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1 Introduction

The structural monitoring of wind turbine is a key aspect of optimising their operation and ensuring their reliability
[1]. However, in practice, monitoring structural loads remains a challenge due to the lack of in-situ measurements
on operational turbines under real conditions [2]. As a result, load estimation relies on numerical simulations (e.g.
OpenFAST) which, although powerful, depend heavily on modelling assumptions and require validation against
real-world data. To address these challenges, this paper presents the first results of an experimental campaign
involving the deployment of FBG sensors on an onshore wind turbine. The objective is to investigate the correlation
between measured strain signals and wind speed measurements. This correlation is motivated by the fact that
strain variations observed on the tower are primarily caused by dynamic loads induced by the wind and the rotor
operation, as described in [3]. FBG-based sensors are good candidates for real-time measurements of different
parameters such as static and dynamic strain as well as temperature. Thanks to their unique advantages (lightness,
small size, electromagnetic immunity, quasi-distributed measurements... ) [4], they can be integrated into the
structure or installed on the surface [5, 6]. This work was carried out as part of the Salomé project, which aims at
improving the dynamic monitoring of wind turbines subject to varying atmospheric conditions.

2 Methodology

A measurement campaign was conducted on a 3 MW WinWind D3 onshore wind turbine, owned by the company
Innovent and located in Fiefs, France [7]. A total of four packaged fiber Bragg grating (FBG) sensors were glued
on the inner walls of the tower at a height of 5 m from the base to capture strain variation under real operating
conditions. They were installed at this height for ease of access, as it corresponds to a practical working height
inside the tower. The FBGs were fabricated with the NORIA device (Northlab Photonics, Sweden) using a 193
nm excimer laser and the phase mask technique [4]. They are 3 mm long produced into standard single-mode
optical fiber from Corning. The FBGs were pre-strained and bonded onto rectangular pads then glued on the tower
structure with PLEXSUS MA300 methacrylate adhesive (Figure 1(b)). The pads design allows direct contact of
the FBG with the tower surface for better strain transfer. Additional strain-insensitive FBG sensors were used for
temperature compensation purposes (ref SEB). A simplified cross-section of the wind turbine tower is shown in
Figure 1(a). Data were recorded over a period of approximately 4 hours, with a sampling frequency of 303 Hz,
enabling the analysis of high-frequency dynamics. The strain signals consist of wavelength variations measured in
nanometers (nm) through BSI-108 optical interrogation unit, manufactured by B-SENS (Mons, Belgium), which
provides a spectral resolution of 1 pm. A nearly collocated ultrasonic anemometer operating at 20 Hz (model
GILL Instruments, WindMaster) providing 3D wind measurements was deployed on a 7m mast of an Atmospheric
Mobile Unit [8], and the wind speeds are expressed in meters per second (m/s).

A first synchronization step was carried out to align the datasets temporally. Since both signals were sampled at
different rates, a resampling operation was necessary to enable linear correlation analysis. Rather than interpolating
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(a) Simplified scheme of the cross-section of the WT tower. D, (b) FBG sensor bonded onto a pad

and D; refer to outer and inner diameter of the WT respectively
and S to S4 are the FBG strain sensors.

Figure 1: Setup of the measurement campaign

the wind signal, which would have introduced unrealistic assumptions on high-frequency wind behaviour, the FBG
signals were downsampled to 20 Hz to match the wind data. An illustration of the preprocessed data is shown in
Figure 2(a), where both the wind speed and one of the resampled FBG signals are displayed over a 4-minute time
window. In addition to the linear correlation between these two signals, a more indirect linear correlation was also
analysed between the strain variations and the rotor speed estimation. Indeed, this variable could not be directly
measured during this campaign, it was then estimated using wind speed measurements, theoretical principles of
maximum power point tracking (MPPT) and including the rotor inertia [9, 10]. Figure 2(b) shows a time window
of the strain variations synchronized with the estimated blade rotational speed.

Sensor 1 : Wind Speed and Wavelength shift Sensor 1 : Estimated Rotor Speed and Wavelength shift

27 “ { ' 1 l i { " 25 Eus 25
K | | £ ° £
§6 | ‘ V“ ‘ “ }l ‘ . f %.’_140 0o %
= 1 | * | i f ‘ 25 9 2 25 <
2 ki [l A 5
=0 M
| L I 1 ! 50 -5.0
. [ ] LN} 'U ] | f o
| -75 -7.5
3 -10.0 123 -10.0
10:46:30 10:47:00 10:47:30 10:48:00 10:48:30 10:49:00 10:49:30 10:50:00 10:50:30 10:46:3010:47:00 10:47:30 10:48:00 10:48:30 10:49:00 10:49:30 10:50:00 10:50:30 ’
Time Time
(a) 4-min Sub-window of the evolution of the wind speed (blue) (b) 4-min Sub-window of the evolution of the estimated rotor
and the resampled FBG sensor data (red) speed (blue) and the resampled FBG sensor data (red)

Figure 2: Data acquisition during the measurement campaign

A potential linear relationship between two time series can be determined by calculating the Pearson correlation
factor. It is a statistical tool often used to indicate if two signals are linearly correlated [11]. It can be calculated as
shown in Equation 1 where X = (x1,x2,...,xn) and Y = (y1,y2,...,yn) represent both signals [12].
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The Pearson coefficient ryy varies between -1 and 1. Values close to -1 or 1 indicate a strong linear relationship,
while values near O indicate weak or no linear correlation. In this study, only the intensity of the correlation is
of interest. Therefore, the correlation factor is considered in absolute value. However, the use of the Pearson
coefficient assumes that the signals are both normalized and stationary. In practice, the strain and wind signals
collected during the measurement campaign are non-stationary, meaning their statistical properties evolve over
time. To address this, a segmentation approach was adopted: both signals were divided into shorter time windows,
within which the stationarity assumption is considered reasonable. It appeared that the most suitable setup for
calculating the correlation between our two signals is a 1-second sliding window applied over a total duration
of 15 to 30 seconds, providing a good balance between local stationarity and sufficient data points. For each of
these sliding windows, the Pearson correlation coefficient was therefore computed while allowing for time shifts
between the signals.

To assess the significance of the correlation values obtained, a preliminary step was carried out by computing
the Pearson coefficient between the FBG strain signals and a randomly generated white noise signal. This allowed
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the definition of a realistic threshold below which linear correlation values are likely to be attributed to randomness.
Therefore, only correlation values exceeding this threshold were considered potentially meaningful.

3 Results

This section presents and discusses the results obtained from computing the linear correlation coefficients between
the different signals. As a first step, Figure 3 shows the distribution of the Pearson correlation coefficient obtained
when correlating a white noise signal with the FBG strain signals. As expected, the distribution exhibits a high
density near zero, reflecting an almost null linear correlation in most cases. The 95th percentile of the resulting
distribution was approximately 0.08, meaning that 95% of the correlations between strain and random noise re-
mained below this value. The highest observed value was around 0.15. To account for a safety margin and ensure
that only robust correlations are considered, a conservative threshold of 0.2 was therefore selected.

Following this preliminary analysis, the linear correlation was computed between the FBG strain signals and
the measured wind speed. As shown in Figure 4(a), a notable share of values exceed the 0.2 threshold, indicating
some degree of linear correlation. However, the distribution remains dense near lower values, suggesting that the
correlation is moderate and not consistently strong across all time windows and sensors. However, when examining
the results shown in Figure 4(b), which displays the linear correlation between the estimated rotor speed and the
strain signals, a stronger and more consistent relationship can be observed. The distribution of Pearson factor
shows a noticeable concentration of values closer to 1, indicating a higher level of linear correlation across a larger
number of time windows. This suggests that the strain variations captured by the FBG sensors are more directly
influenced by the rotational dynamics of the rotor than by local wind speed measurements alone. It should be noted
that the rotor speed remains an estimation and not a direct measurement. Therefore, residual low correlation values
observed in some windows may be due to discrepancies between the estimated and actual rotor behaviour during
the measurement period.

Distribution of correlation between a white noise and FBG strain signals
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Figure 3: Distribution of Pearson factor for correlation with a white noise
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Figure 4: Correlation results
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4 Conclusion and Future Work

This study presents the first results of an experimental campaign carried out on an onshore wind turbine equipped
with FBG sensors. The analysis focused on investigating the linear correlation between the measured strain signals
and two influencing variables: wind speed and derived rotor speed. While a small linear correlation was observed
with wind speed, a more consistent linear relationship was found between strain and rotor speed. This illustrates
the dominant influence of rotor dynamics on the tower structural behaviour and confirms the relevance of FBG
sensors for wind turbine applications.

Future works will include a frequency-domain analysis to complement the current time-domain approach,
aiming to improve the understanding of dynamics effects and to identify frequencies associated with rotor operation
or structural responses.
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