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Classical MP/TP Window objectives Closing

General context: strategy synthesis in quantitative games

system
description

environment
description

informal
specification

model as a
two-player

game

model as
a winning
objective

synthesis

is there a
winning

strategy ?

empower system
capabilities
or weaken

specification
requirements

strategy
=

controller

no yes

1 How complex is it to decide if
a winning strategy exists?

2 How complex such a strategy
needs to be? Simpler is
better.

3 Can we synthesize one
efficiently?

⇒ Depends on the winning
objective.
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Classical MP/TP Window objectives Closing

Aim of this talk

New family of quantitative objectives, based on
mean-payoff (MP) and total-payoff (TP).

Convince you of its advantages and usefulness.

No technical stuff but feel free to check the full paper!

� arXiv [CDRR13a]: abs/1302.4248
� Conference version in ATVA’13 [CDRR13b], full version to

appear in Information and Computation [CDRR15].
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Classical MP/TP Window objectives Closing

Classical MP and TP games
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Classical MP/TP Window objectives Closing

What do we know?

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less ?? ?? ??

� Long tradition of study. Non-exhaustive selection: [EM79,
ZP96, Jur98, GZ04, GS09, CDHR10, VR11, CRR14, BFRR14]
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Classical MP/TP Window objectives Closing

What about multi total-payoff?

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less ?? ?? ??

� TP and MP look very similar in one-dimension

TP ∼ refinement of MP = 0

� Is it still true in multi-dimension?
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Classical MP/TP Window objectives Closing

What about multi total-payoff?

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less Undec. - -

� Unfortunately, no!

It would be nice to have. . .

a decidable objective with the same flavor (some sort of approx.)
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Classical MP/TP Window objectives Closing

Is the complexity barrier breakable?

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less Undec. - -

� P membership for the one-dimension case is a long-standing
open problem!

It would be nice to have. . .

an approximation decidable in polynomial time
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Classical MP/TP Window objectives Closing

Do we really want to play eternally?

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less Undec. - -

� MP and TP give no timing guarantee: the “good behavior”
occurs at the limit. . .

� Sure, in one-dim., memoryless strategies suffice and provide
bounds on cycles, but what if we are given an arbitrary play?

It would be nice to have. . .

a quantitative measure that specifies timing requirements
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Classical MP/TP Window objectives Closing

Window objectives: key idea

Window of fixed size sliding along a play
; defines a local finite horizon

Objective: see a local MP ≥ 0 before hitting the end of the
window

; needs to be verified at every step
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Classical MP/TP Window objectives Closing

Window MP, threshold zero, maximal window = 4

Sum

Time
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Classical MP/TP Window objectives Closing

Multiple variants

Given lmax ∈ N0, good window GW(lmax) asks for a positive
sum in at most lmax steps (one window, from the first state)

Direct Fixed Window : DFW(lmax) ≡ �GW(lmax)

Fixed Window : FW(lmax) ≡ ♦DFW(lmax)

Direct Bounded Window : DBW ≡ ∃ lmax, DFW(lmax)

Bounded Window : BW ≡ ♦DBW ≡ ∃ lmax, FW(lmax)

Conservative approximations in one-dim.

Any window obj. ⇒ BW ⇒ MP ≥ 0
BW ⇐ MP > 0
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Classical MP/TP Window objectives Closing

Results overview
one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less undec. - -

WMP: fixed
P-c.

mem. req.

≤ linear(|S | · lmax)

PSPACE-h.

polynomial window EXP-easy
exponential

WMP: fixed
P(|S |,V , lmax) EXP-c.

arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� |S | the # of states, V the length of the binary encoding of
weights, and lmax the window size.

� For one-dim. games with poly. windows, we are in P.

� For multi-dim. games with fixed windows, we are decidable.

� Window objectives provide timing guarantees.
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Classical MP/TP Window objectives Closing

Results overview: advantages
one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less undec. - -

WMP: fixed
P-c.

mem. req.

≤ linear(|S | · lmax)

PSPACE-h.

polynomial window EXP-easy
exponential

WMP: fixed
P(|S |,V , lmax) EXP-c.

arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� |S | the # of states, V the length of the binary encoding of
weights, and lmax the window size.

� For one-dim. games with poly. windows, we are in P.

� For multi-dim. games with fixed windows, we are decidable.

� Window objectives provide timing guarantees.
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Classical MP/TP Window objectives Closing

Taste of the proofs ingredients

For those who like it technical, we use

� 2CMs [Min61],
� membership problem for APTMs [CKS81],
� countdown games [JSL08] ,
� generalized reachability [FH10],
� reset nets [DFS98, Sch02, LNO+08],
� . . .

Open question: is bounded window decidable in multi-dim. ?
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Classical MP/TP Window objectives Closing

Check the full version on arXiv! abs/1302.4248

Thanks!

Do not hesitate to discuss with us!
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Example 1

s1 s2 s3 s4
1 −1

−1

1

MP is satisfied

� the cycle is non-negative

FW(2) is satisfied

� thanks to prefix-independence

DBW is not

� the window opened in s2 never closes
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Example 2

s1 s2 0

−1

1

MP is satisfied
� all simple cycles are non-negative

but none of the window objectives is
� P2 can force opening windows and delay their closing for as

long as he wants (but not forever due to prefix-independence)

BW vs. MP

BW asks for timing guarantees which cannot be enforced here

Observe that P2 needs infinite memory
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