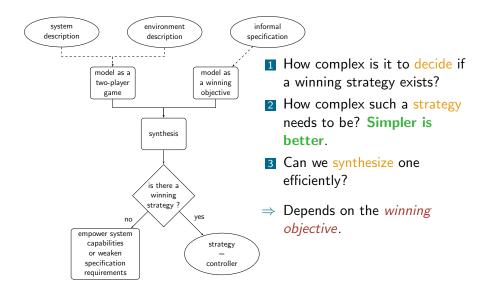
Games with Window Quantitative Objectives

Mickael Randour (LSV - CNRS & ENS Cachan)

Based on joint work with Krishnendu Chatterjee (IST Austria), Laurent Doyen (LSV - CNRS & ENS Cachan) and Jean-François Raskin (ULB).

25.02.2015 - Frontiers of Formal Methods 2015

General context: strategy synthesis in quantitative games



Games with Window Quantitative Objectives

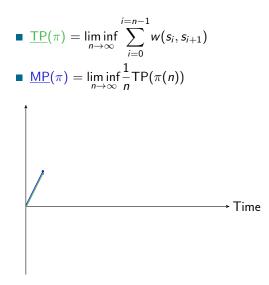
Aim of this talk

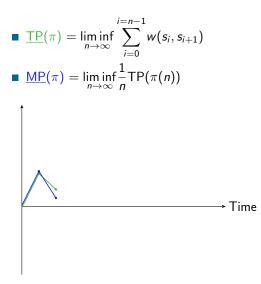
- New family of quantitative objectives, based on mean-payoff (MP) and total-payoff (TP).
- Convince you of its advantages and usefulness.
- No technical stuff but feel free to check the full paper!
 - ▷ arXiv [CDRR13a]: abs/1302.4248
 - ▷ Conference version in ATVA'13 [CDRR13b], full version to appear in Information and Computation [CDRR15].

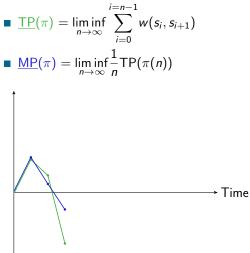
2 2 5 -1 -4

•
$$\underline{TP}(\pi) = \liminf_{n \to \infty} \sum_{i=0}^{i=n-1} w(s_i, s_{i+1})$$

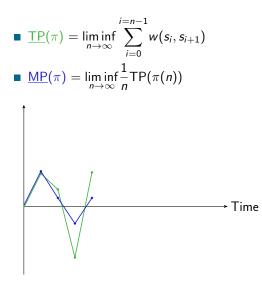
• $\underline{MP}(\pi) = \liminf_{n \to \infty} \frac{1}{n} TP(\pi(n))$
Time

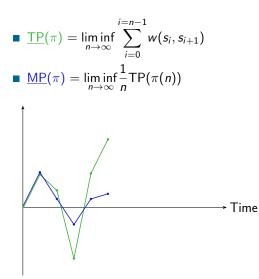




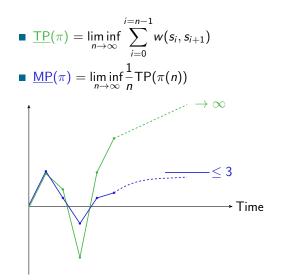


5 $^{-4}$





5 _4 Then, $(2, 5, 2)^{\omega}$



What do we know?

	one-dimension		k-dimension			
	complexity \mathcal{P}_1 mem. \mathcal{P}_2 mem.		complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	
<u>MP</u> / MP	$NP\capcoNP$	mem-less mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$??	??	??

Long tradition of study. Non-exhaustive selection: [EM79, ZP96, Jur98, GZ04, GS09, CDHR10, VR11, CRR14, BFRR14]

What about multi total-payoff?

	one-dimension		k-dimension			
	complexity \mathcal{P}_1 mem. \mathcal{P}_2 mem.		complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	
$\underline{MP} \ / \ \overline{MP}$	$NP\capcoNP$	mem-less mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$??	??	??

▷ TP and MP look very similar in one-dimension

 \blacksquare TP \sim refinement of MP = 0

▷ Is it still true in multi-dimension?

What about multi total-payoff?

		one-dimension		<i>k</i> -dimension		
	complexity	complexity \mathcal{P}_1 mem. \mathcal{P}_2 mem.		complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.
<u>MP</u> / MP	$NP\capcoNP$	mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$	mem-less		Undec.	-	-

> Unfortunately, no!

It would be nice to have...

a decidable objective with the same flavor (some sort of approx.)

Is the complexity barrier breakable?

	one-dimension		<i>k</i> -dimension			
	complexity \mathcal{P}_1 mem. \mathcal{P}_2 mem.		complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	
$\underline{MP} \ / \ \overline{MP}$	$NP\capcoNP$	mem-less mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$			Undec.	-	-

P membership for the one-dimension case is a long-standing open problem!

It would be nice to have...

an approximation decidable in polynomial time

Do we *really* want to play eternally?

		one-dimension		<i>k</i> -dimension			
		complexity \mathcal{P}_1 mem. \mathcal{P}_2 mem.		complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	
<u>MP</u> /	MP	$NP\capcoNP$	mem-less mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> /	TP	$NP\capcoNP$			Undec.	-	-

- MP and TP give no timing guarantee: the "good behavior" occurs at the limit...
- Sure, in one-dim., memoryless strategies suffice and provide bounds on cycles, but what if we are given an arbitrary play?

It would be nice to have...

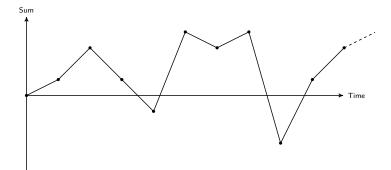
a quantitative measure that specifies timing requirements

Window objectives: key idea

- Window of fixed size sliding along a play → defines a local finite horizon
- Objective: see a **local** *MP* ≥ 0 *before hitting the end* of the window

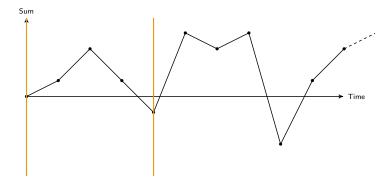
 \rightsquigarrow needs to be verified at every step

Classical MP/TP	Window objectives
00	0000

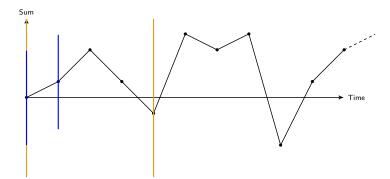


Closing 0

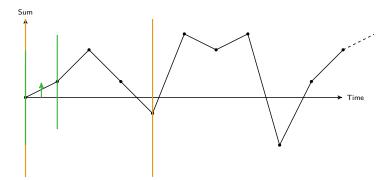
Classical MP/TP	Window objectives	Closing
00	0000	0



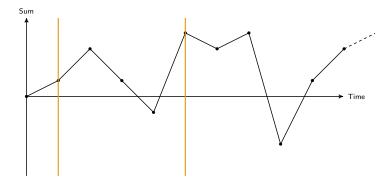
Classical MP/TP	Window objectives	Closing
00	0000	0



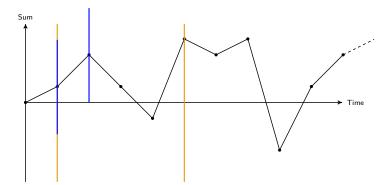
Classical MP/TP	Window objectives	Closing
00	0000	0



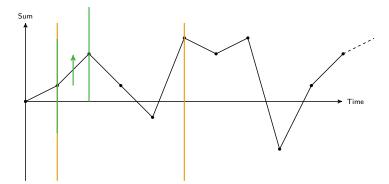
Classical MP/TP	Window objectives	Closing
00	0000	0



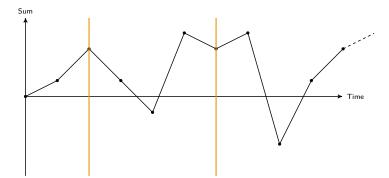
Classical MP/TP	Window objectives	Closing
00	0000	0



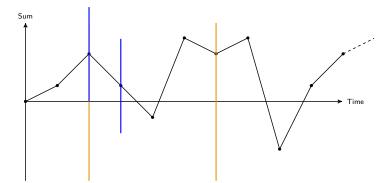
Classical MP/TP	Window objectives	Closing
00	0000	0



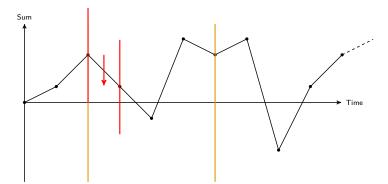
Classical MP/TP	Window objectives	Closing
00	0000	0



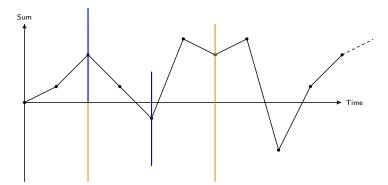
Classical MP/TP	Window objectives	Closing
00	0000	0



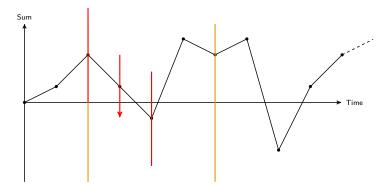
Classical MP/TP	Window objectives	Closing
00	0000	0



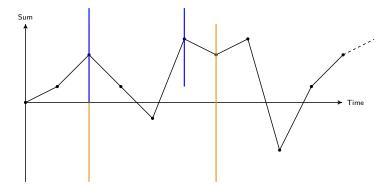
Classical MP/TP	Window objectives	Closing
00	0000	0



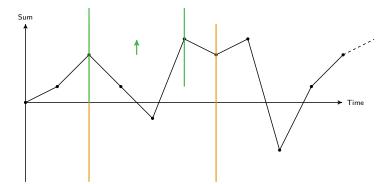
Classical MP/TP	Window objectives	Closing
00	0000	0



Classical MP/TP	Window objectives	Closing
00	0000	0



Classical MP/TP	Window objectives	Closing
00	0000	0



Classical MP/TP oo	Window objectives	Closing 0

Multiple variants

- Given I_{max} ∈ N₀, good window GW(I_{max}) asks for a positive sum in at most I_{max} steps (one window, from the first state)
- Direct Fixed Window: $\mathbf{DFW}(I_{\max}) \equiv \Box \mathbf{GW}(I_{\max})$
- Fixed Window: $FW(I_{max}) \equiv \Diamond DFW(I_{max})$
- Direct Bounded Window: $DBW \equiv \exists I_{max}, DFW(I_{max})$
- Bounded Window: $\mathbf{BW} \equiv \Diamond \mathbf{DBW} \equiv \exists I_{\max}, \mathbf{FW}(I_{\max})$

Classical MP/TP	Window objectives	Closing
oo	OO●○○	O
Multiple uppierste		

Multiple variants

- Given I_{max} ∈ N₀, good window GW(I_{max}) asks for a positive sum in at most I_{max} steps (one window, from the first state)
- Direct Fixed Window: $\mathbf{DFW}(I_{\max}) \equiv \Box \mathbf{GW}(I_{\max})$
- Fixed Window: $FW(I_{max}) \equiv \Diamond DFW(I_{max})$
- Direct Bounded Window: $DBW \equiv \exists I_{max}, DFW(I_{max})$
- Bounded Window: $\mathbf{BW} \equiv \Diamond \mathbf{DBW} \equiv \exists I_{\max}, \mathbf{FW}(I_{\max})$

Conservative approximations in one-dim.

Any window obj.
$$\Rightarrow$$
 BW \Rightarrow MP \ge 0
BW \Leftarrow MP $>$ 0

Results overview

	one-dimension		<i>k</i> -dimension			
	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.
$\underline{MP} / \overline{MP}$	$NP\capcoNP$	mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$	mem-less		undec.	-	-
WMP: fixed	P-c.	mem. req. \leq linear($ S \cdot l_{\sf max}$)		PSPACE-h.		
polynomial window	F-C.			EXP-easy	expon	ontial
WMP: fixed	$P(S , V, I_{max})$			EXP-c.	ехроп	ential
arbitrary window	$\Gamma(\mathcal{S} , \mathbf{v}, max)$			LAF-C.		
WMP: bounded	NP ∩ coNP	mem-less infinite		NPR-h.	-	
window problem	INF IT CONF			NF K-11.	-	-

|S| the # of states, V the length of the binary encoding of weights, and I_{max} the window size.

Results overview: advantages

	one-dimension		k-dimension			
	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.
<u>MP</u> / <u>MP</u>	$NP\capcoNP$	mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$	mem-less		undec.	-	-
WMP: fixed	P-c.	mem. req. ≤ linear(<i>S</i> ⋅ / _{max})		PSPACE-h.		
polynomial window	F-U.			EXP-easy	exponential	ontial
WMP: fixed	P(<i>S</i> , <i>V</i> , <i>I</i> _{max})			EXP-c.	exponential	
arbitrary window	$\Gamma(\mathcal{S} , \mathbf{v}, max)$			LAF-C.		
WMP: bounded	NP ∩ coNP	mem-less infinite		NPR-h.		
window problem	INF CONF			NF K-11.	-	-

|S| the # of states, V the length of the binary encoding of weights, and I_{max} the window size.

- \triangleright For one-dim. games with poly. windows, we are in **P**.
- ▷ For multi-dim. games with fixed windows, we are **decidable**.
- ▷ Window objectives provide **timing guarantees**.

Taste of the proofs ingredients

For those who like it technical, we use

- ▷ 2CMs [Min61],
- ▷ membership problem for APTMs [CKS81],
- \triangleright countdown games [JSL08],
- ▷ generalized reachability [FH10],
- ▷ reset nets [DFS98, Sch02, LNO⁺08],

 $\triangleright \ldots$

• Open question: is bounded window decidable in multi-dim. ?

Check the full version on arXiv! abs/1302.4248

Thanks!

Do not hesitate to discuss with us!

References I

V. Bruvère, E. Filiot, M. Randour, and J.-F. Raskin, Meet your expectations with guarantees: Beyond worst-case synthesis in guantitative games. In Proc. of STACS, LIPIcs 25, pages 199–213, Schloss Dagstuhl - LZI, 2014, K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Generalized mean-payoff and energy games. In Proc. of FSTTCS, LIPIcs 8, pages 505-516. Schloss Dagstuhl - LZI, 2010. K. Chatteriee, L. Doven, M. Randour, and J.-F. Raskin. Looking at mean-payoff and total-payoff through windows. CoRR, abs/1302.4248, 2013. K. Chatteriee, L. Doven, M. Randour, and J.-F. Raskin. Looking at mean-payoff and total-payoff through windows. In Proc. of ATVA, LNCS 8172, pages 118-132. Springer, 2013. K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-payoff and total-payoff through windows. Information and Computation, 2015. To appear. A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. J. ACM, 28(1):114-133, 1981.

References II

K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional quantitative objectives. In Proc. of CONCUR, LNCS 7454, pages 115–131. Springer, 2012.

K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional quantitative objectives. Acta Informatica, 51(3-4):129–163, 2014.

C. Dufourd, A. Finkel, and P. Schnoebelen.

Reset nets between decidability and undecidability. In Proc. of ICALP, LNCS 1443, pages 103–115. Springer, 1998.

A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games. Int. Journal of Game Theory, 8(2):109–113, 1979.

N. Fijalkow and F. Horn.

The surprizing complexity of generalized reachability games. CoRR, abs/1010.2420, 2010.

T. Gawlitza and H. Seidl.

Games through nested fixpoints. In Proc. of CAV, LNCS 5643, pages 291–305, Springer, 2009,

H. Gimbert and W. Zielonka.

When can you play positionally? In Proc. of MFCS, LNCS 3153, pages 686–697. Springer, 2004.

References III

M. Jurdziński, J. Sproston, and F. Laroussinie.

Model checking probabilistic timed automata with one or two clocks. Logical Methods in Computer Science, 4(3), 2008.

M. Jurdziński.

Deciding the winner in parity games is in UP \cap co-UP. Inf. Process. Lett., 68(3):119–124, 1998.

R. Lazic, T. Newcomb, J. Ouaknine, A.W. Roscoe, and J. Worrell.

Nets with tokens which carry data. Fundam. Inform., 88(3):251-274, 2008.

M.L. Minsky.

Recursive unsolvability of Post's problem of "tag" and other topics in theory of Turing machines. The Annals of Mathematics, 74(3):437–455, 1961.

P. Schnoebelen.

Verifying lossy channel systems has nonprimitive recursive complexity. Inf. Process. Lett., 83(5):251–261, 2002.

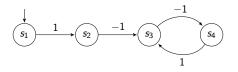
Y. Velner and A. Rabinovich.

Church synthesis problem for noisy input. In Proc. of FOSSACS, LNCS 6604, pages 275–289. Springer, 2011.

U. Zwick and M. Paterson.

The complexity of mean payoff games on graphs. Theoretical Computer Science, 158:343–359, 1996.

Example 1



MP is satisfied

▷ the cycle is non-negative

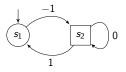
FW(2) is satisfied

▷ thanks to prefix-independence

DBW is not

 \triangleright the window opened in s_2 never closes

Example 2



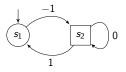
MP is satisfied

▷ all simple cycles are non-negative

but none of the window objectives is

 $\triangleright \mathcal{P}_2$ can force opening windows and delay their closing for as long as he wants (but not forever due to prefix-independence)

Example 2



MP is satisfied

▷ all simple cycles are non-negative

but none of the window objectives is

 $\triangleright \mathcal{P}_2$ can force opening windows and delay their closing for as long as he wants (but not forever due to prefix-independence)

BW vs. MP

BW asks for timing guarantees which cannot be enforced here

• Observe that \mathcal{P}_2 needs infinite memory