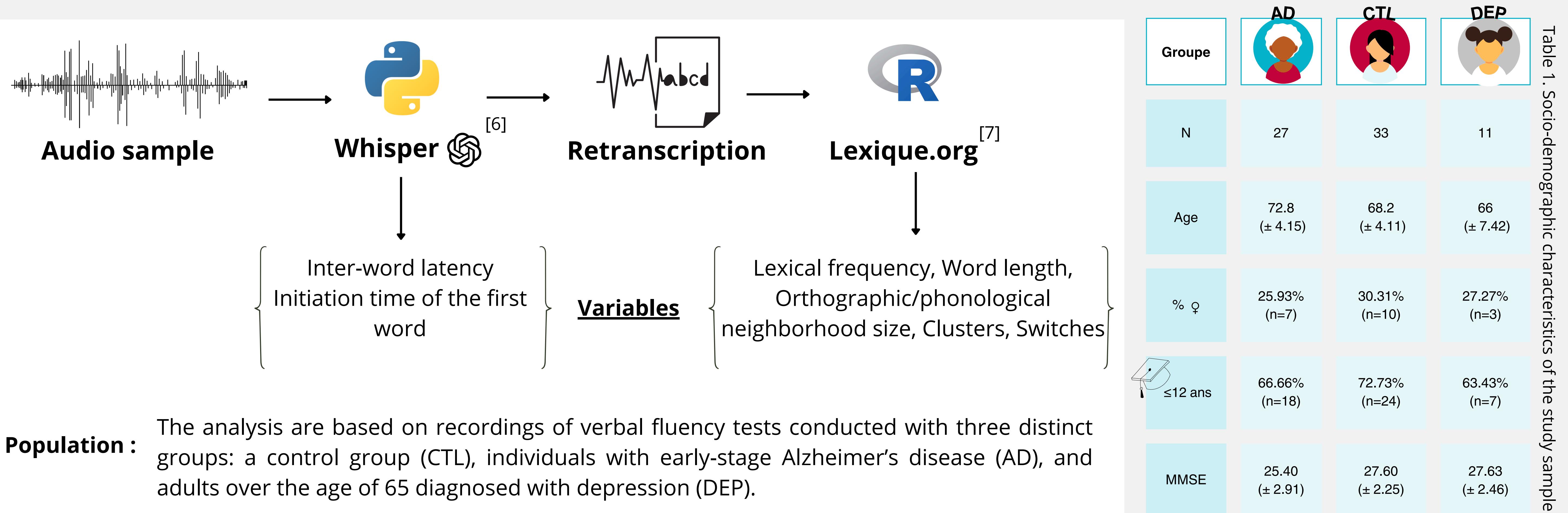


From audio to cognitive markers : an automated verbal fluency analysis tool

Léa Henriette¹, Florian Dubois², Laurent Lefebvre³ & Sandra Invernizzi³

¹ Department of Computational Medicine and Neuropsychiatry, University of Mons

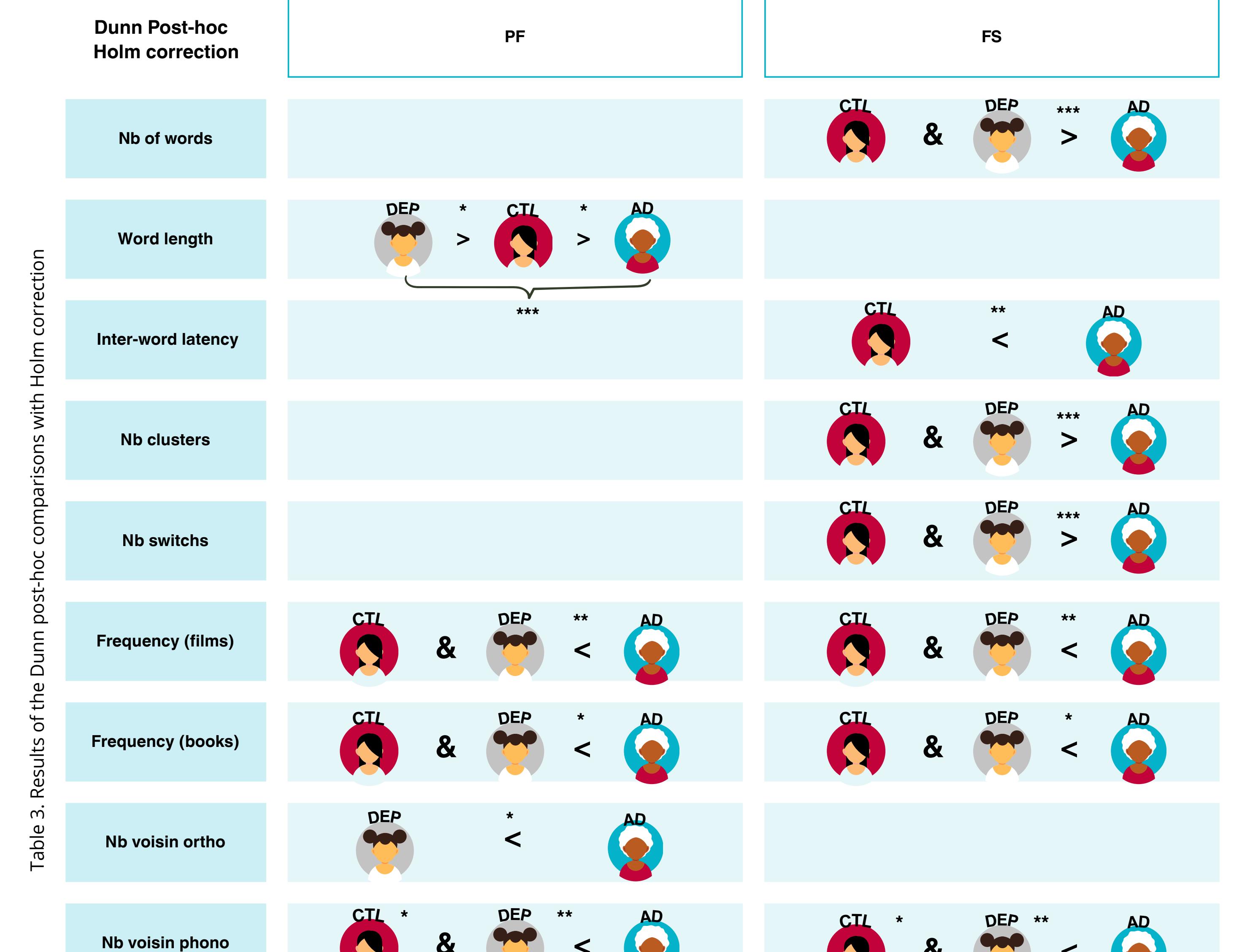

² Department of Mathematics and Operational Research, University of Mons

³ Department of Cognitive Psychology and Neuropsychology, University of Mons

INTRODUCTION

- The verbal fluency test is used in neuropsychological assessment. It mainly includes phonological and semantic modalities, prompting participants to generate words based on a letter or category in two minutes.^[1]
- Responses often form clusters, with transitions between them (called "switches"), providing insight into lexical retrieval strategies.^[2]
- Traditional scoring focuses on the number of valid words, but this overlooks rich psycholinguistic and temporal data, such as word frequency and inter-word latency. These features can reveal subtle cognitive patterns, especially when analyzed dynamically. Manual analysis is time-consuming and subject to bias^[3,4,5]

Research aim : develop an automated method to transcript and extract lexical and temporal markers from audio recordings.



Population : The analysis are based on recordings of verbal fluency tests conducted with three distinct groups: a control group (CTL), individuals with early-stage Alzheimer's disease (AD), and adults over the age of 65 diagnosed with depression (DEP).

mean \bar{x} (σ)	Kruskal-Wallis						
	AD	CTL	DEP				
Nb of words	15.81 (±7.34)	13.11 (±6.29)	19.96 (±8.79)	26.12 (±8.60)	19.36 (±4.65)	24.91 (±8.02)	***
Word length	6.25 (±1.98)	6.10 (±1.79)	6.61 (±2.21)	6.08 (±1.73)	7.32 (±2.43)	6.09 (±1.83)	***
Inter-word latency	4.51 (±6.06)	5.40 (±8.23)	3.41 (±5.20)	2.79 (±4.01)	3.52 (±4.34)	2.99 (±3.92)	***
Initiat' 1er	0.90 (±1.63)	0.61 (±0.64)	0.78 (±1.18)	1.06 (±1.39)	0.33 (±0.50)	0.56 (±0.70)	
Nb clusters	11.30 (±6.17)	9.74 (±6.94)	14.42 (±6.77)	17.00 (±5.44)	13.45 (±4.80)	18.00 (±5.95)	***
Nb switches	10.30 (±6.17)	8.81 (±3.94)	13.42 (±6.73)	16.03 (±5.43)	12.45 (±4.80)	17.09 (±6.04)	***
Frequency (films)	62.80 (±16.96)	29.59 (±40.81)	44.00 (±90.66)	19.19 (±31.37)	33.96 (±88.66)	21.22 (±33.15)	***
Frequency (books)	59.70 (±131.97)	23.13 (±33.09)	49.86 (±103.24)	17.12 (±26.79)	37.60 (±96.73)	18.41 (±26.65)	*
Nb ortho	4.15 (±4.79)	3.68 (±3.90)	2.72 (±4.40)	3.10 (±3.76)	2.98 (±4.42)	3.69 (±4.23)	*
Nb phono	9.39 (±9.20)	10.19 (±9.00)	7.62 (±8.42)	8.91 (±8.72)	5.73 (±7.73)	9.50 (±9.05)	***

Table 4. Error types observed in the retranscription

Error types	Hallucinations	Orthographical errors	Omissions	Intrusions
%	18.51%	18.85%	0.34%	11.25%

Note. SF: Semantic Fluency ; PF: Phonological Fluency
* p < 0.05 ; ** p < 0.01 ; *** p < 0.001

WER [6]	small	medium	large
%	16.2%	8.9%	8.9%

CONCLUSION
Word length (PF)

AD
Nb clusters
Frequency phonological neighbors
Frequency orthographical neighbor (PF)

→ Integrating temporal and psycholinguistic variables offers new avenues for refining diagnostic distinction

Phase 2 : Operationalize the tool and release it as an open-access resource.

CHECK THE BIBLIOGRAPHY !

LET'S CONNECT !