
at & € RN if

vu(r) = lu (w_g”> + du(x),

€u €
where, as p — p* € [0,400], for ¢, — 0, &, — &, and the remainder ¢, is a higher
order term, in some suitable sense.

Finally, we can state our main result.

Theorem 1.1. (1) There ezists k = k(IN) > 0 such that
(i) in the subcritical regime, i.e. N = 1, for any p > k there exist a solution
(A, vy) to (1.6) with v, concentrating at &
(ii) in the supercritical regime, i.e. N = 3, for any 0 < p < k there exist a
solution (A, vy) to (1.6) with v, concentrating at &
and in both cases

po \ N2
Ay ~ <> — 400 as u — o0 or u — 0, respectively.
“

(2) In the critical regime, i.e. N = 2, we suppose that V;(§) = ¢ and VV;(&) =0
for every i =1,..., k. Moreover we also assume AT'(&) # 0.
Then there exists 6 > 0 such that for any po — 0 < u < po (if AT'(&) > 0) or
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po < p < po+0 (if AT'(&y) < 0) there exists a solution (A, v,) to (1.6) with v,
concentrating at & and

1
AT 2
)\va((&])> — 400 as @ — Uo.
fio — fi

Let us make some comments.

Remark 1.2. We build the solution using a Ljapunov-Schmidt procedure taking the
mass p as a parameter in the same spirit of [20]. The profile of the solution at the main
order looks like the synchronized solution to the limit system (1.7). However, in contrast
to the previous work, here the solution must also be corrected at second order by means
of the solution of the linear problem (2.4) where the values of the potentials at &, appear.
We observe that in the case of the single equation once we fix the non-degenerate critical
point & of V' we can assume (without loss of generality) that V' (£y) = 0 up to replacing
A with the new parameter A — V' (&y). This no longer holds in the case of the system,
because if the single parameter \ is replaced by the parameters \; = X\ — V;(&y) they are
different, unless all the potentials have the same value at the point &.

Remark 1.3. The main term of the solution found in Theorem 2.1 in the critical regime
(i.e. N = 2) is not good enough to detect its mass. We need to improve the ansatz up
to the second order and to keep the size of the error term small enough. That is why we
need to assume that all the potentials have the same expansion (up to the first order)
close to the point &y, i.e. all the functions V;’s take the same value at the point, which also
turns out to be a common critical point. It would be extremely interesting to determine
whether this extra assumption is merely a tool to simplify the computations or if it has
a deeper significance.

Remark 1.4. Byeon in [8] considers a singularly perturbed system with only two equa-
tions similar to system (2.2). He proves the existence of solutions concentrating at the
same point which is a common non-degenerate critical point of both the potentials. In
Theorem 2.1 we show that the concentration phenomenon is actually governed by the
critical points of the global potential I" rather than by the critical points of the individ-
ual potentials. Moreover, our approach allows to consider systems with more than two
components.

Remark 1.5. The existence of solutions concentrating at the point &y strongly depends
on the nature of the critical point. In particular in the critical regime there exists a
solution with a mass smaller than g if  is a minimum point (since AT'(§y) > 0) or
with a mass larger than pg if & is a maximum point (since AT'(§y) < 0). It would be
interesting to prove that such conditions are also necessary. More precisely, it could
be challenging to prove that if & is a minimum or a maximum point then there are no
solutions blowing-up at £y with masses approaching ug from above or below, respectively.

Remark 1.6. In [20] we conjectured that the constant oy defined in (4.1) is positive for
any N. This is true in the 1-dimensional case as proved in [20, Remark 3.5]. In Section 4
we provide numerical evidence that this is still true for dimensions N € {2,...,8}. The
validity of the conjecture is in our opinion an interesting open problem.

The proof paper is organized as follows. In Section 2, we find a solution to the
perturbed Schrédinger equation (2.2) via the classical Ljapunov-Schmidt reduction. For
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sake of completeness we repeat the main steps of the proofs taking into account that a
second order expansion of the main term of the solution we are looking for is needed. In
Section 3, we select the solutions with the prescribed norm. In Section 4 we discuss the
numerical approach used to study the sign of ax defined in (4.1). Finally, in Appendix A
we study the existence of non-degenerate synchronized solutions to System (1.7).

Notation: In what follows we agree that notation f = O(g) or f < ¢ stand for
|f| < Clg| for some C' > 0 uniformly with respect all the variables involved, unless
specified.

2. EXISTENCE OF SOLUTIONS TO A SINGULARLY PERTURBED SYSTEM

Set

e:=\"2 and u; = evg, 1 =1,...,k. (2.1)

Problem (1.6) turns out to be equivalent to

k
—2Au; + ui + eQVi(x)ui = Z ﬁwuluj2 inRN, i=1,... k, (2.2)

j=1
6_2/ uf 4 Fuide = p. (2.3)

RN

It is clear that (A(u), v(u)), v(p) := (vi(p), ..., vk(p)) solves (1.6) if and only if (e(u), u(p)),
u(p) == (ur(p),...,up(p)) solves (2.2)—(2.3). As a consequence, the first step is build-
ing a solution u = u(e) to the singularly perturbed Schrédinger system (2.2) which
concentrates at a given point &y as € — 0.

In this section, we mainly prove the following result.

Theorem 2.1. There exists g > 0 such that for any € € (0,€p) there exists a unique

solution ue = (Ui, ..., Uuge) to (2.2) such that
ui,e(x) = UZ‘ (:L’ _6 €E> — EQZZ‘ (:L’ _6 €E> + 1#@76(.%), 7 = 1, ey k‘,
for some & — & as € — 0. The functions Z1, ..., Zx € H'(RYN) are the radial solutions
to the linear system
k
~AZi+ Zi =Y B (U Z:+ 20U, Z;) = Vi(€o)Us in RN, i=1,... k (2.4)
j=1

and the remainder terms 1;  satisfy
1/2
( /62|vwi,6|2+¢§€dx> :0(6%3).
RN

Moreover, the map (0,¢y) — (HI(RN))k D€ — U 18 continuous.
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2.1. Preliminaries. Note that the functions w; solve system (2.2) if and only if the
scaled functions u;(e- + &), which will still be denoted by w; solve the following system

k
—Au; +u; + 62Vi(em +&u; = Zﬁijuiu? nRY, i=1,....k (2.5)
j=1

Here, we choose the concentration point
E:=er+&, TR
Let H'(R") be equipped with the standard scalar product

0.) = [ vovu+ [ ou.
RN RN

which induces the standard norm denoted by || - ||. We also denote by i* : LY3(RN) —
H'(RN) the adjoint operator of the embedding i : H'(RV) — LY3(RN), i.e.

i*f=u <= —Autu=finR".
We also observe that there exists C' > 0 such that
Jull < Cllf oy, = Lo (26)

We set H := H'(RY) x--- x HY(RY), equipped with the scalar product and the induced
norm (respectively)

k k
(wv) = (u,v) and |uf? = |fuill?, (2.7)
i=1 i=1
where u = (uy,...,u),v = (v1,...,vx) € H. Finally, we can rewrite system (2.5) as
k
u; = i*{ > Bijuinl — EVi(e- + S)ul} inRY, i=1,... k. (2.8)
j=1
We look for a solution to (2.8) as
=U - % 2.9
u Z+¢, (2.9)
=W
where U := (Uy,...,Uy) is the non-degenerate synchronized solution of the limit sys-

tem (1.7), the correction term Z := (Z1,..., Zx) solves the linear system (2.4) and the
remainder term ¢ := (¢1,...,¢;) € K+ where (see (1.10))

K::span{q)i:: <ggl,,ggk> :izl,...,N} (2.10)
and
Kt={¢:=(¢1,....00) €H : (¢,®;)=0,i=1,...,N}. (2.11)

Note that W € K because U and the Z; are radial. We rewrite the system (2.8) as
follows

Ler(p)—Ecr—Ner(d) =0. (2.12)
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Here the linear operator L., is defined by

k
Li(dr,. ) =i =170 Biy(Wigi + 2WiW;¢;) — Vile- + i o, (2.13)

j=1
the nonlinear term N -(¢) is defined by

k
Ni(¢1, ... o) = i*{Zﬂzj(Wmﬁ + ¢id? + 2W; i) } (2.14)
j=1
and the error term &€, - is defined by
k
&= 1*{2 B’LJWZW]2 — 62‘/1‘(6 -+ f)VVZ} - W;. (215)
j=1
Then, problem (2.8) turns out to be equivalent to the system
I {Ler(p) — Ecr —Ner()} =0 (2.16)
and
H{Ler(¢) —Ecr —Ner(9)} =0, (2.17)

where IT : H — K and II+ : H — K are the orthogonal projections.
2.2. Solving (2.16).

Proposition 2.2. For any compact set T C RN there exists g > 0 and C > 0 such
that for any € € [0,€] and for any 7 € T there exists a unique ¢ = ¢, € K+ in a
neighborhood of 0 which solves equation (2.16) and

..l < Cé. (2.18)
Moreover, the map € — ¢, . is continuous and the map T — ¢ . s C' and satisfies
0.l < €. (2.19)

Proof. Let us sketch the main steps of the proof.
(i) First of all, we prove that the linear operator L., is uniformly invertible in K +
namely there exists ¢g > 0 and C > 0 such that

T L, ()| = Cllp|l for any € € [0,¢0), 7€ T and ¢ € K.

Observe that B
HL‘CEﬂ'("D) = HJ—‘CO(SO) —"_ 62£E,7’(‘p>7

where the linear operator ZE,T is uniformly bounded and the linear operator £, defined
by
k
(Lo)i(1,---»0K) = i — 1*{2 Bij (UF @i + 2UsUje05) } (2:20)
j=1

The non-degeneracy assumption (1.9) means that K = ker £y. Given that L is self-
adjoint, II* Ly = Ly and, because it is a compact perturbation of the identity, it is
invertible.
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(ii) Next, we compute the size of the error €. ; in terms of e. We observe that by (1.7)

k
U, = 1*{2,31][]@[]]2}
j=1
and by (2.4)

k
Z; = i*{z B (U2Z; + 2U0,U;Z;) + V,-(fo)UZ}.

j=1
Moreover, by the mean value theorem (recalling that |VV;| € L),
Vi(ex +e7 + &) = Vi(€o) + O(e(1 + |z])).

Combining the above facts we have

k k
& = i*{e4 S8y (022 +20;2:25) — Y ﬂijZiZJ?}
j=1

j=1
+ i {eWVile- +€)Zi — € (Vile +€) = Vi(&o)) Ui} (2.21)
and
&I <Ce, i=1,...,k.

(iii) The existence part follows by a standard contraction mapping argument. The
contraction relies on the inequality [N er(¢1) — Ner(ds)ll < |y — o] where ¢ =
O(||¢1 || + [|@2]l) which can be deduced combining the mean value theorem and (2.14).
The fact that a small ball around ¢ = 0 is mapped into itself comes from point (ii)
and the following estimate [N, ()| < C|¢||* (which follows by (2.14)) valid in a
neighbourhood of ¢ = 0. Point (ii) and this last inequality also imply the bounds on
@ -||. Finally, the continuity of the fix point ¢, , follows from the same continuity of
the contracting map (we choose €y small enough so that, for all € € [0, o], €T lies in the
neighborhood of & where all V;’s are of class C*). See e.g. [17, Proposition 3.5] for more
details.

(iv) We show that the map 7 — ¢, , is a C'. Our arguments are inspired by those
developed in [17, Proposition 3.5] (see also [9, Proposition 5.2]). We apply the Implicit
Function Theorem to the C'-function G : RV x K+ — K= defined by

G(r,p) = —II" {F(W +¢) - W}
where W is defined in (2.9) and the function F : H — H is defined as (see (2.8))

k
E(u) =i Zﬂijuiug—ez‘/}(e-—i—g)ui , 1=1,...,k.
j=1

Now, it is clear that G(7,¢,,) = 0. Moreover the linearized operator Dy,G(T, ¢, ;) :
K+ — K* is defined by

DyG(7, ¢ )] = ¢ — I {DyF (W + ¢, ) 0]},
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where the linear operator DyF (u) : H — H is defined by

k
(DuF(u)[v])i =i* Zﬁz] (u?vl + 2uiujvj) — 62‘/}(6- +&v p, i=1,... k.
j=1

We claim that the operator D,G(7, @, ;) is invertible. Indeed, using (2.6), one shows
that DyF(u) — DuF(U) in L(H; H) asu — U. Thus, thanks to (2.18), Dp,G(7, ¢, ;) —
D, G(1,U) = I+Ly = Lo in L(K+; K1), uniformly w.r.t. 7 € T, as € — 0, where L is
defined by (2.20). Taking if necessary €y smaller, the claim is proved.

(v) Finally, we prove the estimate (2.19). We know that
G(r. ) = 0.
Then, differentiating at 79 in the direction 7 yields
DG (70, ey 7] + DuG(70, @) [Dr b 7] = 0

and so we get
[1Dr e 7 [7]]l < Cll DG (70, ¢

because (setting ¢ ., = (é1,...,dx))

DTG(T07 ¢e,7‘0)[7—] = egﬂl(i*{v‘/l(e c+ e+ fO)T(Wl + d)l)}? L)
i*{VVk(e- +eto + &o)T(W + ¢k)})

)7l < Celrl,

€,70

and

[D-G(10, $c 1, )[7]|| < CEITIIW + ¢ 1| < C¥l7. O

2.3. Solving (2.17).

Proposition 2.3. There exists eg > 0 such that for any € € [0, €] there exists a unique
7. € RN such that equation (2.17) is satisfied with ¢ = P, where @, . is given by
Proposition 2.2. Moreover, the map € — T¢ is continuous and goes to 0 as ¢ — 0.

Proof. As ¢, solves (2.16), there exist real numbers ¢!, i = 1,...,N such that
(see (1.10))

N

[’677'((1)6,7) - NEJ(d)e,T) - 86,7' = Z Ci,T(I)i' (222)

i=1

We aim to find a unique point 7 = 7. such that all the ci’T’s are zero. We multiply
(2.22) by ®;. We get

N
<£€7T(¢6,T) - N€77(¢6,T) - 8677’7 (I)]> = Z Ci,T <(I)17 (I)J> = CZ,TA’ (223)

i=1
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because, by (1.10) and the oddness of 9;U along the axis x;,

k

k k
(@i, ®;) = > (0:Ue, 0;Us) =Y 070U, 0;U) =) o} / U)o,Ud;U
(=1 (=1 =1 P

k
= Ad;j, where A := Zalg / q(U) (81U)2 # 0 and g(t) = 3.

(=1 g

The claim will follow at once if we prove that

1 o°T :
<Ee,7(¢e,r) - Ne,T(d)gﬂ-) —Ecr, ‘I)j> = —564 (Tjaxz(&]) + 0(1)), j=1,...,N,
J
(2.24)
where the o’s are C''-uniform with respect to 7 € T as € — 0, where T is a given compact

set. Indeed, using (2.24), (2.23) may be rewritten as

1 9’1 :
—€4< i 5 2 (&) + 0(1)) = Acl, forany j=1,...,N, (2.25)
where A # 0 is a constant and the o(1) is C'-uniform in 7 € T as € — 0. Since all the
02F/8x?(§0)’s are different from zero (because £y is a non-degenerate critical point of
I'), a contraction mapping argument shows that

= (‘92 (§O)>_10(1)7 j=1...N,

has a unique solution 7. = (71,...,7n) for € small enough. Therefore the left hand side
n (2.25) vanishes and ¢/, = 0 for all j = 1,...,N. The map € ~ 7 is continuous
because the functions in 0(1) are continuous with respect to e. Moreover it is clear that
7, —0,j=1,...,N,as e~ 0and (¢,7) € T.

Let us prove (2.24). First of all, we estimate the leading term in (2.23). By (1.10),
(2.7), (2.15) (taking into account that U and Z; are radial functions and the derivatives
0U/0x; are odd functions), and the Taylor expansions of V4 and of

N 82

< 00

Vel ot e+ 60) = Z(@) e (€0) (s + 1) + O(2(1 + [2]2)),

Ox;j
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k
ou
262203/Vg(ex—l—eT—l-fO)Uamdm—i—o(e‘L)
=1 g J
k
1 v,
:_263203/%?(eﬁewgo)z]?(x)dﬁo(&)
=1 N

Note that since V is C* in a neighbourhood of &, all o(e*) hold in the C'-topology with
respect to 7 € T
Finally, it remains to prove that

<£e,7(¢e,7)7 (I>j> = 0(64) and <NE,’T(¢E,’T)7 (I)j> = 0(54)7 (227)

where all o(e?) are in the C(T')-topology.
Writing as usual ¢, . = (¢1,...,¢x), recalling the definition (2.13), and taking into
account that ®; solves (1.9) yields

k

k
<£e,’r(¢e,7’)? q’]> = Z ¢ / Z Bex (U3¢€ + QUKUH¢H) 8JU

/=1 RN k=1
k k

- Z gy / Z Bes (ngbﬁ + 2W€Wn¢n) o;U

/=1 RN k=1
k

+ € Z oy / Vi(ex + eT + &) e O;U
=1 gy
k k
— Z o / Buw (26U Zy — €4 Z2) ¢4 ;U
=1 pn w=1

k k

+Y o0 [ D280 ((UeZe + UnZi) — €' ZoZ,) 6 05U
=1 pn k=1

k
+6220'g Vi(ex + e + &)y O;U

(=1 g
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= o(e*) in C°(T) because of (2.18).

The derivative with respect to 7; of the previous quantity enjoys the following estimate:

k
Or(Ler(ber), :ZU/Z@H (2¢*UsZ, — €' Z2) 07,00 05U

/=1 RN K= 1

+Zag/22mﬁ 2UpZ + UnZi) — €24 2,) v, O5U

=1 pn =1

—i—eQZag/Vg ex + €1 + &) 07, ¢ O;U

=1 gy

+e Zag/@Vg ex + €T + &o)pp O;U

(=1 gy
= o(e?) in C%(T) because of (2.19) and (2.18).

By (2.14),

k
<N€ T ¢e T Z Oy / ZIBZH W€¢2 + ¢é¢2 + 2Wn¢€¢n)

(=1 RN K= 1
= o(e?) in C°(T) because of (2.18)
and, differentiating with respect to 7;, we easily get

Or,(Ner(@e ), ®5) = o(e*) in C%(T) because of (2.18) and (2.19). O

Proof of Theorem 2.1, completed. The existence of the solution u, to problem (2.2) fol-
lows combining all the previous arguments. It suffices to define

X — fe) + (V1,6 -5 Vie)(X),  where (Y1, ..., %K) (%) = b, (x — §6>

€ €

u(x) = W(

with & := et + &, where 7, is given by Proposition 2.3. The continuity in the H'-
topology results from the fact that, for e > 0, the norm u — e V/2 (f e2|Vu|? + u2)1/2 is
equivalent to the usual H'-norm. Finally the estimate on v; . results from (2.18). O

3. THE MASS OF u,

In this section we find the solutions to (2.8) by selecting the solutions to (2.2) for a
suitable ranges of prescribed masses u’s.

3.1. The non-critical case.

Theorem 3.1. (i) If N = 1, then there exists R > 0 such that for any p > R
problem (2.8) has a solution (e,,u,), where u, is concentrating at the point &g
as p — oo.
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(ii) If N = 3, then there exists r > 0 such that for any u < r problem (2.8) has a
solution (e, ), where u, is concentrating at the point & as 1 — 0.
In both cases EZ_N,LL — o (see (1.11)), as p — oo or u — 0, respectively.

Proof. By Theorem 2.1 there exists a solution

ou () () 0a ()

where ||¢ || = O(e?). The mass of u, is (see (2.3))

o [ () o8 (5 e ()

k
_ 6—2+N( Zgg / U?(x)dx + (’)(62)>

=1 RN
=e 2™V (ug+0o(1))  (see (1.11)). (3.1)

Since u, must have a prescribed mass as in (2.3), we have to find € = e(u) such that

He = M-

As the map € — u, is continuous, so is € — .. Moreover, (3.1) implies that pu. — 400
if N =1 (resp. ppe — 0 if N = 3) as ¢ — 0. The Intermediate Value Theorem implies
that a set of the form (R, 4o0) (resp. (0,7)) is in the image of € — .. O

3.2. The critical case. Let N = 2. It is important to point out that a refinement of

the ansatz is needed! Indeed, if we expand more carefully (3.1), we can determine the
coeflicient of the next order of e:

Lhe = p1g — 2€° Zoi / U(x)Zi(x)dz 40(e?) = .

This does not allow to determine which values p. takes because Z(§p) = 0 as proved in
Remark 3.3.

Remark 3.2. Let (f1,...,fx) € (LQ(RN))k and R = (Ry,...,R;) a solution to the
linear system

k
—-AR; + R; — Z’BZJ (UJ2RZ + 2UinRj) = fl (32)
=

Consider z := Zle oiR;. Multiplying the ¢-th equation by ¢; and summing them up,
we find that

k k
~Az4z2-U*> o1y BijojRi — 2U2ZZB”0 iR, —Zazfz

i=1 7=1 i=1 j=1
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Making use of (1.8) and of the fact that 8;; = 3;;, this boils down to

k
—Az+42-3U%% = Z oif; inRY. (3.3)

=1

Therefore, the L? scalar product of U with R is

izk;RZ UiR; = /Zk:aiURi = /U(a:)z(:c) da, (3.4)

gy =1 RN

Remark 3.3. It holds true that Z(§p) = 0. Indeed we apply the previous remark with
fi =Vi(&o)U; (see (2.4)). Therefore by (3.4)

k
=€) =Y o / U(2) Z(x) do / U(2)2(z) da,
i=1 R2 R2
where z solves
k
~Az+2z-3U% = <Z U?Vg(fo)) U in R
=1
A direct computation shows that

k
2(x) = —% (; U%Vg(&))) (U(:U) + VU (x) - x) (3.5)

Indeed, letting uy(z) := AU (\x), it is easy to check that wuy(z) satisfies
—Auy + Nuy =uj in R (3.6)

Differentiating (3.6) with respect to A and taking A = 1, we deduce that the function
v= %L/\Xb\:l = U + VU - z satisfies

—Av+v—3U% = —2U in R?

Equality (3.5) then results for the fact that the kernel of v — —Av +v —3U?v is spanned
by 9;U, i = 1,2, and so the operator is injective on radial functions. Next, integrating
by parts (for example, using div(%Uz:):) = U? 4 UVU -z), it is immediate to check that

/ (U+VU - z)U(z)dz = 0.
RQ

We agree that a refinement of the ansatz is necessary. Without loss of generality, we
may assume the common critical point of the potentials is £, = 0 and also that each
potential vanishes at &g, i.e. in a neighbourhood of the origin

Vi(z) = (agi)m% + ag)x%) + O(|z]*) with agi), ag) €R, foreveryi=1,...,k (3.7)
Set
= / U(z)zo(x) dz, (3.8)

RN
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where zg is the radial solution to
—Azg+ 29— 3U%2 = (:1:% + x%)U in R2. (3.9)
In Section 4, there is a numerical evidence that a > 0.

Theorem 3.4. There ezists § > 0 such that if either AT'(0) > 0 and p € (po — 6, o),
or AT'(0) < 0 and p € (po, po + 0), problem (2.8) has a solution (e, u,) such that u,
concentrates at the origin and 6;4(/,60 — ) = aAT(0) as p — po.

Proof. We briefly sketch the main steps of the proof, which relies on the same arguments
used in the non-critical case.
We look for a solution to (2.8), where we choose & = €27 as

u="U-€Q+o, (3.10)
N——
=W
where U = (Uy, ..., Uy) is the non-degenerate synchronized solution of the limit system

(1.7), the remainder term ¢ € K= (see (2.11)) and the second order correction term
Q = (Q1,...,Qx) solves the linear system

k
—AQ; + Qi — Zﬁij(UJ?Qi +2U;U;Q;)
j=1
= (e} +af’ad) Uiin R%, i=1,.. ko (3.01)

The proof proceeds as in the previous case. Here, it is only a matter of noting a couple
of crucial facts. First of all, the size of the error € ; is

I€cr]l < €

because (see also (2.21))

k
&= i*{ES > 8 (205QiQ; + UiQ} - €'QuQ) }
j=1

+ i*{eGVi(ex +27)Q; — € [Vz(ex +€21) — € (ag )ZE% + a;i):ng)] Ui}. (3.12)

Next, the component of the error along the element of the kernel is (see also (2.26))

k
<£ET;(I) ZUE <8Z7 8U>

Z’“ oU
_ 2 2
=€ Ue/V(Ex‘i‘f T)Uaix]dx‘i‘ ( )

=3¢ Y0t [ G+ U@ do + o)
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k " TR PV,
—65<§ a%aj Tj/U2d$+4 g E gaanx / 2U2dx> + 0(€°)
/=1 R2 = =1 R2
N 3
2 (0 o°r 2772 5
(ijyg aga +4’y g 8:132835 / U dx) o(e’)
%,_/ R2
%‘372(0)
J
15 0T v OAT
=_— 1
S ( 520+ 3 gy O+l >>,

where we have used that ng :L'?U2 dz is independent of ¢ and so

/ 2U2dx—NZ/ 2U2d:c—% Wlth'y—/]x\QU2 ) da.
R2 R2
Since %(0) # (0 for any j = 1,2, we can argue exactly as in the previous part to get

J
the existence of a solutions concentrating at £, = 0 as

u6:u<ﬂf—efe> 4Q< é}) ¢E< §e>7
whose mass is
2
et [ <w-ff>—64@f<w:&>+¢m<t&>> .

212

= o — 2€* /ZUZ z)dz + o(e')  (see (1.11)). (3.13)

]R2Z1

=T
Since u, must have a prescribed mass equal to p we have to find € = ¢(u) such that
e = pi. (3.14)

As the map € — u, is continuous, so is € — u.. Moreover, it goes to pg as € — 0. Thanks
to Remark 3.5 (below), its image must contain an interval of the form (uo — 6, o) if
aAT'(0) > 0 or (uo, o + 0) if «AT'(0) < 0. That concludes the proof. O

Remark 3.5. It holds true that T = JaAT(0) (see (3.8)). We apply Remark 3.2 with
fo=o0y (agz)a:% + ag)x%)U (see (3.11)). Therefore by (3.4)

T = Z/ dx-/U(m)z*(m)dx,

RN
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where z* solves

k
—Az+2-3U% = Z ol (age)x% + ag)mg)U in R?.
(=1
Now, we can write

k k
ZF = (Z a%agg)) 21 + (Z thag@> 25,
=1 =1

—Azf 2 —3U%% = 22U in R
We observe that z3(z1,z2) = 2] (22, 1) and so

where 2z} solves

/ U()2 (z) do = / U(x)2(2) da = % / U ()20 () da,
RN RN RN

where 2 solves (3.9). Then

k k
/ U(z)z"(z)dz = (Z 7g§a§5)> / U(zx)zi(x)dz + (Z 70§a§5)> / U(x)zy(z)dx
(=1

RN = RN =1 RN
k
a l 4
= 2—720’% (ag) —i—ag))
g
(=1 ,
=1AT(0)

and the claim follows.

4. NUMERICAL EVIDENCE FOR THE ASSUMPTION « # 0
Set
ay = /U(:U)S(x) dz, (4.1)

RN
where U is the positive radial solution of

~AU+U=UP inRY
and S is the radial solution of
~AS+ S —pUP™'S = |z]?U in RY.

In the previous section a@ = ao. In this section, we would like to provide numerical
evidence that oy > 0 for the L?-critical exponent, i.e.

4 [e.9]
p=1+ N = / U(r)S(ryr¥=tdr > 0. (4.2)
0
This was proved in [20, Remark 3.5] for N = 1. Here we numerically estimate the integral

in (4.2) for larger values of N. To do this, U(0) is estimated using a bisection procedure
to find the right initial condition that lies between the set of U(0) such that Vr > 0,
U(r) > 0 and those such that U has at least one root. To determine S(0), we impose
that S(rg) = 0 for a “large” ro. Such S(0) is easy to compute since S(rp) is an affine
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function of S(0). On Fig. 1, you can see the result of these computations as the graphs
of the functions p — fooo USrN-ldr for N € {1,...,8}. The large dot on each curve
indicates the point of the graph for p = 1+4/N. These provide clear evidence that (4.2)
holds.

From these graphs, we also conjecture that

0 9% _ 1 N+2
ay —0 asp—2-—1=——.
P N-2
.l — N —. 300000 + — N_3
30 1 — N=3 200000 + — N=7
100000 +
25 4 ; v
— N =1 . — N=5
0 , 25000 -+ '
sl | ' 20000 +
5 —+
ul 10000 +
34 :
N 3000 +
2000 1
LT Y 1000 +
0 : " : ; x . # %
i ;/ 3 4 5 P 1000 L 14| [/16 18 2 22 P
—2000 -+
_o 1
—3000 +
ST —4000 -+

FIGURE 1. Graphs of p— [[*USrN~tdr for N € {1,...,8}.

APPENDIX A. A NON-DEGENERATE RESULT

In the following we use some ideas introduced in [21].
Let us consider the eigenvalue problem
—AY+1¢ =\U%p in RV,

The classical Fredholm alternative Theorem allows to claim that there exists a sequence
of positive eigenvalues {\, }men with

l=M<3=X <3< <A< Apyr1<--- and A\, — +o0.

The eigenspace associated to the first eigenvalue is a 1—dimensional space generated by

the positive function U. Moreover, it is well known that eigenspace associated to the

second eigenvalue is a N —dimensional space generated by v; := g—g fori=1,...,N.
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We observe that system (1.9) can be rewritten as

k
—Ag; + ¢; — (2Bsi0? + 1)U?¢; — 20, ZﬁijajU%j =0mRY, i=1,....k (A1)

=1
J#i
AV +v =U>Mv in RV,
with
Br10? 51201<272 ... Bikoroy
Bi2o102 By ... Baro20y
M:=TZd+2C and C:= . . 2 . . . (A.2)
Biko10k  Boro20k ...  Brkoi

Let A be an eigenvalue of M and e an associated eigenfunction, i.e.
Me = Ae.

It is useful to point out that A, is an eigenvalue of M if and only if Oy := (Ay —1)/2 is
an eigenvalue of the matrix C. It is immediate to check that @ = 1 is an eigenvalue of C
whose eigenvector is (o1,...,0x). We set ©1 = 1, which implies A; = 3.

Proposition A.1. Assume that, all the eigenvalues Ao, ..., Ay of M do not coincide
with any of the eigenvalues { A, : m € N}, i.e.

Ao {M, ... ...} forany 0=2,... k. (A.3)
Then the set of solutions to the linear system (A.1) is N—dimensional, and is generated
by 1pie1, where ¢y = (o1,...,0%) € RF is an eigenvector associated with Ay = 3 and

; ::g—inforizl,...,N.

Proof. Let A; be an eigenvalue of the matrix M and let ¢, € RF be an associated
eigenvector. We multiply (A.1) by ¢, and taking into account the symmetry of the
matrix M we get
—Aleg-v)+e-v=~A U(eo-v) in R,
Since Ay # A, for every m, we deduce that
¢g-v=0 forany {=2,... k,

which implies (by the orthogonality of eigenvectors associated to different eigenvalues)
that

v = 1)(x)e; for some function 1) such that — A + 1 = 3U% in RN

and the claim follows. O

A first consequence is the following example.
Example A.2. Let k = 2. The system (1.7) has a non-degenerate synchronized solution
if
either — \/pipz < B < min{ur, po} or B> max{p, pa}, (A.4)
where p; := 8;; and 8 := 812 = [B21.
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Proof. First of all, we observe that in this case system (1.8) reduces to

,11,10'%"‘/60'%:1, (A5)
Bo? + pgos =1, ‘

which admits the solution
2 B — 2 2 B —
0] = ———"—, 05 = —F5— " A6
PR e’ TP B2 — s (8.6)
if (A.4) holds true.
Next, to prove that it is non-degenerate, we apply Proposition A.1 showing that assump-
tion (A.3) holds. The matrix M := (a;j)ij=1,2 in (A.2) reduces to
o] = 3#10’% + ,80'%, 12 = o1 := 200109, o9 = 3#20’% + ,80'% (A?)
Its eigenvalues are
_ 2 2 _ — 2 2
Q11 + age + /(a1 — an)? + 4ad, Ay — 11 + age — /(a1 — an)? + 4ad,
2 ’ - 2 '

Ay =

(A.8)
Using the definition of «;; and that of o1, 09, it is not difficult to check that
6 — 28(0 + 03) — 28(0f + 03)
2

Ay = =3 —2B(o} + 03)

and

A =8 26(at + 03) + 2B(0f + 03)
2

In particular, As < Ay = 3 for 8 > 0. Moreover, a direct computation shows that if

either 8 < min{uq, uo}, or f > max{ui, uz2}, then Ay # 1. Finally, if Ay = 1, then it is

immediate to check that

=3.

28 — 14 —
1—3_9 5M
B? — ppe
which implies either S = u1, or 5 = us which is not possible. O

Proposition A.3. Suppose that the matriz B := (Bi;)1<i j<k s invertible and has only
positive elements. Then the linearized systems (A.1) has a N-dimensional set of solu-
tions.

Proof. As observed above, we have to prove that if (3;;) is invertible and has positive
entries, then the set of solutions to (A.1) is N-dimensional. By Proposition A.1, this
amounts to show that if (/3;;) is invertible and has positive entries, then the eigenvalues
Ao, ..., A of M are different from A\ =1, Ay = 3, A\, > 3.

Let us argue in terms of the matrix C. By assumption, C has positive entries. There-
fore by Perron-Frobenius Theorem we deduce that the eigenvalue ©®; = 1, which is
associated to the eigenvector of positive elements (o1, ...,0x), is simple, and any other
eigenvalue Oy satisfies |©y] < 1. Moreover, 0 is not an eigenvalue of the matrix C, since
a straightforward computation shows that

detC = —(O’% ----- O']%) det(ﬁij) #0

being (f;;) invertible. Therefore, Ay = 3 is a simple eigenvalue, and we have that both
—1<Ap<3and Ay # 1 for any £ = 2,..., k. This completes the proof. O
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Example A.4. Let k > 2. The system (1.7) has a non-degenerate synchronized solution
if

0<p <- - < pg, B:=pi for every i # j and j is large enough, (A.9)
where p; 1= Bi;.
Proof. The existence of a synchronized solution is proved in [1], once we choose 0 < p1 <
-+ < p and B;; = B for every ¢ # j with 8 > . Indeed it is easy to check that

—-1/2
1

pi— B

k
o; = |(ui — B) 1—|—ﬁz fori=1,...,k
j=1

is a solution to system (1.8). To prove that it is non-degenerate, we apply Proposition
A.3. Indeed in this case

mo B B
s- |0 T
BB m

whose elements are strictly positive. It is also easy to check that it is invertible if 5 is
large, since

01 1
1 0 ... 1
det B ~ ﬂk det | . . | = Bk(—l)k_l(k —1) asf — +oo.
1 1 0
O
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