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Transverse force sensing with a
uniform FBG and unpolarized light
via machine learning
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In this paper, we report that a uniform fiber Bragg grating (FBG), interrogated with broadband light,
can be used to reliably measure transverse force through the analysis of its unpolarized reflected
amplitude spectrum. Unlike conventional FBG-based transverse force sensors, which typically rely on
birefringence-induced spectral splitting or polarization-resolved interrogation schemes, our approach
leverages the full spectral shape of the reflected signal, recorded with standard illumination. Two types
of measurement devices are used for the readout process: (i) a broadband light source combined with
an optical spectrum analyzer, and (ii) a spectrometer-based FBG interrogator. Both approaches yield
similar performance in controlled conditions, confirming the robustness of the FBG interrogator, which
is the only configuration suitable for deployment in the field. By training a model with hundreds of
experimental spectra measured for calibrated transverse force values between 0 and 70 N, we achieve
highly accurate and robust prediction of the applied transverse force, with a mean absolute error of
2.80 N for the multilayer perceptron (MLP) and 0.44 N for the gradient boosting (XGBoost) model.

This data-driven method removes the need for polarization control or complex grating structures, and
opens a new pathway towards simple, cost-effective, and highly sensitive transverse force sensing.

Keywords Fiber bragg gratings, Transverse sensing, Machine learning, Birefringence, Unpolarized
measurement

Fiber Bragg gratings (FBGs) are well-established optical sensors for temperature and strain monitoring due to
their small size, multiplexing capabilities, and immunity to electromagnetic interference, among other unique
assets!. Measuring one of these two quantities is rather straightforward as the information is encoded into a
Bragg wavelength shift that is easy to finely track from the reflected amplitude spectrum measurement. However,
the measurement of transverse forces using FBGs remains considerably more challenging, as the response
involves stress-induced birefringence rather than a wavelength shift?. Accurately measuring transverse force
with FBGs usually relies on sensing stress-induced birefringence, which causes the Bragg reflection to split
into two polarization-dependent resonances?®. Indeed, when a transverse load is applied to an optical fiber,
it breaks the symmetry of the fiber’s cross-section. This disruption introduces local birefringence, causing the
two orthogonal polarization modes (or eigenmodes) to lose their degeneracy. If an FBG is located where the
load is applied, this birefringence leads to two distinct reflection peaks, separated in wavelength by an amount
that depends on the load’s magnitude. If the wavelength separation exceeds the width of the reflection band, the
two reflection peaks become clearly resolved, enabling straightforward measurement of the load. However, for
relatively small lineic loads (typically below 1 N/mm), this splitting does not produce a discernible effect on the
amplitude spectrum. This limitation can be mitigated by using an FBG written in a polarization-maintaining
fiber (PMF)”"!° or a m-phase-shifted FBG!!, both of which allow the amplitude response to remain sensitive
to the applied load. Alternatively, it has been shown that the spectral characteristics of polarization-dependent
loss (PDL), differential group delay (DGD) or Stokes parameters are highly responsive to birefringence!?~1°.
As a result, such measurements provide an effective means to detect and quantify weak transverse loads, but
at the cost of requiring control of the input state of polarization or the use of rather complex interrogation
devices, which are not well suited for operation outside of laboratory settings. More recently, the use of FBGs
encapsulated in a polymer matrix has proven effective for transverse force measurement'®- ['7, although this
comes at the expense of the simplicity and advantages offered by bare FBGs.
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Beyond laboratory demonstrations, transverse force sensing with FBGs has important applications across
several domains'®. In structural health monitoring, FBGs can detect local pressures within materials in which
they are embedded, enabling the identification of stress concentrations or delamination zones'. In aerospace
and wind energy, they can monitor bearing loads, bonding integrity, or composite layer compression?’. In
biomechanics and robotics, FBG-based tactile or pressure sensors are increasingly used to quantify contact
forces in prosthetics or soft grippers?!. In civil engineering, such sensors can measure contact forces in cables,
supports, or joints, while in railway or tire monitoring, they enable the assessment of wheel-rail or tire-road
interactions??. Despite this wide range of potential uses, most existing FBG-based force sensors remain difficult
to deploy due to their polarization dependence, sensitivity to alignment, or reliance on custom grating designs.

In parallel, machine learning has recently emerged as a powerful tool for extracting subtle information from
optical spectra. Supervised models such as neural networks and gradient boosting have been successfully applied
to predict parameters such as temperature?, strain%, shape?, refractive index?*~?’, or chemical concentration?
from the spectral response of FBGs. By learning relationships between spectral features and physical quantities,
machine learning enables accurate inference even when analytical models are unavailable or impractical.

In this work, we introduce a novel FBG-based transverse force sensing technique that overcomes the
aforementioned limitations by using unpolarized light from an amplified spontaneous emission (ASE) source.
As areference, an optical spectrum analyzer (OSA) is used to provide high spectral resolution. However, the vast
majority of the data is acquired using a spectrometer-based FBG interrogator, which offers a coarser nominal
wavelength sampling of approximately 170 pm and is more suitable for practical field applications. In both cases,
rather than relying on explicit polarization-resolved measurements, we apply machine learning algorithms to
interpret the subtle modifications of the spectral shape caused by transverse loading. The relative performance
of two machine learning methods (multilayer perceptron (MLP) and XGBoost method, further abbreviated
as XGB) is compared in the following. To our knowledge, this is the first demonstration of transverse force
sensing that leverages the full amplitude spectrum of the FBG under unpolarized light, enabling accurate force
estimation with a simplified and robust interrogation scheme.

Theoretical background

FBGs subject to transverse loading and birefringence

In optical fibers, the birefringence A n is defined as the difference between the effective refractive indices 1,
and n, of the two orthogonal eigenmodes (x and y):

An=n; —ny (1)

When an optical fiber is subjected to a transverse load, the circular symmetry of its cross-section is broken,
leading to a strong anisotropy in the refractive index distribution. As a result, the effective refractive indices of
the eigenmodes become very different from each other. This stress-induced birefringence is proportional to the
transverse force F applied to a fiber length L?*:

3
An= fw (p11 — p12) - (%) (2)

where pi11 and pi2 are the Pockels photoelastic coefficients, E and v the Young’s modulus and Poisson’s ratio of
silica, respectively, D is the fiber diameter, and n the core refractive index.

MLP and XGB machine learning algorithms
This section provides some basic information about the two machine learning methods that were implemented
in this work.

MLP is a feedforward neural network composed of successive layers of artificial neurons. Each neuron
applies a nonlinear transformation to the input data, allowing the network to approximate complex relationships
between variables. In the context of FBG sensing®, the MLP can learn how the reflected spectral shape varies
with the applied transverse force. Through an iterative training process using labeled data, the model adjusts its
internal parameters to minimize prediction errors. Once trained, the MLP can infer the applied force from new
spectral measurements by exploiting the nonlinear correlations encoded in the spectrum.

XGB algorithm belongs to the family of ensemble methods based on decision trees. It constructs multiple
shallow trees in sequence, where each tree focuses on correcting the residual errors of the previous ones. This
boosting strategy enables the model to capture subtle, localized patterns in the spectral data while maintaining
strong generalization performance. Because of its robustness to noise, its ability to handle high-dimensional
inputs, and its built-in regularization mechanisms, XGB is particularly well-suited to the analysis of complex
optical spectra such as those produced by FBG sensors under mechanical loading®!.

Experiments
FBGs used in this work were inscribed in photosensitive single-mode optical fibers (type PS1550 from Fibercore)
using the NORIA system (Northlab Photonics) comprising a 193 nm excimer laser and a rotation stage that
can host up to 16 phase masks. The gratings were 4 mm long and were inscribed with only 500 pulses of 5 m],
ensuring that the photo-induced birefringence remains below 105, so that its effect can be considered negligible
with respect to the applied transverse force.

For transverse strain sensing, the FBGs were integrated into the setup depicted in Fig. 1, where the applied
force is exerted at the center of a specifically designed mechanical piece (dimensions: 100 x 50 x 20 mm?, weight:
360 g). This piece, machined from anodized aluminum, contains two parallel sections where two optical fibers
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Fig. 1. Experimental setup used to apply controlled transverse force to a uniform FBG: (a) sketch, and (b)
picture of the actual setup.

can be placed: the sensing fiber containing the FBG, on the one hand, and an identical dummy fiber, on the other
hand. The dummy fiber serves to balance the mechanical stress on both sides of the loading plate, preventing
unwanted tilt or bending of the block and ensuring that the applied force remains purely transverse to the fiber
axes. The force experienced by the FBG (Fy ;) is equal to the ratio of the FBG length (L) over the fiber length
under load (L_,,), times half (because of the presence of the dummy fiber) the total applied force (Fapp). It
corresponds to the following relationship:

L 1
Frpa = LTBZ; §Fapp (3)

The force is applied by moving up the support via a motorized vertical-axis translation stage and its value is
measured by an analog Chatillon DPP-10 force gauge.

To measure the reflected amplitude spectrum of the FBG under test, two measurement setups were employed.
The first, used as a reference, consisted of an unpolarized ASE broadband optical source (Amonics ALS-CL-17-
B-FA) combined with an optical spectrum analyzer (OSA, Yokogawa AQ6370B), providing a spectral resolution
of 20 pm with a repeatability of + 5 pm. The second setup, suitable for practical field deployment, utilized the
BSI-108 FBG interrogator from B-Sens (hereafter referred to as FBG interrogator), a high-speed, 512-pixel
spectrometer-based device. For both configurations, standard optical fiber connectors were used, without any
control of the polarization state. During some measurements, the connectors were intentionally shaken to
show that the reflected amplitude spectrum remains unaffected, demonstrating its robustness to polarization
fluctuations. As stated in the introduction, we aimed to predict the applied transverse force from the shape of
the FBG spectrum using machine learning techniques. To this end, a dataset of 1269 spectra was experimentally
created based on OSA measurements. This dataset is composed of nine subdatasets containing 141 spectra,
each labeled with a known force (read by the dynamometer), taking values from 0 to 70 N in steps of 0.5 N.
The spectra were recorded by the OSA with a wavelength span of 4.2 nm centered around the Bragg wavelength
and are composed of 501 sampling points. The dataset collected with the FBG interrogator was much more
important. It consisted of 7050 spectra divided into 50 subdatasets, with a length span of 86 nm composed of
512 pixels (resolution of ~ 170 pm). Figure 2(a) depicts the reflected amplitude spectrum measured for several
load values, confirming the progressive splitting as a function of the increase in the transverse force value, due
to the mechanically-induced birefringence. Figure 2(b) shows the reflected amplitude spectra measured for the
nine datasets at a transverse force value of 14 N. It confirms the overall good repeatability of the measurements
process. It produced a standard deviation below 0.05% on the reflected peak amplitude and below 0.06 nm on
the Bragg wavelength. Uncertainty in the applied force stems from the force gauge resolution, which is 0.1 N.

Experimental results

Two different supervised learning models were investigated to compare their relative performance in determining
the actual transverse force value from the shape of the reflected amplitude spectrum. They were chosen because
of their ability to model complex, nonlinear relationships inherent in spectral data.

To retrieve the applied transverse force from the reflected spectrum, we explored two supervised machine
learning models: a multilayer perceptron (MLP) and an extreme gradient boosting (XGB). The MLP is a
feedforward neural network composed of successive layers of interconnected nodes, each applying a nonlinear
transformation to extract hierarchical features from the input spectral profile. It is well-suited to capture
complex, nonlinear relationships between spectral variations and the corresponding force values. In parallel, the
XGB regressor builds an ensemble of decision trees (DT) in a sequential way, where each tree attempts to correct
the errors made by the previous ones. This gradient-boosting strategy efficiently models intricate dependencies
while maintaining good generalization capabilities. Both models were trained on labeled datasets of reflectivity
spectra acquired under controlled transverse loading conditions, enabling robust and accurate prediction of
the force from subtle spectral distortions induced by the applied stress. The overall method of training and
optimization of both models can be found in Fig. 3.

For the MLP, the dataset was split into 90% of train in 8 subdatasets, 10% of validation on those same 8

subdatasets, and the 9th subdataset for testing. The training was performed over a maximum of N, = 100
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Fig. 2. Reflected amplitude spectrum of a 4 mm long FBG measured with the OSA: (a) for different transverse
force values of a given subdataset (#9), and (b) for the 9 subdatasets at a given force value (14 N). Reflected
spectrum measured with the FBG interrogator: (c) for different transverse force values of a given subdataset
(#9), and (d) for the 50 subdatasets at a given force value (50 N).
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Fig. 3. Flow chart summarizing the operating process of the MLP and XGB methods.

iterations, with an early stopping mechanism triggered if the mean squared error (MSE) evaluation on the
validation set failed to improve over N, op = 10 epochs. The MSE is defined as

MSE = (1/n) Y (g — 7)? (4)

i=1

where y, and §, denote the true and predicted force values, respectively, and 7 is the number of validation
samples. This loss function penalizes large errors more severely due to the squaring term, which helps steer the
optimization process to reduce outlier deviations during training. In addition, MSE is differentiable and smooth,
which makes it particularly well-suited for gradient-b as ed learning methods such as backpropagation, unlike
the mean absolute error (MAE), whose gradient is less stable near zero. For these reasons, MSE was chosen as
the criterion for early stopping and model selection.

During each epoch, model correction was applied via backpropagation. Once a candidate model was trained,
a hyperparameters optimization step was performed using Optuna®, exploring architectural parameters such as
the number of hidden layers, neurons per layer, activation functions, and learning rate. If the “MSE better with
refined parameters?” condition was met, the optimized model was retained. Otherwise, the initial model was
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kept, and the corresponding prediction curve was generated. This process was repeated to yield nine predictions
curves.

The same procedure, this time for 50 subdatasets, was then applied to the dataset acquired using the FBG
interrogator, ensuring a consistent training and optimization framework across both datasets. Model selection
and curve generation followed the same performance criterion, enabling direct comparison of the predictive
accuracy between the dataset acquired with the OSA and the one obtained with the FBG interrogator.

The selected MLP model (configuration and parameters in Table 1) processes 501 input features through three
dense (fully connected) layers interleaved with dropout layers. Dense layers perform weighted combinations of
inputs and apply nonlinear activation functions (ReLU here) to learn complex relationships. Dropout layers
randomly deactivate a fraction of neurons during training, which reduces overfitting and improves the model’s
ability to generalize. The final output layer has a single neuron with a linear activation, suitable for continuous
value prediction in regression tasks. The model contains 38,561 trainable parameters, which are adjusted during
training. Optimization is performed using the Adam optimizer, which adaptively adjusts the learning rate for
each parameter based on gradient estimates (p; and . control momentum and variance adaptation; € prevents
division by zero). The learning rate (0.001) determines how much the weights are updated in each step. The loss
function is the MSE, which penalizes large deviations between predicted and actual values, guiding the optimizer
toward better accuracy. Training was conducted on 50 sub-datasets acquired with the FBG interrogator following
the same procedure used for the OSA dataset, ensuring that results from both systems can be directly compared.

For the XGB models, the input data were divided into eight subdatasets of training and the remaining
subdataset for testing. Each model was built by sequentially adding decision trees: at each step, a new tree
was added, attempting to reduce the overall loss through gradient boosting correction. This continued until a
predefined number of estimators N was reached, or until MSE evaluation no longer improved. As with the
MLP, an optimization step of the hyperparameters was performed using Optuna, tuning tree depth, learning
rate, and number of estimators. The refined model was retained only if it yielded improved performance. The
resulting prediction curve was then extracted (nine in total).

This same training, boosting, and optimization procedure was subsequently applied to the dataset acquired
using the FBG interrogator. The same model selection criterion ensured that only configurations with improved
MSE were retained, allowing a direct and consistent comparison between the predictive outputs from the
standard dataset and those from the FBG interrogator-acquired dataset.

The optimal hyperparameters selected through the Optuna optimization process for the retained XGB
models were as follows: a learning rate of 0.06347, allowing a gradual yet stable convergence during boosting;
512 estimators (trees) to ensure sufficient model complexity without overfitting; a maximum tree depth of 6,
balancing expressiveness and generalization; an L2 regularization term (A) of 1.97715 to limit overfitting. The
objective function was set to reg: squarederror for regression tasks, with a fixed random state of 42 to guarantee
reproducibility. Computations were restricted to a single CPU thread (njobs = 1) to ensure consistency across
runs, and verbosity was disabled for streamlined execution.

The choice of Optuna for hyperparameter tuning was motivated by its efficiency in navigating high-
dimensional parameter spaces. In contrast to conventional grid search methods, which exhaustively evaluate
all combinations in a predefined grid and become computationally prohibitive as the number of parameters
increases, Optuna adopts a more intelligent search strategy. Its use of adaptive sampling (based on Bayesian
optimization via a Tree-structured Parzen Estimator) allows it to prioritize promising regions of the search space
while discarding suboptimal ones early on. This results in a significantly reduced number of evaluations required
to identify well-performing configurations. Given the number of tunable parameters in both MLP (e.g., depth,
width, learning rate) and XGB (e.g., tree depth, learning rate, number of estimators), employing grid search
would have been prohibitively time-consuming. Optuna enabled us to achieve competitive performance with a
manageable computational cost. The latter remained always less than 30 min. Using Optuna for hyperparameter
optimization reduces the search cost from O(n?) to O(n,;, > withn .\ << n*, enabling efficient exploration of
high-dimensional spaces. Unlike grid-search method, it intelligently selects promising configurations without
exhaustive evaluation.

To assess the generalization capabilities of both models, we adopted a leave-one-dataset-out strategy over the
nine available subdatasets. Each subdataset was excluded once to serve as a test set, while the remaining eight
were used for training and validation. This cross-validation scheme, performed independently for both the MLP
and XGB models, ensured a fair evaluation of predictive performance across unseen spectral profiles. The final
comparison focuses on the test set corresponding to subdataset 9, which was excluded entirely from the model
training phase.

Figure 4 displays the predicted versus true transverse force values for both read out devices and both models,
with the red line indicating perfect prediction. Blue circles correspond to the MLP predictions, while green
crosses denote those of the XGB regressor. The inset bar plot shows the global MAE computed across all folds, with

Input 501 features

Architecture Dense (64, ReLU) > Dropout - Dense (32, ReLU) - Dropout > Dense (128, ReLU) - Dropout > Dense (1, Linear)
Number of trainable parameters | 38,561

Optimizer Adam (LR=0.001; B; = 0.9; > = 0.999; e=1x1077)

Loss function MSE

Table 1. Optimal MLP model configuration and parameters.
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Fig. 4. Typical results confirming the performance of the MLP and XGB methods in predicting the transverse
force value from the shape of the FBG reflected amplitude spectrum. Inset: average and standard deviation

of the MSE for both methods, computed from the nine iterations. (a) Measurements with the OSA, (b)
measurements with the BSI-108 interrogator.

error bars representing the standard deviation (STD). For the OSA measurements (Fig. 4(a)), XGB outperforms
MLP in terms of MAE (0.44 N vs. 3.78 N), and also slightly in terms of consistency (STD of 1.10 N vs. 1.44 N).
Figure 4(b) shows that, in the high-data regime provided by the FBG interrogator (50 measurements per fold),
the XGB regressor not only outperforms the MLP, but it does also so by a wide margin in both accuracy and
consistency. XGB achieves an MAE of 0.46 N and an MSE of 0.29 N?, whereas the MLP remains at substantially
higher error levels (MAE =2.80 N, MSE =9.59 N?) under the same conditions. Beyond delivering lower absolute
error, XGB also exhibits markedly tighter prediction spread around the target, indicating highly repeatable
behavior. This performance gap reflects the ability of gradient boosting to iteratively correct residuals across
many weak learners, allowing it to exploit subtle spectral nonlinearities and noise structure that the MLP does
not capture effectively. Under realistic interrogator sampling, XGB provides both lower force estimation error
and far more reliable predictions than the MLP, establishing it as the superior model for transverse force sensing.

The determination coefficients further confirm the excellent agreement between predicted and measured
forces. For the OSA dataset (Fig. 4(a)), the MLP and XGB models achieved R?=0.959 and R*=0.999, respectively,
while for the FBG interrogator dataset (Fig. 4(b)), the corresponding values reached R?=0.977 and R*=0.999.
These high coefficients demonstrate that both models capture almost all the variance in the experimental data,
with XGB providing an almost perfect fit to the reference measurements. The slightly lower R* of the MLP
mainly arises from small deviations observed at low transverse forces, highlighting the superior ability of the
gradient-boosting approach to model fine nonlinear spectral variations.

Compared to conventional FBG-based force sensing techniques that rely on clearly resolved birefringence-
induced peak splitting, the machine-learning-based approach leverages the full amplitude spectrum to infer
the applied force. This enables the detection of slight spectral distortions that are typically inaccessible through
analytical or peak-tracking methods. As a result, the proposed method provides accurate force estimation even
in the low-load regime, where traditional birefringence analysis fails. Furthermore, the data-driven nature of the
models eliminates the need for complex calibration procedures or customized grating structures, making the
system simpler and more suitable for field deployment.

Conclusions

In this work, we proposed and experimentally validated a simple and cost-effective approach for transverse force
sensing using a uniform fiber Bragg grating interrogated with broadband light. Instead of relying on polarization
control or complex grating geometries, we exploited the full reflected amplitude spectrum and processed it
with machine learning models to extract accurate predictions of the applied force. This strategy leverages the
information-rich spectral response of the grating, while at the same time simplifying the optical interrogation
system.

We designed a comprehensive dataset acquisition protocol, collecting hundreds of experimental spectra over
a calibrated transverse force range of 0-70 N. Two distinct acquisition systems were used, namely an OSA-based
setup and an FBG interrogator, in order to validate the robustness of the method across different hardware
platforms. Multiple models were trained and optimized, with particular attention given to multilayer perceptron
(MLP) and gradient boosting (XGB). The performance of the models was carefully evaluated using mean
absolute error, mean squared error, and mean relative error as benchmarks.

Machine learning, and particularly gradient boosting methods, have proven highly effective in extracting
subtle information from spectral profiles that would otherwise remain inaccessible with traditional signal
processing techniques. The excellent accuracy achieved by XGB compared to MLP further underlines the
importance of model selection and optimization when dealing with high-dimensional spectral datasets.

Data availability
All data are available upon reasonable request to the corresponding author.
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