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NORMALIZED VECTOR SOLUTIONS OF NONLINEAR

SCHRÖDINGER SYSTEMS

XIAOMENG HUANG, ANGELA PISTOIA, CHRISTOPHE TROESTLER, AND CHUNHUA WANG

Abstract. Given µ > 0 we look for solutions λ ∈ R and v1, . . . , vk ∈ H1(RN ) of the
system 

−∆vi + λvi + Vi(x)vi =

k∑
j=1

βijviv
2
j in RN , i = 1, . . . , k,∫

RN

(
v21 + · · ·+ v2k

)
dx = µ,

where N = 1, 2, 3, Vi : RN → R and βij ∈ R satisfy βij = βji and βii > 0. Under
suitable assumptions on the βij ’s, given a non-degenerate critical point ξ0 of a suitable
linear combination of the potentials Vi, we build solutions whose components concen-
trate at ξ0 as the prescribed global mass µ is either large (when N = 1) or small (when
N = 3) or it approaches some critical threshold (when N = 2).

1. Introduction

A problem widely studied in the last decades concerns the existence of solutions
(λi, vi) ∈ R×H1(RN ), i = 1, . . . , k of the systems

−∆vi + λivi + Vi(x)vi =
k∑

j=1

βijviv
2
j in RN , i = 1, . . . , k, (1.1)

with prescribed masses, namely∫
RN

v2i = µi, i = 1, . . . , k. (1.2)

Here N = 1, 2, 3, Vi ∈ C0(RN ) ∩ L∞(RN ) and βij ∈ R satisfy βij = βji. We will
consider the focusing case, i.e. βii > 0.
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Solutions to (1.1)–(1.2) naturally arise in the study of solitary waves to time-dependent
nonlinear Schrödinger equations as

i∂tΦi +∆Φi − Vi(x)Φi +

k∑
j=1

βijΦi|Φj |2 = 0, x ∈ RN , t ∈ R, (1.3)

which has application in nonlinear optics and in the study of Bose-Einstein condensates
[10, 15]. Solitary wave solutions to (1.3) are obtained imposing the ansatz Φi(x, t) =
eiλit vi(x), where the real constant λi and the real valued function vi satisfy Equa-
tion (1.1). Despite the problem having some relevance in physical problems, only a few
existence (or non-existence) results seem to be known.

The natural approach to produce solutions to (1.1)–(1.2) consists in finding critical
points of the energy

J(v1, . . . , vk) :=
1

2

k∑
i=1

∫
RN

(
|∇vi|2 + Vi(x)v

2
i

)
dx− 1

4

k∑
i,j=1

∫
RN

βijv
2
i v

2
j dx (1.4)

constrained on the product of spheres

S := Sµ1 × · · · × Sµk
, with Sµi :=

{
v ∈ H1(RN ) :

∫
RN

|v|2 dx = µi

}
. (1.5)

The Langrange multipliers are nothing but the unknown real numbers λ1, . . . , λk.

The study of existence of solutions to (1.1)–(1.2) strongly depends on the dimensionN .
Indeed, when N = 2, the scaling u(x) = v(x/t) leaves both the ratio

∫
|∇v|2 dx/

∫
|v|4 dx

and the mass invariant, which is why the power p = 3 when N = 2 is called L2-critical.
In the following, we agree that N = 2 is the critical regime and we say that N = 1 is
the subcritical regime and N = 3 is the supercritical regime.

The situation in the case of a single equation (i.e. k = 1) is quite well understood.
A complete review of the available results in this context goes beyond the aim of this
paper. We only quote the pioneering paper by Jeanjean [11] where the author studies the
autonomous case (i.e. the potential is a constant) using a variational argument, which
have been widely employed in the successive literature. We also quote the recent paper
by Pellacci, Pistoia, Vaira and Verzini in [20], where the authors tackle the problem
using a different point of view. They use the well-known Lyapunov-Schmidt method
keeping the mass as the natural parameter in the reduction process and build solutions
with large mass in the subcritical regime, with small mass in the supercritical regime
and with mass close to a certain threshold value in the critical regime. We also refer the
interested reader to the references therein.

In striking contrast, very few papers concern with the existence of normalized solutions
to the system. Moreover, most of the known results only consider the case of 2 equations
in the autonomous case. To describe them it is useful to introduce the coupling parameter
β := β12 = β21. The first result is due to Nguyen and Wang in [18] in dimension
N = 1 in an attractive regime, i.e. β > 0. In 1D the growth of the nonlinearity is
subcritical so that the functional J in (1.4) is bounded from below on the constraint S
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in (1.5) and normalized solutions can be obtained by minimization. We observe that
in higher dimensions the functional is unbounded from below on the constraint when
β is positive, and hence their approach cannot be used. The supercritical regime (i.e.
N = 3) has been firstly studied by Bartsch, Jeanjean and Soave in [3] who developed
an accurate minimax argument to find a solution for suitable choices of the parameters
in the attractive case (i.e. β > 0). In particular, a solution to the system (1.1)–(1.2)
exists for every sufficiently small or sufficiently large β. We also quote some further
generalizations obtained by Bartsch, Zhong and Zou [7], Bartsch and Jeanjean [2] and
Li and Zou [12]. The existence of a solution in the repulsive case (i.e. β < 0) has been
established by Bartsch and Soave [4, 5, 6] who devise a different variational approach,
based upon the introduction of a further natural constraint. In the critical regime (i.e.
N = 2) the existence of normalized solutions is a very subtle issue, heavily depending
on the prescribed masses as can already be seen in the scalar case and it seems largely
open. Very recently, Mederski and Szulkin [16] consider the case of k ⩾ 2 equations
and show the existence of multiple solutions provided that all the parameters βij ’s are
positive and satisfy a suitable condition. In particular, they prove that if β := βij for
any i ̸= j then the system has a solution when β is large enough. Finally, as far as we
know, there is only one paper concerning the non-autonomous case. Noris, Tavares and
Verzini in [19] consider the system (1.1)–(1.2) with only two equations in the presence
of positive continuous trapping potentials (i.e. Vi → +∞ as |x| → ∞) and prove via a
variational approach the existence of positive solutions with small masses.

In this paper, we study the system (1.1) when we prescribe the global mass of the
solution v1, . . . , vk. More precisely, given µ > 0 we look for solutions λ ∈ R and v :=
(v1, . . . , vk), vi ∈ H2(RN ) of the system

−∆vi + λvi + Vi(x)vi =
k∑

j=1

βijviv
2
j in RN , i = 1, . . . , k,∫

RN

(
v21 + · · ·+ v2k

)
dx = µ.

(1.6)

For sake of simplicity we will assume that Vi, |∇Vi| ∈ L∞(RN ) for every i = 1, . . . , k.
Let us introduce the necessary ingredients to state our result. Let U be the positive

radial solution of

−∆U + U = U3 in RN .

It is well known that U and its first and second derivatives decay exponentially [13, 14].
We assume that U := (U1, . . . , Uk) is a synchronized radial positive solution to the limit
system

−∆Ui + Ui =
k∑

j=1

βijUiU
2
j in RN , i = 1, . . . , k, (1.7)

i.e. Ui = σiU, with σi > 0 for i = 1, . . . , k solutions of the algebraic system

k∑
j=1

βijσ
2
j = 1, i = 1, . . . , k. (1.8)
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We also assume that it is non-degenerate, i.e. the set of the solutions of the linear system

−∆ϕi + ϕi −
k∑

j=1

βij(U
2
j ϕi + 2UiUjϕj) = 0 in RN , i = 1, . . . , k, (1.9)

is a N−dimensional space generated by

Φi :=

(
∂U1

∂xi
, . . . ,

∂Uk

∂xi

)
=

(
σ1
∂U

∂xi
, . . . , σk

∂U

∂xi

)
, i = 1, . . . , N. (1.10)

Examples of this kind of solutions can be found in Examples A.2 and A.4.
Set

µ0 :=
k∑

i=1

∫
RN

U2
i (x) dx = γ

k∑
i=1

σ2i with γ =

∫
RN

U2 dx. (1.11)

Next, we introduce the global potential (see (1.11))

Γ(x) = γ

k∑
i=1

σ2i Vi(x). (1.12)

We assume that ξ0 ∈ RN is a non-degenerate critical point of Γ. Without loss of
generality we can suppose that, in a neighborhood of ξ0,

Γ(x) = Γ(ξ0) +
1

2

N∑
i=1

∂2Γ

∂x2i
(ξ0)(x− ξ0)

2
i +O

(
|x− ξ0|3

)
, with

∂2Γ

∂x2i
(ξ0) ̸= 0. (1.13)

We will also assume that each single potential Vi is C
4 in a neighbourhood of ξ0.

Finally, we say that a family v = vµ of solutions of (1.6), indexed on µ, concentrates
at ξ0 ∈ RN if

vµ(x) =
1

ϵµ
U

(
x− ξµ
ϵµ

)
+ ϕµ(x),

where, as µ → µ∗ ∈ [0,+∞], for ϵµ → 0, ξµ → ξ0, and the remainder ϕµ is a higher
order term, in some suitable sense.

Finally, we can state our main result.

Theorem 1.1. (1) There exists κ = κ(N) > 0 such that
(i) in the subcritical regime, i.e. N = 1, for any µ > κ there exist a solution

(λµ,vµ) to (1.6) with vµ concentrating at ξ0
(ii) in the supercritical regime, i.e. N = 3, for any 0 < µ < κ there exist a

solution (λµ,vµ) to (1.6) with vµ concentrating at ξ0
and in both cases

λµ ∼
(
µ0
µ

) 3
N−2

→ +∞ as µ→ ∞ or µ→ 0, respectively.

(2) In the critical regime, i.e. N = 2, we suppose that Vi(ξ0) = c and ∇Vi(ξ0) = 0
for every i = 1, . . . , k. Moreover we also assume ∆Γ(ξ0) ̸= 0.
Then there exists δ > 0 such that for any µ0 − δ < µ < µ0 (if ∆Γ(ξ0) > 0) or
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µ0 < µ < µ0 + δ (if ∆Γ(ξ0) < 0) there exists a solution (λµ,vµ) to (1.6) with vµ

concentrating at ξ0 and

λµ ∼
(
∆Γ(ξ0)

µ0 − µ

) 1
2

→ +∞ as µ→ µ0.

Let us make some comments.

Remark 1.2. We build the solution using a Ljapunov-Schmidt procedure taking the
mass µ as a parameter in the same spirit of [20]. The profile of the solution at the main
order looks like the synchronized solution to the limit system (1.7). However, in contrast
to the previous work, here the solution must also be corrected at second order by means
of the solution of the linear problem (2.4) where the values of the potentials at ξ0 appear.
We observe that in the case of the single equation once we fix the non-degenerate critical
point ξ0 of V we can assume (without loss of generality) that V (ξ0) = 0 up to replacing
λ with the new parameter λ − V (ξ0). This no longer holds in the case of the system,
because if the single parameter λ is replaced by the parameters λi = λ− Vi(ξ0) they are
different, unless all the potentials have the same value at the point ξ0.

Remark 1.3. The main term of the solution found in Theorem 2.1 in the critical regime
(i.e. N = 2) is not good enough to detect its mass. We need to improve the ansatz up
to the second order and to keep the size of the error term small enough. That is why we
need to assume that all the potentials have the same expansion (up to the first order)
close to the point ξ0, i.e. all the functions Vi’s take the same value at the point, which also
turns out to be a common critical point. It would be extremely interesting to determine
whether this extra assumption is merely a tool to simplify the computations or if it has
a deeper significance.

Remark 1.4. Byeon in [8] considers a singularly perturbed system with only two equa-
tions similar to system (2.2). He proves the existence of solutions concentrating at the
same point which is a common non-degenerate critical point of both the potentials. In
Theorem 2.1 we show that the concentration phenomenon is actually governed by the
critical points of the global potential Γ rather than by the critical points of the individ-
ual potentials. Moreover, our approach allows to consider systems with more than two
components.

Remark 1.5. The existence of solutions concentrating at the point ξ0 strongly depends
on the nature of the critical point. In particular in the critical regime there exists a
solution with a mass smaller than µ0 if ξ0 is a minimum point (since ∆Γ(ξ0) > 0) or
with a mass larger than µ0 if ξ0 is a maximum point (since ∆Γ(ξ0) < 0). It would be
interesting to prove that such conditions are also necessary. More precisely, it could
be challenging to prove that if ξ0 is a minimum or a maximum point then there are no
solutions blowing-up at ξ0 with masses approaching µ0 from above or below, respectively.

Remark 1.6. In [20] we conjectured that the constant αN defined in (4.1) is positive for
any N . This is true in the 1-dimensional case as proved in [20, Remark 3.5]. In Section 4
we provide numerical evidence that this is still true for dimensions N ∈ {2, . . . , 8}. The
validity of the conjecture is in our opinion an interesting open problem.

The proof paper is organized as follows. In Section 2, we find a solution to the
perturbed Schrödinger equation (2.2) via the classical Ljapunov-Schmidt reduction. For
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sake of completeness we repeat the main steps of the proofs taking into account that a
second order expansion of the main term of the solution we are looking for is needed. In
Section 3, we select the solutions with the prescribed norm. In Section 4 we discuss the
numerical approach used to study the sign of αN defined in (4.1). Finally, in Appendix A
we study the existence of non-degenerate synchronized solutions to System (1.7).

Notation: In what follows we agree that notation f = O(g) or f ≲ g stand for
|f | ⩽ C|g| for some C > 0 uniformly with respect all the variables involved, unless
specified.

2. Existence of solutions to a singularly perturbed system

Set

ϵ := λ−
1
2 and ui := ϵvi, i = 1, . . . , k. (2.1)

Problem (1.6) turns out to be equivalent to
−ϵ2∆ui + ui + ϵ2Vi(x)ui =

k∑
j=1

βijuiu
2
j in RN , i = 1, . . . , k, (2.2)

ϵ−2

∫
RN

u21 + · · ·+ u2k dx = µ. (2.3)

It is clear that (λ(µ),v(µ)), v(µ) := (v1(µ), . . . , vk(µ)) solves (1.6) if and only if (ϵ(µ),u(µ)),
u(µ) := (u1(µ), . . . , uk(µ)) solves (2.2)–(2.3). As a consequence, the first step is build-
ing a solution u = u(ϵ) to the singularly perturbed Schrödinger system (2.2) which
concentrates at a given point ξ0 as ϵ→ 0.

In this section, we mainly prove the following result.

Theorem 2.1. There exists ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0) there exists a unique
solution uϵ = (u1,ϵ, . . . , uk,ϵ) to (2.2) such that

ui,ϵ(x) = Ui

(
x− ξϵ
ϵ

)
− ϵ2Zi

(
x− ξϵ
ϵ

)
+ ψi,ϵ(x), i = 1, . . . , k,

for some ξϵ → ξ0 as ϵ→ 0. The functions Z1, . . . , Zk ∈ H1(RN ) are the radial solutions
to the linear system

−∆Zi + Zi −
k∑

j=1

βij
(
U2
j Zi + 2UiUjZj

)
= Vi(ξ0)Ui in RN , i = 1, . . . , k (2.4)

and the remainder terms ψi,ϵ satisfy( ∫
RN

ϵ2|∇ψi,ϵ|2 + ψ2
i,ϵ dx

)1/2

= O
(
ϵ
N
2
+3
)
.

Moreover, the map (0, ϵ0) →
(
H1(RN )

)k
: ϵ 7→ uϵ is continuous.
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2.1. Preliminaries. Note that the functions ui solve system (2.2) if and only if the
scaled functions ui(ϵ ·+ ξ), which will still be denoted by ui solve the following system

−∆ui + ui + ϵ2Vi(ϵx+ ξ)ui =
k∑

j=1

βijuiu
2
j in RN , i = 1, . . . , k. (2.5)

Here, we choose the concentration point

ξ := ϵτ + ξ0, τ ∈ RN .

Let H1(RN ) be equipped with the standard scalar product

⟨ϕ, ψ⟩ :=
∫
RN

∇ϕ∇ψ +

∫
RN

ϕψ,

which induces the standard norm denoted by ∥ · ∥. We also denote by i∗ : L4/3(RN ) →
H1(RN ) the adjoint operator of the embedding i : H1(RN ) ↪→ L4/3(RN ), i.e.

i∗f = u ⇐⇒ −∆u+ u = f in RN .

We also observe that there exists C > 0 such that

∥u∥ ⩽ C∥f∥L4/3(RN ), i = 1, . . . , k. (2.6)

We set H := H1(RN )×· · ·×H1(RN ), equipped with the scalar product and the induced
norm (respectively)

⟨u,v⟩ :=
k∑

i=1

⟨ui, vi⟩ and ∥u∥2 =
k∑

i=1

∥ui∥2, (2.7)

where u = (u1, . . . , uk),v = (v1, . . . , vk) ∈ H. Finally, we can rewrite system (2.5) as

ui = i∗

{
k∑

j=1

βijuiu
2
j − ϵ2Vi(ϵ ·+ ξ)ui

}
in RN , i = 1, . . . , k. (2.8)

We look for a solution to (2.8) as

u = U− ϵ2Z︸ ︷︷ ︸
=:W

+ϕ, (2.9)

where U := (U1, . . . , Uk) is the non-degenerate synchronized solution of the limit sys-
tem (1.7), the correction term Z := (Z1, . . . , Zk) solves the linear system (2.4) and the
remainder term ϕ := (ϕ1, . . . , ϕk) ∈ K⊥ where (see (1.10))

K := span

{
Φi :=

(
∂U1

∂xi
, . . . ,

∂Uk

∂xi

)
: i = 1, . . . , N

}
(2.10)

and

K⊥ =
{
ϕ := (ϕ1, . . . , ϕk) ∈ H : ⟨ϕ,Φi⟩ = 0, i = 1, . . . , N

}
. (2.11)

Note that W ∈ K⊥ because U and the Zi are radial. We rewrite the system (2.8) as
follows

Lϵ,τ (ϕ)− Eϵ,τ −N ϵ,τ (ϕ) = 0. (2.12)
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Here the linear operator Lϵ,τ is defined by

Li(ϕ1, . . . , ϕk) := ϕi − i∗


k∑

j=1

βij
(
W 2

j ϕi + 2WiWjϕj
)
− ϵ2Vi(ϵ ·+ ξ)ϕi

 , (2.13)

the nonlinear term N ϵ,τ (ϕ) is defined by

Ni(ϕ1, . . . , ϕk) = i∗

{
k∑

j=1

βij
(
Wiϕ

2
j + ϕiϕ

2
j + 2Wjϕiϕj

)}
(2.14)

and the error term Eϵ,τ is defined by

Ei := i∗

{
k∑

j=1

βijWiW
2
j − ϵ2Vi(ϵ ·+ ξ)Wi

}
−Wi. (2.15)

Then, problem (2.8) turns out to be equivalent to the system

Π⊥{Lϵ,τ (ϕ)− Eϵ,τ −N ϵ,τ (ϕ)
}
= 0 (2.16)

and

Π
{
Lϵ,τ (ϕ)− Eϵ,τ −N ϵ,τ (ϕ)

}
= 0, (2.17)

where Π : H → K and Π⊥ : H → K⊥ are the orthogonal projections.

2.2. Solving (2.16).

Proposition 2.2. For any compact set T ⊂ RN there exists ϵ0 > 0 and C > 0 such
that for any ϵ ∈ [0, ϵ0] and for any τ ∈ T there exists a unique ϕ = ϕϵ,τ ∈ K⊥ in a
neighborhood of 0 which solves equation (2.16) and

∥ϕϵ,τ∥ ⩽ Cϵ3. (2.18)

Moreover, the map ϵ 7→ ϕϵ,τ is continuous and the map τ 7→ ϕϵ,τ is C1 and satisfies

∥∂τϕϵ,τ∥ ⩽ Cϵ3. (2.19)

Proof. Let us sketch the main steps of the proof.
(i) First of all, we prove that the linear operator Lϵ,τ is uniformly invertible in K⊥,
namely there exists ϵ0 > 0 and C > 0 such that

∥Π⊥Lϵ,τ (φ)∥ ⩾ C∥φ∥ for any ϵ ∈ [0, ϵ0], τ ∈ T and φ ∈ K⊥.

Observe that
Π⊥Lϵ,τ (φ) = Π⊥L0(φ) + ϵ2L̃ϵ,τ (φ),

where the linear operator L̃ϵ,τ is uniformly bounded and the linear operator L0 defined
by

(L0)i(φ1, . . . , φk) = φi − i∗

{
k∑

j=1

βij
(
U2
j φi + 2UiUjφj

)}
. (2.20)

The non-degeneracy assumption (1.9) means that K = kerL0. Given that L0 is self-
adjoint, Π⊥L0 = L0 and, because it is a compact perturbation of the identity, it is
invertible.
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(ii) Next, we compute the size of the error Eϵ,τ in terms of ϵ. We observe that by (1.7)

Ui = i∗

{
k∑

j=1

βijUiU
2
j

}
and by (2.4)

Zi = i∗

{
k∑

j=1

βij
(
U2
j Zi + 2UiUjZj

)
+ Vi(ξ0)Ui

}
.

Moreover, by the mean value theorem (recalling that |∇Vi| ∈ L∞),

Vi(ϵx+ ϵτ + ξ0) = Vi(ξ0) +O
(
ϵ(1 + |x|)

)
.

Combining the above facts we have

Ei = i∗

{
ϵ4

k∑
j=1

βij
(
UiZ

2
j + 2UjZiZj

)
− ϵ6

k∑
j=1

βijZiZ
2
j

}
+ i∗

{
ϵ4Vi(ϵ ·+ ξ)Zi − ϵ2 (Vi(ϵ ·+ ξ)− Vi(ξ0))Ui

}
(2.21)

and

∥Ei∥ ⩽ Cϵ3, i = 1, . . . , k.

(iii) The existence part follows by a standard contraction mapping argument. The
contraction relies on the inequality ∥N ϵ,τ (ϕ1) − N ϵ,τ (ϕ2)∥ ⩽ c∥ϕ1 − ϕ2∥ where c =
O
(
∥ϕ1∥ + ∥ϕ2∥

)
which can be deduced combining the mean value theorem and (2.14).

The fact that a small ball around ϕ = 0 is mapped into itself comes from point (ii)
and the following estimate ∥N ϵ,τ (ϕ)∥ ⩽ C∥ϕ∥2 (which follows by (2.14)) valid in a
neighbourhood of ϕ = 0. Point (ii) and this last inequality also imply the bounds on
∥ϕϵ,τ∥. Finally, the continuity of the fix point ϕϵ,τ follows from the same continuity of
the contracting map (we choose ϵ0 small enough so that, for all ϵ ∈ [0, ϵ0], ϵT lies in the
neighborhood of ξ0 where all Vi’s are of class C

4). See e.g. [17, Proposition 3.5] for more
details.

(iv) We show that the map τ 7→ ϕϵ,τ is a C1. Our arguments are inspired by those
developed in [17, Proposition 3.5] (see also [9, Proposition 5.2]). We apply the Implicit
Function Theorem to the C1-function G : RN ×K⊥ → K⊥ defined by

G(τ,φ) := φ−Π⊥ {F(W +φ
)
−W

}
where W is defined in (2.9) and the function F : H → H is defined as (see (2.8))

Fi(u) := i∗


k∑

j=1

βijuiu
2
j − ϵ2Vi(ϵ ·+ ξ)ui

 , i = 1, . . . , k.

Now, it is clear that G(τ,ϕϵ,τ ) = 0. Moreover the linearized operator DφG(τ,ϕϵ,τ ) :

K⊥ → K⊥ is defined by

DφG(τ,ϕϵ,τ )[φ] = φ−Π⊥{DuF
(
W + ϕϵ,τ

)
[φ]
}
,
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where the linear operator DuF (u) : H → H is defined by

(
DuF(u)[v]

)
i
= i∗


k∑

j=1

βij
(
u2jvi + 2uiujvj

)
− ϵ2Vi(ϵ ·+ ξ)vi

 , i = 1, . . . , k.

We claim that the operator DφG(τ,ϕϵ,τ ) is invertible. Indeed, using (2.6), one shows
thatDuF(u) → DuF(U) in L(H;H) as u → U. Thus, thanks to (2.18), DφG(τ,ϕϵ,τ ) →
DφG(τ,U) = Π⊥L0 = L0 in L(K⊥;K⊥), uniformly w.r.t. τ ∈ T , as ϵ→ 0, where L0 is
defined by (2.20). Taking if necessary ϵ0 smaller, the claim is proved.

(v) Finally, we prove the estimate (2.19). We know that

G(τ,ϕϵ,τ ) = 0.

Then, differentiating at τ0 in the direction τ yields

DτG(τ0,ϕϵ,τ0)[τ ] +DuG(τ0,ϕϵ,τ0)
[
Dτϕϵ,τ0 [τ ]

]
= 0

and so we get

∥Dτϕϵ,τ0 [τ ]∥ ⩽ C∥DτG(τ0,ϕϵ,τ0)[τ ]∥ ⩽ Cϵ3|τ |,

because (setting ϕϵ,τ0 = (ϕ1, . . . , ϕk))

DτG(τ0,ϕϵ,τ0)[τ ] = ϵ3Π⊥(i∗{∇V1(ϵ ·+ ϵτ0 + ξ0)τ(W1 + ϕ1)
}
, . . . ,

i∗
{
∇Vk(ϵ ·+ ϵτ0 + ξ0)τ(Wk + ϕk)

})
and ∥∥DτG(τ0,ϕϵ,τ0)[τ ]

∥∥ ⩽ Cϵ3|τ |∥W + ϕϵ,τ0∥ ⩽ Cϵ3|τ |. □

2.3. Solving (2.17).

Proposition 2.3. There exists ϵ0 > 0 such that for any ϵ ∈ [0, ϵ0] there exists a unique
τϵ ∈ RN such that equation (2.17) is satisfied with ϕ = ϕϵ,τ , where ϕϵ,τ is given by
Proposition 2.2. Moreover, the map ϵ 7→ τϵ is continuous and goes to 0 as ϵ→ 0.

Proof. As ϕϵ,τ solves (2.16), there exist real numbers ciϵ,τ , i = 1, . . . , N such that
(see (1.10))

Lϵ,τ (ϕϵ,τ )−N ϵ,τ (ϕϵ,τ )− Eϵ,τ =

N∑
i=1

ciϵ,τΦi. (2.22)

We aim to find a unique point τ = τϵ such that all the ciϵ,τ ’s are zero. We multiply
(2.22) by Φj . We get

〈
Lϵ,τ (ϕϵ,τ )−N ϵ,τ (ϕϵ,τ )− Eϵ,τ ,Φj

〉
=

N∑
i=1

ciϵ,τ ⟨Φi,Φj⟩ = cjϵ,τA, (2.23)
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because, by (1.10) and the oddness of ∂iU along the axis xi,

⟨Φi,Φj⟩ =
k∑

ℓ=1

⟨∂iUℓ, ∂jUℓ⟩ =
k∑

ℓ=1

σ2ℓ ⟨∂iU, ∂jU⟩ =
k∑

ℓ=1

σ2ℓ

∫
RN

g′(U)∂iU∂jU

= Aδij , where A :=
k∑

ℓ=1

σ2ℓ

∫
RN

g′(U) (∂1U)2 ̸= 0 and g(t) = t3.

The claim will follow at once if we prove that

〈
Lϵ,τ (ϕϵ,τ )−N ϵ,τ (ϕϵ,τ )− Eϵ,τ ,Φj

〉
= −1

2
ϵ4

(
τj
∂2Γ

∂x2j
(ξ0) + o(1)

)
, j = 1, . . . , N,

(2.24)
where the o’s are C1-uniform with respect to τ ∈ T as ϵ→ 0, where T is a given compact
set. Indeed, using (2.24), (2.23) may be rewritten as

−1

2
ϵ4

(
τj
∂2Γ

∂x2j
(ξ0) + o(1)

)
= Acjϵ,τ for any j = 1, . . . , N, (2.25)

where A ̸= 0 is a constant and the o(1) is C1-uniform in τ ∈ T as ϵ → 0. Since all the
∂2Γ/∂x2j (ξ0)’s are different from zero (because ξ0 is a non-degenerate critical point of

Γ), a contraction mapping argument shows that

τj = −
(
∂2Γ

∂x2j
(ξ0)

)−1

o(1), j = 1, . . . , N,

has a unique solution τϵ = (τ1, . . . , τN ) for ϵ small enough. Therefore the left hand side

in (2.25) vanishes and cjϵ,τϵ = 0 for all j = 1, . . . , N . The map ϵ 7→ τϵ is continuous
because the functions in o(1) are continuous with respect to ϵ. Moreover it is clear that
τj → 0, j = 1, . . . , N , as ϵ→ 0 and (ϵ, τ) ∈ T .

Let us prove (2.24). First of all, we estimate the leading term in (2.23). By (1.10),
(2.7), (2.15) (taking into account that U and Zi are radial functions and the derivatives
∂U/∂xj are odd functions), and the Taylor expansions of Vℓ and of

∂Vℓ
∂xj

(ϵx+ ϵτ + ξ0) =
∂Vℓ
∂xj

(ξ0) + ϵ

N∑
i=1

∂2Vℓ
∂xj∂xi

(ξ0)(xi + τi) +O
(
ϵ2(1 + |x|2)

)
,

we get:

−⟨Eϵ,τ ,Φj⟩

= −
k∑

ℓ=1

σℓ

〈
Eℓ,

∂U

∂xj

〉

=

k∑
ℓ=1

σℓ

∫
RN

Vℓ(ϵx+ ϵτ + ξ0)
(
ϵ2σℓU − ϵ4Zℓ

) ∂U
∂xj

dx
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= ϵ2
k∑

ℓ=1

σ2ℓ

∫
RN

Vℓ(ϵx+ ϵτ + ξ0)U
∂U

∂xj
dx+ o(ϵ4)

= −1

2
ϵ3

k∑
ℓ=1

σ2ℓ

∫
RN

∂Vℓ
∂xj

(ϵx+ ϵτ + ξ0)U
2(x) dx+ o(ϵ4)

= −1

2
ϵ3

k∑
ℓ=1

σ2ℓ

∫
RN

∂Vℓ
∂xj

(ξ0)U
2(x) dx

︸ ︷︷ ︸
= ∂Γ

∂xj
(ξ0)=0 (see (1.12))

−1

2
ϵ4

k∑
ℓ=1

σ2ℓ

N∑
i=1

∂2Vℓ
∂xj∂xi

(ξ0)τi

∫
RN

U2 dx+ o(ϵ4)

= −1

2
ϵ4

N∑
i=1

τi

(
γ

k∑
ℓ=1

σ2ℓ
∂2Vℓ
∂xj∂xi

(ξ0)

)
︸ ︷︷ ︸

= ∂2Γ
∂xj∂xi

(ξ0)

+ o(ϵ4) = −1

2
ϵ4τj

∂2Γ

∂x2j
(ξ0) + o(ϵ4). (2.26)

Note that since V is C4 in a neighbourhood of ξ0, all o(ϵ
4) hold in the C1-topology with

respect to τ ∈ T .
Finally, it remains to prove that

⟨Lϵ,τ (ϕϵ,τ ),Φj⟩ = o
(
ϵ4
)

and ⟨N ϵ,τ (ϕϵ,τ ),Φj⟩ = o
(
ϵ4
)
, (2.27)

where all o(ϵ4) are in the C1(T )-topology.
Writing as usual ϕϵ,τ = (ϕ1, . . . , ϕk), recalling the definition (2.13), and taking into

account that Φj solves (1.9) yields

⟨Lϵ,τ (ϕϵ,τ ),Φj⟩ =
k∑

ℓ=1

σℓ

∫
RN

k∑
κ=1

βℓκ
(
U2
κϕℓ + 2UℓUκϕκ

)
∂jU

−
k∑

ℓ=1

σℓ

∫
RN

k∑
κ=1

βℓκ
(
W 2

κϕℓ + 2WℓWκϕκ
)
∂jU

+ ϵ2
k∑

ℓ=1

σℓ

∫
RN

Vℓ(ϵx+ ϵτ + ξ0)ϕℓ ∂jU

=

k∑
ℓ=1

σℓ

∫
RN

k∑
κ=1

βℓκ
(
2ϵ2UκZκ − ϵ4Z2

κ

)
ϕℓ ∂jU

+

k∑
ℓ=1

σℓ

∫
RN

k∑
κ=1

2βℓκ
(
ϵ2(UℓZκ + UκZℓ)− ϵ4ZℓZκ

)
ϕκ ∂jU

+ ϵ2
k∑

ℓ=1

σℓ

∫
RN

Vℓ(ϵx+ ϵτ + ξ0)ϕℓ ∂jU



NORMALIZED VECTOR SOLUTIONS OF NONLINEAR SCHRÖDINGER SYSTEMS 13

= o(ϵ4) in C0(T ) because of (2.18).

The derivative with respect to τj of the previous quantity enjoys the following estimate:

∂τi⟨Lϵ,τ (ϕϵ,τ ),Φj⟩ =
k∑

ℓ=1

σℓ

∫
RN

k∑
κ=1

βℓκ
(
2ϵ2UκZκ − ϵ4Z2

κ

)
∂τiϕℓ ∂jU

+
k∑

ℓ=1

σℓ

∫
RN

k∑
κ=1

2βℓκ
(
ϵ2(UℓZκ + UκZℓ)− ϵ4ZℓZκ

)
∂τiϕκ ∂jU

+ ϵ2
k∑

ℓ=1

σℓ

∫
RN

Vℓ(ϵx+ ϵτ + ξ0)∂τiϕℓ ∂jU

+ ϵ3
k∑

ℓ=1

σℓ

∫
RN

∂iVℓ(ϵx+ ϵτ + ξ0)ϕℓ ∂jU

= o(ϵ4) in C0(T ) because of (2.19) and (2.18).

By (2.14),

⟨N ϵ,τ (ϕϵ,τ ),Φj⟩ =
k∑

ℓ=1

σℓ

∫
RN

k∑
κ=1

βℓκ
(
Wℓϕ

2
κ + ϕℓϕ

2
κ + 2Wκϕℓϕκ

)
∂jU

= o(ϵ4) in C0(T ) because of (2.18)

and, differentiating with respect to τi, we easily get

∂τi⟨N ϵ,τ (ϕϵ,τ ),Φj⟩ = o(ϵ4) in C0(T ) because of (2.18) and (2.19). □

Proof of Theorem 2.1, completed. The existence of the solution uϵ to problem (2.2) fol-
lows combining all the previous arguments. It suffices to define

uϵ(x) := W
(x− ξϵ

ϵ

)
+ (ψ1,ϵ, . . . , ψk,ϵ)(x), where (ψ1,ϵ, . . . , ψk,ϵ)(x) := ϕϵ,τϵ

(x− ξϵ
ϵ

)
with ξϵ := ϵτϵ + ξ0, where τϵ is given by Proposition 2.3. The continuity in the H1-

topology results from the fact that, for ϵ > 0, the norm u 7→ ϵ−N/2
(∫
ϵ2|∇u|2 + u2

)1/2
is

equivalent to the usual H1-norm. Finally the estimate on ψi,ϵ results from (2.18). □

3. The mass of uϵ

In this section we find the solutions to (2.8) by selecting the solutions to (2.2) for a
suitable ranges of prescribed masses µ’s.

3.1. The non-critical case.

Theorem 3.1. (i) If N = 1, then there exists R > 0 such that for any µ > R
problem (2.8) has a solution (ϵµ,uµ), where uµ is concentrating at the point ξ0
as µ→ ∞.
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(ii) If N = 3, then there exists r > 0 such that for any µ < r problem (2.8) has a
solution (ϵµ,uµ), where uµ is concentrating at the point ξ0 as µ→ 0.

In both cases ϵ2−N
µ µ→ µ0 (see (1.11)), as µ→ ∞ or µ→ 0, respectively.

Proof. By Theorem 2.1 there exists a solution

uε = U

(
x− ξϵ
ϵ

)
− ϵ2Z

(
x− ξϵ
ϵ

)
+ ϕϵ

(
x− ξϵ
ϵ

)
,

where ∥ϕϵ∥ = O(ϵ3). The mass of uϵ is (see (2.3))

µϵ : = ϵ−2
k∑

i=1

∫
RN

(
σiU

(
x− ξϵ
ϵ

)
− ϵ2Zi

(
x− ξϵ
ϵ

)
+ ϕi,ϵ

(
x− ξϵ
ϵ

))2

dx

= ϵ−2+N

(
k∑

i=1

σ2i

∫
RN

U2(x) dx+O(ϵ2)

)

= ϵ−2+N
(
µ0 + o(1)

)
(see (1.11)). (3.1)

Since uϵ must have a prescribed mass as in (2.3), we have to find ϵ = ϵ(µ) such that

µϵ = µ.

As the map ϵ 7→ uϵ is continuous, so is ϵ 7→ µϵ. Moreover, (3.1) implies that µϵ → +∞
if N = 1 (resp. µϵ → 0 if N = 3) as ϵ → 0. The Intermediate Value Theorem implies
that a set of the form (R,+∞) (resp. (0, r)) is in the image of ϵ 7→ µϵ. □

3.2. The critical case. Let N = 2. It is important to point out that a refinement of
the ansatz is needed! Indeed, if we expand more carefully (3.1), we can determine the
coefficient of the next order of ϵ:

µϵ = µ0 − 2ϵ2
k∑

i=1

σi

∫
R2

U(x)Zi(x) dx

︸ ︷︷ ︸
=:Ξ(ξ0)

+o(ϵ2) = µ.

This does not allow to determine which values µϵ takes because Ξ(ξ0) = 0 as proved in
Remark 3.3.

Remark 3.2. Let (f1, . . . , fk) ∈
(
L2(RN )

)k
and R = (R1, . . . , Rk) a solution to the

linear system

−∆Ri +Ri −
k∑

j=1

βij
(
U2
j Ri + 2UiUjRj

)
= fi. (3.2)

Consider z :=
∑k

i=1 σiRi. Multiplying the i-th equation by σi and summing them up,
we find that

−∆z + z − U2
k∑

i=1

σi

k∑
j=1

βijσ
2
jRi − 2U2

k∑
i=1

k∑
j=1

βijσ
2
i σjRj =

k∑
i=1

σifi.
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Making use of (1.8) and of the fact that βij = βij , this boils down to

−∆z + z − 3U2z =

k∑
i=1

σifi in RN . (3.3)

Therefore, the L2 scalar product of U with R is

k∑
i=1

∫
RN

UiRi =

∫
RN

k∑
i=1

σiURi =

∫
RN

U(x)z(x) dx. (3.4)

Remark 3.3. It holds true that Ξ(ξ0) = 0. Indeed we apply the previous remark with
fi = Vi(ξ0)Ui (see (2.4)). Therefore by (3.4)

Ξ(ξ0) =
k∑

i=1

σi

∫
R2

U(x)Zi(x) dx =

∫
R2

U(x)z(x) dx,

where z solves

−∆z + z − 3U2z =

(
k∑

ℓ=1

σ2ℓVℓ(ξ0)

)
U in R2.

A direct computation shows that

z(x) = −1

2

(
k∑

ℓ=1

σ2ℓVℓ(ξ0)

)(
U(x) +∇U(x) · x

)
. (3.5)

Indeed, letting uλ(x) := λU(λx), it is easy to check that uλ(x) satisfies

−∆uλ + λ2uλ = u3λ in R2. (3.6)

Differentiating (3.6) with respect to λ and taking λ = 1, we deduce that the function

v = ∂uλ
∂λ |λ=1 = U +∇U · x satisfies

−∆v + v − 3U2v = −2U in R2.

Equality (3.5) then results for the fact that the kernel of v 7→ −∆v+v−3U2v is spanned
by ∂iU , i = 1, 2, and so the operator is injective on radial functions. Next, integrating
by parts (for example, using div(12U

2x) = U2 +U∇U · x), it is immediate to check that∫
R2

(
U +∇U · x

)
U(x) dx = 0.

We agree that a refinement of the ansatz is necessary. Without loss of generality, we
may assume the common critical point of the potentials is ξ0 = 0 and also that each
potential vanishes at ξ0, i.e. in a neighbourhood of the origin

Vi(x) =
(
a
(i)
1 x21 + a

(i)
2 x22

)
+O(|x|3) with a

(i)
1 , a

(i)
2 ∈ R, for every i = 1, . . . , k. (3.7)

Set

α :=

∫
RN

U(x)z0(x) dx, (3.8)
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where z0 is the radial solution to

−∆z0 + z0 − 3U2z0 =
(
x21 + x22

)
U in R2. (3.9)

In Section 4, there is a numerical evidence that α > 0.

Theorem 3.4. There exists δ > 0 such that if either ∆Γ(0) > 0 and µ ∈ (µ0 − δ, µ0),
or ∆Γ(0) < 0 and µ ∈ (µ0, µ0 + δ), problem (2.8) has a solution (ϵµ, uµ) such that uµ
concentrates at the origin and ϵ−4

µ (µ0 − µ) → α∆Γ(0) as µ→ µ0.

Proof. We briefly sketch the main steps of the proof, which relies on the same arguments
used in the non-critical case.

We look for a solution to (2.8), where we choose ξ = ϵ2τ as

u = U− ϵ4Q︸ ︷︷ ︸
=:W

+ϕ, (3.10)

where U = (U1, . . . , Uk) is the non-degenerate synchronized solution of the limit system
(1.7), the remainder term ϕ ∈ K⊥ (see (2.11)) and the second order correction term
Q := (Q1, . . . , Qk) solves the linear system

−∆Qi +Qi −
k∑

j=1

βij
(
U2
jQi + 2UiUjQj

)
=
(
a
(i)
1 x21 + a

(i)
2 x22

)
Ui in R2, i = 1, . . . , k. (3.11)

The proof proceeds as in the previous case. Here, it is only a matter of noting a couple
of crucial facts. First of all, the size of the error Eϵ,τ is

∥Eϵ,τ∥ ≲ ϵ5,

because (see also (2.21))

Ei = i∗

{
ϵ8

k∑
j=1

βij

(
2UjQiQj + UiQ

2
j − ϵ4QiQ

2
j

)}

+ i∗
{
ϵ6Vi(ϵx+ ϵ2τ)Qi − ϵ2

[
Vi(ϵx+ ϵ2τ)− ϵ2

(
a
(i)
1 x21 + a

(i)
2 x22

)]
Ui

}
. (3.12)

Next, the component of the error along the element of the kernel is (see also (2.26))

−⟨Eϵ,τ ,Φj⟩ = −
k∑

ℓ=1

σℓ

〈
Eℓ,

∂U

∂xj

〉

= ϵ2
k∑

ℓ=1

σ2ℓ

∫
R2

Vℓ(ϵx+ ϵ2τ)U
∂U

∂xj
dx+ o(ϵ5)

= −1

2
ϵ3

k∑
ℓ=1

σ2ℓ

∫
R2

∂Vℓ
∂xj

(ϵx+ ϵ2τ)U2(x) dx+ o(ϵ5)
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= −ϵ5
(

k∑
ℓ=1

σ2ℓa
(ℓ)
j τj

∫
R2

U2 dx+
1

4

k∑
ℓ=1

N∑
i=1

σ2ℓ
∂3Vℓ
∂x2i ∂xj

(0)

∫
R2

x2iU
2 dx

)
+ o(ϵ5)

= −ϵ5
(
τj γ

k∑
ℓ=1

σ2ℓa
(ℓ)
j︸ ︷︷ ︸

= 1
2

∂2Γ

∂x2
j

(0)

+
1

4γ

N∑
i=1

∂3Γ

∂x2i ∂xj
(0)

∫
R2

x2iU
2 dx

)
+ o(ϵ5)

= −1

2
ϵ5

(
τj
∂2Γ

∂x2j
(0) +

γ̃

2Nγ

∂∆Γ

∂xj
(0) + o(1)

)
,

where we have used that
∫
R2 x

2
iU

2 dx is independent of i and so∫
R2

x2iU
2 dx =

1

N

N∑
i=1

∫
R2

x2iU
2 dx =

γ̃

N
with γ̃ :=

∫
R2

|x|2U2(x) dx.

Since ∂2Γ
∂x2

j
(0) ̸= 0 for any j = 1, 2, we can argue exactly as in the previous part to get

the existence of a solutions concentrating at ξ0 = 0 as

uε = u

(
x− ξϵ
ϵ

)
− ϵ4Q

(
x− ξϵ
ϵ

)
+ ϕϵ

(
x− ξϵ
ϵ

)
,

whose mass is

µϵ = ϵ−2
k∑

i=1

∫
R2

(
σiU

(
x− ξϵ
ϵ

)
− ϵ4Qi

(
x− ξϵ
ϵ

)
+ ϕi,ϵ

(
x− ξϵ
ϵ

))2

dx

= µ0 − 2ϵ4
∫
R2

k∑
i=1

σiU(x)Qi(x) dx

︸ ︷︷ ︸
=:Υ

+ o(ϵ4) (see (1.11)). (3.13)

Since uϵ must have a prescribed mass equal to µ we have to find ϵ = ϵ(µ) such that

µϵ = µ. (3.14)

As the map ϵ 7→ uϵ is continuous, so is ϵ 7→ µϵ. Moreover, it goes to µ0 as ϵ→ 0. Thanks
to Remark 3.5 (below), its image must contain an interval of the form (µ0 − δ, µ0) if
α∆Γ(0) > 0 or (µ0, µ0 + δ) if α∆Γ(0) < 0. That concludes the proof. □

Remark 3.5. It holds true that Υ = 1
2α∆Γ(0) (see (3.8)). We apply Remark 3.2 with

fℓ = σℓ
(
a
(ℓ)
1 x21 + a

(ℓ)
2 x22

)
U (see (3.11)). Therefore by (3.4)

Υ =
k∑

i=1

∫
RN

Ui(x)Qi(x) dx =

∫
RN

U(x)z∗(x) dx,
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where z∗ solves

−∆z + z − 3U2z =
k∑

ℓ=1

σ2ℓ
(
a
(ℓ)
1 x21 + a

(ℓ)
2 x22

)
U in R2.

Now, we can write

z∗ =

(
k∑

ℓ=1

σ2ℓa
(ℓ)
1

)
z∗1 +

(
k∑

ℓ=1

σ2ℓa
(ℓ)
2

)
z∗2 ,

where z∗i solves

−∆z∗i + z∗i − 3U2z∗i = x2iU in R2.

We observe that z∗2(x1, x2) = z∗1(x2, x1) and so∫
RN

U(x)z∗1(x) dx =

∫
RN

U(x)z∗2(x) dx =
1

2

∫
RN

U(x)z0(x) dx,

where z0 solves (3.9). Then∫
RN

U(x)z∗(x) dx =

(
k∑

ℓ=1

γσ2ℓa
(ℓ)
1

) ∫
RN

U(x)z∗1(x) dx+

(
k∑

ℓ=1

γσ2ℓa
(ℓ)
2

) ∫
RN

U(x)z∗2(x) dx

=
α

2γ
γ

k∑
ℓ=1

σ2ℓ

(
a
(ℓ)
1 + a

(ℓ)
2

)
︸ ︷︷ ︸

= 1
2
∆Γ(0)

and the claim follows.

4. Numerical evidence for the assumption α ̸= 0

Set

αN :=

∫
RN

U(x)S(x) dx, (4.1)

where U is the positive radial solution of

−∆U + U = Up in RN

and S is the radial solution of

−∆S + S − pUp−1S = |x|2U in RN .

In the previous section α = α2. In this section, we would like to provide numerical
evidence that αN > 0 for the L2-critical exponent, i.e.

p = 1 +
4

N
⇒

∫ ∞

0
U(r)S(r)rN−1 dr > 0. (4.2)

This was proved in [20, Remark 3.5] forN = 1. Here we numerically estimate the integral
in (4.2) for larger values of N . To do this, U(0) is estimated using a bisection procedure
to find the right initial condition that lies between the set of U(0) such that ∀r > 0,
U(r) > 0 and those such that U has at least one root. To determine S(0), we impose
that S(r0) = 0 for a “large” r0. Such S(0) is easy to compute since S(r0) is an affine
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function of S(0). On Fig. 1, you can see the result of these computations as the graphs
of the functions p 7→

∫∞
0 USrN−1 dr for N ∈ {1, . . . , 8}. The large dot on each curve

indicates the point of the graph for p = 1+4/N . These provide clear evidence that (4.2)
holds.

From these graphs, we also conjecture that

αN → 0 as p→ 2∗ − 1 =
N + 2

N − 2
.

p2 3 4 5

−3

−2

−1

0

1

2

3

4

5

6

N = 1
N = 2
N = 3
N = 4

20

25

30

35

p1.4 1.6 1.8 2 2.2

−4000

−3000

−2000

−1000

1000

2000

3000

N = 5
N = 6
N = 7
N = 8

10000

20000

25000

100000

200000

300000

Figure 1. Graphs of p 7→
∫∞
0 USrN−1 dr for N ∈ {1, . . . , 8}.

Appendix A. A non-degenerate result

In the following we use some ideas introduced in [21].

Let us consider the eigenvalue problem

−∆ψ + ψ = λU2ψ in RN .

The classical Fredholm alternative Theorem allows to claim that there exists a sequence
of positive eigenvalues {λm}m∈N with

1 = λ1 < 3 = λ2 < λ3 < · · · < λm < λm+1 < · · · and λm → +∞.

The eigenspace associated to the first eigenvalue is a 1−dimensional space generated by
the positive function U. Moreover, it is well known that eigenspace associated to the
second eigenvalue is a N−dimensional space generated by ψi :=

∂U
∂xi

for i = 1, . . . , N .
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We observe that system (1.9) can be rewritten as

−∆ϕi + ϕi − (2βiiσ
2
i + 1)U2ϕi − 2σi

k∑
j=1
j ̸=i

βijσjU
2ϕj = 0 in RN , i = 1, . . . , k. (A.1)

−∆v + v = U2Mv in RN ,

with

M := Id+ 2 C and C :=


β11σ

2
1 β12σ1σ2 . . . β1kσ1σk

β12σ1σ2 β22σ
2
2 . . . β2kσ2σk

...
...

. . .
...

β1kσ1σk β2kσ2σk . . . βkkσ
2
k

 . (A.2)

Let Λ be an eigenvalue of M and e an associated eigenfunction, i.e.

Me = Λe.

It is useful to point out that Λℓ is an eigenvalue of M if and only if Θℓ := (Λℓ − 1)/2 is
an eigenvalue of the matrix C. It is immediate to check that Θ = 1 is an eigenvalue of C
whose eigenvector is (σ1, . . . , σk). We set Θ1 = 1, which implies Λ1 = 3.

Proposition A.1. Assume that, all the eigenvalues Λ2, . . . ,Λk of M do not coincide
with any of the eigenvalues {λm : m ∈ N}, i.e.

Λℓ ̸∈ {λ1, . . . , λm, . . . } for any ℓ = 2, . . . , k. (A.3)

Then the set of solutions to the linear system (A.1) is N−dimensional, and is generated
by ψie1, where e1 = (σ1, . . . , σk) ∈ Rk is an eigenvector associated with Λ1 = 3 and
ψi :=

∂U
∂xi

for i = 1, . . . , N.

Proof. Let Λℓ be an eigenvalue of the matrix M and let eℓ ∈ Rk be an associated
eigenvector. We multiply (A.1) by eℓ and taking into account the symmetry of the
matrix M we get

−∆(eℓ · v) + eℓ · v = Λℓ U
2(eℓ · v) in RN .

Since Λℓ ̸= λm for every m, we deduce that

eℓ · v = 0 for any ℓ = 2, . . . , k,

which implies (by the orthogonality of eigenvectors associated to different eigenvalues)
that

v = ψ(x)e1 for some function ψ such that −∆ψ + ψ = 3U2ψ in RN

and the claim follows. □

A first consequence is the following example.

Example A.2. Let k = 2. The system (1.7) has a non-degenerate synchronized solution
if

either −√
µ1µ2 < β < min{µ1, µ2} or β > max{µ1, µ2}, (A.4)

where µi := βii and β := β12 = β21.



NORMALIZED VECTOR SOLUTIONS OF NONLINEAR SCHRÖDINGER SYSTEMS 21

Proof. First of all, we observe that in this case system (1.8) reduces to{
µ1σ

2
1 + βσ22 = 1,

βσ21 + µ2σ
2
2 = 1,

(A.5)

which admits the solution

σ21 :=
β − µ2

β2 − µ1µ2
, σ22 :=

β − µ1
β2 − µ1µ2

(A.6)

if (A.4) holds true.
Next, to prove that it is non-degenerate, we apply Proposition A.1 showing that assump-
tion (A.3) holds. The matrix M := (αij)i,j=1,2 in (A.2) reduces to

α11 := 3µ1σ
2
1 + βσ22, α12 = α21 := 2βσ1σ2, α22 := 3µ2σ

2
2 + βσ21. (A.7)

Its eigenvalues are

Λ1 =
α11 + α22 +

√
(α11 − α22)2 + 4α2

12

2
, Λ2 =

α11 + α22 −
√

(α11 − α22)2 + 4α2
12

2
.

(A.8)
Using the definition of αij and that of σ1, σ2, it is not difficult to check that

Λ2 =
6− 2β(σ21 + σ22)− 2β(σ21 + σ22)

2
= 3− 2β(σ21 + σ22)

and

Λ1 =
6− 2β(σ21 + σ22) + 2β(σ21 + σ22)

2
= 3.

In particular, Λ2 < Λ1 = 3 for β > 0. Moreover, a direct computation shows that if
either β < min{µ1, µ2}, or β > max{µ1, µ2}, then Λ1 ̸= 1. Finally, if Λ1 = 1, then it is
immediate to check that

1 = 3− 2β
2β − µ1 − µ2
β2 − µ1µ2

,

which implies either β = µ1, or β = µ2 which is not possible. □

Proposition A.3. Suppose that the matrix B := (βij)1⩽i,j⩽k is invertible and has only
positive elements. Then the linearized systems (A.1) has a N -dimensional set of solu-
tions.

Proof. As observed above, we have to prove that if (βij) is invertible and has positive
entries, then the set of solutions to (A.1) is N -dimensional. By Proposition A.1, this
amounts to show that if (βij) is invertible and has positive entries, then the eigenvalues
Λ2, . . . ,Λk of M are different from λ1 = 1, λ2 = 3, λm > 3.

Let us argue in terms of the matrix C. By assumption, C has positive entries. There-
fore by Perron-Frobenius Theorem we deduce that the eigenvalue Θ1 = 1, which is
associated to the eigenvector of positive elements (σ1, . . . , σk), is simple, and any other
eigenvalue Θℓ satisfies |Θℓ| < 1. Moreover, 0 is not an eigenvalue of the matrix C, since
a straightforward computation shows that

det C = −(σ21 · · · · · σ2k) det(βij) ̸= 0

being (βij) invertible. Therefore, Λ1 = 3 is a simple eigenvalue, and we have that both
−1 < Λℓ < 3 and Λℓ ̸= 1 for any ℓ = 2, . . . , k. This completes the proof. □
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Example A.4. Let k ⩾ 2. The system (1.7) has a non-degenerate synchronized solution
if

0 < µ1 < · · · < µk, β := βij for every i ̸= j and β is large enough, (A.9)

where µi := βii.

Proof. The existence of a synchronized solution is proved in [1], once we choose 0 < µ1 <
· · · < µk and βij = β for every i ̸= j with β > µk. Indeed it is easy to check that

σi :=

(µi − β)

(
1 + β

k∑
j=1

1

µj − β

)−1/2

for i = 1, . . . , k

is a solution to system (1.8). To prove that it is non-degenerate, we apply Proposition
A.3. Indeed in this case

B =


µ1 β . . . β
β µ2 . . . β
...

...
. . .

...
β β . . . µk

 ,

whose elements are strictly positive. It is also easy to check that it is invertible if β is
large, since

detB ∼ βk det


0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

 = βk(−1)k−1(k − 1) as β → +∞.

□

References

[1] T. Bartsch. Bifurcation in a multicomponent system of nonlinear Schrödinger equations. J. Fixed
Point Theory Appl., 13(1):37–50, 2013.

[2] T. Bartsch and L. Jeanjean. Normalized solutions for nonlinear Schrödinger systems. Proc. Roy.
Soc. Edinburgh Sect. A, 148(2):225–242, 2018.

[3] T. Bartsch, L. Jeanjean, and N. Soave. Normalized solutions for a system of coupled cubic
Schrödinger equations on R3. J. Math. Pures Appl. (9), 106(4):583–614, 2016.

[4] T. Bartsch and N. Soave. A natural constraint approach to normalized solutions of nonlinear
Schrödinger equations and systems. J. Funct. Anal., 272(12):4998–5037, 2017.

[5] T. Bartsch and N. Soave. Correction to: “A natural constraint approach to normalized solutions
of nonlinear Schrödinger equations and systems” [J. Funct. Anal. 272 (12) (2017) 4998–5037] [
MR3639521]. J. Funct. Anal., 275(2):516–521, 2018.

[6] T. Bartsch and N. Soave. Multiple normalized solutions for a competing system of Schrödinger
equations. Calc. Var. Partial Differential Equations, 58(1):Paper No. 22, 24, 2019.

[7] T. Bartsch, X. Zhong, and W. Zou. Normalized solutions for a coupled Schrödinger system. Math.
Ann., 380(3-4):1713–1740, 2021.

[8] J. Byeon. Semi-classical standing waves for nonlinear Schrödinger systems. Calc. Var. Partial Dif-
ferential Equations, 54(2):2287–2340, 2015.

[9] M. del Pino, P. Felmer, and M. Musso. Two-bubble solutions in the super-critical Bahri-Coron’s
problem. Calc. Var. Partial Differential Equations, 16(2):113–145, 2003.

[10] B. D. Esry, C. H. Greene, J. P. Burke, Jr., and J. L. Bohn. Hartree-fock theory for double conden-
sates. Phys. Rev. Lett., 78:3594–3597, May 1997.



NORMALIZED VECTOR SOLUTIONS OF NONLINEAR SCHRÖDINGER SYSTEMS 23
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