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Avant-propos

Ce cours a pour objectif de présenter les principes de représentation de figures géométriques,
tant du point de vue dessin que représentation mathématique. Il se base largement sur ses deux
premières versions qui ont été compilée durant les années académiques 2012-2013 et 2017-2018.
Pour partie, ce cours constitue une sélection d’éléments des ouvrages édités par le professeur
Yves Durand, avec certaines adaptations ou compléments.
Les ouvrages rédigés par le professeur Durand présentent l’avantage d’une description
exhaustive et, selon le souhait de son auteur, la possibilité de les parcourir de manière
autodidacte. C’est pourquoi nous avons fait le choix de conserver l’ensemble des conventions
(notamment de notation des éléments) qui sont employées dans ces ouvrages. Ainsi, le lecteur
cherchant des renseignements complémentaires ou des précisions sur le cours pourra aisément
consulter (en plus des références bibliographiques propres aux différents chapitres) ces syllabus
de cours qui sont accessibles au format électronique sur Moodle.
Un ensemble d’exercices d’application résolus a également été compilé par le professeur
Durand, ceux-ci inclus dans les ouvrages précités. Ces exercices permettent, en complément
aux séances d’exercices et de laboratoires, de se préparer de manière optimale aux différentes
épreuves associées à ce cours.
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Chapitre 1

Géométries et communication graphique :
introduction

Dieu toujours fait de la géométrie.

- Platon, Oeuvres complètes

Les réalisations de l’ingénieur se concrétisent fréquemment sous la forme d’objets ou de
machines conçues dans un but précis. Aux différentes étapes de réflexion, il est nécessaire
de communiquer de manière claire et précise l’information entre les différents intervenants
aussi bien à l’intérieur de l’entreprise (concepteur, bureau d’études, bureau des méthodes,
fabrication,...) qu’à l’extérieur (client, sous-traitant,...). Le support le plus communément
employé pour la transmission de cette information reste majoritairement bidimensionnel (feuille
de papier ou écran d’ordinateur).

Figure 1.1 – Représentation CAO d’une presse à briques (projet de MA1, Blaise Mondouji).



CHAPITRE 1. INTRODUCTION

Il existe donc diverses méthodes pour synthétiser sur une représentation 2D un objet 3D.
L’évolution des performances du matériel et des logiciels de conception assistée par ordinateur
(CAO) permet actuellement d’effectuer des rendus photoréalistes d’objets avant leur réalisation
(figure 1.1). Ce type de représentation comprend malheureusement une information lacunaire
voire ambiguë et n’est donc pas suffisante pour une utilisation industrielle.

La communication entre donneurs d’ordre et exécutants pour la réalisation de pièces ou de
bâtiments repose sur des plans d’exécution qui ont valeur de contrat. Ces plans suivent un
ensemble de règles communément admises qui sont issues de normalisation. Dans ce contexte,
ce cours aura pour objectif de permettre la compréhension des méthodes de réalisation et des
conventions liées à ce type de représentation. Ce cours a également pour objectif d’exercer les
capacités à manipuler et à représenter avec aisance cet espace 3D. Trois grands volets seront
étudiés de manière commune :

— les techniques de représentation en perspective (axonométrie et en particulier
l’isométrie) ; la plupart des exemples traités dans ce cours seront accompagnés d’un
croquis en perspective qui respecte ces conventions ;

— la représentation sous forme de plans techniques employant la méthode dite « de
Monge » ;

— la représentation sous forme analytique.
Ces trois méthodes de représentation ne sont que différentes voies pour représenter la même
réalité ; l’ingénieur est fréquemment appelé à les utiliser de manière complémentaire (figure
1.2).

Figure 1.2 – Trois représentations d’un même point : axonométrie, épure de Monge et
représentation analytique.
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CHAPITRE 1. INTRODUCTION

1.1 Contenu du cours

Ce syllabus est subdivisé en cinq parties principales. La première traite de problèmes de
géométrie descriptive en ayant pour but la compréhension des plans techniques. Le chapitre
2 présente les méthodes classiquement employées pour représenter une figure spatiale sur un
plan et décrit le dessin en perspective. Le chapitre 3 décrit les principales conventions de la
méthode « de Monge » employée dans la production de plans techniques. La représentation
de points et de droites y est abordée, celle des plans est présentée au chapitre 4. Les normes
de dessin technique sont ensuite abordées au chapitre 5, elles mettent en avant la nécessité de
disposer d’outils tels que le traitement de l’intersection d’objets (chapitre 6) ou la mise en vraie
grandeur (chapitre 7).
La deuxième partie du cours concerne la représentation analytique de figures et son application
à l’infographie. Le chapitre 8 reprend quelques notions de base de géométrie analytique plane.
Ces éléments servent de base à la description de l’algorithmique utilisée en infographie (chapitre
9). La description de surfaces sous forme cartésienne (chapitre 10) et paramétrique (chapitre
11) est ensuite abordée. Les courbes spatiales sont traitées au chapitre 12. Enfin, la géométrie
différentielle spatiale (recherche de vecteur tangent, normal et de plan tangent) est abordée au
chapitre 13.
La troisième reprend un ensemble d’exercices résolus pour les différents types de problèmes
rencontrés durant le cours, tant pour la partie synthétique (chapitre 14) que pour la partie
analytique (chapitre 15).
La quatrième partie reprend les rappels théoriques de notions essentielles de géométrie
analytique reprise de la matière de l’épreuve d’admission. Le chapitre 16 présente la géométrie
plane et le chapitre 17 aborde la géométrie spatiale.
La dernière partie reprend un ensemble d’annexes : les figures vierges qui seront traitées durant
le cours oral (annexe A), le formulaire de géométrie analytique utilisé dans ce cours (annexe B)
et des chapitre précédemment vus au cours qui ont été abandonnés (annexe C et D).
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Première partie

Géométrie descriptive et plans techniques
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Chapitre 2

Méthodes de projection

An elegant weapon from a more civilized time

- O. Kenobi, A new hope

2.1 Introduction

Les supports fréquemment employés pour la transmission d’information sont par nature
bidimensionnels (feuille de papier, écran), alors que les objets nous entourant sont par nature
tridimensionnels. Le passage de l’espace réel à sa représentation passe donc nécessairement par
une modification de l’information. Classiquement, les méthodes de représentation d’objets de
l’espace reposent sur la projection de figures spatiales sur un ou plusieurs plans de référence
(figure 2.1).

Figure 2.1 – Principaux types de projection employés.
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On distingue notamment :
— les méthodes de projection dites coniques où l’ensemble des lignes de projection sont

issues d’un même point.
— les méthodes de projection dites cylindriques où la méthode de projection privilégiée

est la projection orthogonale (les points sont projetés sur le plan suivant des droites
perpendiculaires à ce plan, ce qui implique que l’ensemble des lignes de projection sont
parallèles entre elles) ;

2.2 Projection centrale

La projection centrale (figure 2.2) est un exemple de projection conique ([1], [2]).

Figure 2.2 – Projection centrale.

Le centre de projection représente l’oeil de l’observateur, le plan de projection est le plan de
l’écran ou du tableau sur lequel la scène est représentée.
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La projection centrale est d’usage intensif dans le domaine artistique pour faire ressortir l’effet
de perspective dans une scène (cf figures 2.3 et 2.4).

Figure 2.3 – Exemple d’utilisation de la perspective centrale en peinture (Annonciation, D.
Veneziano, 1445).

Figure 2.4 – Etude des éléments de perspective dans l’annonciation de Veneziano [3].

Cette méthode permet un rendu naturel de la perspective, mais perd un ensemble d’informations
exploitables (mesure de distances, parallélisme entre éléments,...) ce qui la rend peu utile à
l’ingénieur. Au-delà du rendu réaliste de scène (expliqué au chapitre 9), cette méthode ne sera
pas exploité dans ce cours.
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2.3 Axonométrie

L’axonométrie orthogonale (figure 2.5) est une méthode de projection cylindrique sur un
plan incliné par rapport aux plans de références de l’espace [4]. Cette méthode est la plus
classiquement employée pour effectuer des représentations « en perspective » d’objets. Elle
répond toutefois à des règles particulières qui seront partiellement détaillées dans ce cours. Le
§2.3.1 présente les bases théoriques de représentation de figures en isométrie qui est un cas
particulier d’axonométrie.

Figure 2.5 – Principe de la projection axonométrique.

L’axonométrie présente l’avantage de représenter des volumes par une seule vue (sans nécessiter
une reconstruction mentale du volume à partir de plusieurs vues comme c’est le cas dans la
méthode de Monge). Elle permet en outre des mesures directes de dimensions si une graduation
est associée aux axes. Cette technique se base sur la projection orthogonale d’une figure sur
un plan incliné par rapport aux axes (figure 2.5). L’observateur est supposé être à l’infini, les
lignes de projection sont parallèles entre elles.
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Les distances mesurées sur une figure sont nécessairement inférieures aux distances mesurées
sur l’objet projeté (la projection orthogonale d’un segment est un segment dont les dimensions
sont multipliées par le cosinus de l’angle formé entre le segment et le plan, valeur nécessairement
inférieure ou égale à 1).

Figure 2.6 – Principe de l’axonométrie.
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Les rapports de réduction entre les dimensions réelles et la projection peuvent être déterminés
via l’inclinaison du plan de projection par rapport aux axes de la figure (u est l’unité de longueur
de la figure spatiale, urx, ury et urz sont les unités de longueur selon les trois axes projetés) :

urx = u · cosα1

ury = u · cosα2

urz = u · cosα3

Figure 2.7 – Rapport de réduction en axonométrie.
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La création d’une figure en axonométrie se base sur la représentation d’un système d’axes Oxyz
associé à une unité de mesure sur chacun des axes. Le report d’un point se fait en reportant
ses coordonnées parallèlement à chacun des axes sur le dessin (figure 2.8).

Figure 2.8 – Construction d’un point de coordonnées (1 ;-2 ;3) en axonométrie.

La matérialisation des lignes de construction permet une représentation plus claire de la position
du point. Elle permet également de lever l’ambiguïté inhérente à l’axonométrie. En effet, tous
les points situés sur une même droite de projection sont représentées par un même point sur
l’axonométrie (figure 2.9). C’est cette ambiguïté qui explique que l’emploi de l’axonométrie
soit limité à une aide à la visualisation de l’aspect tridimensionnel de la pièce plutôt qu’à la
réalisation de plans techniques.

11



CHAPITRE 2. MÉTHODES DE PROJECTION

Figure 2.9 – Deux points distincts de l’espace peuvent avoir la même représentation en
axonométrie.

Les croquis en axonométrie permettent également de résoudre des problèmes de construction
spatiale élémentaires sachant que les propriétés suivantes sont rencontrées :

— le parallélisme entre droites est conservé ;
— des droites sécantes sur la projection les sont aussi dans l’espace à conditions qu’elles

soient coplanaires.
Un exemple de problème classique pouvant être résolu par cette voie est la section d’un polyèdre
par un plan (figure 14.1). Un exemple détailé est présenté au §14.1 (page 183).
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2.3.1 Isométrie

L’isométrie est un cas particulier d’axonométrie pour laquelle le plan de projection coupe les
axes selon des points équidistants de l’origine (figure 2.10). Dans une isométrie, les échelles des
3 axes projetés sont identiques.

Figure 2.10 – Cas particulier de l’isométrie.

2.3.1.1 Calcul du rapport de réduction en isométrie

Le plan de projection a pour équation :

x+ y + z − 1 = 0 (2.1)

La droite OO′ a pour équations paramétriques
x = λ
y = λ
z = λ

(2.2)
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Le point O′ est à l’intersection de la droite et du plan, il est donc solution du système suivant :
x = λ
y = λ
z = λ
x+ y + z − 1 = 0

(2.3)

qui donne λ = 1/3. O′ a donc pour coordonnées (1/3; 1/3; 1/3). On peut finalement calculer le
cosinus de α1 en utilisant

−→
AO ·

−−→
AO′ = ∥AO∥ · ∥AO′∥ · cosα1 (2.4)

Ce qui donne, avec les valeurs numériques :

(−1; 0; 0) · (−2/3; 1/3; 1/3) =

√
(−1)2 + 02 + 02 ·

√
(−2/3)2 + (1/3)2 + (1/3)2 · cosα1 (2.5)

cosα1 vaut donc
√
2/3 ≈ 0, 816, ce qui veut dire qu’en toute rigueur il faudrait appliquer ce

rapport à toutes les dimensions sur le dessin en isométrie. Pour éviter cette complication, il est
classique de représenter directement sur le dessin le mesures réelles des objets (cela revient à
tracer le croquis isométrique à l’échelle 1/0, 816). C’est cette convention qui sera principalement
employée pour les figures du cours.

2.3.1.2 Réalisation de croquis en isométrie

Deux choix sont généralement utilisés pour le plan de projection en isométrie : un plan
d’équation x+ y + z + c = 0 ou un plan d’équation x− y + z + c = 0 (figure 2.11).

Figure 2.11 – Représentation des deux plans les plus fréquemment employés en isométrie.

Pour réaliser un croquis isométrique, on commence par disposer les projections isométriques
des 3 axes Ox, Oy et Oz, avec Oz généralement vertical et un angle de 120◦ (figure 2.12) ou 60◦
(figure 2.13) entre les axes sur le dessin suivant le plan de projection retenu. Le positionnement
d’un point P de l’objet s’opère en reportant sur les axes projetés les coordonnées les longueurs
a, b et c qui correspondent aux coordonnées selon les trois direction sde l’espace (figures 2.12
et 2.13).
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CHAPITRE 2. MÉTHODES DE PROJECTION

On trace des parallèles aux axes pour trouver la représentation du point P dans le croquis
spatial. L’opération est répétée autant de fois que nécessaire pour disposer de l’ensemble des
points dans le schéma.

Figure 2.12 – Réalisation d’un croquis en isométrie
(120◦ entre les axes).

Figure 2.13 – Réalisation d’un
croquis en isométrie (60◦ entre les
axes).

L’emploi de l’isométrie est parfois inadapté pour la représentation claire de certains éléments.
Ainsi par exemple, la représentation d’un plan incliné à 45◦ par rapport à Oxy (plan bissecteur
du dièdre formé par les plans Oxy et Oxz) serait peu explicite (la vue du plan est dégénérée en
une droite, figure 2.14). Dans ce cas, on emploie un plan de projection présentant une inclinaison
différente de celle employée par l’isométrie pour représenter la vue.

Figure 2.14 – Représentation du premier bissecteur en isométrie et en axonométrie.

15



CHAPITRE 2. MÉTHODES DE PROJECTION

2.4 Méthode de Monge

La méthode de Monge est utilisée pour la représentation de plans techniques. Cette méthode
repose sur le principe suivant : l’objet de l’espace 3D est représenté par ses projections sur
deux plans de référence (plan Oyz appelé plan frontal et plan Oxy appelé plan horizontal)
perpendiculaires entre eux (figure 2.15).

Figure 2.15 – Exemple de projection de Monge.

Par cette méthode, tout objet de l’espace 3D est représenté graphiquement sur un plan 2D,
dit plan de l’épure, dans l’objectif de résoudre, par les principes de la Géométrie Synthétique
2D, les problèmes de Géométrie Synthétique 3D qui sont liés à cet objet ou à cet ensemble
d’objets [5]. La représentation des deux projections de points de l’espace sur un plan nécessite
au préalable de rendre les plans H et F coplanaires via une opération de rabattement (dans ce
cas, une rotation de 90◦ autour de leur droite d’intersection appelée ligne de terre, figure 2.16).
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CHAPITRE 2. MÉTHODES DE PROJECTION

Figure 2.16 – Opération de rabattement pour obtenir
l’épure d’un point.

Figure 2.17 – Epure d’un
point par la méthode de Monge.

Sur une épure de Monge, un point de l’espace est nécessairement représenté par au moins
deux de ses projections (voire plus comme nous le verrons par la suite). Sur une épure, les
deux projections sont distinguées par une lettre en exposant (f pour la projection frontale,
c’est-à-dire sur le plan Oyz et h pour la projection horizontale , c’est-à-dire sur le plan Oxy).
Le chapitre 5 montrera que dans le cas de plans techniques, ce mentions sont ignorées ce qui
conduit à l’utilisation d’un plus grand nombre de projections pour des pièces complexes. La
correspondance entre épure de Monge et isométrie est présentée aux figures 2.18 et 2.19.

Figure 2.18 – Réalisation d’un croquis en isométrie (120◦ entre les axes) et correspondance
avec l’épure de Monge.
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Chapitre 3

Conventions de la méthode de Monge

La géométrie descriptive est l’art de représenter sur une feuille de dessin qui n’a
que deux dimensions, les corps de l’ espace qui en ont trois et qui sont susceptibles
d’ une définition rigoureuse

- G. Monge, Journal de l’Ecole polytechnique

3.1 Introduction

Le principe général de la géométrie de Monge repose sur la projection orthogonale des points
de l’espace 3D sur deux plans orthogonaux[1]. Elle est à la base de la production des plans
techniques. Par convention, on nomme le plan Oxy H (plan horizontal) et le plan Oyz F (plan
de face ou frontal). La figure 3.1 présente par exemple la représentation d’un triangle par la
méthode de Monge.

Figure 3.1 – Exemple de projection d’un triangle par la méthode de Monge.
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La représentation des deux projections de points de l’espace sur un plan nécessite au préalable
de rendre les plans H et F coplanaires via une opération de rabattement (dans ce cas, une
rotation de 90◦ autour de leur droite d’intersection appelée ligne de terre, figure 3.2).

Figure 3.2 – Opération de rabattement pour obtenir
l’épure d’un point.

Figure 3.3 – Epure d’un point
par la méthode de Monge.

La figure 3.3 permet de fixer les conventions qui seront reprises tout au long de ce chapitre :
— les points de l’espace sont désignés par des lettres majuscules ;
— la droite d’intersection des plans H et F (C’est-à-dire l’axe Oy) est appelée ligne de terre

et est indiquée sur l’épure par l’abréviation LT et tracée en trait mixte (un trait long -
un trait court) fin ;

— la projection d’un point sur le plan H (appelée projection horizontale du point) est
désignée par la même lettre que le point suivie d’un h (minuscule) porté en exposant ;

— la projection d’un point sur le plan F (appelée projection frontale du point) est désignée
par la même lettre que le point suivie d’un f (minuscule) porté en exposant ;

— les deux projections d’un point sont reliées par un trait mixte fin appelé ligne de rappel ;
on peut démontrer simplement que la ligne de rappel est toujours perpendiculaire à la
ligne de terre ;

— la distance entre la projection frontale d’un point et la ligne de terre (c’est-à-dire la
coordonnée z du point) est appelée cote ;

— la distance entre la projection horizontale d’un point et la ligne de terre (c’est-à-dire la
coordonnée x du point) est appelée éloignement).
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L’exemple simple de la figure 3.4 permet d’illustrer la nécessité de disposer de deux projections
simultanées de points pour une épure univoque.

Figure 3.4 – Nécessité d’employer deux projections.

L’emploi de la seule projection sur le plan horizontal par exemple ne permettrait pas de
distinguer le triangles ABC du triangle A′B′C ′ (ou plus généralement tout triangle obtenu
par intersection d’un plan avec le prisme droit de base AhBhCh) comme indiqué sur la figure
3.4. Ceci est lié au fait que tout point situé sur une droite perpendiculaire au plan horizontal 1

présente la même projection horizontale.
Le même raisonnement est applicable à la projection sur le plan F : les triangles ABC et
A′′B′′C ′′ sont également indissociables si on mentionne uniquement la projection frontale de
leurs sommets. Ceci est lié au fait que tout point situé sur une droite perpendiculaire au plan
frontal 2 présente la même projection frontale.

1. Nous verrons par la suite qu’une telle droite est appelée droite verticale
2. Nous verrons par la suite qu’une telle droite est appelée droite de bout
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3.2 Position d’un point dans l’espace

3.2.1 Division de l’espace en dièdres

De manière conventionnelle, les plans H et F divisent l’espace en quatre dièdres (figure 3.5) :
— premier dièdre en avant de F et au-dessus de H (coordonnées x et z positives) ;
— deuxième dièdre en arrière de F et au-dessus de H (coordonnée x négative, coordonnée

z positive) ;
— troisième dièdre en arrière de F et en-dessous de H (coordonnées x et z négatives) ;
— quatrième dièdre en avant de F et en-dessous de H (coordonnée x positive, coordonnée

z négative) ;

Figure 3.5 – Définition conventionnelle des dièdres.

De ces définitions découle la position des points sur l’épure de Monge en fonction du dièdre
auquel ils appartiennent. Un point du premier dièdre par exemple a sa projection dans le plan
F au-dessus de la ligne de terre et sa projection dans le plan H en-dessous de la ligne de terre
(cf figures 3.6 et 3.7). Comme nous le verrons par la suite, la convention utilisée dans les plans
techniques postule que les éléments représentés sur un plans techniques appartiennent soit au
premier dièdre (méthode « du premier dièdre » ou projection européenne) soit au troisième
(méthode « du troisième dièdre » ou projection américaine).
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Figure 3.6 – Point A du premier dièdre et point B du deuxième dièdre.

Figure 3.7 – Point A du troisième dièdre et point B du quatrième dièdre.
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3.2.2 Point appartenant aux plans de projection

Certains points ont une de leurs projections située sur la ligne de terre (cf figure 3.8) ; c’est le
cas :

— d’un point appartenant au plan horizontal (sa projection frontale est sur la ligne de
terre) ;

— d’un point appartenant au plan frontal (sa projection horizontale est sur la ligne de
terre) ;

— d’un point appartenant à la ligne de terre (ses deux projections sont confondues sur la
ligne de terre, dans ce cas, on note P hf qui est équivalent à P f = P h).

Figure 3.8 – Point A appartenant au plan frontal, point B appartenant au plan horizontal et
point C appartenant à la ligne de terre.

3.3 Représentation d’une droite

3.3.1 Généralités

De manière générale, une droite de l’espace est définie par deux points non confondus. La
représentation dans une épure de Monge d’une droite peut donc être donnée par la position de
deux points de cette droite.

Géométries et communication graphique 24



CHAPITRE 3. CONVENTIONS DE LA MÉTHODE DE MONGE

Figure 3.9 – Représentation d’une droite dans une épure de Monge.

Cette constatation conduit naturellement au théorème suivant :

Théorème 3.1. Les projections d’une droite sur les deux plans de référence sont deux droites

Ce théorème se démontre [2] en consultant la figure 3.9 :
— la projetante BBh (perpendiculaire au plan H) forme un plan avec la droite d ;
— ce plan (d,B,Bh) est perpendiculaire au plan H (si une droite est perpendiculaire à un

plan, tout plan passant par cette droite est perpendiculaire à ce plan) ;
— donc, toute les projetantes de la droite sont contenues dans le plan (d,Bh) (si deux plans

sont perpendiculaires et si, d’un point de l’un d’entre eux on mène une perpendiculaire
à l’autre, cette perpendiculaire sera entièrement contenue dans ce plan) ;

— donc, toutes les projetantes coupent le plan H selon la droite d’intersection entre le plan
(d,BBh) et le plan H.

Le même raisonnement peut être suivi concernant le plan F . Les plans de type (d,BBh) sont
dénommés plans projetants de la droite sur les plans de référence.
Nous avons démontré qu’un point appartenant à une droite se projette sur ses projections
orthogonales ; la réciproque est-elle vraie, à savoir :

Théorème 3.2. Si les projections d’un point sont sur les projections d’une droite, ce point
appartient à la droite

La démonstration se fait de la manière suivante [2] :
— Comme, dans l’épure, les 2 projections d’un point se correspondent par une ligne de

rappel perpendiculaire à LT, les 2 fractions AhKhf et AfKhf de cette ligne de rappel
situées de part et d’autre de la ligne de terre lui restent perpendiculaires lorsque le plan
F est relevé (opération inverse du rabattement) perpendiculairement au plan H dans
l’espace (cf figure 3.9) ;
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— ces 2 droites AhKhf et AfKhf forment donc, un plan π perpendiculaire à LT ;
— or, si une droite est perpendiculaire à un plan, tout autre plan passant par cette droite est

perpendiculaire au plan donné ; dès lors, le plan H qui passe par LT est perpendiculaire
au plan π et le plan F qui passe aussi par LT est aussi perpendiculaire au plan π ;

— or, les plans (d,dh) et ( d,df ) étant les plans projetants de la droite d, ils sont
respectivement perpendiculaires à H et à F ;

— or encore, si 2 plans sont perpendiculaires à un même troisième, leur intersection est
perpendiculaire à ce troisième plan (théorème classique de géométrie synthétique 3D) ;

— donc, comme les 2 plans (d,dh) et π sont perpendiculaires à H, leur intersection P hP est
perpendiculaire à H et, de même, comme les 2 plans (d,df ) et π sont perpendiculaires
à F , leur intersection P fP est perpendiculaire à F ; Donc P hP est perpendiculaire à H
et P fP est perpendiculaire à F ;

— il s’agit donc nécessairement des projetantes du point P de la droite d.

3.3.2 Traces d’une droite

Par définition, les traces d’une droite sont les intersections de cette droite avec les plans de
projection. Elles sont respectivement désignées par I (trace dans le plan H appelée trace
horizontale de la droite) et J (trace dans le plan F appelée trace frontale de la droite).

Figure 3.10 – Traces d’une droite.

La détermination des traces d’une droite à partir de l’épure de la droite est assez immédiate
(figure 3.10) :

— l’intersection de dh avec la ligne de terre donne Jh ; Jf est obtenue par l’intersection de
la perpendiculaire à LT passant par Jh avec df ;

— de même, l’intersection de df avec la ligne de terre donne If ; Ih est obtenue par
l’intersection de la perpendiculaire à LT passant par If avec dh.
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3.3.3 Positions relatives de deux droites

3.3.3.1 Représentation de droites sécantes

Deux droites sécantes ont nécessairement un point commun. Les projections du point
d’intersection sont à l’intersection des projections horizontales et frontales des droites (figure
3.11).

Figure 3.11 – Droites sécantes.

La réciproque est également vraie : si l’intersection des projections horizontales et frontales de
deux droites sont alignées sur une même ligne de rappel, les droites sont sécantes. On peut donc
en déduire le théorème suivant :

Théorème 3.3. Deux droites sont sécantes si et seulement si le point d’intersection de leurs
projections horizontales et le point d’intersection de leurs projections frontales se correspondent
par une même ligne de rappel perpendiculaire à la ligne de terre.
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3.3.3.2 Représentation de droites parallèles

Deux droites parallèles non confondues sont coplanaires et ne présentent pas d’intersection
(figure 3.12). Leur représentation sur une épure de Monge vérifie le théorème suivant :

Théorème 3.4. Si 2 droites sont parallèles dans l’espace, leurs projections sur les plans
de référence H, F et P sont aussi respectivement parallèles entre elles (tout en n’étant pas
nécessairement parallèles aux 2 droites parallèles de l’espace).

Figure 3.12 – Droites parallèles.

Ce théorème se démontre comme suit [2] :
— les 2 plans projetants de a et b sur H contiennent respectivement les 2 droites parallèles

entre elles a et b et les 2 droites projetantes AAh et BBh ; ces 2 projetantes étant toutes
deux perpendiculaires à H, sont parallèles entre elles ;

— donc, ces 2 plans projetants contiennent chacun 2 droites sécantes qui sont
respectivement parallèles entre elles ; ils sont donc parallèles entre eux (pour que 2 plans
soient parallèles entre eux, il faut et il suffit que l’un d’eux contienne 2 droites sécantes
respectivement parallèles à 2 droites sécantes de l’autre) ;

— donc, les intersections des 2 plans projetants de a et b sur H sont parallèles entre elles
(les intersections de 2 plans parallèles entre eux avec un troisième plan qui ne leur est
pas parallèle sont parallèles entre elles) ;

— or, ces intersections ne sont rien d’autre que les projections horizontales des 2 droites a
et b ; donc, les projections horizontales des 2 droites a et b, parallèles entre elles dans
l’espace, sont aussi parallèles entre elles (tout en n’étant pas nécessairement parallèles à
a et b).
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Un raisonnement tout à fait analogue conduirait à démontrer que les projections frontales des
2 droites a et b, parallèles entre elles dans l’espace, sont aussi parallèles entre elles (tout en
n’étant pas nécessairement parallèles à a et b) et en généralisant, les projections de profil des
2 droites a et b, parallèles entre elles dans l’espace, sont aussi parallèles entre elles (tout en
n’étant pas nécessairement parallèles à a et b).

3.3.4 Droites occupant une position particulière de l’espace

Par convention, des droites occupant des positions particulières par rapport aux plans de
référence ont une désignation propre.

— une droite est dite horizontale (figure 3.13) si elle est parallèle au plan horizontal ; sa
projection frontale est parallèle à la ligne de terre ; on la note généralement h ;

— une droite est dite frontale si elle est parallèle (figure 3.14) au plan frontal ; sa projection
horizontale est parallèle à la ligne de terre ; on la note généralement f ;

— une droite est dite de profil si elle est orthogonale à la ligne de terre ; ses deux projections
sont confondues et perpendiculaires à la ligne de terre ; on la note généralement p

— une droite est dite verticale (figure 3.16) si elle est perpendiculaire au plan horizontal ;
sa projection frontale est perpendiculaire à la ligne de terre ; sa projection horizontale
se réduit à sa trace I ; on la note généralement v ;

— une droite est dite de bout (figure 3.17) si elle est perpendiculaire au plan frontal ; sa
projection horizontale est perpendiculaire à la ligne de terre ; sa projection frontale se
réduit à sa trace J ; on la note généralement d ;

— une droite parallèle à la ligne de terre (figure 3.18) est à la fois est à la fois frontale et
horizontale ; ses projections sont donc parallèles à la ligne de terre (ce type de droite n’a
pas de trace frontale ni horizontale).

Figure 3.13 – Droite horizontale.
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Figure 3.14 – Droite frontale.

Figure 3.15 – Droite de profil.
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Figure 3.16 – Droite verticale.

Figure 3.17 – Droite de bout.
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Figure 3.18 – Droite parallèle à la ligne de terre.
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Le tableau 3.1 résume les caractéristiques principales des droites particulières, en prenant un
exemple sur un parallélépipède rectangle ABCDEFH dont les faces sont parallèles aux plans
coordonnés (figure 3.19).

Figure 3.19 – Parallélipipède rectangle dont les faces sont parallèles aux plans de référence.

Nom (+symbole) définition projection h projection f trace I trace J
−→
V exemple

Horizontale (h) // H quelconque // LT ∄ ∃ (α, β, 0) AC
Frontale (f) // F // LT quelconque ∃ ∄ (0, α, β) AH
de Profil (p) ⊥ LT ⊥ LT ⊥ LT ∃ ∃ (α, 0, β) AF
Verticale (v) ⊥ H trace I ⊥ LT ∃ ∄ (0, 0, α) AE
De bout (d) ⊥ F ⊥ LT trace J ∄ ∃ (α, 0, 0) AB
Parallèle LT // LT // LT // LT ∄ ∄ (0, α, 0) AD

Table 3.1 – Résumé des positions particulières de droites
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3.4 Représentation d’un point par trois projections

La droite de profil (figure 3.15) met en évidence l’ambiguïté qui peut résulter de la seule
utilisation de deux projections pour un élément. En effet deux droites de profil coplanaires sont
impossible à distinguer sur une épure (figure 3.20).

Figure 3.20 – Tracé de deux droites de profil coplanaires, elles ne sont pas distinguables.

Une manière de lever l’ambiguïté est de représenter également deux points de chacune des
droites (leurs traces par exemple, figure 3.20).

Figure 3.21 – Lors de la mention de leurs traces, les droites sont définies de manière univoque.
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Cette méthode s’avère toutefois peu satisfaisante en pratique puisqu’elle nécessite une
reconstruction mentale des formes dessinées dans un plan perpendiculaire à la ligne de terre
(on parle de plan de profil). Dans ce type de cas, on doit faire appel à la projection des points
sur un troisième plan de référence orthogonal à H et F : le plan de profil (plan Oxz, figure
3.22).

Figure 3.22 – Vue spatiale des trois projections d’un point.

Par analogie avec ce qui a été présenté précédemment, la projection d’un point dans le plan de
profil est désignée par la même lettre que le point suivie d’un p (minuscule) porté en exposant.
La représentation d’un point par ses trois projections passe par deux opérations de rabattement :
dans un premier temps, le plan de profil est rabattu sur le plan frontal autour de l’axe Oz appelé
ligne de terre secondaire (L’T’) (figure 3.23). Ensuite, le plan frontal est rabattu sur le plan
horizontal comme indiqué précédemment (figure 3.24).
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Figure 3.23 – Rabattement du plan de profil sur le plan frontal.

Figure 3.24 – Rabattement sur le plan horizontal.
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L’épure d’un point représenté par ses trois projections se présente comme suit (figures 3.25 et
3.26) :

— les projections frontale et horizontale se correspondent par une ligne de rappel
perpendiculaire à la ligne de terre ;

— les projections frontale et de profil se correspondent par une ligne de rappel parallèle à
la ligne de terre (ou perpendiculaire l’axe z sui est appelé la ligne de terre secondaire
L′T ′ ) ;

— la distance entre P h et LT est égale à la distance entre P p et L′T ′ ;
Les figures 3.25 et 3.26 présentent la construction pour des points situés dans les quatre dièdres.
La figure 3.27 présente le cas de points dans les plans de projection principaux.

Figure 3.25 – Projection de profil de point du premier (A) et deuxième dièdre (B).
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Figure 3.26 – Projection de profil de point du troisième dièdre (C) et quatrième dièdre (D).
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Figure 3.27 – Projection de profil de point contenus dans le plan horizontal (I) dans le plan
frontal (J) et sur la ligne de terre (K).
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Chapitre 4

Représentation de plans par la méthode
de Monge

The golden rule is that there are no golden rules.

- G.B. Shaw, Maxims for Revolutionists

4.1 Introduction

Un plan est classiquement défini de lune des quatre manières suivantes [1] :
— par trois points non colinéaires (figure 4.1) ;
— par deux droites sécantes (figure 4.2) ;
— par deux droites parallèles (figure 4.3) ;
— par une droite et un point n’appartenant pas à cette droite (figure 4.4).

Figure 4.1 – Plan
défini par trois points.

Figure 4.2 – Plan
défini par deux
droites sécantes.

Figure 4.3 – Plan
défini par deux
droites parallèles.

Figure 4.4 – Plan
défini par une droite
et un point.
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4.2 Traces d’un plan

4.2.1 Définition

Par analogie avec la définition des traces d’une droite, on définit les traces d’un plan par leur
intersection avec les plans de projection. Les traces sont désignées par la lettre grecque décrivant
le plan portant en indice f ou h (désignant respectivement la trace horizontale ou frontale).

Figure 4.5 – Traces d’un plan (LT = πf
h = πh

f ).

Cette trace est une droite, qui possède donc deux projections sur l’épure ; πh
f désigne donc la

projection horizontale de la trace dans le plan frontal du plan π 1 ; dans la majorité des cas,
cette droite est confondue avec la ligne de terre (elle se réduit à un point de la ligne de terre
dans certains cas particuliers décrits plus loin) 2. On peut également noter que, si les traces
d’un plan ne sont pas parallèles, elles ont nécessairement une intersection sur la ligne de terre.
L’avantage de cette représentation est de permettre de visualiser de manière simple l’inclinaison
du plan sur les deux plans de référence, ce qui n’est pas permis de manière immédiate par les
autres méthodes de définition d’un plan.

1. on peut également rencontrer le notation τhπf
2. La même observation peut être faite pour la projection horizontale de la trace frontale
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4.2.2 Détermination des traces d’un plan

Lorsqu’un plan est défini par deux droites sécantes (figure 4.6), les traces du plan sont les
droites qui joignent les traces respectives de ces deux droites. Cette méthode peut également
être utilisée lorsque le plan est défini par deux droites parallèles (figure 4.7) ou par trois points
(utiliser deux droites s’appuyant sur les trois points, cf figure 4.8).

Figure 4.6 – Traces d’un plan défini par deux droites sécantes (LT=πf
h = πh

f , épure vierge
page 277).

Si le plan est défini par une droite et un point, il suffit de placer un deuxième point sur la
droite (choisir un point sur une des projection de la droite puis trouver son autre projection
grâce à une ligne de rappel). La droite reliant les deux points de l’épure permet ensuite, via la
recherche de ses traces, d’obtenir la trace du plan (figure 4.9).
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Figure 4.7 – Traces d’un plan défini par deux droites parallèles (LT=πf
h = πh

f , épure vierge
page 278).

Figure 4.8 – Traces d’un plan défini par
trois points (LT=πf

h = πh
f , épure vierge page

279).

Figure 4.9 – Trace d’un plan défini par
une droite et un point (LT=πf

h = πh
f , épure

vierge page 280).
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4.3 Plans particuliers

Comme au §3.3.4 pour des droites, il est possible de définir des plans occupant des positions
particulières de l’espace (le tableau 4.1 résume les propriétés de ces plans) :

— un plan vertical est perpendiculaire au plan horizontal (figure 4.10) ; sa trace frontale est
une droite verticale 3 (πh

f se réduit donc à un point) ; sa trace horizontale est quelconque ;
— un plan de bout est perpendiculaire au plan frontal (figure 4.11) ; sa trace horizontale

est une droite de bout (πf
h se réduit donc à un point) ; sa trace frontale est quelconque ;

— un plan frontal est parallèle au plan F (figure 4.12) ; sa trace horizontale est parallèle à
la ligne de terre ; il ne possède pas de trace frontale ;

— un plan horizontal est parallèle au plan H (figure 4.13) ; sa trace frontale est parallèle à
la ligne de terre ; il ne possède pas de trace horizontale ;

— un plan de profil est perpendiculaire à la fois à H et à F (figure 4.14) ; sa trace frontale
est un droite verticale (πh

f se réduit donc à un point) ; sa trace horizontale est une droite
de bout (πf

h se réduit donc à un point).

Nom définition τh τf τ fh τhf équation
Horizontal // H ∄ // LT ∄ ≡ LT z = c

Frontal // F // LT ∄ ≡ LT ∄ x = c
Vertical ⊥ H quelconque ⊥ LT ≡ LT = Khf ax+ by = c
De bout ⊥ F ⊥ LT quelconque Khf ≡ LT ay + bz = c
De profil ⊥ LT ⊥ LT ⊥ LT Khf Khf y = c

Table 4.1 – Résumé des positions particulières de plans

Figure 4.10 – Plan vertical.

3. si deux plans sécants sont perpendiculaires à un même troisième, leur intersection est perpendiculaire à
ce plan
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Figure 4.11 – Plan de bout.

Figure 4.12 – Plan frontal.
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Figure 4.13 – Plan horizontal.

Figure 4.14 – Plan de profil.
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4.4 Dessin d’un point appartenant à un plan

Le dessin d’un point P appartenant à un plan n’est pas une opération immédiate. La méthode
la plus simple pour résoudre ce problème est de dessiner dans ce plan une droite (en reliant
deux points de ce plan), puis de placer un point sur cette droite car si une droite est incluse
dans un plan, tous ses points appartiennent à ce plan.
En pratique, si le plan est défini par une des méthodes exposées au §4.1 l’opération peut être
effectué de la manière suivante :

— positionner la projection horizontale du point P à un endroit quelconque, un premier
lieu de sa projection frontale est la ligne de rappel perpendiculaire à LT ;
— si le plan est défini par trois points A,B,C (figure 4.15), dessiner la droite joignant

deux des points du plan (A et C par exemple) ; la génératrice est la droite qui joint
le troisième point (B) à P ;

— si le plan est défini par deux droites sécantes (figure 4.16) ou parallèles (figure 4.17),
la génératrice est la droite qui passe par P et qui coupe les deux droites définissant
le plan ;

— si le plan est défini par une droite et un point (figure 4.18), la méthode est similaire
à celle qui est employée pour un plan défini par trois points ;

— obtenir la projection frontale de la génératrice auxiliaire (on a toujours deux points
connus : une intersection de la génératrice avec une droite et soit une deuxième
intersection, soit un point connu) qui est le deuxième lieu de la projection frontale du
point

Figure 4.15 – Point dans un plan défini par trois points (épure vierge page 281.)
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Figure 4.16 – Point dans un plan défini par deux droites sécantes (épure vierge page 282).

Figure 4.17 – Point dans un plan défini par deux droites parallèles (épure vierge page 283).
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Figure 4.18 – Point dans un plan défini par une droite et un point (épure vierge page 284).

4.5 Droites particulières de plans quelconques

4.5.1 Droites horizontales et frontales

Tout plan quelconque π (sauf un plan horizontal évidemment) peut être coupé par une infinité
de plans horizontaux H ′. Dans ce cas, la droite d’intersection entre ces deux plans est parallèle
à la trace horizontale du plan (les intersections de deux plans parallèles par un même troisième
sont parallèles) ; il s’agit donc d’une droite horizontale (figure 4.19). Sur l’épure, elle peut être
construite selon les étapes suivantes :

— la projection frontale de la droite est confondue avec la trace frontale du plan H ′ ;
— l’intersection de cette projection avec la trace frontale du plan donne la trace frontale

de la droite recherchée ;
— Comme la droite recherchée est parallèle à la trace horizontale du plan π, il suffit de

faire passer une parallèle à πh
h passant par Jh pour obtenir la projection horizontale de

la droite recherchée.
On peut déduire le théorème suivant :

Théorème 4.1. Dans un plan quelconque, une infinité de droites horizontales peuvent être
définies, elles sont toutes parallèles à la trace horizontale de ce plan.
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Figure 4.19 – Intersection entre un plan horizontal et un plan quelconque (LT=πf
h = πh

f =

H
′h
f ).

Une démarche tout à fait similaire permettrait l’établissement d’une droite frontale par
intersection d’un plan frontal F’ avec un plan (figure 4.20). Le théorème suivant est également
d’application :

Théorème 4.2. Dans un plan quelconque peuvent être définies une infinité de droites frontales
qui sont toutes parallèles à la trace frontale de ce plan.

Figure 4.20 – Intersection entre un plan vertical et un plan quelconque (LT=πf
h = πh

f = F
′f
h ).
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4.5.2 Droites de bout et verticales

Une droite de bout est un cas particulier de droite horizontale qui est, non seulement parallèle
à H, mais encore perpendiculaire à F. De même, une droite verticale est un cas particulier de
droite frontale qui est, non seulement parallèle à F, mais encore perpendiculaire à H (figure
4.21 ).

Figure 4.21 – Ensemble de droites particulières [1].

De manière générale, on ne peut pas définir dans un plan quelconque une droite verticale ou
de bout. En effet, si nous considérons le cas de la droite de bout et que nous supposons qu’elle
puisse être incluse dans un plan π, cela implique nécessairement que le plan π est un plan de
bout. En effet, si une droite est perpendiculaire à un plan, tout plan passant par cette droite
est perpendiculaire au plan donné, donc tout plan passant par la droite de bout ne peut qu’être
perpendiculaire à F, c’est-à-dire être lui-même un plan de bout. La même constatation peut être
faite pour une droite verticale : si un plan contient une droite verticale, il est nécessairement
lui-même vertical.

Références

[1] Y. Durand. Géométries et communication graphique, Tome I partie 1 : La géométrie
descriptive de Monge, Fascicule III : La représentation des plans et des droites particulières
d’un plan. Mutuelle d’édition FPMs, 2006-2007.
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Chapitre 5

Application de la méthode de Monge au
dessin technique

Le dessin est la base de tout.

- A. Giacometti, Citations

5.1 Introduction

Dans un grand nombre de domaines de l’ingénierie, la réalisation finale des concepts imaginés
aboutit à la fabrication de pièces ou d’assemblages. La démarche de conception, de l’idée à
la réalisation, doit faire appel à des supports visuels qui simplifient la communication entre
les différents intervenants (au sein de l’entreprise, entre l’entreprise et ses sous-traitants,
entre l’entreprise et ses clients). Partant de schémas de principe et d’esquisse, le processus de
conception évolue vers une définition complète des formes et des exigences sur les machines et
leurs composants élémentaires, formalisées sous la forme d’un plan.

Figure 5.1 – Pièce mécanique en alliage
d’aluminium.

Figure 5.2 – Représentation de la pièce
de la figure 5.1 par le logiciel de CAO 3D
Solidworks.
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Les programmes de conception assistée par ordinateur volumique, c’est-à-dire qui se basent
sur une représentation tridimensionnelle des pièces conçues (figure 5.2), rencontrent un succès
grandissant. Les possibilités de rendus réalistes permettent une amélioration de mises en
situation, avant même la fabrication des premières pièces (figure 5.3). Malgré ces avancées
technologiques, dans la grande majorité des domaines, l’élément de description finale (et qui
fait office de contrat) est un plan imprimé sur un support papier (donc 2D comme sur la figure
5.4).

Figure 5.3 – Emploi de techniques de rendu pour représenter la pièce de la figure 5.1.

Figure 5.4 – Plan de définition de la pièce de la figure 5.1, diverses projections de Monge
servent à la définition complète des exigences dimensionnelles.
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Le dessin technique permet la représentation sous forme de plans en deux dimensions du modèle
géométrique associé à une pièce ou à un ensemble mécanique. Pour faciliter une compréhension
sans équivoque des plans par le plus grand nombre, une normalisation a été mise en place au
niveau international et répercutée vers les normes nationales (normes NBN pour la Belgique).
La méthode de projection la plus couramment employée est la projection orthogonale de Monge.
Ce type de projection permet de représenter les exigences dimensionnelles et de montage de
manière fiable sur le plan.

5.2 Représentation d’une machine

La représentation graphique traditionnelle sous forme de plans respectant les normes du dessin
technique est évidemment plus abstraite que la visualisation tridimensionnelle d’une pièce. La
lecture de plan nécessite la reconstruction mentale d’un volume à partir de vues, coupes et
sections, choisies de manière à définir le plus grand nombre d’éléments sur la surface la plus
restreinte possible. La représentation de certains éléments standardisés obéit en outre à des
conventions qu’il faut connaître. Aux différentes étapes de définition d’un projet, plusieurs
types de représentations sont rencontrées.

5.2.1 Croquis

Le croquis (figure 5.5) est un dessin établi le plus souvent sans l’aide d’instruments de guidage
ou de mesure. Il est plus ou moins exact en formes et en positions. Il peut être partiellement
ou totalement coté. Ce mode de communication est très utile dans les offres, les premières
phases d’avant-projet : il permet d’aller à l’essentiel et de communiquer par la prise sur le vif
d’informations techniques.

Figure 5.5 – Croquis d’un touret à meuler.
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5.2.2 Dessin d’ensemble

Le dessin d’ensemble (figure 5.6) permet de représenter une machine assemblée pour en définir
les éléments constitutifs. Ce dessin d’ensemble présente une nomenclature qui énumère les
organes d’une machine en rapport avec le plan permettant d’identifier les éléments en présence.
La nomenclature présente généralement :

— un index associé à l’élément (ou au groupe d’éléments semblables) ;
— la description de l’élément ;
— le nombre d’éléments semblables dans un groupe ;
— le matériau dans lequel est fabriqué l’élément ;
— une identification du plan de définition (pour les éléments fabriqués) ou une référence

d’un numéro de série (pour les éléments standards achetés tels quels).

Figure 5.6 – Plan d’ensemble d’un touret à meuler.
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5.2.3 Schéma cinématique

Appréhender le fonctionnement d’une machine à partir d’une lecture de plan n’est pas un
exercice simple. Il est nécessaire de :

— déterminer la fonction globale du système mécanique ;
— déterminer quels sont les éléments d’entrée (bout d’arbre, levier, ...) et de sortie

(rechercher les axes des mouvements, identifier les organes fixes) ;
— rechercher des liaisons élémentaires (distinguer les pièces mobiles, les éléments solidaires).

Le schéma cinématique simplifié (figure 5.7) permet de détailler chaque mécanisme particulier.
Il respecte certaines conventions ; les figures 5.9 et 5.8 reprennent les représentations usuelles
des liaisons classiques. La représentation schématique d’appareillages électriques, hydrauliques
et pneumatiques répond également à une normalisation stricte (voir par exemple [1]).

Figure 5.7 – Schéma cinématique d’un touret à meuler.

Figure 5.8 – Symboles schématiques divers [2].
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Figure 5.9 – Symboles des liaisons cinématiques [2].
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5.3 Plans de pièces mécaniques

Le plan permet de représenter en deux dimensions les détails de pièces tridimensionnelles. Il
précise les formes et les dimensions en vue de la réalisation de la pièce. Les règles de base
présentées ici sont issues des normes internationales extraites d’un fascicule édité par l’institut
belge de normalisation [1].

5.3.1 Eléments de base

Les formats standards des plans vont du A0 (1189 x 841 mm soit 1 m2) au A4 (297 x 210
mm). Le plan porte toujours dans le coin inférieur droit un cartouche qui permet au minimum
d’identifier l’entreprise, l’auteur du plan, le nom de la pièce, l’échelle du dessin (à choisir dans les
échelles normalisées 5 :1, 2 :1, 1 :1, 1 :2, 1 :5, ou tout multiple ou sous multiple par une puissance
de 10) le type de projection et d’unités employées et la date de production du plan. Chaque
entreprise possède son modèle standardisé de cartouche reprenant plus ou moins d’informations
complémentaires (la figure 5.10 représente par exemple le cartouche employé à la Faculté pour
les projets des étudiants mécaniciens).

Tolérances générales

Titre du plan

Numéro de plan

Auteur

Date 

Matériau

Année d'étude

FormatEchelle Unité

PROJECTION
EUROPEENNE

UMONS POLYTECH
MONS

Titre du cours/projet Remplace

Remplacé par

Figure 5.10 – Exemple de cartouche employé par le service de Génie Mécanique de la FPMs.

5.3.2 Méthode de projection

L’observation d’une pièce à des fins de représentation graphique peut être conduite selon
différentes directions. Les six directions usuelles d’observation forment entre elles des angles
de 90◦. L’une des directions est choisie de manière à montrer la pièce dans sa position naturelle
d’utilisation et selon sa face la plus représentative (appelée « vue de face »).

Figure 5.11 – Symbole pour la projection
européenne.

Figure 5.12 – Symbole pour la projection
américaine.

La disposition standard des vues en Europe (dite « projection européenne ») est la méthode du
premier dièdre (figure 5.13). Elle consiste à projeter la pièce de manière orthogonale selon les
six directions principales (vue de face : plan frontal, vue de dessus : plan horizontal,...) puis à
rabattre les différentes projections orthogonales de la pièce comme présenté à la figure 5.14. La
vue de droite de la pièce est située à gauche de la vue de face, la vue de dessous de la pièce est
située au-dessus de la vue de face. L’indication normalisée présentée à la figure 5.11 doit être
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mentionnée dans le cartouche. La disposition des vues selon la méthode américaine emploie la
convention inverse (vue de droite à droite,...).

Figure 5.13 – Méthode de projection du
premier dièdre.

FACEDROITE GAUCHE ARRIERE

DESSOUS

DESSUS

Figure 5.14 – Disposition des vues pour la
méthode de projection du premier dièdre.

Il est clair que suivant la complexité de la pièce, les six vues ne sont pas toujours nécessaires. La
norme préconise de représenter le nombre de vues minimum nécessaire à la compréhension du
plan. Cette recommandation n’est toutefois pas une obligation absolue et laisse au dessinateur
la liberté du choix des vues qui lui permet une clarté maximale du plan.
La disposition relative des vues est imposée par la norme (alignement et position relative), mais
l’espacement entre les vues est lui aussi libre. De manière générale, on recherche la disposition
qui utilise au mieux l’espace de la feuille de dessin, en fonction du format de papier et de
l’échelle sélectionnée (figures 5.15 et 5.16).

Tolérances générales

Titre du plan

Numéro de plan

Auteur

Date 

Matériau

Année d'étude

FormatEchelle Unité

PROJECTION
EUROPEENNE

UMONS POLYTECH
MONS

Titre du cours/projet Remplace

Remplacé par

Figure 5.15 – Mauvaise exploitation de
l’espace de dessin.

Tolérances générales

Titre du plan

Numéro de plan

Auteur

Date 

Matériau

Année d'étude

FormatEchelle Unité

PROJECTION
EUROPEENNE

UMONS POLYTECH
MONS

Titre du cours/projet Remplace

Remplacé par

Figure 5.16 – Exploitation correcte de
l’espace de dessin.

Lors du dessin manuel d’un plan, il est donc recommandé de commencer par le dessin du
parallélépipède capable (« boîte » parallélépipédique qui englobe la pièce) pour tester la bonne
disposition des vues sur le dessin (figures 5.17 et 5.18).

Comme le montrent les exemples précédents, le plan technique ne fait pas mention des éléments
présents sur les épures de Monge, à savoir la désignation des points et la présence des lignes de
rappel (cf figure 5.19).
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Figure 5.17 – Dessin du parallélépipède capable autour de la pièce.

Tolérances générales

Titre du plan

Numéro de plan

Auteur

Date 

Matériau

Année d'étude

FormatEchelle Unité

PROJECTION
EUROPEENNE

UMONS POLYTECH
MONS

Titre du cours/projet Remplace

Remplacé par

Figure 5.18 – Dessin du parallélépipède capable pour tester la disposition des vues.

Ces différences permettent d’obtenir un plan plus lisible, au détriment de l’aspect exhaustif
obtenu par la mention des projections de points. Ceci justifie la nécessité d’avoir recours à plus
de deux projections sur un plan technique. La lecture de plan implique donc de reconstruire
mentalement les différents éléments pour une meilleure compréhension du plan (figures 5.20 et
5.21).
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Figure 5.19 – Exemple de pièce et de son plan employant trois projections.

Figure 5.20 – Reconstruction des lignes de rappel sur le plan (figure vierge en page 285).
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Figure 5.21 – Identification des points sur l’épure (figure vierge en page 285).
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5.3.3 Traitement des arêtes cachées

Les polyèdres, comme d’ailleurs tous les solides figurés par des plans techniques, sont représentés
par leurs arêtes, c’est-à-dire les segments qui sont les intersections de leurs faces planes (inclinées
l’une sur l’autre), en considérant que la matière les constituant est opaque. Cette opacité de la
matière impose qu’on distingue les arêtes réellement vues des arêtes cachées, mais qui existent
cependant et dont la représentation est optionnelle. La convention est de représenter les arêtes
vues par des traits pleins forts, tandis que les arêtes cachées sont représentées par des traits
interrompus fins (figure 5.25). La distinction entre les arêtes vues et les arêtes cachées permet
une interprétation plus claire du plan.
Il faut noter que de manière générale, l’emploi des traits cachés est optionnel sur un plan. Le
choix de la représentation de ces traits est effectué pour l’ensemble du plan (si les arêtes cachées
sont représentées dans une vue, elles doivent l’être dans l’ensemble des vues).

Figure 5.22 – Pièce présentant une arête partiellement cachée.

Pour des pièces de géométrie simple, une arête reliant deux points vus est vue, une arête reliant
un point caché à un autre point est cachée. Pour les pièces de géométrie plus complexe, il est
nécessaire de tester le caractère vu ou caché non seulement des sommets de la pièce, mais aussi
des points à l’intersection des projection des arêtes de la pièce (certaines arêtes peuvent être
partiellement vues et partiellement cachées, figure 5.22).
La détermination automatique du statut d’une arête peut être obtenue par l’intermédiaire de
la géométrie synthétique. Par exemple, pour déterminer si un point de la projection horizontale
est vu ou caché, il faut rechercher l’intersection de la verticale issue de ce point avec le plan
définissant la face de la pièce pouvant potentiellement cacher ce point. S’il existe une intersection
au-dessus du point, cela signifie que ce point est caché, donc que toutes les arêtes aboutissant
à ce point seront elles aussi cachées .
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Figure 5.23 – Recherche du caractère vu ou caché d’un point (épure vierge en page 286).

La figure 5.23 détaille la procédure :
— le point D est potentiellement caché par la face ABE dans la projection horizontale ;
— tracer la verticale v issue de D ;
— rechercher son point de percée dans le plan ABE (emploi d’une génératrice intermédiaire

g) ;
— la projection frontale du point de percée P étant située au-dessus de celle du point D,

D est caché par le plan ABE, les arêtes issues de D sont donc cachées.
On peut reprendre le dessin de la figure 5.19 pour déterminer le vu et caché, aussi bien en
isométrie que sur le plans (figure 5.24)
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Figure 5.24 – Recherche des arêtes cachées (épure vierge page 287).

5.3.4 Types de traits

Comme indiqué précédemment, le contour des pièces et les arêtes vues sont représentés en trait
continu fort. Les axes de symétrie ou de révolution sont représentés en trait mixte fin. Les arêtes
cachées peuvent être représentées en trait interrompu fin. Le trait continu fin est employé pour
hachurer les parties coupées de la pièce (figure 5.25). Pour faciliter la distinction entre trait fort
et trait fin, le rapport entre les deux largeurs de trait doit être d’au moins 2 (0,7 mm et 0,35
mm par exemple).

Figure 5.25 – Principaux styles de traits.

Figure 5.26 – Exemple de représentation d’un arbre.

On peut également utiliser un trait continu fin à main levée pour interrompre la représentation
d’une partie longue d’une pièce (figure 5.26).

Géométries et communication graphique 65



CHAPITRE 5. DESSIN TECHNIQUE

5.3.5 Coupes et sections

Une coupe (figure 5.27) est la représentation des parties d’un objet situées dans une surface
sécante et en arrière de celle-ci. La coupe permet de représenter les détails internes de la
pièce. Le plan de coupe est indiqué par un trait interrompu renforcé à ses extrémités. La
disposition de la vue en coupe (sur laquelle est indiquée la mention « coupe ») doit respecter la
règle de projection employée sur le plan. La zone située dans le plan de coupe est hachurée
(traits fins) et les éléments présents derrière le plan de coupe sont représentés. Lorsqu’on
désire représenter exclusivement la partie de l’objet située dans le plan de coupe, on emploie
une section (figure 5.28). De manière conventionnelle, lors de la représentation en coupe
longitudinale d’un assemblage, on ne coupe pas un certain nombre d’éléments (arbres pleins
selon leur axe, vis selon leur axe, écrous, nervures dans leur plan moyen,...).

A

A
COUPE A-A

Figure 5.27 – Coupe dans un arbre.

A

A
SECTION A-A

Figure 5.28 – Section dans un arbre.

On peut également avoir recours à des coupes partielles (figure 5.29) pour ne représenter qu’une
partie d’une vue en coupe.

Figure 5.29 – Coupe partielle pour préciser la géométrie interne d’une pièce non coupée.
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5.4 Les corps ronds

Les divers exemples ayant été traités dans le cadre de ce cours ont jusqu’ici exclusivement
été constitués de corps dont l’ensemble des faces sont planes (polyèdres). Or, la quasi totalité
des objets d’utilisation industrielle présentent au moins pour partie des faces présentant des
courbures. Les différents types de corps ronds seront étudiés en détail dans la seconde partie
de ce syllabus. Une première introduction des principaux concepts utiles à leur représentation
sur un plan technique ser présentée dans ce chapitre.

5.4.1 Notion de contour apparent à un volume

Dans les plans techniques la représentation des corps ronds nécessite, en plus de la représentation
de l’ensemble des arêtes ’vues’, le tracé du contour de la pièce vu par l’observateur (son
contour apparent). De manière formelle, le contour apparent est défini comme la courbe
d’intersection entre le cylindre 1 circonscrit à cette surface et dont la direction des génératrices
est perpendiculaire au plan de projection avec ce mêm plan de projection. Par exemple, dans
le cas d’une sphère de rayon R, son contour apparent sur les plans H et F sont des cercles de
rayon R (figure 5.30).

Figure 5.30 – Contour apparent d’une sphère.

1. dans le sens surface cylindrique
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lorsque leurs axes sont parallèles aux axes du système de coordonnées employé, les
représentations des corps ronds simples (sphère, cylindre, cône et tore) est évidente (figure
5.31) :

— les deux projections d’une sphère de rayon r sont des cercles de rayon r ;
— une des projections d’un cylindre circulaire de rayon de bas r et de hauteur h est un

cercle de rayon r, l’autre projection est un rectangle (de base 2r et de hauteur h) ;
— une des projections d’un cône circulaire de rayon de base r et de hauteur h est un cercle

de rayon r, l’autre projection est un triangle isocèle dont (base 2r, hauteur h ;
— une des projections d’un tore de rayon majeur R et de rayon mineur r est constituée de

deux cercles concentriques (rayons R − r et R + r), l’autre projection est un rectangle
(base 2R, hauteur 2r) complété par deux demis-cercles (rayon r).

Figure 5.31 – Contour apparent des quatre corps ronds.

La pièce décrite en figure 5.32 regroupe les quatre types de surfaces coniques de base ; son plan
est présenté en figure 5.33.

Figure 5.32 – Exemple de pièce.

Figure 5.33 – Plan de la pièce (surface
sphérique en bleu, cylindrique en rouge,
conique en orange et torique en vert.
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5.5 Cotation

L’utilisation des projections orthogonales de Monge pour la représentation des vues de la pièce
implique une représentation en vraie grandeur des segments parallèles aux plans de projection.
Cette propriété permet la mesure des distances de manière directe sur le plan lorsque les vues
utilisées sont choisies de manière judicieuse.

10

18

Ø 5

30° 5

8

1

Figure 5.34 – Exemples de cotations.

Les dimensions des pièces en millimètres sont indiquées sur le dessin à l’aide de lignes de cote.
Les lignes de cotation doivent nécessairement repérer des éléments vus en vraie grandeur. Il
faut noter que la cotation d’éléments cachés est interdite par la norme.

5.6 Tolérances

5.6.1 Tolérances dimensionnelles

En raison des imperfections de la fabrication, aussi limitées soient-elles, les dimensions
réelles d’un élément diffèrent des dimensions nominales, qui sont celles indiquées sur le plan
d’exécution.
Compte tenu de cette incertitude, pour garantir que l’élément puisse remplir sa fonction, on
s’assure, par un contrôle de qualité, que chaque dimension soit comprise entre deux limites fixées
par le concepteur dont la différence constitue la tolérance. Cette tolérance peut être indiquée
de manière explicite derrière la cote visée par la tolérance (par exemple 50± 0, 01 indique que
la cote mesurée sur la pièce doit être comprise dans l’intervalle de 49,99 mm à 50,01 mm). Il
faut noter que le prix de revient est lié à la qualité des tolérances (de manière générale, une
tolérance serrée sera plus difficile à obtenir et donc plus coûteuse).
Notons enfin que, de manière générale, on peut se rapporter à des tolérances générales définies
par des normes pour des procédés de fabrication particuliers. Une indication dans le cartouche
tolérances générales selon norme ... permet de ne tolérancer de manière explicite que les
éléments pour lesquels une tolérance plus serrée que la norme générale est applicable (ces
cotes sont appelées cotes fonctionnelles).
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5.6.2 Tolérances géométriques

En plus de s’écarter des dimensions nominales prescrites sur le plan, les différentes parties
d’une pièce voient leur forme géométrique différer de la forme géométrique exacte. Pour des
raisons fonctionnelles, il peut être utile de limiter cet écart, ce qui est le but des tolérances
géométriques. Le lecteur est invité à se référer aux cours spécialisés ([3]) ou directement à la
norme ISO1101 ([4], [5]) pour plus de précisions.

5.6.3 Etats de surface

En plus des dimensions nominales et des tolérances associées, il est nécessaire de spécifier la
qualité de la surface qui sera générée. L’état de surface d’une pièce a une large incidence sur
un grand nombre de ses aptitudes, en particulier :

— ses aptitudes tribologiques (mouvement relatif entre des surfaces qui interagissent :
frottement, lubrification, usure,... ) ;

— ses aptitudes à l’adhésion (par collage, par emmanchement,...) ;
— ses aptitudes à recevoir un revêtement (peinture par exemple) ;
— ses aptitudes à résister à la corrosion, à la fatigue,...

A partir de la mesure du profil de rugosité (Z(x)), on peut extraire par différentes opérations
mathématiques des indicateurs permettant de chiffrer la rugosité. L’indication de rugosité
arithmétique (définie par la formule 5.1) est obligatoirement indiquée et choisie dans une série
normalisée (figure 5.35).

Ra =
1

lr

∫ lr

0

|Z(x)| dx (5.1)

Ra(µm)

50
25
12,5
6,3
3,2

Ra(µm)

1,6
0,8
0,4
0,2
0,1
0,05
0,025

Surface brute

Contact
fixe

Guidage,
centrage
Haute précision,
étanchéité,
trajectoire 
précise

Ra 1,6

Figure 5.35 – Indication de rugosité et classes normalisées.
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Chapitre 6

Intersection d’éléments entre eux par la
méthode de Monge

The geometry of the things around us creates coincidences, intersections

- E. De Luca, Three horses

6.1 Intersection de deux plans

6.1.1 Introduction

L’intersection de deux plans non parallèles est une droite. Pour déterminer cette droite, il est
nécessaire d’en connaître deux points.

Figure 6.1 – Intersection entre deux plans quelconques (LT = πh
f = πf

h = ρhf = ρfh), épure
vierge page 288.



CHAPITRE 6. INTERSECTION D’ÉLÉMENTS

L’examen de la figure 6.1 permet de constater qu’il existe deux points d’intersection évidents :
l’intersection des traces frontales des plans et l’intersection des traces horizontales des plans. La
recherche de l’intersection de deux plans dans une épure de Monge est donc assez immédiate à
obtenir si le plan est défini par ses traces.
En effet dans ce cas, la droite d’intersection est définie par les deux points à l’intersection des
traces « de même nom » (c’est-à-dire les deux traces horizontales et les deux traces verticales).

6.1.2 Cas particuliers de problèmes d’intersection entre plans

Il existe un grand nombre de cas particuliers nécessitant d’adapter la démarche présentées ci-
dessus (plans dont les traces sont parallèles, dont les traces se coupent hors de l’épure, dont le
point commun des traces est confondu,...). L’ensemble de ces cas particuliers est présenté à la
référence [1]. Dans le cadre de ce cours, nous nous contenterons de résoudre deux problèmes
qui seront utiles pour les développements futurs : intersection avec un plan vertical ou de bout
utile pour l’intersection droite-plan et intersection avec un plan horizontal ou frontal utile pour
la mise en vraie grandeur.

6.1.2.1 Intersection avec un plan vertical ou de bout

L’intersection d’un plan quelconque avec un plan vertical peut se traiter par la méthode générale
d’intersection de plans définis par leurs traces. Il faut toutefois noter que comme la droite
d’intersection est contenue dans un plan vertical, sa projection horizontale est nécessairement
confondue avec la trace horizontale du plan vertical (figure 6.2).

Figure 6.2 – Intersection d’un plan avec un plan vertical.
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De même, lors de la recherche de l’intersection d’un plan avec un plan de bout, la trace frontale
de la droite d’intersection est confondue avec la trace frontale du plan de bout.

6.1.2.2 Intersection avec un plan horizontal ou frontal

Ce cas de figure est un cas particulier du point précédent. Prenons le cas d’un plan frontal ;
dans ce cas, la droite d’intersection (en plus de présenter sa projection horizontale confondue
avec la trace horizontale du plan frontal) est une droite frontale (sa projection horizontale est
donc parallèle à la ligne de terre, figure 6.3).

Figure 6.3 – Intersection d’un plan avec un plan frontal.

Dans le cas de l’intersection avec un plan horizontal, la droite d’intersection est une droite
horizontale. dont la projection frontale est confondue avec la trace frontale du plan.
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6.2 Intersection d’une droite avec un plan

6.2.1 Intersection d’une droite quelconque avec un plan quelconque

La résolution de ce problème passe par l’utilisation d’un plan auxiliaire contenant la droite.
L’intersection de ce plan auxiliaire avec le plan de départ donne une droite commune aux deux
plans. L’intersection de cette droite avec la droite de départ donne le point de percée de la
droite dans le plan original (figure 6.4). En effet, on a :

— un plan π et une droite d dont on cherche le point de percée dans π ;
— le plan auxiliaire ρ qui contient d ;
— la droite d’intersection w = π ∩ ρ dont tous les points appartiennent à π et à ρ ;
— le point P = d ∩ w dont les points appartiennent à π et à d, il s’agit donc du point

recherché.
Le plan auxiliaire peut être choisi quelconque, toutefois, il est plus simple de le choisir vertical
ou de bout. Dans le cas d’un plan vertical, sa trace horizontale est confondue avec la projection
horizontale de la droite et sa trace frontale est perpendiculaire à la ligne de terre. La figure 6.5
présente un exemple de résolution du problème.

Figure 6.4 – Point de percée d’une droite dans un plan : problème de départ (LT = πh
f = πf

h ,
épure vierge page 289).
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Figure 6.5 – Point de percée d’une droite dans un plan : construction d’un plan vertical, de
la droite d’intersection et du point de percée (LT=πf

h=πh
f=ρ

f
h).

La procédure à suivre est la suivante :
— construction des traces du plan vertical contenant la droite (la trace horizontale

est confondue avec la projection horizontale de la droite d, la trace frontale est
perpendiculaire à la ligne de terre et passe par l’intersection de la trace horizontale
avec la ligne de terre) ;

— construire la droite d’intersection w par la méthode classique d’intersection de deux
plans définis par leurs traces (sa projection horizontale est confondue avec celle de d) ;

— le point de percée est à l’intersection de d et de w, sa projection frontale est à
l’intersection des projections frontales de d et de w, sa projection horizontale lui
correspond par une ligne de rappel.
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6.2.2 Intersection d’une droite quelconque avec un plan projetant

L’intersection d’une droite avec un plan projetant (c’est-à-dire perpendiculaire à H ou à F )
ne nécessite pas l’utilisation d’un plan auxiliaire. En effet, l’une des projections du point est
déterminée de manière immédiate sur l’épure :

— lors de l’intersection d’une droite avec un plan frontal ou vertical, la projection
horizontale du point d’intersection est à l’intersection entre la trace horizontale du plan
et la projection horizontale de la droite (figure 6.6), la projection frontale du point est
obtenue grâce à une ligne de rappel ;

— lors de l’intersection d’une droite avec un plan horizontal ou de bout, la projection
frontale du point d’intersection est à l’intersection entre la trace frontale du plan et la
projection frontale de la droite, la projection horizontale du point est obtenue grâce à
une ligne de rappel.

— lors de l’intersection d’une droite avec un plan de profil, les projections du point
d’intersection sont à l’intersection des projections de la droite et des traces (confondues)
du plan de profil.

Figure 6.6 – Intersection d’une droite avec un plan frontal.
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6.2.3 Intersection d’une droite projetante avec un plan quelconque

L’intersection d’une droite projetante (c’est-à-dire perpendiculaire à H ou à F ) avec un
plan ne nécessite pas l’utilisation d’un plan auxiliaire. Cette construction est similaire à la
problématique consistant à placer un point dans un plan (§4.4). Prenons l’exemple d’une
droite verticale : la projection horizontale du point d’intersection est nécessairement la trace
horizontale de la droite. La projection frontale du point d’intersection est ensuite obtenue à
l’aide d’une génératrice.

Figure 6.7 – Intersection d’une droite verticale avec un plan (LT = πh
f = πf

h .)

Le choix de la génératrice est entièrement libre ; pour améliorer la clarté de l’épure, il est par
exemple possible de la choisir horizontale ou frontale (figure 6.8).
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Figure 6.8 – Intersection d’une droite verticale avec un plan, emploi de génératrices
particulières.
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Chapitre 7

Mise en vraie grandeur d’éléments

Your eyes can deceive you. Don’t trust them

- O. Kenobi, A new hope

7.1 Introduction

Comme annoncé dans les objectifs de ce cours, la représentation par la méthode de Monge vise
à une représentation qui permette l’exploitation directe du plan pour la description des pièces.
Une figure est dite ’en vraie grandeur’ si la longueur de ses segments projetés est égale à celle
du segment de l’espace et si les angles projetés sont égaux aux angles dans l’espace.

Figure 7.1 – Un triangle d’un plan
frontal se projette en vraie grandeur sur
le plan frontal.

Figure 7.2 – Un polygone contenu dans
un plan frontal se projette en vraie
grandeur sur le plan frontal.



CHAPITRE 7. MISE EN VRAIE GRANDEUR D’ÉLÉMENTS

On constate aisément que lorsqu’un segment est contenu dans un plan parallèle à un plan
projetant (frontal par exemple), sa projection dans ce plan est vue en vraie grandeur. En
considérant la figure 7.1, on démontre aisément que le triangle ABC se projette en vraie grandeur
sur le plan frontal :

— les segments AB, BC et CA se projettent en vraie grandeur dans le plan frontal ;
— le triangle AfBfCf a ses trois côtés égaux à ceux de ABC, les deux triangles sont donc

isométriques ;
— les triangles étant isométriques, l’angle entre les côtés est donc identique entre les deux

figures.
Cette propriété est également vraie pour un polygone quelconque (figure 7.2). En effet, il est
toujours possible de décomposer ce polygone en un ensemble de triangles. Chacun des triangles
étant isométrique par rapport à sa projection, le polygone est isométrique par rapport à sa
projection. En poussant ce raisonnement à la limite (dimension des côtés tendant vers zéro),
on en déduit également que toute courbe plane contenue dans un plan parallèle à un plan de
projection se projette en vraie grandeur dans ce plan.

Figure 7.3 – Une courbe appartenant à un plan frontal se projette en vraie grandeur sur le
plan frontal.

Il faut également noter qu’un angle qui n’est pas droit ne se projette en vraie grandeur que si
ses deux côtés sont parallèles à un plan projetant. Par contre, pour qu’un angle droit se projette
en vraie grandeur, il suffit q’un seul de ses côtés soit parallèle à un plan de projection.
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7.2 Méthode du triangle rectangle

Dans le cas où seul un nombre réduit de mesures doivent être obtenues sur la plan, il est possible
d’appliquer la règle du triangle rectangle pour obtenir de manière simple la vraie grandeur d’un
segment. La démarche est présentée en figure 7.4.

Figure 7.4 – Mise en vraie grandeur d’un segment par la méthode du triangle rectangle (épure
vierge en page 290).

Elle consiste à :
— tracer la parallèle à dh passant par B. Cette droite coupe la projetante de A au point

M ;
— le triangle ABM est rectangle en M ; la connaissance de la longueur de deux côtés

permet de déduire la longueur du troisième ;
— BM étant parallèle à H, on a |BM | =

∣∣BhMh
∣∣ ;

— AM étant parallèle à F (A et M appartiennent à la projetante de A, donc à une
droite verticale), on a |AM | =

∣∣AfM f
∣∣ ;

— il suffit donc de reporter la distance |AM | =
∣∣AfM f

∣∣ = ∆c perpendiculairement au
segment BhMh pour reformer une image en vraie grandeur du triangle ABM .

Il faut noter que cette démarche permet également d’obtenir l’angle que forme la droite qui
porte le segment AB avec le plan H (l’angle entre une droite et un plan est l’angle que forme
cette droite avec sa projection dans ce plan).
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La même démarche serait applicable en passant par la projection frontale. Dans ce cas, c’est
l’angle formé par la droite avec le plan frontal F qui est obtenue (figure 7.5).

Figure 7.5 – Mise en vraie grandeur d’un segment par la méthode du triangle rectangle (2e
possibilité).

On peut également noter que dans le cas particulier où le segment de départ appartient à un
plan parallèle à un plan de projection (frontal ou horizontal donc), la projection de ce segment
dans ce plan de projection est directement la vue en vraie grandeur du segment (la différence
de cote ∆c ou ∆e suivant le cas est nulle).
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7.3 Mise en vraie grandeur d’une figure complète

Les projections d’un solide sur un plan technique se réalisent sur des plans orthogonaux
entre eux. Toutefois, si le volume présente des faces orientées de manière non adéquate, il
est impossible de les représenter dans leur intégralité en vraie grandeur. La norme prévoit la
possibilité d’ajouter sur le plan une représentation en vraie grandeur d’une face inclinée annotée
d’une flèche indiquant la direction d’observation (figure 7.6).

Figure 7.6 – Mise en vraie grandeur d’une face d’une pièce [1].

D’un point de vue pratique, cette mise en vraie grandeur peut être réalisée selon trois techniques
distinctes :

— la méthode de rabattement qui fait tourner l’ensemble des points d’un plan autour d’une
droite (appelée charnière) horizontale ou frontale ;

— la méthode de rotation qui fait tourner l’ensemble des points d’un plan vertical ou de
bout autour d’un axe (lui-même vertical ou de bout) ; une première rotation préalable
permet de rendre un plan quelconque vertical ou de bout ;

— la méthode de changement de plan qui modifie le plan horizontal ou frontal de projection
pour l’amener parallèle à un plan vertical ou de bout (un premier changement de plan
permet de rendre un plan quelconque vertical ou de bout).

Figure 7.7 – Mise en vraie
grandeur par rabettement.

Figure 7.8 – Mise en vraie
grandeur par rotation.

Figure 7.9 – Mise en vraie
grandeur par changement de
plan.

Dans le cadre de ce cours, nous nous contenterons d’étudier la méthode de rotation.
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7.4 Mise en vraie grandeur par rotation

7.4.1 Introduction

L’axe de rotation de la méthode de mise en vraie grandeur par rotation est choisi soit vertical,
soit de bout. Dans ces deux cas de figure, le plan dans lequel s’inscrit l’arc de circonférence
décrit par le point en mouvement devient parallèle, respectivement à H ou à F , il sera donc vu
« en vraie grandeur ». Ceci permettra de mesurer directement, sur cette projection, l’angle au
centre interceptant un arc de cette circonférence. Cette mesure sera essentielle quand il s’agira
de déterminer la rotation de l’ensemble des points d’une figure plane.

7.4.2 Rotation d’un point

7.4.2.1 Rotation autour d’un axe vertical

La figure 7.10 présente la technique de rotation. Par convention, l’axe vertical de rotation
est appelé Z (on déroge donc à la convention de représentation d’une droite par une lettre
minuscule). Dans l’épure, l’amplitude angulaire α du mouvement circulaire du point W est
mesurable en vraie grandeur sur la projection horizontale.

Figure 7.10 – Rotation autour d’un axe vertical.
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7.4.2.2 Rotation autour d’un axe de bout

La rotation autour d’un axe de bout se présente de la même façon qu’une rotation autour d’un
axe vertical, en inversant les projections frontales et horizontales entre les deux examples (figure
7.11).

Figure 7.11 – Rotation autour d’un axe de bout.

7.4.3 Mise en vraie grandeur de figures

7.4.3.1 Figures contenues dans un plan vertical ou de bout

Lorsqu’une figure est contenue dans un plan vertical, il est aisé d’obtenir une figure en vraie
grandeur. En effet, il suffit de faire tourner le plan autour d’une droite verticale pour le rendre
frontal (figure 7.12). Dans ce cas de figure, toutes les figures tracées dans ce plans sont vues
en vraie grandeur dans la projection frontale. Le même raisonnement peut être tenu pour une
figure tracée dans un plan de bout (une rotation autour d’un axe de bout le rend horizontal,
figure 7.13).

Géométries et communication graphique 86



CHAPITRE 7. MISE EN VRAIE GRANDEUR D’ÉLÉMENTS

Figure 7.12 – Rotation d’un plan
vertical autour d’un axe vertical pour le
rendre frontal.

Figure 7.13 – Rotation d’un plan de
bout autour d’un axe de bout pour le
rendre horizontal.

A titre d’exemple, on peut rechercher la vraie grandeur du quadrilatère ABCD de la figure
7.14 :

Figure 7.14 – Rotation autour d’un axe de vertical (figure vierge page 291).
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7.4.3.2 Plan quelconque

Le cheminement employé pour rendre un plan quelconque parallèle aux plans de projection
par la méthode de rotation va être présenté. Il se base sur le classement des plans selon leurs
particularités (figure 7.15).

Figure 7.15 – Classement des plans particuliers [2].

Pour passer d’un plan quelconque à un plan horizontal, il faut, d’abord appliquer une première
rotation pour que le plan quelconque devienne de bout. Pour transformer ensuite ce plan de
bout en horizontal, il faudrait appliquer au plan déjà rendu de bout une seconde rotation pour
le rendre horizontal. La question se pose immédiatement de savoir quel type de rotation il faut
imposer au plan quelconque pour parvenir à le rendre de bout. La réponse à cette question fait
appel au théorème suivant :

Théorème 7.1. Si une droite est perpendiculaire à un plan, tout autre plan passant par cette
droite sera perpendiculaire au premier plan cité (Théorème classique de Géométrie Synthétique
3D).

Ainsi, si un plan contient une droite de bout (c’est-à-dire perpendiculaire au plan frontal F ), ce
plan sera lui-même perpendiculaire à F (c’est-à-dire de bout). Donc, si l’on parvient à trouver,
dans le plan quelconque, une droite qui soit susceptible de devenir de bout par une rotation
appropriée, il sera possible de rendre ce plan de bout par cette rotation. En effet, comme la
droite en question appartient au plan, tous les points (aussi bien ceux de la droite que ceux
du plan) vont subir une rotation de même amplitude angulaire et autour du même axe lors de
l’opération de rotation, initiée au départ pour rendre la droite de bout.
Si on se rappelle du classement des droites (figure 4.21 page 51), on peut constater qu’une droite
de bout est un cas particulier de droite horizontale (elle a en plus sa projection horizontale
perpendiculaire à la ligne de terre). Autrement dit, pour obtenir un plan de bout, il suffit de
rendre de bout par rotation autour d’un axe vertical une droite horizontale du plan.

Ensuite, dès que le plan est ainsi rendu de bout, il suffit ensuite de le faire tourner autour d’un
axe de bout X, pour le rendre horizontal (figure 7.17).

En synthèse, pour amener un plan quelconque en position horizontale, il faut :
— d’abord faire choix d’une horizontale de ce plan ;
— la faire ensuite tourner autour d’un axe vertical pour l’amener en position de bout en

faisant tourner simultanément le plan lui-même afin qu’il devienne un plan de bout ;
— enfin faire tourner ce plan devenu un plan de bout autour de l’horizontale devenue de

bout afin de l’amener en position horizontale.
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Figure 7.16 – Rotation d’un plan
autour d’un axe vertical pour le rendre
de bout.

Figure 7.17 – Rotation d’un plan de
bout autour d’un axe horizontal pour le
rendre horizontal.

De même, pour amener un plan quelconque en position frontale, il faut :
— d’abord faire choix d’une frontale de ce plan ;
— la faire ensuite tourner autour d’un axe de bout pour l’amener en position verticale en

faisant tourner simultanément le plan lui-même afin qu’il devienne un plan vertical ;
— enfin faire tourner ce plan devenu un plan vertical autour de la frontale devenue verticale

afin de l’amener en position frontale.

7.5 Rotations inverses

La mise en vraie grandeur d’éléments permet de réaliser des constructions géométriques dans
la figure de manière directe. Il est souvent nécessaire de procéder à l’opération inverse pour
obtenir l’original d’un point avant l’application de la rotation.
Le problème est posé de la manière suivante : un point Pr est défini sur l’image de la droite
d par une rotation autour d’un axe vertical. Comment retrouver le point original sur d ? Ce
problème est résolu en suivant le cheminement qui mène à la rotation de manière inverse (figure
7.18) :

— P f appartient à df et est situé à la même cote que Prf ;
— P h appartient à dh et est situé sur un arc de cercle centré en Kh passant par Prh.

La construction peut être vérifiée en s’assurant que P h et P f se correspondent via une ligne de
rappel perpendiculaire à la ligne de terre.
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Figure 7.18 – Opération de rotation inverse pour retrouver le point P (figure vierge page 292).
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7.6 Application aux droites de profil

Dès le début du cours, nous avons vu comment résoudre les problèmes relatifs aux droites et
aux plans de profil en faisant usage de leurs projections sur le plan de profil. L’inconvénient de
cette méthode est qu’elle exige de doubler la largeur de l’épure pour que les projections de profil
puissent être dessinées dans la moitié gauche de l’épure. La méthode des rotations apporte une
autre réponse à ces problèmes de droites et plans de profil, mais sans l’inconvénient associé à
la largeur de l’épure. Nous examinerons, au titre d’exemple-type, le problème suivant [2] : Un
segment de profil AB est donné par ses projections. Déterminer, en faisant usage de la méthode
des rotations, les projections des sommets du carré ABCD appartenant au plan de profil passant
par AB et tel que les sommets C et D présentent des cotes supérieures à celles de A et B.
La résolution consiste dans un premier temps à rendre le segment AB vu en vraie grandeur
(par exemple frontal, figure 7.19) pour pouvoir dessiner le carré de manière directe. Ensuite,
les positions originales des points C et D sont obtenues par une rotation inverse d’amplitude
égale à celle qui a servi à rendre AB frontal.

Figure 7.19 – Résolution d’un problème impliquant une figure dans un plan de profil.
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Deuxième partie

Géométrie analytique
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Chapitre 8

Analyse des courbes planes

Math tells us three of the saddest love stories : tangent lines which had one
chance to meet and then parted forever, parallel lines which were never meant to
meet and asymptotes lines which can get close but will never be together

- Unknown, Popular quotes

8.1 Introduction

Une courbe plane est une courbe entièrement contenue dans un plan. L’étude de ces courbes
planes est fréquemment employée pour les études de fonctions ou pour le suivi de trajectoires de
mobiles par exemple. Ce chapitre décrit les formes principales de représentation de ces courbes,
l’étude différentielle de ces courbes et de leurs éventuels points singuliers.

Figure 8.1 – Exemple de courbe simple :
fonction f(x) = 8 · cos θ.

Figure 8.2 – Exemple de courbe plane
complexe : courbe de Lissajous.
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8.2 Différentes méthodes de représentation d’une courbe
plane

De manière générale, l’expression d’une courbe plane est une relation qui permet de relier les
coordonnées (x,y) des points appartenant à cette courbe. On peut trouver suivant l’usage divers
types de représentation qui sont rappelés dans les paragraphes suivants.

8.2.1 Formes implicites

La forme implicite d’une courbe plane est une relation de la forme F (x, y) telle que l’ensemble
des points de la courbe vérifient l’expression F (x, y) = 0. Il s’agit de la forme la plus générale
de description d’une courbe plane.
Il faut noter qu’une fonction F (x, y) = 0 ne représente pas nécessairement une courbe plane,
comme par exemple :

— F (x, y) ≡ x2 + y2 = 0 qui représente le point (0,0) ;
— F (x, y) ≡ x2 + y2 + 1 = 0 qui ne représente aucun point du plan réel.

Le cercle de rayon r et de centre (xC , yC) est représenté par l’équation :

F (x, y) ≡ (x− xC)
2 + (y − xC)

2 − r2 = 0 (8.1)

Ce qui signifie que l’ensemble des points du cercle vérifient cette équation.

8.2.1.1 Coniques

Les fonctions quadratiques implicites de la forme

F (x, y) ≡ ax2 + bxy + cy2 + dx+ ey + f = 0 (8.2)

définissent des courbes planes appelées coniques.

Figure 8.3 – Coniques propres : ellipse, parabole, hyperbole.
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Il existe deux méthodes différentes pour les définir de manière physique :
— soit par l’intersection entre un cône de révolution et un plan (figure 8.4) ;
— Soit comme un lieu géométrique de points présentant des rapports de distances fixes

entre une droite (directrice) et un point (foyer) ; ce rapport étant appelé excentricité de
la conique (figure 8.5).

Figure 8.4 – Définition des
coniques par intersection d’un
plan et d’un cône.

Figure 8.5 – Définition des coniques sous forme de
lieux géométriques.

Il existe trois formes dites propres (parabole, hyperbole et ellipse) et plusieurs formes dite
dégénérées (point, droite ou droites sécantes) suivant la position et l’orientation relative entre
le plan et le cône. On peut déterminer le type de conique via l’étude du signe du discriminant
b2 − 4ac de l’équation 8.2 :

— s’il est négatif, il s’agit d’une ellipse ;
— s’il est nul, il s’agit d’une parabole ;
— s’il est positif, il s’agit d’une hyperbole ;

Cette distinction s’observe également au niveau de l’excentricité de la conique :
— si e<1, il s’agit d’une ellipse ;
— e=1, il s’agit d’une parabole ;
— e>1 est positif, il s’agit d’une hyperbole ;

Au delà de cette information, il est difficile de tirer de la forme de l’équation 8.2 des informations
sur la morphologie générale des coniques.
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8.2.1.1.1 Réduction de coniques Les propriétés des coniques s’étudient de manière plus
simple lorsque le terme en xy de l’équation est nul (on parle de forme réduite de la conique).
Pour ce faire, on procède à la réduction de la conique, c’est à dire un changement de repère via
une rotation d’un angle θ (figure 8.6). Dans le nouveau système d’axes, on peut substituer à x
et y de nouvelles coordonnées x′ et y′ telles que :{

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

⇔
{
x = x′ cos θ − y′ sin θ
y = x′ sin θ + y′ cos θ

(8.3)

Figure 8.6 – Changement de repère pour obtenir une conique sous forme réduite.

L’équation de la conique devient alors :

a (x′ cos θ − y′ sin θ)
2
+ b (x′ cos θ − y′ sin θ) (x′ sin θ + y′ cos θ) (8.4)

+c (x′ sin θ + y′ cos θ)
2
+ d (x′ cos θ − y′ sin θ) + e (x′ sin θ + y′ cos θ) + f = 0

le terme en x′y′ vaut alors :

−2a cos θ sin θ + b cos2 θ − b sin2 θ + 2c cos θ sin θ = (c− a) sin2θ + b cos 2θ (8.5)

En choisissant judicieusement l’angle θ, il est possible d’annuler ce terme en x′y′ :
— si a ̸= c, θ = 0, 5 arctan b

a−c
;

— si a = c, θ = π/4.
On obtient par la suite une équation de la forme

a′x′2 + b′y′2 + c′x′ + d′y′ + e′ = 0 (8.6)

avec 
a′ = a cos2 θ + b cos θ sin θ + c sin2 θ
b′ = a sin2 θ − b cos θ sin θ + c cos2 θ
c′ = d cos θ + e sin θ
d′ = −d sin θ + e cos θ
e′ = f

(8.7)

En regroupant les termes en x′ et y′ sous forme de doubles produits, on peut obtenir la forme
réduite des coniques (Il s’agit en fait de la forme rencontrée à l’examen d’admission rappelée à
l’annexe 16). Un changement de repère inverse permet ensuite de revenir dans le repère initial
pour décrire les différents éléments :{

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

(8.8)
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8.2.2 Formes explicites

La forme explicite d’une courbe est une représentation sous la forme d’une fonction y = f(x)
(à une valeur de x correspond au plus une valeur de y). La forme explicite la plus simple est la
relation :

y = mx+ p (8.9)
qui représente une droite d’ordonnée à l’origine p et de coefficient directeur m (figure 8.7).

Figure 8.7 – Droite d’équation y = mx+p. Figure 8.8 – Parabole de tir.

La forme explicite n’est que peu rencontrée en-dehors de l’analyse fonctionnelle car dans
de nombreux cas, il n’est soit pas possible d’obtenir une forme explicite d’une courbe, soit
cela conduit à une expression complexe et difficile à manipuler. Dans de nombreux cas, il
est également nécessaire d’employer plusieurs fonctions explicites pour définir une courbe par
morceaux. Par exemple, le cercle serait représenté sous la forme :

y = yc ±
√
R2 − (x− xc)

2 (8.10)

Il y a donc deux branches (une pour le signe + et un pour le signe -) nécessaires pour sa
représentation explicite.

8.2.3 Forme vectorielle (paramétrique)

La forme vectorielle d’une courbe plane un vecteur variable
−→
V (t) joignant l’origine à tous les

points de la courbe. Elle fait intervenir un paramètre unique. En projetant ce vecteur sur les
axes du repère, on obtient les équations paramétriques de la courbe. Par exemple, l’équation
vectorielle d’un cercle de rayon R et de centre (xC , yC) est :

−→
V (θ) = (xc +R cos θ) · −→ux + (yc +R sin θ) · −→uy (8.11)

Ses équations paramétriques sont : {
x = xc +R cos θ
y = yc +R sin θ

(8.12)

θ est le paramètre qui a ici un sens physique (l’angle entre la droite joignant le centre et le
point courant avec l’horizontale), mais ce n’est pas nécessairement toujours le cas.
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La forme paramétrique est fréquemment rencontrée en physique par l’intermédiaire d’un
paramètre temporel. Par exemple, le projectile balistique lancé avec une vitesse initiale V0
orientée selon un angle θ par rapport à l’horizontale (figure 8.8) aura, dans une approche
simplifiée, un mouvement décrit par les équations paramétriques suivantes : x = V0 cos θ · t

y = V0 sin θ · t−
g · t2

2

(8.13)

8.2.4 Forme polaire

L’équation polaire d’une courbe est l’expression qui lie le rayon polaire à l’angle polaire. Le
rayon polaire la longueur du segment joignant l’origine du système d’axes au point courant sur
la courbe. L’angle polaire est l’angle fait par ce rayon polaire avec l’axe des x positifs (figure
8.9).

P

x

y

θ

r

Figure 8.9 – Définition polaire d’une courbe

Par exemple, la forme r = a cos (kθ + ϕ) définit une rosace à k branches si k est impair et à
2k branches si k est pair. A titre d’exemple, la rosace à quatre branches d’équation polaire
r = a · sin 2θ est représentée en figure 8.10.

8.2.5 Passage d’une forme à une autre

De manière générale, il n’existe pas qu’une seule forme de représentation valide pour une
courbe déterminée. Un cercle unitaire centré en l’origine peut par exemple être représenté
par l’intermédiaire des cinq formes suivantes (figure 8.11) :

Le passage d’une forme à une autre peut s’effectuer de manière plus ou moins aisée suivant les
cas.

8.2.5.1 Passage de la forme polaire à la forme paramétrique

Si une courbe est donnée par son équation polaire r = f(θ), il est possible de se ramener à ses
équations paramétriques de la manière suivante :{

x = f(θ) cos θ
y = f(θ) sin θ

(8.14)
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Figure 8.10 – Rosace à quatre branches.

Figure 8.11 – Différentes formes pour représenter le cercle unité centré en l’origine.

8.2.5.2 Passage de la forme paramétrique à la forme cartésienne implicite

Le passage de la forme paramétrique à la forme cartésienne implicite consiste à éliminer le
paramètre entre les deux équations. Notons que de manière générale, cette transformation n’est
pas toujours réalisable.
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Figure 8.12 – Passage d’une forme de représentation à une autre.

8.2.5.3 Passage de la forme cartésienne implicite la forme cartésienne explicite

Cette transformation consiste à (quand cela est possible) isoler y dans la forme implicite.

8.2.5.4 Passage de la forme cartésienne explicite à la forme cartésienne implicite

Ce passage est toujours possible en posant simplement F (x, y) ≡ y − f(x) = 0. Toutefois, si
cela est possible, on préfèrera faire disparaitre les racines et dénominateurs dans l’expression
pour obtenir une forme algébrique (un polynôme).

8.2.5.5 Passage de la forme cartésienne à la forme paramétrique

Une courbe donnée sous la forme y=f(x) peut être représentée sous une forme paramétrique de
manière évidente : {

x = t
y = f(t)

(8.15)

8.3 Recherche de la tangente et de la normale à une courbe

La recherche des tangentes et normales à une courbe en un point donné permet d’en déduire
différentes caractéristiques. Par exemple, si un mobile parcours une courbes donnée, le vecteur
vitesse est orienté selon la tangente à la courbe. Ce chapitre présentera la généralisation du
calcul de la tangente pour les différents types de représentation. Pour certaines formes des
équations, une ambiguïté peut apparaître pour la tangente en certains points des courbes. La
recherche de ces points, appelés points singuliers, sera également abordée.
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8.3.1 Courbe donnée par son équation cartésienne explicite

Soit une courbe quelconque définie par son équation explicite y=f(x). Soit les points M0 et
M1 sur cette courbe et M0M1 la sécante à la courbe. La pente de cette sécante est définie par
(figure 8.13) :

tanφ =
∆y

∆x
(8.16)

Figure 8.13 – Recherche de la tangente à une courbe.

Si on fait tendre M1 vers M0 (ou de manière équivalente si on fait tendre ∆x vers 0), la sécante
tend vers la tangente à la courbe en M0 :

tanϕ0 = lim
x→0

tanϕ = lim
x→0

∆y

∆x
= y′(M0) (8.17)

La tangente en M0 aura donc pour équation :

y = yM0 + y′(M0) (x− xM0) (8.18)

Par convention, la normale à la courbe enM0 est la droite passant parM0 qui est perpendiculaire
à sa tangente. Son équation sera donc :

y = yM0 +
−1

y′(M0)
(x− xM0) (8.19)
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8.3.2 Courbe donnée par son équation cartésienne implicite

La recherche de la tangente à une courbe définie par son équation implicite en un point donné
peut se calculer sans nécessiter la recherche de la forme explicite en employant le résultat
classique d’analyse mathématique :

Théorème 8.1. Soit une fonction continue définie par l’équation implicite F (x, y) = 0 où
F (x, y) et ses dérivées partielles selon x et y sont continues en un point P . La dérivée de la
fonction implicite en P est obtenue par l’opposé du quotient entre la dérivée partielle selon x
et la dérivée partielle selon y calculées en P .

Autrement dit, la dérivée en P se calcule comme :

(
dy(x)

dx

)
M0

=

−

∂F (x, y)

∂x
∂F (x, y)

∂y


M0

(8.20)

Pour rappel, la dérivée partielle de F (x, y) par rapport à x se calcule en considérant la dérivée
de l’expression F (x, y) par rapport à x en considérant y comme une constante. L’équation de la
tangente et de la normale est donc identique aux équations 8.18 et 8.19 en remplaçant y′(M0)
par le résultat de l’équation 8.20.

8.3.3 Courbe donnée par son équation vectorielle

Par définition, la fonction vectorielle d’une variable scalaire réelle t (définie dans un domaine D
de R) est une application de D dans Rn (n=2 dans le cas des courbes planes) qui associe à tout
réel t de D un vecteur

−→
V (t) (ou un point-image M tel que

−−→
OM =

−→
V (t)). L’ensemble des point-

image M définit le graphe (ou indicatrice) de la fonction vectorielle. La fonction vectorielle
définissant une courbe plane est à rapprocher de sa définition paramétrique. En effet, on peut
définir : −→

V (t) = x(t) · −→ux + y(t) · −→uy (8.21)

Cette définition permettra de manière aisée de définir que :
—

−→
V (t) est continue sur D sur x(t) et y(t) le sont aussi ;

—
−→
V (t) est dérivable sur D sur x(t) et y(t) le sont aussi ;

— la dérivée
−→
V ′(t) = x′(t) · u⃗x + y′(t) · u⃗y ;

— de même pour n entier>1
−→
V n(t) = xn(t) · u⃗x + yn(t) · u⃗y.

Si la fonction vectorielle
−→
V (t) est dérivable d’ordre n au voisinage de t0, on peut l’approcher

par son développement de Taylor :

−→
V (t) =

−→
V (t0) +

(
t− t0
1!

)−→
V ′(t0) +

(
(t− t0)

2

2!

)
−→
V ′′(t0) + · · ·+ (t− t0)

n

n!
V⃗ n(t0) (8.22)

+
(t− t0)

n+1

(n+ 1)!

[−−−→
V n+1(t0) + ϵ

]
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Figure 8.14 – Recherche de la tangente en un point d’une courbe exprimée par sa fonction
vectorielle.

La différence
−→
V (t) −

−→
V (t0) permet de définir un vecteur définissant une sécante à la courbe.

L’expression 8.23 peut être réorganisée sous la forme :

−→
V (t)−

−→
V (t0)

t− t0
=

−→
V ′(t0) +

t− t0
2!

−→
V ′′(t0) + · · ·+ (t− t0)

(n−1)

n!

−→
V n(t0) (8.23)

+
(t− t0)

n

(n+ 1)!

[−−−→
V n+1(t0) + ϵ

]
(8.24)

A la limite, si on fait tendre t vers t0, on peut déduire qu’un vecteur tangent peut être obtenu
par la dérivée première de la fonction vectorielle :

lim
t→t0

−→
V (t)−

−→
V (t0)

t− t0
=

−→
V ′(t0) (8.25)

Ceci est valable si
−→
V ′(t0) ̸= 0, on parle dans ce cas de point régulier de la courbe. La pente de

la tangente est équivalente à la pente du vecteur
−→
V ′(t0), c’est-à-dire :

y′(x) =
dy

dx
=

dy

dt
dx

dt

(8.26)
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8.3.4 Courbe donnée sous forme paramétrique

Le but est d’obtenir le coefficient directeur de la tangente à une courbe définie par ses équations
paramétriques sans repasser par la forme implicite. Soient les équations paramétriques{

x = x(t)
y = y(t)

(8.27)

avec t le paramètre. Si on suppose que la fonction inverse t = t(x) existe et est dérivable, la
forme explicite serait obtenue simplement par

y (x) = y (t (x)) (8.28)

et sa dérivée par rapport à x serait la simple dérivée de fonction composée :

y′(x) =
dy

dx
=
dy

dt

dt

dx
(8.29)

Or, l’analyse mathématique démontre que la dérivée d’une fonction inverse est l’inverse de la
dérivée de la fonction, dès lors

y′(x) =
dy

dx
=
dy

dt

dt

dx
=

dy

dt
dx

dt

(8.30)

ce qui correspond logiquement à l’équation 8.26. Il suffit donc simplement de prendre le rapport
des dérivées de x et y par rapport à t pour obtenir la pente de la tangente à la courbe.

8.3.5 Courbe donnée par sa forme polaire

Dans ce cas de figure, il suffit de repasser sous forme paramétrique comme expliqué au § 8.2.5.1,
puis de calculer la dérivée comme expliqué au § précédent. En développant le calcul d’une courbe
donnée sous sa forme polaire r = r(θ), on obtient la forme paramétrique :{

x = r(θ) cos θ
y = r(θ) sin θ

(8.31)

Le coefficient directeur de la tangente peut donc être obtenu par :

y′(x) =

dy

dθ
dx

dθ

=
r′(θ) sin θ + r(θ) cos θ

r′(θ) cos θ − r(θ) sin θ
(8.32)
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8.4 Points singuliers de courbes planes

8.4.1 Introduction

les calculs de tangente menés au paragraphe précédent peuvent dans certains cas conduire à des
cas d’indétermination. L’ensemble des points pour lesquels le calcul de la pente de la tangente
mène à une indétermination sont appelés points singuliers de la courbe. On peut en distinguer
plusieurs types :

— les points singuliers dits de première espèce identifiés à l’aide de la fonction vectorielle ;
— les points multiples ou isolés identifiés à l’aide de la forme implicite ;
— les points anguleux pour lesquels la dérivée à gauche diffère de la dérivée à droite.

Nous allons brièvement évoquer les deux premiers cas de figure.

8.4.2 Points singuliers de première espèce

La relation 8.25 donne l’orientation de la tangente en un point de la courbe, à condition que
le vecteur

−→
V ′(t0) soit différent du vecteur nul. Si au contraire la dérivée première s’annule,

le point est dit singulier car un vecteur nul ne définit pas d’orientation. Ceci ne signifie pas
nécessairement qu’il ne soit pas possible de définir une tangente en ce point. Par exemple, si−→
V ′(t0) =

−→
0 et

−→
V ′′(t0) ̸=

−→
0 , on peut reprendre le développement limité de la fonction vectorielle

et écrire :

2 ·
−→
V (t)−

−→
V (t0)

(t− t0)
2 =

−→
V ′′(t0) + · · ·+ 2 · (t− t0)

(n−2)

n!

−→
V n(t0) (8.33)

+2 · (t− t0)
(n−1)

(n+ 1)!

[−−−→
V n+1(t0) + ϵ

]
(8.34)

et donc :

lim
t→t0

2 ·
−→
V (t)−

−→
V (t0)

(t− t0)
2 =

−→
V ′′(t0) (8.35)

Cette procédure peut être répétée jusqu’à obtenir un vecteur dérivé d’ordre k non nul. Si k est
l’ordre de la première dérivée non-nulle de la fonction, il suffit de placer au dénominateur de
l’expression 8.24 le terme (t−t0)

k

k!
pour que le passage à la limite donne un vecteur tangent non

nul défini par
−→
V k(t0). On en déduit donc :

Théorème 8.2. Le vecteur directeur de la tangente au graphique de la fonction vectorielle−→
V (t) en un point d’une courbe est le premier vecteur dérivé d’ordre k non nul de la fonction
vectorielle ; si l’ordre de dérivation vaut 1, le point est dit régulier, dans tout autre cas, ce point
est dit singulier.

Ces points pour lesquels la dérivée première de la fonction vectorielle s’annule sont appelés
points singuliers de première espèce. Il est possible de les classer en quatre catégories :

— point méplat ;
— point d’inflexion ;
— point de rebroussement de première espèce ;
— point de rebroussement de deuxième espèce.
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Le classement s’effectue en fonction de l’ordre de dérivation nécessaire pour obtenir les deux
premiers vecteurs dérivés non-nuls et non-colinéaires (figure 8.15, plus de détail dans [1]) :

Figure 8.15 – Points singuliers de première espèce.

8.4.3 Recherche des points singuliers d’une courbe donnée par sa
forme cartésienne implicite

La méthode qui vient d’être décrite à partir de la fonction vectorielle (ou des équations
paramétriques, ou de l’équation polaire) ne permet d’identifier que les points singuliers de
première espèce. Les points multiples ne sont pas considérés comme singuliers car même s’ils
occupent une place identique dans le plan, ils résultent de valeurs différentes de paramètre ce
qui ne conduit pas à une ambiguïté sur la détermination de la tangente.
La recherche des points singuliers à partir de l’équation implicite d’une courbe permettra de
mettre ces points multiples en évidence. Elle implique la recherche des points pour lesquelles la
détermination de la tangente conduit à une indétermination. Pour rappel, le calcul de la pente
de la tangente à une courbe définie par son équation implicite est obtenue par :

dy

dx
= −

∂F

∂x
∂F

∂y

(8.36)

cette expression est indéterminée si on a simultanément ∂F
∂x

et ∂F
∂y

qui s’annulent en un point
particulier de la courbe. Pour lever l’indétermination, on peut employer la règle de l’Hospital
qui conduit à

lim
x→xP

(
dy

dx

)
= lim

x→xP

−

d

dx

(
∂F

∂x

)
d

dx

(
∂F

∂y

) = −

(
∂2F

∂x2

)
P

+

(
∂2F

∂x∂y

)
P

·
(
dy

dx

)
P(

∂2F

∂x∂y

)
P

+

(
∂2F

∂y2

)
P

·
(
dy

dx

)
P

(8.37)

si on pose p comme le coefficient directeur de la tangente en P (p =
(
dy
dx

)
P
), on peut réécrire la

relation précédente comme :

p2
(
∂2F

∂y2

)
P

+ 2p

(
∂2F

∂x∂y

)
P

+

(
∂2F

∂x2

)
P

= 0 (8.38)
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Il faut donc résoudre une équation du deuxième degré pour laquelle le nombre de racines dépend
du signe du déterminant

∆ =

(
∂2F

∂x∂y

)2

P

−
(
∂2F

∂x2

)
P

(
∂2F

∂y2

)
P

(8.39)

— si ∆>0, on a deux solutions réelles distinctes, il s’agit donc d’un point double (figure
8.16) ;

— si ∆=0, on a deux solutions réelles confondues, il existera une seule tangente, on a donc
un point singulier de première espèce (figure 8.15) ;

— si ∆<0, on n’a pas de solution réelle, il s’agit d’un point isolé (figure 8.17).

Figure 8.16 – Point double. Figure 8.17 – Point isolé.

Si l’expression 8.37 conduit à une indétermination (0/0), il faut augmenter l’ordre de dérivation
jusqu’à obtenir une expression levant cette indétermination. Suivant l’ordre de dérivation
nécessaire, on est en présence d’une équation du troisième, quatrième,... degré qui conduit
à l’existence d’un point triple, quadruple,...
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Chapitre 9

Infographie

To infinity and beyond.

- Buzz, Toy story

9.1 Introduction

La représentation et la manipulation d’objets tridimensionnels par voie informatique sont
utilisées de manière intensive, que ce soit pour des applications industrielles (dessin assisté
par ordinateur, infographie,...) ou ludiques (jeux vidéos, films d’animation,...). L’ensemble
de ces disciplines utilise directement des notions de géométrie analytique pour décrire
mathématiquement les différentes opérations effectuées.

Figure 9.1 – Logiciel de conception assistée par ordinateur (Soliworks).

Dans le cadre de ce chapitre, nous étudierons successivement les opérations de changement de
repère, la réalisation de projections, les transformations d’objets et les bases des algorithmes
de rendu. Ce chapitre a pour but de présenter les conventions et les algorithmes employés dans
les logiciels de dessin assisté par ordinateur.

9.2 Changement de repère

L’opération de changement de repère consiste à décrire dans un repère O′x′y′z′ un objet
qui est connu dans un repère Oxyz. Il s’agit d’une des opérations de base des logiciels de
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Figure 9.2 – Personnages de films d’animation (©Pixar).

dessin assisté par ordinateur (orientation d’un objet pour son observation ou sa projection
par exemple). Ce type d’approche est également très utile pour simplifier la description de
problèmes complexes. La mécanique rationnelle [1] fait fréquemment appel à ce type de notion
(les équations d’équilibre d’un système complexe peuvent être écrites dans des repères locaux
liés aux différents corps puis retranscrites dans un repère global par la suite).

Figure 9.3 – Changement de repère.

La description d’un changement de repère aboutit à une formulation matricielle qui est
généralement décomposée en deux étapes : la mise en commun des origines des deux repères
puis leur orientation.
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9.2.1 Changement de repère entre deux repères d’origines identiques

On souhaite obtenir les coordonnées de l’ensemble des points d’un objet connu dans un repère
orthonormé Ox’y’z’ connaissant leurs coordonnées dans un repère orthonormé Oxyz (figure
9.4). Ce type de transformation est l’analogue de la variance tensorielle abordée dans le cadre
du cours de mécanique rationnelle.

Figure 9.4 – Changement de repère par rotation.

Pour rappel, si un point P a pour coordonnées (Px, Py, Pz) dans un repère Oxyz, cela signifie
que le vecteur joignant l’origine au point P peut être décrit par :

−→
OP = Px

−→ux + Py
−→uy + Pz

−→uz (9.1)

La méthode la plus simple pour effectuer le changement de repère est de rechercher les cosinus
directeurs (cf § 17.10) des nouveaux vecteurs de base dans le système Oxyz. Ils permettent
directement d’écrire (avec (λi, µi, νi) les cosinus directeurs du vecteur i de la nouvelle base) :

−→ux′ = λ1
−→ux + µ1

−→uy + ν1
−→uz−→uy′ = λ2

−→ux + µ2
−→uy + ν2

−→uz−→uz′ = λ3
−→ux + µ3

−→uy + ν3
−→uz

(9.2)

Le passage des coordonnées xyz aux coordonnées x′y′z′ s’effectue en repartant de la définition
des coordonnées d’un point dans un repère :

−→
OP = x−→ux + y−→uy + z−→uz (9.3)
−→
OP = x′−→ux′ + y′−→uy′ + z′−→uz′ (9.4)
−→
OP = x′ (λ1

−→ux + µ1
−→uy + ν1

−→uz) + y′ (λ2
−→ux + µ2

−→uy + ν2
−→uz) + z′ (λ3

−→ux + µ3
−→uy + ν3

−→uz) (9.5)
−→
OP = (x′λ1 + y′λ2 + z′λ3)

−→ux + (x′µ1 + y′µ2 + z′µ3)
−→uy + (x′ν1 + y′ν2 + z′ν3)

−→uz (9.6)

Le lien entre coordonnées s’établit donc par multiplication matricielle :
x
y
z

 =

 λ1 λ2 λ3
µ1 µ2 µ3

ν1 ν2 ν3

 ·


x′

y′

z′

 (9.7)
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Le passage des coordonnées dans le deuxième repère (x′, y′, z′) s’effectue en inversant ce
système :


x′

y′

z′

 =

 λ1 λ2 λ3
µ1 µ2 µ3

ν1 ν2 ν3

−1

·


x
y
z

 (9.8)

La matrice à inverser présente la particularité d’être une matrice « orthogonale » caractérisée
par le fait d’avoir :

— la somme des carrés de ses colonnes unitaire (λ2i+µ2
i+ν

2
i représente la norme des vecteurs

de base unitaires) ;
— le produit des éléments de deux colonnes nul (λiλj + µiµj + νiνj représente le produit

scalaire de vecteurs de base, donc orthogonaux) ;
Les matrices orthogonales présentent la particularité que leur inverse soit simplement leur
transposée, ce qui permet un calcul facile de l’opération réciproque :

x′

y′

z′

 =

 λ1 µ1 ν1
λ2 µ2 ν2
λ3 µ3 ν3

 ·


x
y
z

 (9.9)

Cette forme matricielle permettant de générer des changements de repère sera classiquement
rencontrée dans les manipulations en infographie.

9.2.2 Changement de repère entre deux repères d’origines différentes

Pour modéliser un changement de repère par translation selon un vecteur connu
−→
T (figure 9.5),

on peut faire appel à la relation vectorielle simple :
−−→
O′P =

−→
OP −

−→
T (9.10)

Figure 9.5 – Changement de repère par translation.

Ce qui se traduit au niveau des coordonnées par :
x′ = x− Tx
y′ = y − Ty
z′ = z − Tz

(9.11)
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Avec (Tx, Ty, Tz) les composantes du vecteur de translation exprimées dans le repère Oxyz. On
constate directement que ce type de relation ne permet pas de passer à une forme matricielle
comme c’est le cas pour le changement de repère par rotation.
Or, l’établissement d’une forme matricielle qui est particulièrement adaptée à la programmation
informatique de ce type d’opération sera recherchée pour l’ensemble des opérations.
Pour lever cet obstacle, la description d’un point se fait alors par l’intermédiaire d’un vecteur à
quatre composantes, à savoir les trois composantes classiques x, y et z auxquelles un quatrième
terme scalaire est ajouté. Dans ce cas, la translation peut se représenter sous la forme d’un
produit matriciel : 

x′

y′

z′

1

 =


1 0 0 −Tx
0 1 0 −Ty
0 0 1 −Tz
0 0 0 1

 ·


x
y
z
1

 (9.12)

L’utilisation de cette quatrième coordonnée est devenue la règle dans le domaine du graphisme
3D. Elle correspond au souci de travailler avec des transformations qui suivent le concept général
d’applications linéaires qui modélisent le passage d’une base à une autre en exprimant des
combinaisons linéaires des vecteurs de base, excluant tout terme indépendant. Cette condition
n’est remplie que grâce à l’ajout de la quatrième coordonnée dans le cas de la translation.
Mathématiquement, ce type de représentation d’un point par l’intermédiaire de quatre
coordonnées est appelé coordonnées homogènes. De manière générale, le quatrième paramètre
peut prendre n’importe quelle valeur non nulle. Le quadruplet de coordonnées (X, Y, Z,W ) est
interprété comme les coordonnées d’un point de l’espace calculées comme suit :

x =
X

W

y =
Y

W

z =
Z

W
)

(9.13)

Avec ce type de convention, la matrice de changement de repère associée à une rotation devient :
λ1 µ1 ν1 0
λ2 µ2 ν2 0
λ3 µ3 ν3 0
0 0 0 1

 (9.14)
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9.2.3 Conventions particulières

9.2.3.1 Orientation du repère

Comme nous venons de le voir, la représentation des opérations de transformation peuvent
se réduire à des opérations matricielles. Il faut noter que la convention de base employée par
les librairies graphiques considère l’emploi de repères respectant la règle de la main gauche à
l’opposé de ce qui est généralement pratiqué.

Figure 9.6 – Repère ’écran’ orienté
positivement.

Figure 9.7 – Repère ’écran’ orienté
négativement.

L’explication est que de manière générale, les axes x et y sont choisis de sorte à avoir x horizontal
(orienté vers la droite) et y vertical (orienté vers le haut), ce qui implique que l’axe z serait
orienté vers l’observateur (sortant de l’écran) pour respecter la règle de la main droite (figure
9.6). Ceci reviendrait à systématiquement travailler avec des coordonnées z de points négatives
(’dans’ l’écran). Il a donc été décidé d’orienter l’axe z ’écran’ de l’observateur vers l’écran
(figure 9.7), ce qui conduit à un repère orienté selon la règle de la main gauche. Les librairies
graphiques employées en infographie sont donc souvent programmées selon ce standard 1. Etant
donné que la transposition d’un type de raisonnement à l’autre est immédiate, la suite du cours
sera présentée avec les repères orientés selon la règle de la main droite par soucis de continuité.

1. Certaines d’entre elles intègrent deux variantes des opérations, mais la version ’à gauche’ est à
recommander
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9.2.3.2 Représentation des vecteurs

Une autre convention employée dans les librairies graphiques est la représentation de points
sous la forme de vecteurs « lignes » alors que l’habitude est plutôt d’employer des vecteurs
« colonnes ». Pour comprendre cette convention, examinons la réalisation successive de
deux changements de repère successifs imposés à un point P. De manière générale, les
nouvelles coordonnées du point après transformation sont obtenues en multipliant le vecteur de
coordonnées (x, y, z) par une matrice 4x4 . Dans une convention ’vecteur colonne’, on obtient
successivement les opérations suivantes :

x′

y′

z′

1

 =


λ1 µ1 ν1 0
λ2 µ2 ν2 0
λ3 µ3 ν3 0
0 0 0 1


︸ ︷︷ ︸

M1

·


x
y
z
1

 (9.15)


x′′

y′′

z′′

1

 =


λ∗1 µ∗

1 ν∗1 0
λ∗2 µ∗

2 ν∗2 0
λ∗3 µ∗

3 ν∗3 0
0 0 0 1


︸ ︷︷ ︸

M2

·


x′

y′

z′

1

 (9.16)

L’opération résultante combinant les deux transformations s’écrirait donc :
x′′

y′′

z′′

1

 = [M2] · [M1] ·


x
y
z
1

 (9.17)

La matrice résultante serait donc obtenue en multipliant les matrices élémentaires des deux
transformations dans l’ordre inverse de leur application (rappelons que la multiplication
matricielle n’est en général pas commutative). Si nous prenons la transposée de l’équation
9.17, nous obtenons la présentation en vecteur ligne qui correspond à :{

x′′ y′′ z′′ 1
}
=
{
x y z 1

}
· [M1]T · [M2]T (9.18)

Comme le passage de l’une à l’autre des formes est évidente via la transposée, nous continuerons
d’employer la notation classique sous forme de vecteur colonne dans la suite de ce cours.
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9.2.4 Changement de repère entre deux repères quelconques

Lorsque les deux repères considérés sont disposés de manière quelconque l’un par rapport à
l’autre, il est plus simple de décomposer le changement de repère en deux étapes successives
(figure 9.8) :

— passage à un repère O′xiyizi via une translation selon un vecteur
−→
T ;

— passage au repère final 0′x′y′z′ via un changement de base.

Figure 9.8 – Changement de repère entre deux repères quelconques.

La mise sous forme matricielle de ces deux opérations donne :
xi
yi
zi
1

 =


1 0 0 −Tx
0 1 0 −Ty
0 0 1 −Tz
0 0 0 1


︸ ︷︷ ︸

M1

·


x
y
z
1

 (9.19)


x′

y′

z′

1

 =


λ1 µ1 ν1 0
λ2 µ2 ν2 0
λ3 µ3 ν3 0
0 0 0 1


︸ ︷︷ ︸

M2

·


xi
yi
zi
1

 (9.20)

L’opération résultante combinant les deux transformations s’écrirait donc :
x′

y′

z′

1

 = [M2] · [M1] ·


x
y
z
1

 (9.21)

La matrice de transformation globale est donc :

[M ] =


λ1 µ1 ν1 − (λ1 · Tx + µ1 · Ty + ν1 · Tz)
λ2 µ2 ν2 − (λ2 · Tx + µ2 · Ty + ν2 · Tz)
λ3 µ3 ν3 − (λ3 · Tx + µ3 · Ty + ν3 · Tz)
0 0 0 1

 (9.22)
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9.3 Méthodes de projection

La visualisation sur un écran d’ordinateur d’objets tridimensionnels doit nécessairement passer
par l’intermédiaire de projection plane. On emploie classiquement les deux types de projections
qui ont été présentées dans la première partie de ce cours à savoir la projection orthogonale
(méthode de Monge et axonométrie, figure 9.9) et la projection centrale (figure 9.10).

Figure 9.9 – Projection orthogonale
(axonométrie). Figure 9.10 – Projection centrale.

9.3.1 Orientation du repère

La première étape va consister à orienter le repère de manière correcte par rapport au plan de
projection. Si on se fixe par exemple l’orientation du plan de projection par l’intermédiaire de
son vecteur normal

−→
N , on va chercher à déterminer la matrice de changement de repère pour

réaliser la projection :
— l’axe z′ sera orienté selon le vecteur normal au plan (le plan aura pour équation ax +

by + cz + d = 0 si le vecteur normal est de coordonnées (a, b, c) 2) ;
— l’axe x′ choisi arbitrairement dans le plan (par convention, il définira la direction

horizontale dans le plan de projection) ;
— l’axe y′ sera orienté comme le vecteur −→uz′ ∧ −→ux′ ;

2. Il faut noter que la projection orthogonale sur des plans parallèles donnera des résultats identiques, ce qui
signifie que le choix de la constante d est indifférent
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La matrice de transformation permettant de réaliser la projection plane est obtenue en reprenant
les coordonnées des vecteurs unitaires du nouveau repère projetés dans le repère initial (−→ux′ =
(λ1, λ2, λ3), −→uy′ = (µ1, µ2, µ3), −→ux′ = (ν1, ν2, ν3)) :

M =


λ1 µ1 ν1 0
λ2 µ2 ν2 0
λ3 µ3 ν3 0
0 0 0 1

 (9.23)

On peut également combiner plusieurs changements de repères successifs. Soit θ l’ angle entre
le plan vertical contenant le vecteur et le plan Oxz et ϕ l’angle entre le vecteur et le plan Oxy.
On peut décomposer la transformation orientant ce vecteur sur l’axe Oz en trois étapes (figure
9.11) :

— une rotation d’un angle θ autour de z pour obtenir le système Ox1y1z1 (figure 9.12) ;
— une rotation autour de l’axe y1 d’un angle π/2 − ϕ pour obtenir le système Ox2y2z2

(figure 9.13) ;
— une rotation de π/2 radians autour de l’axe z2.

Figure 9.11 – Situation
initiale.

Figure 9.12 – Rotation de
θ autour de z.

Figure 9.13 – Rotation de
π/2− ϕ autour de y1.

La troisième opération ne sert qu’à se placer dans une configuration classique avec l’axe x
horizontal et l’axe y vertical.

Une fois les objets géométriques orientés de manière adéquate, il reste une dernière opération
à effectuer pour leur représentation sur un support bidimensionnel, à savoir une opération
de projection. Deux types de projections sont couramment rencontrés : la projection
axonométrique et la projection centrale.
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9.3.2 Projections classiquement employées en infographie

9.3.2.1 Projection axonométrique

La projection axonométrique est obtenue de manière naturelle en ne retenant que les
coordonnées x et y pour une représentation bidimensionnelle de la scène, la coordonnée z
peut par contre servir à la gestion du vu et caché car elle règle la profondeur. Ce type de
méthode peut être employé pour réaliser automatiquement une représentation d’une scène en
axonométrie (figure 9.14).

Figure 9.14 – Rappel du principe de l’axonométrie orthogonale.
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Figure 9.15 – Exemple de projection
axonométrique d’un cube unitaire sur un
plan de vecteur directeur (1,1,1) : isométrie.

Figure 9.16 – Exemple de projection
axonométrique d’un cube unitaire sur un
plan de vecteur directeur (1,2,3).

9.3.2.2 Projection centrale

La projection centrale consiste en une représentation plane de scènes spatiales qui vise à
reproduire l’observation naturelle de l’oeil humain. L’ensemble des points de la scène est projeté
sur un plan (tableau) suivant un rayon passant par un point fixe (position de l’observateur).
Contrairement à l’axonométrie, les rayons de projection ne sont pas parallèles, mais convergent
en un point unique. La projection centrale ne respecte pas le parallélisme des droites (sauf
celles parallèles au plan du tableau). L’opérateur projection centrale (figure 9.17) peut être
établi suivant la démarche suivante :

Figure 9.17 – Rappel du principe de la projection centrale.
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Soit (XP , YP , ZP ) les coordonnées de P dans le système d’axes initial. Le point Pp, projection
centrale du point P est à l’intersection du plan de projection et de la droite reliant P au pôle V .
Dans le système écran, les coordonnées de Pp peuvent se trouver via la similitude des triangles
V EPp1 et V FP1 :

— Xe = EPp1 = FP1(V E/V F ) = XP (d/ZP ) ;
— Ye = PpPp1 = PP1(V Pp1/V P1) = PP1(V E/V F ) = Y P (d/ZP ) ;
— Ze = ZP − d.

Figure 9.18 – Exemple de projection
centrale d’un cube unitaire avec un plan de
projection parallèle à une de ses faces.

Figure 9.19 – Exemple de projection
centrale d’un cube unitaire orienté de
manière quelconque.
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9.4 Matrices de transformation

La manipulation d’objets géométriques par matrice de transformation consiste à modifier
des figures décrites analytiquement dans une repère fixe. On peut distinguer différents types
d’opération :

— les opérations visant à déplacer l’objet (translation, rotation) ;
— les opérations visant à obtenir le symétrique de l’objet par rapport à un plan ;
— les opérations modifiant l’échelle ou la forme de l’objet.

La manipulation des objets fera appel à la notion de coordonnées homogènes définie
précédemment.

9.4.1 Opérations élémentaires

9.4.1.1 Translation

Si on fait subir à un point P une translation selon un vecteur
−→
T , on obtient un nouveau point

P ′ qui vérifie : −−→
OP ′ =

−→
OP +

−→
T (9.24)

Les coordonnées de P ′ seront calculées par :

Figure 9.20 – Translation d’un point.


xP ′ = xP + Tx
yP ′ = yP + Ty
zP ′ = zP + Tz

(9.25)

La matrice de transformation associée à une translation sera donc :

T =


1 0 0 Tx
0 1 0 Ty
0 0 1 Tz
0 0 0 1

 (9.26)
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9.4.1.2 Rotation autour d’un axe de coordonnées

La rotation autour d’un axe de coordonnées est un cas particulier de matrice de transformation.
Par exemple, dans le cas d’une rotation d’un point P d’un angle θ autour d’un axe Oz, l’image
des vecteurs de base donne (figure 9.21) :

−→ux′ = cos θ · −→ux + sin θ · −→uy (9.27)
−→uy′ = − sin θ · −→ux + cos θ · −→uy (9.28)
−→uz′ = −→uz (9.29)

Figure 9.21 – Rotation autour de
Oz des vecteurs de base. Figure 9.22 – Rotation autour de l’axe z.

Dans le cas de la rotation d’un point de coordonnées quelconque (figure 9.22), on peut écrire :

−−→
OP ′ = xP · (cos θ · −→ux + sin θ · −→uy) + yP · (− sin θ · −→ux + cos θ · −→uy) + zp · −→uz (9.30)

ou encore : 
xP ′

yP ′

zP ′

 =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ·


xP
yP
zP

 (9.31)

La matrice de transformation homogène associée à une rotation autour de Oz s’écrit donc :

R (z, θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 (9.32)

On démontre facilement que l’opération inverse correspond à R (z,−θ) ≡ R (z, θ)−1 ≡ R (z, θ)T

Via un raisonnement similaire, on peut montrer que les matrices de transformation pour des
rotations autour de Ox et Oy s’établissent selon :

R (x, θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 R (y, θ) =


cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

 (9.33)
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9.4.2 Composition d’opérations

Les matrices de transformation élémentaires sont données dans des configurations particulières ;
une combinaison de plusieurs opérations est généralement nécessaire pour décrire une opération
de transformation. Par exemple, si on souhaite faire décrire à un ensemble de points une rotation
autour d’un axe parallèle à l’axe Oz passant par un point de coordonnées (xC , yC , zC), il faudra
combiner de trois opérations (figure 9.23) :

— une translation pour amener un point du repère sur l’origine ;
— une rotation autour de l’axe du repère ;
— une translation inverse de la première opération.

Figure 9.23 – Rotation autour d’un axe parallèle à Oz (vue de dessus).

L’avantage de l’écriture sous forme de matrice de transformation est la possibilité de synthétiser
ces trois opérations en une seule opération matricielle. En effet, on pourra écrire :

xP ′

yP ′

zP ′

1

 =


1 0 0 −xC
0 1 0 −yC
0 0 1 −zC
0 0 0 1


︸ ︷︷ ︸

M1

·


xP
yP
zP
1

 (9.34)


xP ′′

yP ′′

zP ′′

1

 =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

M2

·


xP ′

yP ′

zP ′

1

 (9.35)


xP ′′′

yP ′′′

zP ′′′

1

 =


1 0 0 xC
0 1 0 yC
0 0 1 zC
0 0 0 1


︸ ︷︷ ︸

M3

·


xP ′′

yP ′′

zP ′′

1

 (9.36)
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Ce qui donne au final 
xP ′′′

yP ′′′

zP ′′′

1

 = [M3] · [M2] · [M1] ·


xP
yP
zP
1

 (9.37)

A nouveau, la convention « vecteur colonne » conduit à la multiplication à gauche des matrices
décrivant les opérations élémentaires successives. Au final, on donc :

xP ′′′

yP ′′′

zP ′′′

1

 =


cos θ − sin θ 0 xC · cos θ − yC · sin θ − xC
sin θ cos θ 0 xC · sin θ + yC · cos θ − yC
0 0 1 0
0 0 0 1

 ·


xP
yP
zP
1

 (9.38)

Cet exemple permet de mettre en évidence une forme générale aux matrices de transformation
ne modifiant pas la forme du corps subissant l’opération :[

{R}3x3 {T}3x1
{0}1x3 1

]
(9.39)

La matrice 3x3 supérieure gauche concerne les rotations, le vecteur à 3 composantes qui y est
accolé concerne les translations et la dernière ligne est toujours constituée de trois 0 et un 1.

La multiplication matricielle n’étant pas commutative, l’ordre des opérations doit bien
évidemment être respecté pour obtenir le résultat attendu. Par exemple, si on combine une
rotation d’un quart de tour autour de l’axe Oz dans le sens positif suivie d’une rotation d’un
quart de tour autour de l’axe Ox dans le sens positif (figure 9.24).

Figure 9.24 – Rotation autour de Oz puis
de Ox.

Figure 9.25 – Rotation autour de Ox puis
de Oz.

La matrice de transformation associée sera :

Rzx = R (x, π/2) ·R (z, π/2) (9.40)

=


1 0 0 0
0 cos π/2 − sinπ/2 0
0 sinπ/2 cos π/2 0
0 0 0 1

 ·


cos π/2 − sin π/2 0 0
sin π/2 cos π/2 0 0

0 0 1 0
0 0 0 1

 (9.41)
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qui au final sera condensé dans la matrice :

Rzx =


0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1

 (9.42)

En inversant l’ordre (figure 9.25), on obtient la matrice :

Rxz =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 (9.43)

9.4.3 Lien entre changement de repère et matrices de transformation

Les matrices de transformation homogènes sont très semblables aux matrices de changement de
repère dans leur forme. En effet, il s’agit simplement de deux méthodes pour obtenir un même
résultat. Prenons un exemple simple de la translation d’un point selon un vecteur

−→
T (figure

9.26).

Figure 9.26 – Deux approches pour la translation d’un point.

L’approche par matrice de transformation donne directement :
xP ′

yP ′

zP ′

1

 =


1 0 0 xT
0 1 0 yT
0 0 1 zT
0 0 0 1


︸ ︷︷ ︸

M1

·


xP
yP
zP
1

 (9.44)

En examinant la figure 9.26, on constate que cette translation est l’équivalent d’un changement
de repère en plaçant la nouvelle origine en un point O′ tel que

−−→
OO′ = −

−→
T . L’approche par
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matrice de changement de repère donne :
x′

y′

z′

1

 =


1 0 0 xT
0 1 0 yT
0 0 1 zT
0 0 0 1


︸ ︷︷ ︸

M1

·


x
y
z
1

 (9.45)

qui donne bien évidemment un résultat similaire. On constate donc que la matrice de
transformation pour une translation d’un vecteur

−→
T est équivalente à la matrice de changement

de repère d’une translation −
−→
T ou mieux de l’inverse de la matrice de changement de repère

d’une translation
−→
T . Ce lien matrice de transformation valant l’inverse de la matrice de

changement de repère se retrouve également pour les opérations de rotation.

9.4.4 Orientation d’un volume dans une direction particulière

Un problème fréquemment rencontré est d’orienter une droite particulière d’un volume selon une
direction donnée (figure 9.27). Cette opération sert par exemple à d’aligner l’axe de révolution
d’une figure sur un des axes du repère ou orienter la normale à un plan dans une direction
privilégiée. Cette opération peut s’effectuer de trois manières différentes.

Figure 9.27 – Orientation de figures.
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9.4.4.1 Décomposition en opérations élémentaires

Pour aligner un vecteur sur une direction particulière il est possible de combiner plusieurs
matrices de transformation. Une opération fréquente consiste à aligner un vecteur quelconque−→
N avec un des vecteurs de base (par exemple Oz). Soit θ, l’ angle entre le plan vertical contenant
le vecteur et le plan Oyz et ϕ le complément de l’angle entre le vecteur et le plan Oxy. On peut
décomposer la transformation en deux étapes (figure 9.28) :

— une rotation autour de l’axe Oz d’un angle θ pour obtenir une vecteur contenu dans le
plan Oyz (matrice [M1]) ;

— une rotation d’un angle ϕ autour deOx pour pour obtenir vecteur aligné avecOz (matrice
[M2]).

Pour la première étape, il faut aligner la projection de
−→
N sur le plan horizontal (

−→
NH avec Oy

(figure 9.28).

Figure 9.28 – Alignement d’axes : première étape.

Le sinus et le cosinus de l’angle valent respectivement 3

— sin θ =
Vx√

V 2
x + V 2

y

;

— cos θ =
Vy√

V 2
x + V 2

y

.

La matrices de transformation associée est :

[M1] = R(Z, θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 (9.46)

3. Cette méthode permet d’éviter le calcul de l’angle ce qui permet d’éviter de traiter les différents cas de
figure suivant le quadrant occupé par le vecteur
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Pour la deuxième étape, il faut aligner ce vecteur transformé avec l’axe Oz (figure 9.28).

Figure 9.29 – Alignement d’axes : deuxième étape.

Le sinus et le cosinus de l’angle valent respectivement :

— sinϕ =

√
V 2
x + V 2

y

∥
−→
V ∥

.

— cosϕ =
Vz

∥
−→
V ∥

;

La matrices de transformation associée est :

[M2] = R(X,ϕ) =


1 0 0 0
0 cosϕ − sinϕ 0
0 sinϕ cosϕ 0
0 0 0 1

 (9.47)

La matrice résultante est bien évidemment obtenue en multipliant (dans le bon ordre) les deux
matrices :

[M ] = [M2] · [M1] (9.48)

9.4.4.2 Angles d’Euler

Un solide dans l’espace présente six degrés de liberté sous la forme de trois translations et
de trois rotations. La présentation de la matrice 3x3 prenant en compte la rotation dans les
matrices de transformation homogènes (équation 9.39 ) ne fait pas apparaître clairement les trois
degrés de libertés associés à la rotation d’un corps. Les neuf coefficients sont liés entre eux par
six relations liées à l’orthogonalité de la matrice. Ces relations (déjà présentées précédemment)
peuvent être synthétisées par (δij représente le symbole de Kronecker ; δij=1 si i=j et 0 sinon) :

λiλj + µiµj + νiνj = δij (9.49)
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Une autre approche pour la représentation de l’orientation d’un corps dans l’espace est l’emploi
de trois angles caractéristiques pour définir son orientation. Les angles les plus fréquemment
rencontrés dans la littérature sont les angles d’Euler qui définissent trois rotations (figure 9.30)
selon :

— l’angle de précession ψ autour de l’axe Oz ;
— l’angle de nutation θ autour de l’axe u (image de l’axe Ox après la première rotation) ;
— l’angle de rotation propre ϕ autour de l’axe Oz’ (image de Oz par la seconde rotation).

Figure 9.30 – Angles d’Euler.

Si θ = 0 ou π, la transformation se réduit à une rotation autour de l’axe Oz. L’emploi des
angles d’Euler est néanmoins moins intuitif que l’approche par les cosinus directeurs, mais il
est possible de relier les deux approches. On peut démontrer que la matrice de changement de
repère associée aux angles d’Euler peut se construire selon :


cosϕ cosψ − sinϕ cos θ sinψ − cosϕ sinψ − sinϕ cos θ cosψ sinϕ sin θ 0
sinϕ cosψ + cosϕ cos θ sinψ − sinϕ sinψ + cosϕ cos θ cosψ − cosϕ sin θ 0

sin θ sinψ sin θ cosψ cos θ 0
0 0 0 1

 (9.50)

Il est donc possible de retrouver les angles d’Euler à partir de la matrice de transformation, par
exemple (ri,j représente l’élément de la ligne i et de la colonne j de la matrice R) :

ψ = arctan r3,1
r3,2

θ = arctan

√
r23,1+r23,2
r3,3

ϕ = arctan− r1,3
r2,3

(9.51)

Dans la pratique, la fonction arctangente donne deux valeurs possibles à l’angle, le choix doit
se faire en fonction du quadrant occupé par le point (ceci est réglé automatiquement par la
fonction atan2 dans la plupart des langages de programmation).
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9.4.4.3 Opération globale

On peut également rechercher la matrice de transformation globale par l’intermédiaire
d’opérations vectorielles [2]. Considérons dans un premier temps un plan contenant l’origine du
repère O et défini par un vecteur normal

−→
N et un vecteur

−→
Vπde ce plan. le produit vectoriel de ce

vecteur par la vecteur normal unitaire −→n donne un vecteur appartenant au plan et orthogonal
à
−→
Vπ (figure 9.31).

Figure 9.31 – Produit vectoriel par le vecteur normal au plan.

Le produit vectoriel est calculé selon :

−→n ∧
−→
Vπ =

∣∣∣∣∣∣
−→ux −→uy −→uz
nx ny nz

Vπ,x Vπ,y Vπ,z

∣∣∣∣∣∣ =


nyVπ,z − nzVπ,y
nzVπ,x − nxVπ,z
nxVπ,y − nyVπ,x

 (9.52)

Cette formulation est équivalente à :

−→n ∧
−→
Vπ =

 0 −nz ny

nz 0 −nx

−ny nx 0

 ·


Vπ,x
Vπ,y
Vπ,z

 (9.53)

Cette relation permet de définir la matrice [Jn] permettant le calcul du produit vectoriel par
rapport au vecteur −→n .

[Jn] =

 0 −nz ny

nz 0 −nx

−ny nx 0

 (9.54)

Si on applique une deuxième fois le produit vectoriel, on retrouve un vecteur opposé au vecteur
de départ (deux rotations de π/2 donnent une inversion).

−→n ∧
(−→n ∧

−→
Vπ

)
= −

−→
Vπ (9.55)

Ces éléments permettent de démontrer que la matrice de rotation d’un angle θ autour d’un axe−→
N passant par l’origine est :

R
(−→
N , θ

)
= I + sin θ · Jn + (1− cos θ) · J2

n (9.56)
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Cette relation permet d’obtenir la matrice (3x3) occupant la portion supérieure de la matrice
de transformation homogène, il faut ajouter la quatrième ligne et la quatrième colonne comme
suit : [

R
(−→
N , θ

)
3x3

{0}3x1
{0}1x3 1

]
(9.57)

Pour vérifier la propriété, prenons un point quelconque P . le vecteur
−→
OP peur se décomposer

en une composante normale au plan (
−−→
OPn) et une composante appartenant au plan (

−−→
OPπ). La

composante normale au plan n’est pas modifiée par la rotation :

R
(−→
N , θ

)−−→
OPn =

−−→
OPn + sin θ · −→n ∧

−−→
OPn + (1− cos θ) · −→n ∧

(−→n ∧
−−→
OPn

)
=

−−→
OPn (9.58)

car le produit vectoriel de deux vecteurs parallèles est le vecteur nul. Pour la composante du
plan, on a

R
(−→
N , θ

)−−→
OPπ =

−−→
OPπ + sin θ · −→n ∧

−−→
OPπ + (1− cos θ) · −→n ∧

(−→n ∧
−−→
OPπ

)
(9.59)

=
−−→
OPπ + sin θ · −→n ∧

−−→
OPπ − (1− cos θ) ·

−−→
OPπ (9.60)

= sin θ · −→n ∧
−−→
OPπ + cos θ ·

−−→
OPπ (9.61)

qui donne bien le vecteur tourné d’un angle θ dans le plan.

9.4.5 Autres opérations de transformation 3D

Il est très fréquent de devoir réaliser dans les logiciels de dessin assisté par ordinateur un
ensemble d’opérations de transformation de figures élémentaires (on parle de primitives).
Comme ces objets sont constitués d’un ensemble de point, on peut synthétiser les
transformations sous forme de l’application d’une matrice de transformation 4x4 comme
déjà évoqué précédemment. Diverses opérations de transformation vont être présentées, en
complément des rotations et translations déjà évoquées précédemment dans ce chapitre.

9.4.5.1 Réflexion

Le terme ’réflexion’ est utilisé en infographie pour décrire une symétrie orthogonaled’un objet
par rapport à un plan existant.

La matrice de transformation associée à une réflexion par rapport à l’un des plans coordonnés
(figure 9.32). est établie de manière évidente :

— une réflexion par rapport au plan Oxy consiste à changer le signe de la composante z
des points de la figure ;

— une réflexion par rapport au plan Oxz consiste à changer le signe de la composante y
des points de la figure ;

— une réflexion par rapport au plan Oyz consiste à changer le signe de la composante x
des points de la figure ;

Les matrices de transformation associées sont donc :

ROxy =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ROxz =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ROyz =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (9.62)

Si le plan n’est pas un plan coordonné, on utilise au préalable des transformations homogène
ou un changement de repère (voir un exemple au §15.2.3 en page 206).
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Figure 9.32 – Opérations de réflexion par
rapport aux plans coordonnés.

Figure 9.33 – Exemple de scaling d’un
cube (rapports 3 ;2 ;1,5).

9.4.5.2 Scaling

Jusqu’ici, nous avons uniquement considéré des opérations réalisant une modification de la
position des objets, sans entraîner de modification de leur forme. Le scaling est une opération
courante qui modifie la forme de l’objet subissant l’opération.
Dans le vocabulaire de l’infographie, un scaling est une opération de mise à l’échelle dont le
rapport peut être différent selon les axes (figure 9.33). La matrice de transformation associée à
un scaling centré sur l’origine est :

H =


hx 0 0 0
0 hy 0 0
0 0 hz 0
0 0 0 1

 (9.63)

Pour obtenir une homothétie au sens classique du terme, il faut bien évidemment avoir un
rapport égal selon les trois directions de l’espace.
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9.5 Rendu réaliste

La représentation de surfaces dans des logiciels de CAO consiste nécessairement en une
représentation bidimensionnelle d’objets volumiques. Pour faire ressentir à l’observateur la
notion de profondeur, il est nécessaire de faire appel à un rendu de la surface qui favorise la
compréhension de la scène. Historiquement la première méthode qui a été employée consistait en
la représentation de différentes lignes sur les surfaces résultant de l’intersection de la surface avec
un ensemble de plans (pouvant être parallèles aux plans de références ou formant un faisceau
convergeant en un axe de symétrie de la surface). Ce type de représentation des surfaces sous
forme de squelettes (ou rendu fil de fer, figure 9.34 4) faisait appel à une reconstruction mentale
de l’objet pas toujours évidente pour l’observateur.

Figure 9.34 – Rendu « fil de fer » [2].

Figure 9.35 – Rendu réaliste d’une
pièce mécanique.

L’augmentation des performances des ordinateurs et de leurs cartes graphiques a permis la
possibilité de traitements algorithmiques visant à reproduire l’aspect de surfaces réelles en
prenant en compte un grand nombre de phénomènes physiques (réflexions, transparence,
réfraction, textures de surfaces,...) pour permettre un rendu proche de la réalité de modèles
CAO de pièces (figure 9.35).

Le rendu réaliste présente des applications bien au-delà des logiciels de CAO (un exemple
spectaculaire est la réalisation de films d’animation entièrement réalisés à partir de ce type de
techniques, les plus connus édités par les studios Pixar et Dreamworks). Dans le cadre de ce
cours, nous allons étudier les éléments de base permettant de réaliser le rendu d’une surface.

4. Cette figure, ainsi que l’ensemble des figures tirées de la même références est accompagnées de la mention
’Reproduced with the permission of the publisher from Computer Graphics : Principles and Practice, Third
Edition, by John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K.
Feiner, and Kurt Akeley. Copyright 2014 by Pearson Education, Inc’

133



CHAPITRE 9. INFOGRAPHIE

9.5.1 Eléments de base

Les éléments de base permettant le rendu des scènes sont :
— des objets modélisés par l’intermédiaire de la description analytique de leurs surfaces

(surfaces complexes ou décomposition de celles-ci sous forme de facettes triangulaires) ;
— des sources lumineuses éclairant la scène ;
— un algorithme calculant la couleur des différents points de la scène en fonction de

l’éclairement et de la configuration de la scène.
La première étape est de faire le tri entre l’information qui sera traitée et celle qui ne participera
pas au calcul (on parle de « clipping »). L’utilisateur défini deux plans entres lesquels le rendu
sera effectué : le plan proche (near plane) et la ligne d’horizon (far plane). Les éléments non
compris entre ces plans sont écartés du rendu (figure 9.36).

Figure 9.36 – Sélection de l’information [2].

Il existe deux grandes familles d’algorithmes de rendu :
— les algorithmes dits de rasterization qui consistent à réaliser la projection des points sur

l’écran et de réaliser la recherche du vu et du caché, la prise en compte de l’illumination
est réalisée par la suite ;

— les algorithmes dits de raytracing (figure 9.37) qui consistent à suivre à rebours le trajet
de la lumière en considérant les rayons issus de l’oeil qui sont « lancés » sur la scène et
dont le trajet est suivi pour déterminer la couleur et l’illumination de chaque pixels.

Les algorithmes de rasterization sont réputé plus performants et donc plus adaptés pour les
approches en temps réel [3]. Ils sont toutefois moins performants pour la représentation de
certains phénomènes (réflexions proches par exemple), c’est pourquoi ils sont parfois complétés
par des algorithmes de raytracing [4].
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Figure 9.37 – Exemple de rendu employant l’algorithme de raytracing [2].

9.5.2 Rendu de la couleur

Une scène est divisée en un ensemble de points de couleur (pixels) organisés selon un tableau
de n lignes et de m colonnes. La couleur de chacun de ces pixels est déterminée par un mélange
additif de trois couleurs de base, typiquement RGB (Red Green Blue). Chacune de ces nuances
est mélangée suivant différentes proportions pour obtenir un ensemble de couleurs dérivées. Une
couleur est donc représentée comme un triplet [R G B] avec chacune des composantes allant de
0 à 1 (figure 9.38).

Figure 9.38 – Quelques exemples de couleurs en RGB.
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9.5.3 Exemple de rendu de surface

Ce paragraphe décrit les méthodes de rendu accessibles dans Matlab [5]. Il faut noter que
Matlab ne gère que le calcul d’illumination directe et ne prend pas en compte les réflexions
intermédiaires entre différents corps, ce qui simplifie fortement les calculs.
La position des différentes sources de lumières doit être connue dans la scène modélisée (par
l’intermédiaire de ses coordonnées polaires ou cartésiennes). L’énergie des rayons lumineux issus
des sources se divise en trois contributions au contact d’objets :

— une fraction %r est réfléchie par la surface ;
— une fraction %t est transmise à travers la surface (réfraction) ;
— une fraction %a est absorbée par la surface.

La conservation de l’énergie indique que %r +%t +%a = 0. La réfraction peut être modélisée
par la loi de Snell-Descartes pour tenir compte de la déviation d’un rayon lumineux passant
d’un milieu à un autre. La réflexion sur une surface est un mécanisme plus complexe. Nous
présenterons ici un exemple de modélisation par l’intermédiaire du modèle de Phong (figure
9.39).

Figure 9.39 – Modèle Phong.

Ce modèle considère que l’intensité lumineuse observée dépend de trois facteurs :
— une luminosité « de fond » n’ayant pas d’orientation particulière qui est la luminosité

ambiante ;
— une luminosité provenant d’une réflexion diffuse (réflexion isotrope dans toutes les

directions, proportionnelle au cosinus de l’angle entre la source et la normale à la
surface) ;

— une luminosité provenant d’une réflexion spéculaire (réflexion de manière prépondérante
lorsqu’on observe sous un angle égal à l’angle incident, dépendante d’un exposant
spéculaire es d’autant plus élevé que la surface est réfléchissante (figure 9.40).

En présence de n spots lumineux, l’observation d’une surface produit une intensité lumineuse
donnée par

I = Iaka +
∑
i

Ipi (kd cos θi + ks cos
es ϕi) (9.64)
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Figure 9.40 – Exemple de l’évolution de l’énergie pour une surface rugueuse (es=1) et polie
(es=100) dans le modèle de Phong.

Les facteurs ka, kd et ks sont les coefficients de réflexion ambiants, diffus et spéculaires ; ils
sont spécifiés sous forme d’un triplet comme les couleurs RGB pour tenir compte de réflexions
différentes suivant les couleurs (figure 9.41).

Figure 9.41 – Influence de l’exposant sépculaire sur le rendu de surface (tiré de
http ://udn.epicgames.com/).
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Pour ne pas effectuer ce type de calcul pour chacun des pixels de l’image, on discrétise les
surfaces sous forme de facettes au centre desquelles un calcul de couleur et d’intensité est
réalisé. La méthode de base appelée flat shading conserve cette couleur pour l’ensemble de la
facette (figure 9.42). Cette méthode est la plus rapide puisqu’elle ne nécessite pas de calculs
supplémentaires.

Figure 9.42 – Cone et surface complexe dont le rendu est opéré avec flat et Gouraud Shading
[2].

La deuxième méthode d’interpolation par ordre de complexité est la méthode dite Gouraud
shading. Elle calcule l’intensité aux sommets des facettes puis réalise une interpolation bilinéaire
pour obtenir la couleur en tout point de la facette (figure 9.43).

Figure 9.43 – Algorithme du Gouraud shading comparé au flat shading [2].
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La troisième méthode est dite Phong shading. Elle consiste à réaliser une interpolation sur les
normales à la surface puis à calculer en tout point l’intensité de chaque composante RGB . La
figure 9.44 compare à titre d’exemple le rendu d’une sphère par les trois méthodes précédemment
citées.

Figure 9.44 – Comparaison des trois méthodes de shading : flat, phong et Gouraud (tiré de
http ://udn.epicgames.com/).
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CHAPITRE 10. REPRÉSENTATION CARTÉSIENNE DE SURFACES

Chapitre 10

Représentation cartésienne de surfaces

Je pense donc je suis

- R. Descartes, Discours de la méthode

10.1 Introduction

La représentation cartésienne d’une surface fait appel à des expressions qui sont des
généralisations de la représentation cartésienne de courbes planes. On distingue les formes
de représentation explicites (z = f(x, y)) et implicites (F (x, y, z) = 0).
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Figure 10.1 – Paraboloïde hyperbolique
(équation explicite z = x2 − y2).
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Figure 10.2 – Sphère (équation implicite
x2 + y2 + z2 − r2 = 0).

La forme explicite z = f(x, y) associe à tout point du plan horizontal de coordonnées (x, y)
au plus un point de la surface. La forme implicite F (x, y, z) = 0 peut elle présenter plusieurs
points de la surface sur une verticale donnée. Comme dans le cas de courbes planes, une fonction
F (x, y, z) = 0 ne représente pas forcément une surface :

— x2 + y2 + z2 = 0 représente le point à l’origine ;
— x2 + y2 + z2 = −1 ne représente aucun point de l’espace réel.
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On peut faire la distinction entre une surface dite algébrique et une surface dite transcendante.

Une surface est dite algébrique si son équation implicite peut être ramenée à une forme d’un
polynôme à coefficients rationnels égalé à zéro (figure 10.3).
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Figure 10.3 – Exemple de surface algébrique (z = x2 + 3xy2).

Le degré du polynôme définit l’ordre de la surface. On parle de :
— surface plane (ordre 1) ;
— surface quadrique (ordre 2) ;
— surface cubique (ordre 3) ;
— surface quartique (ordre 4) ;
— ...

Cet ordre représente le nombre maximum de points d’intersection entre cette surface et une
droite quelconque.
Par opposition, une surface non algébrique est dite transcendante (figure 10.4). Elle peut faire
intervenir des fonctions non rationnelles (fonctions trigonométriques, logarithmes,...) et présente
éventuellement un nombre infini de points d’intersection avec une droite quelconque.
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Figure 10.4 – Exemple de surface transcendante ( z = sinx+ cos y).
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10.2 Interprétation d’équations particulières

Si l’équation F (x, y, z) = 0 se réduit à une expression du type F (z) = 0 dans R3, l’interprétation
physique qu’on peut en faire est que les points de cette entité géométrique ont des coordonnées
x et y totalement libres alors que les valeurs de z admises sont celles qui vérifient l’équation
F (z) = 0. On se trouve donc en présence de la définition de plans parallèles au plan Oxy. Il y
aura autant de plans que de racines de l’équation F (z) = 0 (par exemple, F (x, y, z) ≡ z2−4 = 0
définit deux plans d’équation z=2 et z=-2, figure 10.5).

Figure 10.5 – Plans définis par
F (x, y, z) ≡ z2 − 4 = 0.

Figure 10.6 – Surface cylindrique
d’équation F (x, y, z) ≡ (x−2)2+(y−2)2−
4 = 0.

Les équations du type F (x, y, z) = 0 dans R3 ne présentant pas la coordonnée z peuvent être
interprétées comme définissant des surfaces pour lesquelles la relation entre x et y est vérifiée
quelle que soit la coordonnée z. Il s’agit donc de l’expression de surfaces pour lesquelles une
courbe définie dans Oxy par F (x, y) = 0 est extrudée parallèlement à l’axe z, on parle de
surface cylindrique (ou surface extrudée en CAO) dont la directrice est la courbe plane définie
par F (x, y) = 0). Par exemple, l’équation implicite F (x, y, z) ≡ (x − 2)2 + (y − 2)2 − 4 = 0
définit un cylindre circulaire de rayon 2 et d’axe parallèle à l’axe z (figure 10.6).

10.3 Quadriques

Les quadriques peuvent être vues comme la généralisation des coniques dans R3. Il s’agit de
surfaces définies par l’intermédiaire d’une équation quadratique qui a la forme générale :

F (x, y, z) ≡ Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz +Gx+Hy + Iz + J = 0 (10.1)

On peut également exprimer cette équation sous la forme suivante :
x
y
z


T

·

 A D E
D B F
E F C

 ·


x
y
z

+


G
H
I


T

·


x
y
z

+ J = 0 (10.2)
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Comme dans le cas des coniques, les termes contenant des produits croisés (xy, xz et yz)
peuvent être éliminés par un changement de repère pour se retrouver sous une forme qui ne
fait plus apparaître que des termes en x, y, z et leurs carrés. La recherche de ce changement de
repère qui permet de diagonaliser la matrice sort du cadre de ce cours. Nous nous contenterons
d’étudier la forme des différentes quadriques à partir de leur équation réduite. Cette équation
est de la forme

F (x, y, z) = A′x2 +B′y2 + C ′z2 +D′x+ E ′y + F ′z +G′ = 0 (10.3)

A ce stade, trois cas de figure sont possibles :
— La fonction implicite ne fait apparaître que des termes en x (ou en y ou en z), l’équation

décrit alors un ensemble de plans comme expliqué au § 10.2 ;
— la fonction implicite ne fait pas apparaître de terme en z (ou en x ou en y), l’équation

décrit alors une surface cylindrique dont la base est une conique (figures 10.7 à 10.9) ;
— la fonction implicite contient des termes en x, y et z, il s’agit d’une quadrique au sens

propre du terme (décrites au § 10.3.1).

Figure 10.7 – Surface cylindrique à base hyperbolique (F (x, y, z) ≡ x2

4
− y2

9
− 1 = 0).

Figure 10.8 – Surface cylindrique à base
elliptique (F (x, y, z) ≡ x2

4
+ y2

9
− 1 = 0).

Figure 10.9 – Surface cylindrique à base
parabolique (F (x, y, z) ≡ y − x2 = 0).
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10.3.1 Formes propres de quadriques

Suivant le même principe utilisé pour l’identification des coniques, l’équation 10.3 peut être
réorganisée pour regrouper les termes en x, y et z sous forme de produits remarquables. Sous
cette forme, on peut distinguer les six familles de quadriques propres :

— l’ellipsoïde F (x, y, z) =
(x− xC)

2

a2
+

(y − yC)
2

b2
+

(z − zC)
2

c2
− 1 = 0 ;

— l’hyperboloïde à une nappe F (x, y, z) =
(x− xC)

2

a2
+

(y − yC)
2

b2
− (z − zC)

2

c2
− 1 = 0 ;

— l’hyperboloïde à deux nappes F (x, y, z) =
(x− xC)

2

a2
+

(y − yC)
2

b2
− (z − zC)

2

c2
+ 1 = 0 ;

— le paraboloïde hyperbolique F (x, y, z) =
(x− xC)

2

a2
− (y − yC)

2

b2
− (z − zC) = 0 ;

— le paraboloïde elliptique F (x, y, z) =
(x− xS)

2

a2
+

(y − yS)
2

b2
− (z − zS) = 0 ;

— le cône à base elliptique F (x, y, z) =
(x− xS)

2

a2
+

(y − yS)
2

b2
− (z − zS)

2

c2
= 0 ;

Nous allons brièvement décrire ces six types de surfaces dans les paragraphes suivants.

10.3.1.1 Ellipsoïde

L’ellipsoïde (figure 10.10) est une surface dont l’équation cartésienne a la forme suivante :

F (x, y, z) =
(x− xC)

2

a2
+

(y − yC)
2

b2
+

(z − zC)
2

c2
− 1 = 0 (10.4)

La surface est centrée au point de coordonnées (xC , yC , zC). L’intersection de cette surface avec
un plan parallèle aux plans coordonnés donne une ellipse. En particulier, l’intersection avec un
plan parallèle aux axes passant par le centre de l’ellipsoïde donne une ellipse dont les axes sont
définis par a,b ou c.
Si a, b et c sont égaux, on retrouve l’équation d’une sphère.

10.3.1.2 Hyperboloïde à une nappe

L’hyperboloïde à une nappe (figure 10.11) est une surface dont l’équation cartésienne a la forme
suivante :

F (x, y, z) =
(x− xC)

2

a2
+

(y − yC)
2

b2
− (z − zC)

2

c2
− 1 = 0 (10.5)

Son intersection avec des plans perpendiculaires à Oz donne des ellipses ; son intersection avec
des plans perpendiculaires à Ox ou Oy donne des hyperboles.

10.3.1.3 Hyperboloïde à deux nappes

L’hyperboloïde à deux nappe (figure 10.12) est une surface dont l’équation cartésienne a la
forme suivante :

F (x, y, z) =
(x− xC)

2

a2
+

(y − yC)
2

b2
− (z − zC)

2

c2
+ 1 = 0 (10.6)

Son intersection avec des plans perpendiculaires à Oz donne des ellipses ; son intersection avec
des plans perpendiculaires à Ox ou Oy donne des hyperboles.
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Figure 10.10 – Ellipsoïde. Figure 10.11 – hyperboloide à une nappe.

10.3.1.4 Paraboloïde hyperbolique

Le paraboloïde hyperbolique (figure 10.13) est une surface dont l’équation cartésienne a la
forme suivante :

F (x, y, z) =
(x− xC)

2

a2
− (y − yC)

2

b2
− (z − zC) = 0 (10.7)

Son intersection avec des plans perpendiculaires à Oz donne des hyperboles ; son intersection
avec des plans perpendiculaires à Ox ou Oy donne des paraboles.

Figure 10.12 – hyperboloide à deux
nappes. Figure 10.13 – Paraboloïde hyperbolique.

10.3.1.5 Paraboloïde elliptique

Le paraboloïde elliptique (figure 10.14) est une surface dont l’équation cartésienne a la forme
suivante :

F (x, y, z) =
(x− xS)

2

a2
+

(y − yS)
2

b2
− (z − zS) = 0 (10.8)

Son intersection avec des plans perpendiculaire à Oz donne des ellipses ; son intersection avec
des plans perpendiculaires à Ox ou Oy donne des paraboles.

10.3.1.6 Cône à base elliptique

Le paraboloïde elliptique (figure 10.15) est une surface dont l’équation cartésienne a la forme
suivante :

F (x, y, z) =
(x− xS)

2

a2
+

(y − yS)
2

b2
− (z − zS)

2

c2
= 0 (10.9)
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Son intersection avec des plans perpendiculaire à Oz donne des ellipses ; son intersection avec
des plans perpendiculaires à Ox ou Oy donne des paraboles.

Figure 10.14 – Paraboloïde elliptique. Figure 10.15 – Cône elliptique.

10.4 Méthode d’obtention de l’équation cartésienne de
surfaces

Dans le cadre de ce cours, nous verrons diverses méthodes permettant de générer les équations
d’une surface quelconque. De manière générale, on peut citer :

— L’utilisation d’une condition géométrique (exemple au §15.3.1 page 208) ;
— la génération d’une surface par extrusion d’une courbe le long d’une direction ;
— la génération d’une surface par rotation d’une courbe autour d’un axe ;
— la génération d’une surface par ligne (la surface est obtenue par un ensemble de courbes

définies par des conditions particulières)
— la génération d’une surface par points.

Nous verrons différents exemples pour chacun des types de surfaces précédemment mentionnés.
Il faut noter que ces catégories ne sont pas exclusives entre elles. Un cylindre circulaire droit peut
par exemple être généré par l’extrusion d’un cercle perpendiculairement au plan le contenant
ou par la révolution d’une droite autour d’un axe.
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10.4.1 Extrusion d’une courbe le long d’un axe

Comme vu au § 10.2, l’obtention des équations d’une surface cylindrique dont l’axe est parallèle
aux axes du repère s’obtient de manière simple. Lorsque la figure est orientée de manière
quelconque (figure 10.16), il est possible de passer par l’intermédiaire d’un changement de
repère ou via une combinaison de matrices de transformation pour obtenir l’équation finale de
la surface. Un exemple de résolution est proposé au §15.3.3 page 210.

Figure 10.16 – Obtention des équations cartésiennes d’une surface extrudée par changement
de repère.

10.4.2 Surface de révolution

10.4.2.1 Révolution autour d’un axe du repère

Soit une surface engendrée par la révolution d’une courbe plane définie dans le plan Oyz autour
de l’axe Oz. La courbe décrivant le profil de la surface est une courbe de R2 dans le plan Oyz
qui peut être décrite par son équation cartésienne de la forme F (y, z) = 0.

Si on considère cette courbe ayant subi une rotation d’angle θ autour de l’axe Oz, sa forme
n’a pas été modifiée par la rotation, l’ensemble de ses points vérifie donc encore l’équation
cartésienne de la courbe, si on considère non plus la coordonnée y mais la distance entre
l’axe de rotation et le point de la courbe considéré. Ce rayon peut se calculer aisément par
r =

√
x2 + y2. On peut donc en déduire qu’une surface de révolution autour de l’axe Oz peut

être exprimée sous forme d’une fonction implicite en reprenant l’équation implicite décrivant la
courbe de base et en remplaçant dans cette expression la coordonnée y par la racine carrée de
la somme des carrés des coordonnées x et y :

f(
√
x2 + y2, z) = 0 (10.10)

Par permutation circulaire, on peut établir que :
— une surface de révolution autour de l’axe Ox est décrite par une équation implicite de

la forme f(
√
y2 + z2, x) = 0 ;

— une surface de révolution autour de l’axe Oy est décrite par une équation implicite de
la forme f(

√
x2 + z2, y) = 0 ;

L’exemple d’un tore est présenté au §15.3.4 (page 215).
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Figure 10.17 – Figure de révolution.

10.4.2.2 Révolution autour d’un axe quelconque

Si l’axe de révolution n’est pas confondu avec un des axes du repère, on procède alors par
transformation ou changement de repère comme illustré au § 10.4.1.

10.5 Surfaces réglées

Une surface réglée est par définition une surface engendrée par une droite (appelée génératrice)
qui évolue selon une loi déterminée (figure 10.18). Ce type de surfaces rencontre un grand
succès dans la réalisation d’objets physiques car elles peuvent être matérialisées de manière
relativement simples (figure 10.19).

Considérons une droite quelconque comme l’intersection de deux plans perpendiculaires aux
plans coordonnés : {

x− αz − β = 0
y − γz − δ = 0

(10.11)

Il s’agit d’un système de deux équations à trois inconnues et quatre paramètres. Il est donc
nécessaire d’imposer trois relations complémentaires pour obtenir une surface unique. Ces
relations seront la traduction de considérations géométriques :

— la génératrice s’appuie sur trois directrices (ou courbes guide) ;
— la génératrice s’appuie sur deux directrices et reste parallèle à un plan (plan directeur) ;
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Figure 10.18 – Hyperboloide comme surface réglée.

Figure 10.19 – Tour de
refroidissement de la centrale
électrique de Drogenbos.

— la génératrice s’appuie sur une directrice et reste parallèle à deux plans directeurs ;
— la génératrice reste parallèle à deux plans directeurs et reste tangente à une surface

(noyau) ;
— la génératrice s’appuie sur une directrice et reste tangente à deux noyaux ;
— la génératrice reste tangente à trois noyaux ;
— ...

L’expression mathématique de ces relations permet d’écrire trois relations liant les paramètres
entre eux pour permettre d’obtenir un système de cinq équations contenant quatre paramètres,
ce qui permet au final d’obtenir les équations de la surface réglée

10.5.1 Recherche des équations exprimant les contraintes sur les
génératrices d’une surface réglée

10.5.1.1 Condition d’appui des génératrices sur une ligne

Si une génératrice s’appuie sur une directrice, il existe un point d’intersection entre cette ligne
et la génératrice. Le système formé des équations des génératrices (système d’équation 10.11) et
des équations de la courbe doit admettre une solution. Un tel système est de la forme suivante
(dans le cas de l’emploi des équations cartésiennes de la ligne) :

x− αz − β = 0
y − γz − δ = 0
F1(x, y, z) = 0
F2(x, y, z) = 0

(10.12)

C’est-à-dire un système de quatre équations à trois inconnues (x, y et z). Le système
sera compatible si une équation est combinaison linéaire des trois autres. Pour obtenir
cette condition, il faut exprimer une relation dans laquelle x, y et z ont été éliminés à
partir du système. Cette relation (dépendant uniquement des paramètres) est la condition
de compatibilité du système, c’est-à-dire l’expression mathématique de l’existence d’une
intersection entre la courbe et les génératrices.
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10.5.1.2 Condition de parallélisme à un plan

Les conditions de parallélisme entre une droite et un plan ont été rappelés au § 17.7 ; il faut
noter que si une droite est parallèle à deux plans, son vecteur directeur est donné de manière
immédiate par un vecteur directeur de l’intersection entre les deux plans (figure 10.20).

Figure 10.20 – Droite parallèle à deux plans donnés.

10.5.1.3 Condition de tangence à une surface

La condition de tangence à une surface s’exprime en vérifiant les conditions qui conduisent
à l’existence d’une solution unique pour l’intersection entre la surface et les génératrices. Le
système est de la forme : 

x− αz − β = 0
y − γz − δ = 0
F (x, y, z) = 0

(10.13)

Les deux premières expressions donnent directement :{
x = αz + β
y = γz + δ

(10.14)

qui peuvent être réinjectées dans la dernière relation pour obtenir une équation à une seule
inconnue (z). Il suffit ensuite d’établir la relation entre les paramètres pour obtenir une solution
unique à cette équation qui donne l’expression analytique de la condition de tangence entre la
surface et les génératrices.

10.6 Surfaces coniques

Par définition, une surface conique est une surface engendrée par une droite variable
(génératrice) passant par un point fixe (sommet) et se déplaçant selon une loi géométrique
donnée (figure 10.21), il s’agit d’un cas particulier de surface réglée.

Le sommet d’une surface conique peut être considéré comme étant l’intersection de trois plans
distincts π1, π2 et π3 (définis par des relations F1(x, y, z) = 0, F2(x, y, z) = 0 et F3(x, y, z) = 0).
Comme les génératrices d’un cône passent nécessairement par son sommet, les deux plans π4
et π5 passant respectivement par l’intersection i de π1 et de π2 et j de π1 et de π3. Or, π1 et π2
forment un faisceau, ce qui signifie que π4 peut être exprimé comme une combinaison linéaire
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Figure 10.21 – Exemple de surface conique.

des équations de π1 et π2. Le même raisonnement peut être suivi pour les équations de π5. Toute
génératrice passant par le sommet S peut donc s’exprimer par le système formé des équations :

F4 ≡ F2− λF1 = 0 (10.15)
F5 ≡ F3− µF1 = 0 (10.16)

Il suffit d’imposer une relation entre les deux paramètres pour définir une surface unique. Cette
relation est de la forme ϕ(λ, µ) ou encore :

ϕ

(
F2

F1
,
F3

F1

)
= 0 (10.17)

Cette relation définit une fonction homogène par rapport aux fractions F2
F1

et F3
F1

(ce qui signifie
que la fonction est toujours vérifiée même si on multiplie les fonctions par une constante. On peut
donc considérer cette relation comme une fonction homogène de la forme ϕ(F1, F2, F3) = 0.
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SURFACES

Chapitre 11

Représentation vectorielle et
paramétrique de surfaces

No. There is another.

- Yoda, The empire strikes back

11.1 Introduction

La représentation vectorielle d’une surface de R3 consiste à rechercher une relation vectorielle
de type

−−→
OM ≡

−→
V (u, v) qui détermine le vecteur liant l’origine à l’ensemble des points de la

surface par l’intermédiaire de deux paramètres. Au sens mathématique du terme, il s’agit d’une
application qui, à tout point d’un domaine de R2 défini par (u, v), associe un point image dans
l’espace R3 (figure 11.1).

Figure 11.1 – Représentation vectorielle de surface.
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La projection de la fonction vectorielle sur les axes du repère donne accès aux équations
paramétriques de la surface qui sont de la forme :

x ≡ x(u, v)
y ≡ y(u, v)
z ≡ z(u, v)

(11.1)

11.2 Formes classiques de paramétrisation de surfaces

Comme dans le cas de la représentation des courbes planes, le choix de la paramétrisation est
laissé libre. Il existe toutefois certaines formes rencontrées fréquemment en pratique comme les
coordonnées sphériques et cylindriques.

11.2.1 Emploi des coordonnées sphériques

Un des modes de paramétrisation classiquement rencontrés est l’utilisation des coordonnées
sphériques (θ, ϕ) avec θ représentant l’angle entre le plan vertical contenant le vecteur

−−→
OM

et un plan coordonné (par exemple Oxz) et ϕ représentant l’angle entre ce vecteur et le plan
Oxy (figure 11.2). Ce type de coordonnées permet de représenter les surfaces dont la topologie
s’approche de celle d’une sphère.

Figure 11.2 – Coordonnées sphériques. Figure 11.3 – Coordonnées cylindriques.

La recherche des équations paramétriques d’une sphère centrée en l’origine en employant ce
type de paramétrisation consiste à considérer que pour toute valeur de ϕ (variant de −π/2 à
π/2), on décrit un cercle sur la sphère par une variation de θ entre 0 et 2π. Les cercles considérés
(parallèles) sont situés dans un plan à une altitude valant R sinϕ et ont un rayon valant R cosϕ.
Les équations paramétriques de la sphère peuvent donc s’écrire :

x ≡ R cosϕ cos θ
y ≡ R cosϕ sin θ
z ≡ R sinϕ

(11.2)
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En éliminant les deux paramètres entre ces trois relations, on obtient de manière immédiate
l’équation cartésienne de la sphère :

x2 + y2 = R2 cos2 ϕ
(
cos2 θ + sin2 θ

)
= R2 cos2 ϕ (11.3)

z2 = R2 sin2 ϕ (11.4)
⇒ x2 + y2 + z2 = R2 (11.5)

11.2.2 Coordonnée cylindriques

Pour la représentation de surfaces cylindriques (ou extrudées) dont l’axe est parallèle à l’axe
Oz, nous avons vu précédemment que la représentation cartésienne de la surface se réduisait
à une fonction du type F (x, y, z) = 0 ne faisant pas intervenir le paramètre z. Cela signifie
pratiquement qu’il existe une relation entre x et y indépendamment de la coordonnée z. Dans
R2, cette relation F (x, y) = 0 représente la forme cartésienne de la courbe servant de base
à la forme cylindrique. Les coordonnées cylindriques considèrent donc deux paramètres (θ, κ)
tels que θ soit le paramètre utilisé pour établir les équations paramétriques de la surface de
base (angle entre le plan vertical contenant le vecteur

−−→
OM et le plan Oxz pour le cercle) et

κ représentant la coordonnée z du point de la surface (figure 11.3). En employant ce type de
paramétrisation, les équations paramétriques d’un cylindre à base circulaire de rayon R centré
cur l’axe Oz peuvent s’écrire : 

x = R cos θ
y = R sin θ
z = κ

(11.6)

On vérifie qu’en éliminant les paramètres dans le système d’équations, on retrouve bien
l’équation cartésienne de la surface :

x2 + y2 = R2
(
cos2 θ + sin2 θ

)
= R2 (11.7)

Qui correspond à la forme classique d’une surface cylindrique dont l’axe est parallèle à l’axe
Oz (l’équation cartésienne ne comporte pas de terme en z).

11.3 Représentation paramétrique des quadriques

Ce chapitre présente les paramétrisations permettant de définir les quadriques dont les équations
cartésiennes ont été établies au § 10.3.1. Il y a une correspondance directe entre les termes
présentes dans ces équations et la forme utilisée pour représenter leurs équations cartésiennes
(a dans les équations paramétriques de la surface ellipsoïde a la même signification que a dans
l’équation cartésienne présentée précédemment).

Ellipsoïde Hyperboloïde à une nappe
x = xC + a · cosu · cos v
y = yC + b · cosu · sin v
z = zC + c · sinu


x = xC + a · coshu · cos v
y = yC + b · coshu · sin v
z = zC + c · sinhu
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Figure 11.4 – Ellipsoïde. Figure 11.5 – Hyperboloïde à une nappe.

Hyperboloïde à deux nappes Paraboloïde hyperbolique
x = xC + a · sinhu · cos v
y = yC + b · sinhu · sin v
z = zC +±c · coshu


x = xC + a · u
y = yC + b · v
z = zC + (u2 − v2)

Figure 11.6 – hyperboloïde à deux nappes. Figure 11.7 – Paraboloïde hyperbolique.

Paraboloïde elliptique Cône à base elliptique
x = xS + a ·

√
u cos v

y = yS + b ·
√
u sin v

z = zS + u


x = xS + au cos v
y = yS + bu sin v
z = zS + cu

Figure 11.8 – Paraboloïde elliptique. Figure 11.9 – Cône elliptique.
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11.4 Représentation vectorielle et paramétrique des
surfaces de révolution

Soit une courbe plane dessinée dans le plan frontal donnée par ses équations paramétriques.
Pour obtenir les équations paramétriques de la surface de révolution autour de l’axez Oz, un
choix naturel des paramètres (figure 11.10) serait :

— θ qui représente l’angle entre le plan contenant une section de la surface et le plan dans
lequel est dessiné la courbe de base ;

— le paramètre ϕ employé pour décrire la courbe plane dans le plan frontal.

Figure 11.10 – Paramétrisation pour une forme de révolution.

La forme générale des équations paramétriques d’une surface de révolution autour de l’axe Oz
est donc : 

x = f1(ϕ) sin θ
y = f1(ϕ) cos θ
z = f2(ϕ)

(11.8)

Si on souhaite obtenir la surface de révolution autour de l’axe Oy, les équations deviennent :
x = f2(ϕ) cos θ
y = f1(ϕ)
z = f2(ϕ) sin θ

(11.9)

Par permutation circulaire, on trouve la forme générale des équations paramétriques d’une
surface de révolution autour de l’axe Ox
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11.5 Représentation vectorielle et paramétrique de
surfaces réglées

Comme présenté sous la forme cartésienne, une surface réglée est constituée d’une infinité
de droites (génératrices) auxquelles on impose trois contraintes géométriques pour qu’elles
forment une surface unique. Dans le cadre de ce cours, nous ne considèrerons que trois types
de contraintes qui peuvent se combiner :

— toutes les génératrices sont sécantes avec une courbe (courbe guide ou directrice) ;
— toutes les génératrices sont parallèles à un plan (plan directeur) ;
— toutes les génératrices sont tangentes à une surface (noyau).

Pour obtenir les équations paramétriques d’une surface réglée, on commence par écrire les
équations paramétriques générales d’une droite :

x = xP + λVx
y = yP + λVy
z = zP + λVz

(11.10)

Avec P (xP , yP , zP ) un point et
−→
V (Vx, Vy, Vz) un vecteur directeur. Pour conserver le sens

physique, on va maintenir le paramètre λ et essayer d’exprimer les coordonnées du point et
du vecteur directeur en fonction d’un paramètre unique µ :

x = xP (µ) + λVx(µ)
y = yP (µ) + λVy(µ)
z = zP (µ) + λVz(µ)

(11.11)

Les lignes coordonnées à µ = cste sont donc l’ensemble des génératrices de la surface
réglée (figure 11.11). Généralement, la résolution est plus simple en appliquant dans l’ordre
les condition de passage par une directrice, puis de parallélisme à un plan directeur, puis
de tangence à un noyau. Ces contraintes sont prises en compte mathématiquement comme
mentionné par la suite. De manière générale, il est plus simple de traiter dans l’ordre suivant
les contraintes géométriques : d’abord les contraintes de passage par la ou les courbes guides,
puis le parallélisme au(x) plan(s) directeur(s) et finalement la tangence au(x) noyau(x)

Figure 11.11 – Lignes coordonnées sur une surface réglée.

157



CHAPITRE 11. REPRÉSENTATION VECTORIELLE ET PARAMÉTRIQUE DE
SURFACES

11.5.1 Prise en compte de la condition de passage par une directrice

S’il n’y a qu’une seule directrice, il suffit de remplacer les coordonnées du point P par les
équations paramétriques de la courbe directrice. Les équations 11.10 deviennent donc :

x = xP (µ) + λVx
y = yP (µ) + λVy
z = zP (µ) + λVz

(11.12)

S’il y a deux directrices, il faut en plus exprimer le vecteur
−→
V comme un vacteur joignant

un point de la première courbe (exprimé selon ses équations paramétriques) et un point de
la seconde courbe (lui aussi exprimé sous forme paramétrique. Les équations 11.10 deviennent
donc : 

x = xP (µ) + λVx(µ, ν)
y = yP (µ) + λVy(µ, ν)
z = zP (µ) + λVz(µ, ν)

(11.13)

S’il y a trois génératrices, il faut exprimier le fait qu’il y nécessairement a un point d’intersection
entre la surface et cette troisième génératrice. Mathématiquement parlant, cela signifie que le
système forme des équations 11.13 et des équations de la troisième génératrice est compatible :

x = xP (µ) + λVx(µ, ν)
y = yP (µ) + λVy(µ, ν)
z = zP (µ) + λVz(µ, ν)
x = f1(ω)
y = f2(ω)
z = f3(ω)

(11.14)

11.5.2 Prise en compte de la présence d’un plan directeur

Exeprimer que toutes les génératrices sont parallèles à un plan directeur revient à exprimer
que le produit scalaire entre le vecteur directeur des génératrices et le vecteur normal au plan
s’annule : −→

V ·
−→
N = 0 (11.15)

Cette relation donne une équation algébrique permettant d’éliminer un paramètre dans le
système 11.10.

11.5.3 Prise en compte de la présence d’un noyau

Exprimer due toutes les génératrices sont tangentes à un noyau défini par une équation
cartésienne F (x, y, z) = 0 revient à exprimer que le système regroupant les équations de la
surface réglée et l’équation du noyau présente une racine multiple :

x = xP (µ) + λVx(µ, ν)
y = yP (µ) + λVy(µ, ν)
z = zP (µ) + λVz(µ, ν)
F (x, y, z) = 0

(11.16)

En pratique, on résoud le système d’équation pour faire apparaître une équation ayant λ comme
variable et on recherche les conditions d’apparition de racines multiples. Dans le cas de ce cours,
nous nous limiterons au cas d’un noyau qui est une quadrique, l’équation sera donc du deuxième
degré et possèdera une racine double si son déterminant est nul.
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11.6 Représentation vectorielle et paramétrique de
surfaces coniques

Pour rappel, une surface conique est une surface réglée particulière puisque toutes ses
génératrices passent par un point unique appelé sommet. Sa fonction vectorielle est

Figure 11.12 – Exemple de surface conique.

nécessairement de la forme : −→
V =

−→
OS + λ

−→
SP (µ) (11.17)

Il suffit donc de déterminer les coordonnées d’un vecteur directeur (fonction d’un seul
paramètres) pour reconstituer les équations paramétriques d’une surface. Cela passe par
l’application des conditions de passage par une courbe directrice ou de tangence à un noyau
décrites précédemment. La condition de parallélisme à un plan directeur n’a pas de sens
puisqu’elle conduit à la définition d’un plan (ensemble de droites passant par un point et
parallèles à un plan.
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CHAPITRE 12. ANALYSE DES COURBES SPATIALES

Chapitre 12

Analyse des courbes spatiales

Roads ? Where we’re going we don’t need roads

- E. Brown, Back to the future

12.1 Représentation cartésienne de courbes spatiales

La représentation cartésienne de courbes spatiales se fait en considérant qu’une courbe spatiale
est l’intersection de deux surfaces. La réunion des équations cartésiennes des deux surfaces
permet la définition de la courbe sous la forme :{

F1(x, y, z) = 0
F2(x, y, z) = 0

(12.1)

Figure 12.1 – Equations cartésiennes d’une courbe.
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De manière générale, deux surfaces peuvent se couper selon une ou plusieurs courbes ; prenons
l’exemple suivant : {

F1(x, y, z) ≡ x2 + y2 + z2 − 4 = 0

F2(x, y, z) ≡ (x+ xc)
2 + y2 − 1 = 0

(12.2)

On reconnait les équations d’une sphère centrée en l’origine de rayon 2 et d’un cylindre à base
circulaire d’axe parallèle à Oz de rayon 1. Suivant la valeur de xc, on peut avoir :

— deux courbes d’intersection si |xc| < 3 ;
— une seule courbe d’intersection si |xc| = 1
— aucun point commun si |xc| > 3
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Figure 12.2 – Intersection entre un
cylindre et une sphère : cas xc=0 (deux
cercles d’intersection).
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Figure 12.3 – Intersection entre un
cylindre et une sphère : cas xc=1 (Courbe
de Viviani).
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Figure 12.4 – Intersection entre une sphère et un cylindre : cas xc=4 (pas d’intersection).

Lorsque xc vaut zéro, le cylindre coupe la sphère selon deux cercles, ce qui prouve qu’il est
possible d’obtenir une courbe d’intersection plane entre deux corps ronds.

161



CHAPITRE 12. ANALYSE DES COURBES SPATIALES

Pour étudier la morphologie de surfaces, deux possibilités classiques existent : étudier leur
intersections avec un ensemble de plans pour faire apparaître un réseau de courbes sur la
surface ou les projeter sur les plans coordonnés afin d’en faire les plans techniques.

12.1.1 Intersection d’une surface avec un plan

L’intersection d’une surface avec un plan donne logiquement une courbe plane. Si le plan est
parallèle à un plan coordonné, on parlera de courbes de niveaux de la surface. Dans le cas
contraire, des opérations de transformation homogène (ou de changement de repère) seront
nécessaires. La représentation d’un ensemble de telles courbes permet de visualiser le ’squelette’
de la surface et donc de s’en représenter l’allure générale.

12.1.1.1 Courbes de niveaux

Dans le cas particulier de l’intersection d’une surface avec un plan parallèle au plan Oxy, la
courbe a pour équations : {

F (x, y, z) = 0
z = k

(12.3)

où k est une constante. Par combinaison linéaire, on peut transformer simplement le système
en sa variante : {

F (x, y, k) = 0
z = k

(12.4)

qui représente l’intersection d’une surface cylindrique d’axe Oz (donné par une équation
cartésienne dans laquelle la coordonnée z n’intervient pas) par un plan qui est perpendiculaire
à son axe. Comme présenté au §10.2, si ces deux conditions sont remplies, l’équation cartésienne
de la surface cylindrique a la même expression que l’équation cartésienne de la courbe de base
dans le plan z = k. On peut donc par cette méthode retrouver une équation cartésienne 2D
(F (x, y) = 0) de la courbe plane pour ensuite l’étudier avec les méthodes classiques d’analyse
2D.

La figure 12.5 présente le cas simple de l’intersection entre un cône et un plan horizontal. La
courbe d’intersection a pour équations :{

(x− 1)2 + (y − 2)2 − z2

8
= 0

z = 2
(12.5)

Ce système peut également s’écrire{
(x− 1)2 + (y − 2)2 − 0, 5 = 0
z = 2

(12.6)

Qui représente l’intersection d’un cylindre d’axe Oz dont la base est un cercle de rayon
√
0, 5

avec un plan horizontal. On a les deux conditions remplies (cylindre d’axe parallèle à un axe du
système de coordonnées et plan perpendiculaire à cet axe), on peut donc dire que ce système
est équivalent à une courbe dessinée dans le plan z = 2 dont l’équation cartésienne est :

f(x, y) ≡ (x− 1)2 + (y − 2)2 − 0, 5 = 0 (12.7)
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Figure 12.5 – Exemple de l’intersection entre un cône et un plan. 163
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L’emploi de courbes d’intersection avec des plans perpendiculaires à Oz est d’emploi fréquent
pour l’analyse des variations de fonctions de deux variables (optimisation) ou pour l’étude du
relief sur des cartes (on parle alors de courbes de niveaux).
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Figure 12.6 – Courbes de niveau sur un
paraboloïde hyperbolique.
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Figure 12.7 – Courbes de niveau sur un
paraboloïde hyperbolique projetées sur le
plan Oxy.

La décomposition en lignes tracées dans des plans parallèles n’est pas nécessairement le meilleur
choix dans le cas de surfaces de révolution (figure 12.8). Dans ce cas, il est préférable d’établir
les intersections entre la surface et un faisceau de plans convergeant à l’axe de rotation de la
surface (figure 12.9).
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Figure 12.8 – Lignes coordonnées d’une
sphère (coordonnées cartésiennes).
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Figure 12.9 – Lignes coordonnées d’une
sphère (coordonnées sphériques).

12.1.1.2 Etude de courbe plane résultant de l’intersection d’une surface avec un
plan quelconque

Dans le cas où le plan n’est pas perpendiculaire à un des axes, les équations cartésiennes de la
courbe plane sont de la forme : {

F (x, y, z) = 0
ax+ by + cz + d = 0

(12.8)

Cette forme n’est pas directement exploitable pour revenir à l’expression d’une courbe 2D. Il
faut au préalable opérer un changement de repère (ou utiliser des transformations homogènes)
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pour appliquer la procédure d’analyse des courbes de niveau. L’objectif du changement de
repère est de se mettre dans une nouvelle configuration pour laquelle l’un des axes du nouveau
système de coordonnées (par exemple z′) est aligné avec la normale au plan.

Figure 12.10 – Exemple de l’intersection entre une sphère et un plan quelconque.

Dans cette configuration, le système d’équations devient :{
F (x′, y′, z′) = 0
z′ = k

(12.9)

La procédure vue à la section précédente peut alors être suivie.

12.1.2 Projection sur les plans coordonnés

Pour déterminer les projections orthogonales d’une courbe sur les plans coordonnés, on utilise la
notion de contour apparent. La courbe est considérée être la directrice d’une surface cylindrique
dont les génératrices sont perpendiculaires au plan coordonné (figure 12.11).

Les équations cartésiennes de ces cylindres sont obtenues en éliminant les termes en x (ou en y
ou en z) entre les équations cartésiennes de deux surfaces pour obtenir la surface cylindrique
perpendiculaire à Oyz (ou à Oxz ou à Oxy). Par exemple, pour trouver la projection frontale
du cercle suivant : {

x2 + y2 + z2 − 1 = 0
x+ y + z − 1 = 0

(12.10)

Il faut, par combinaisons linéaires, obtenir les équations d’un cylindre d’axe perpendiculaire à
Ox. Cela peut se faire en tirant x = 1 − y − z de la seconde équation et de substituer x par
cette expression dans la première équation :{

(1− y − z)2 + y2 + z2 − 1 = 0 → z2 + y2 − yz − y − z = 0
x+ y + z − 1 = 0

(12.11)
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Figure 12.11 – Cylindres projetants d’une sphère.

La première équation du système représente le cylindre projetant de la courbe sur le plan
frontal. La projection frontale de la courbe est donc donnée par l’intersection de ce cylindre
projetant avec le plan frontal, c’est à dire :{

z2 + y2 − yz − y − z = 0
x = 0

(12.12)

Ou encore selon f(y, z) ≡ z2 + y2 − yz − y − z = 0.

Si on souhaite obtenir une construction points par points d’une courbe donnée sous forme
cartésiennes, on peut procéder comme suit :

— Rechercher les cylindres projetant de la courbe perpendiculairement à deux des axes
coordonnés (Oy et Oz par exemple) ;

— procéder un tracé points par points (c’est à dire fixer une des coordonnées, x pour cet
exemple, et rechercher les racines des fonctions f(y) et f(z)) des deux courbes ;

— reporter les coordonnées x, y et z des points obtenus.
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12.1.3 Contrôle du caractère plan d’une courbe donnée par ses
équations cartésiennes

Comme nous avons pu le présenter dans l’introduction de ce chapitre, une courbe plane peut
être obtenue par l’intersection des deux surfaces qui ne sont pas elles-mêmes planes. Il est
intéressant de pouvoir déterminer si une courbe est plane à partir de ses équations cartésiennes
ce qui permet, si c’est le cas, d’étudier cette courbe plane comme une fonction à deux variables
comme expliqué au § précédent.
Considérons la courbe définie par ses équations cartésiennes :{

F1(x, y, z) = 0
F2(x, y, z) = 0

(12.13)

Pour opérer la vérification du caractère plan de la courbe, il suffit de vérifier qu’il est possible
d’obtenir l’équation d’un plan par combinaison linéaire des équations des deux surfaces décrivant
la courbe, c’est-à-dire d’obtenir une équation linéaire en x, y et z. Dans ce cas, le système
d’équation 12.13 est équivalent à :{

F1(x, y, z) = 0
F3(x, y, z) = αF1(x, y, z) + βF2(x, y, z) ≡ ax+ by + cz + d = 0

(12.14)

Ce système peut s’interpréter comme l’intersection de la surface 1 avec un plan, on a donc
effectivement une courbe plane.
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12.2 Fonction vectorielle et paramétrique d’une courbe
spatiale

Une deuxième méthode de définition d’une courbe de l’espace est de décrire la position d’un
point P variable sur la courbe sous la forme d’une fonction vectorielle à un paramètre :

−→
OP =

−→
V (p) (12.15)

qui est la fonction vectorielle de la courbe. Le paramètre p peut être choisi de manière
quelconque. Une paramétrisation classique pour le suivi de trajectoires spatiales est l’emploi
d’un paramètre temporel.

Figure 12.12 – Equation vectorielle de courbe spatiale.

La projection de l’équation vectorielle d’une courbe sur les axes du repère donne accès à ses
équations paramétriques : 

x = x(t)
y = y(t)
z = z(t)

(12.16)

Cette méthode est fréquemment rencontrée pour décrire le mouvement d’un mobile soumis à
un champ de force ou ayant un mouvement composé. On peut par exemple citer le mouvement
hélicoïdal qui est la superposition de deux mouvements élémentaires : une rotation à vitesse
constante autour d’un axe (Oz par exemple) et une translation le long de cet axe.
Ce mouyement est décrit par un rayon R et un pas p (distance parcourue le long de l’axe pour
chaque tour effectué)(figure 12.13).
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Figure 12.13 – Hélice cylindrique.

Les équations cartésiennes de cette courbe sont obtenues associant les équations du mouvement
circulaire (pour x et y) et du mouvement de translation (pour z), ce qui donne :

x = R sin θ
y = R cos θ
z = p

2π
θ

(12.17)

La fonction vectorielle de la courbe est simplement exprimée par :

−→
V (θ) = R sin θ−→u x +R cos θ−→u y +

p

2π
θ−→u z (12.18)

169



CHAPITRE 12. ANALYSE DES COURBES SPATIALES

12.2.1 Notion de lignes coordonnées

Comme nous venons de le voir, la représentation de surfaces de R3 sous forme paramétrique
implique l’utilisation de deux paramètres. En fixant la valeur de l’un d’entre eux et en faisant
varier l’autre, on décrit une ligne qui appartient à la surface appelée ligne coordonnée de la
surface. Ces lignes coordonnées peuvent être utilisées comme moyen de représentation de la
surface sous forme « fil de fer ». Elles peuvent prendre un sens physique si le choix de la
paramétrisation a été opéré de manière judicieuse. Par exemple, les lignes coordonnées sur une
sphère décrite classiquement par ses coordonnées sphériques (cf § 11.2.1) présente des lignes
coordonnées qui représentent les méridiens et les parallèles tracés sur cette sphère (figure 12.14).
Le méridien de longitude 60◦ (cercle situé dans un plan vertical) a pour expression

Parallèle

Méridien

Figure 12.14 – Lignes coordonnées sur une sphère.


x = R cosϕ cosπ/3 = 0, 5R cosϕ

y = R cosϕ sin π/3 =
√
3/2 cosϕ

z = R sinϕ
(12.19)

Le parallèle de latitude 45◦ (cercle situé dans un plan horizontal) a pour expression
x =

√
2/2R cos θ

y =
√
2/2R sin θ

z =
√
2/2R

(12.20)
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12.2.2 Obtention des équations paramétriques d’une courbe à partir
des équations des surfaces dont l’intersection donne la courbe

Si une courbe est définie par l’intersection de deux surfaces, ont peut formellement la décrire
par le système d’équations suivantes : 

x = f1(α, β)
y = f2(α, β)
z = f3(α, β)
x = g1(λ, µ)
y = g2(λ, µ)
z = g3(λ, µ)

(12.21)

Il s’agit d’un système de six équations à trois inconnues et à quatre paramètres (α, β, λ, µν).
Pour le transformer en une expression classique (trois équations à trois inconnues à un seul
paramètre), il est nécessaire d’éliminer du système trois des quatre paramètres. Pour ce faire,
on commence par exprimer que pour tout point de la courbe a des coordonnées x, y et z qui
vérifient à la fois les équations de la première surface et celles de la deuxième. On peut donc
extraire trois équations de la forme :

f1(α, β) = g1(λ, µ)
f2(α, β) = g2(λ, µ)
f3(α, β) = g3(λ, µ)

(12.22)

On dispose donc de trois relations entre quatre paramètres. En exprimant un paramètre en
fonction des trois autres, puis en substituant cette valeur dans les équations paramétriques de
l’une des surfaces, on obtient les équations paramétriques de la courbe recherchée. Un exemple
est traité en §15.5.6 (page 228).

12.2.3 Contrôle du caractère plan d’une courbe donnée par ses
équations paramétriques

Le contrôle du caractère plan d’une courbe donnée par ses équations paramétriques peut
s’effectuer de deux manières différentes [1] :

— on vérifie que l’ensemble des points de la courbe vérifier l’équation d’un plan, ce qui
implique de trouver des valeurs de a, b, c et d non tous nuls tels que a ·f1(u)+ b ·f2(u)+
c · f3(u) + d = 0 soit vérifié pour toute valeur du paramètre u ;

— on transforme les équations paramétriques en équations cartésiennes (comme présenté
au § 12.2.4) et on vérifie s’il est possible d’obtenir une combinaison linéaire des équations
du système qui donne l’équation d’un plan.

Un exemple résolu est présenté au §15.5.5 (page 227).
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12.2.4 Recherche des équations cartésiennes d’une courbe à partir de
ses équations paramétriques

Si les équations paramétriques d’une courbe sont données, il est possible de retrouver les
équations de deux surfaces dont l’intersection donne la courbe. Il suffit pour ce faire d’éliminer
le paramètre entre les équations paramétriques de la courbe. Les relations ainsi obtenues sont
des fonctions de x, y et z, c’est-à-dire l’expression cartésiennes de surface. L’ensemble des points
de la courbe sont inclus dans ces surfaces. Notons que si l’élimination des paramètres se fait
en considérant les équations paramétriques de la courbe deux à deux, on obtient des relations
qui ne contiennent que deux des variables parmi x, y et z. La courbe se présente alors comme
l’intersection de deux de ses cylindres projetant.
Prenons l’exemple de l’ellipse suivante :

x = 4 + 2 cos θ
y = 3 + 2 cos θ
z = −5− 2 cos θ

θ ∈ [0 2π[ (12.23)

En éliminant le paramètre θ entre les deux premières équations puis entre la première et la
troisième, on trouve les équations cartésiennes suivantes :{

(x− 4)2 + (y − 2)2 − 22 = 0
x+ z − 6 = 0

θ ∈ [0 2π[ (12.24)

L’ellipse est donc l’intersection d’un cylindre circulaire d’axe parallèle à Oz et d’un plan de
profil (figure 12.15).

Figure 12.15 – ellipse inclinée.
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Chapitre 13

Géométrie différentielle des courbes
spatiales et des surfaces

La tangente a plus de puissance que la sécante

- V. Hugo, Tas de pierres

13.1 Tangente à une courbe spatiale

13.1.1 Tangente en un point régulier d’une courbe spatiale

La détermination de la tangente à une courbe spatiale peut être réalisée en étendant le concept
de tangentes à une courbe plane (cf § 8.3). En partant de la fonction vectorielle définissant une
courbe : −→

V (t) = x (t)−→ux + y (t)−→uy + z (t)−→uz (13.1)

Figure 13.1 – Sécante à une courbe 3D.
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Le développement de Taylor de cette fonction vectorielle autour du point t0 s’écrit :

−→
V (t)−

−→
V (t0) =

(t− t0)
1

1!

−→
V ′ (t0) +

(t− t0)
2

2!

−→
V ′′ (t0) + · · ·+ (t− t0)

n

n!

−→
V n (t0) +

−→
Rn (t, t0) (13.2)

avec

lim
t→t0

−→
Rn (t, t0)

(t− t0)
n =

−→
0 (13.3)

Le vecteur
−→
V (t)−

−→
V (t0) =

−−−→
M0M est aligné sur la sécante à la courbe passant par le point M

(figure 13.1).

Comme dans le cas 2D, la tangente est obtenue par le passage à la limite (t→ t0) de la sécante,
en divisant les deux membres de l’équation 13.2 par (t− t0) :

lim
t→t0

−→
V (t)−

−→
V (t0)

t− t0
= lim

t→t0

(
−→
V ′ (t0) +

(t− t0)
1

2!

−→
V ′′ (t0) + · · ·

· · ·+ (t− t0)
n−1

n!

−→
V n (t0) +

−→
Rn (t, t0)

t− t0

)
(13.4)

Tous les termes autres que
−→
V ′ (t0) s’annulent quand t tend vers t0 :

lim
t→t0

−→
V (t)−

−→
V (t0)

t− t0
=

−→
V ′ (t0) (13.5)

ce qui signifie qu’un vecteur tangent à la courbe définie par sa fonction vectorielle en t0 est
la dérivée première de cette fonction vectorielle calculée en t0 si cette dérivée n’est pas le
vecteur nul. On parle dans ce cas de point régulier de la courbe. Comme dans le cas 2D, si la
dérivée première de la fonction vectorielle s’annule, on parlera de point singulier.

13.1.2 Notion de point singulier d’une courbe spatiale

Comme dans le cas de courbes 3D, si la dérivée première de la fonction vectorielle d’une courbe
s’annule en un point, on parle de point singulier. Un vecteur tangent à la courbe peut être
obtenu en augmentant l’ordre de dérivation jusqu’à obtenir une dérivée d’ordre p de la fonction
vectorielle non nulle. Dans le cas de courbe spatiale, on peut faire la distinction entre deux types
de points singulier : les points dits de branchement (cf figure 13.2) et les points de rebroussement
(figure 13.3). La détermination du type de point singulier de courbe spatiale sort du cadre de
ce cours ; elle est détaillée dans la référence[1].
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Figure 13.2 – La courbe de fonction vectorielle
−→
V (t) = t3 · −→ux + t4 · −→uy + (t3 + t4) · −→uz présente

un point singulier de branchement en l’origine.
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Figure 13.3 – La courbe de fonction vectorielle
−→
V (t) = t2 · −→ux + t5 · −→uy + t8 · −→uz présente un

point singulier de rebroussement en l’origine.

13.1.3 Equations de la tangente à une courbe

Comme démontré précédemment, la direction du vecteur tangent en t0 est donnée par la
première dérivée non nulle de la fonction vectorielle de la courbe calculée en t0. On trouve
donc immédiatement que la fonction vectorielle décrivant le tangente à la courbe est :

−→
T (λ) =

−→
V (t0) + λ

−→
V p (t0) (13.6)

Les équations paramétriques de la tangente sont obtenues en projetant la fonction vectorielle
sur les axes du repère : 

x = Vx (t0) + λ · V p
x (t0)

y = Vy (t0) + λ · V p
y (t0)

z = Vz (t0) + λ · V p
z (t0)

(13.7)

La forme canonique des équations cartésiennes de cette tangente s’exprime selon :

x− Vx (t0)

V p
x (t0)

=
y − Vy (t0)

V p
y (t0)

=
z − Vz (t0)

V p
z (t0)

(13.8)

Un exemple est présenté au §15.6.1 (page 230).

176



CHAPITRE 13. GÉOMÉTRIE DIFFÉRENTIELLE 3D

13.2 Plan tangent à une surface

Un plan tangente à une surface en un point est le plan contenant simultanément l’ensemble des
tangentes à toutes les courbes de la surface passant par le point donné (figure 13.4). Un plan
tangent ne peut être défini que pour des points dits réguliers de la surface (cette notion sera
précisée plus loin dans cette section).

Figure 13.4 – Plan tangent à une surface.

13.2.1 Surface décrite par son équation implicite

Soit une surface définie par son équation implicite F (x, y, z) = 0 (F et ses dérivées partielles
premières sont considérée comme continues). On considère qu’un point P de coordonnées
(xP , yP , zP ) est régulier si les dérivées premières de F calculées en ce point ne sont pas
simultanément toutes nulles, c’est-à-dire si :∣∣∣∣(∂F∂x

)
P

∣∣∣∣+ ∣∣∣∣(∂F∂y
)

P

∣∣∣∣+ ∣∣∣∣(∂F∂z
)

P

∣∣∣∣ ̸= 0 (13.9)

Considérons une ligne appartenant à la surface, ses équations paramétriques sont de la forme :
x = f1 (t)
y = f2 (t)
z = f3 (t)

(13.10)

Comme la ligne appartient à la surface, l’ensemble de ses points vérifie l’équation de la surface,
ce qui implique que :

F (f1 (t) , f2 (t) , f3 (t)) ≡ 0 (13.11)
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Figure 13.5 – Plan tangent à une surface définie par son équation implicite.

En dérivant cette expression par rapport au paramètre t et en particularisant au point P , on
obtient :(

dF

dt

)
P

=

(
∂F

∂f1

)
P

·
(
df1
dt

)
P

+

(
∂F

∂f2

)
P

·
(
df2
dt

)
P

+

(
∂F

∂f3

)
P

·
(
df3
dt

)
P

≡ 0 (13.12)

Nous avons vu au chapitre précédent que les équations paramétriques de la tangente en P à la
courbe s’écrivaient (pour autant que le point P soit un point régulier) :

x = xP + λ

(
df1
dt

)
P

y = yP + λ

(
df2
dt

)
P

z = zP + λ

(
df3
dt

)
P

(13.13)

(xT , yT , zT ) représentent les coordonnées de points de la tangente à la courbe. En combinant
ces deux dernières expressions, on obtient :(

∂F

∂f1

)
P

· x− xP
λ

+

(
∂F

∂f2

)
P

· y − yP
λ

+

(
∂F

∂f3

)
P

· x− xP
λ

≡ 0 (13.14)

On peut noter que dériver F (x, y, z) selon x, y ou z est équivalent à dériver F (f1, f2, f3) selon
f1, f2 et f3, ce qui implique que les points de la tangente à la courbe vérifient l’équation :(

∂F

∂x

)
P

· (x− xP ) +

(
∂F

∂y

)
P

· (y − yP ) +

(
∂F

∂z

)
P

· (z − zP ) ≡ 0 (13.15)
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Le même raisonnement aboutit à cette même conclusion pour n’importe quelle courbe prise
sur la surface (figure 13.5), ce qui signifie que l’équation 13.15 décrit l’équation cartésienne du
plan tangent à la surface en P . La condition de non singularité du point P (équation 13.9)
assure que l’équation ne dégénère pas en une équation 0 = 0. Il faut noter qu’un point singulier
d’une surface, il n’est pas possible de définir un plan tangent, mais bien un cône tangent à la
surface[2].

13.2.2 Surface décrite par son équation explicite

Pour rappel, la forme explicite de représentation d’une surface est du type :

z = f(x, y) (13.16)

Cette expression est équivalente à la formulation implicite suivante :

F (x, y, z) ≡ z − f(x, y) = 0 (13.17)

On peut donc appliquer directement l’équation 13.15, en notant que dans le cas présent :

∂F

∂x
= −∂f

∂x

∂F

∂y
= −∂f

∂y

∂F

∂z
= 1 (13.18)

Ce qui donne :

−
(
∂f

∂x

)
P

· (x− xP )−
(
∂f

∂y

)
P

· (y − yP ) + (z − zP ) ≡ 0 (13.19)

Cette formulation est équivalente à celle décrite dans [3]

13.2.3 Surface donnée par sa fonction vectorielle

Soit une surface définie par sa fonction vectorielle
−→
V (λ, µ). On peut mener le même type de

raisonnement que celui employé au § 13.2.1, c’est-à-dire de déterminer le plan tangent en un
point comme le plan contenant les tangentes à l’ensemble des courbes de la surface passant par
un point donné.

Un choix naturel est de prendre les deux lignes coordonnées passant par le point déterminé
(figure 13.6). Pour rappel, les lignes coordonnées sont les lignes de la surface obtenues en
considérant que l’un des paramètres de la fonction vectorielle est constant. Les deux vecteurs
tangents aux lignes coordonnées passant par le point P donnent les deux vecteur de base
définissant le plan tangent. Si le point P est défini par les valeurs des paramètres λP et µP , les
deux lignes coordonnées passant par P ont pour fonction vectorielle respectivement

−→
V (λP , µ)

(fonction de µ uniquement) et
−→
V (λ, µP ) (fonction de λ uniquement). Les vecteurs tangents

à ces courbes ont pour fonction vectorielle :(
d
−→
V (λ, µP )

dλ

)
λP

et

(
d
−→
V (λP , µ)

dµ

)
µ

(13.20)

qui correspondent simplement aux dérivées partielles de la fonction vectorielle selon λ ou µ
calculées au point P.
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Figure 13.6 – Plan tangent à une surface définie par son équation vectorielle.

La fonction vectorielle du plan tangent s’établit donc selon :

−→
T (α, β) =

−→
V (λP , µP ) + α ·

(
∂
−→
V

∂λ

)
λP ,µP

+ β ·

(
∂
−→
V

∂µ

)
λP ,µP

(13.21)

Pour que cette équation détermine effectivement un plan, il faut que les deux vecteurs
(
∂V
∂λ

)
λP ,µP

et
(

∂V
∂µ

)
λP ,µP

soient linéairement indépendants, ce qui est une autre façon d’exprimer que le

point P ne soit pas singulier.

13.3 Normale à une surface en un point

A partir du moment où les équations du plan tangent sont obtenues, il est aisé de retrouver
les équations de la normale à une surface en un point. En effet, la normale à une surface est
orthogonale au plan tangent et passe par le point considéré (figure 13.7).

La fonction vectorielle décrivant cette normale est donc :
−−→
ON (λ) =

−→
OP + λ

−→
N (13.22)

−→
N est le vecteur normal au plan tangent à la surface au point P . Si la surface est décrite par
sa fonction implicite F (x, y, z) = 0, ce vecteur peut être obtenu selon :

−→
N =

((
∂F

∂x

)
P

,

(
∂F

∂y

)
P

,

(
∂F

∂z

)
P

)
(13.23)

Si la surface est décrite par sa fonction vectorielle
−→
V (λ, µ), un vecteur normal est obtenu en

faisant le produit vectoriel des deux vecteurs définissant le plan tangent :

−→
N =

(
∂
−→
V

∂λ

)
λP ,µP

∧

(
∂
−→
V

∂µ

)
λP ,µP

(13.24)
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CHAPITRE 14. EXEMPLE D’EXERCICES CLASSIQUES AVEC RÉSOLU POUR LA
PREMIÈRE PARTIE DU COURS (PLANS TECHNIQUES ET ÉPURES DE MONGE)

Chapitre 14

Exemple d’exercices classiques avec résolu
pour la première partie du cours (Plans
techniques et épures de Monge)

Vingt fois sur le métier remettez votre ouvrage, Polissez-le sans cesse, et le
repolissez, Ajoutez quelquefois, et souvent effacez.

- Boileau, L’Art poétique

14.1 intersection polyèdre - plan en axonométrie

On souhaite obtenir la section de la pyramide SABCD par le plan passant par les points E,
F et G (figure 14.1). La construction consiste à utiliser la propriété que deux droites sécantes
sur la vue en isométrie sont sécantes dans l’espace pour autant qu’elles soient coplanaires. On
peut donc successivement réaliser les constructions suivantes (figure 14.2)

— prolonger FG (qui appartient à la face ABS) jusqu’à trouver une intersection avec AB.
Ce point H appartient à AB, donc à la base ABCD du tétraèdre ;

— prolonger FE (qui appartient à la face ADS) jusqu’à trouver une intersection avec AD.
Ce point I appartient à AD, donc à la base ABCD du tétraèdre ;

— la droite HI appartient donc au plan de base ABCD et est donc sécante avec toute
droite appartenant à cette base. En particulier avec BC en J et CD en K ;

— le polygone FGJKE détermine la section de la pyramide par le plan.
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Figure 14.1 – Recherche de la section de la pyramide ABCDS par le plan EFG. 184
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Figure 14.2 – Section de pyramide. 185
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14.2 Vue de profil

14.2.1 Mise en vraie grandeur

Prenons l’exemple du tracé de la figure 14.3. Le simple examen de la figure rend difficile
d’analyser le type de quadrilatère représenté par les points ABCD. En recherchant les
projections de profil des quatre points, on peut constater que le quadrilatère ABCD est un
trapèze (construction en figure 14.4).

14.2.2 intersection de droites de profil

Si deux droites sont contenues dans un même plan de profil, on peut trouver leur intersection
via l’emploi de la projection de profil. Par exemple sur la figure 14.5 :

— les points A, B, C et D sont situés dans un même plan de profil π ;
— si la ligne de terre secondaire n’est pas imposées, la placer arbitrairement et rechercher

les projection de profil des quatre points ;
— Le point d’intersection en projection de profil est à l’intersection des droites AB et CD

en projection de profil ;
— les projections horizontale et frontale du point d’intersection se retrouvent en utilisant

les deux propriétés de base :
1. la distance entre W p et le ligne de terre donne la cote de W ;
2. la distance entre W p et la ligne de terre secondaire donne l’éloignement de W .
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Figure 14.3 – Quadrilatère situé dans un plan de profil.
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Figure 14.4 – Recherche des projections de profil d’un quadrilatère.
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Figure 14.5 – Intersection de deux droites de profil.
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14.3 Traces d’un plan

Pour trouver les traces d’un plan, il faut de manière générale trouver les traces horizontales et
frontales de deux droites contenues dans le plan. S’il n’est pas possible de trouver ces quatre
points, il est possible d’employer une voie alternative.

14.3.1 Il n’y a que trois traces de droites dans l’épure

Dans ce cas de figure, on relie les deux traces Dans le même plan de projection et on recherche
l’intersection de cette droite avec la ligne de terre pour obtenir un second point de la seconde
trace du plan. Par exemple sur la figure 14.6, on va successivement :

— trouver les traces Ia de la droite a et Ib et Jb de la droite b ;
— relier Ia et Ib pour obtenir la trace horizontale du plan dont l’intersection avec la ligne

de terre donne le point K ;
— relier le point K à Jb pour obtenir la trace frontale du plan.

14.3.2 Le plan contient une droite parallèle à un plan de projection

Dans ce cas de figure, il suffit d’utiliser la propriété de parallélisme entre la trace horizontale
du plan et toute horizontale de ce plan (ou entre la trace frontale du plan et toute frontale de
ce plan). Par exemple sur la figure 14.7, on va successivement :

— rechercher les traces I et J de la droite d ;
— obtenir la trace horizontale du plan en traçant la parallèle à h passant par I, son

intersection avec la ligne de terre donne le point K ;
— relier K et J pour trouver le trace frontale du plan.

14.3.3 Il n’y a que deux traces de droites dans l’épure

Dans ce cas de figure, il est nécessaire d’ajouter une droite supplémentaire, sécante aux deux
droites initialement fournies. Par exemple sur la figure 14.8, on va successivement :

— rechercher les traces accessibles sur le plan (celle de la droite b) ;
— créer une droite d reliant un point A de a et un point B de b ;
— utiliser les traces de d pour trouver les traces du plan.
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Figure 14.6 – Recherche des traces d’un plan via le point K. 191
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Figure 14.7 – Recherche des traces d’un plan via une de ses horizontales. 192
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Figure 14.8 – Recherche des traces d’un plan via l’ajout d’une droite du plan. 193
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14.4 Exercice récapitulatif sur les plans techniques

Cet exemple traite un exemple complet de résolution de problème associé à la lecture de plan
technique à savoir la représentation en isométrie, l’ajout d’une vue supplémentaire et la mise
en vraie grandeur de surface. Le problème a pour données les projections de face et de profil
droit d’une pièce dessinée sur un plan (figure 14.9).

14.4.1 Isométrie

La première étape consiste à reconstituer la vue en isométrie de la pièce. Une méthode
systématique pour y parvenir consiste à décomposer en étapes élémentaires :

— dessiner le parallélépipède englobant la forme en reportant les dimensions maximales de
la pièce selon les trois axes (figure 14.10) ;

— réaliser l’enlèvement de matière représentant la rainure inférieure (figure 14.11) ;
— procéder de même pour obtenir la rainure trapézoïdale supérieure (figure 14.12) ; enlever

le dernier morceau de matière pour obtenir les sommets de toutes les arêtes du volume
(figure 14.13) ;

— repasser les arêtes visibles et effacer l’information devenue inutile (figure 14.14) ;
— on peut éventuellement ajouter les arêtes cachées (figure 14.15).

14.4.2 Vue de dessus

La vue de face et de profil droit correspondent aux projections frontales et de profil manipulées
en début de cours. Pour reconstituer la vue de dessus, il faut se fixer arbitrairement une ligne
de terre et une ligne de terre secondaire. Ceci permet de limiter le contour de la pièce en vue
de dessus (figure 14.16). Une fois ce choix effectué, il ne reste plus qu’à projeter l’ensemble des
autres points (figure 14.16).
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Figure 14.9 – Figure de travail pour l’exemple. 195
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Figure 14.10 – Parallélipipède englobant. Figure 14.11 – Rainure inférieure.

Figure 14.12 – Rainure supérieure. Figure 14.13 – Enlèvement de matière.
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Figure 14.14 – Dessin des arêtes visibles. Figure 14.15 – Ajout des arêtes cachées.

Figure 14.16 – Dessin des lignes de terre
et projection du contour externe.

Figure 14.17 – Projection de l’ensemble
des autres points (figure aggrandie en page
198.
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Figure 14.18 – Figure avec la vue de dessus. 198
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14.4.2.1 Vraie grandeur de la face inclinée

LA face inclinée est située dans un plan de bout, il suffit donc de faire le choix d’un axe de
rotation de bout pour rendre ce plan horizontal. On peut par exemple choisir l’arête inférieure
de cette face (figure 14.19). Ensuite, les propriétés de la rotation sont appliquées pour obtenir la
position des points après rotation (projection frontale suivant un cercle, projection horizontale
se déplaçant parallèlement à la ligne de terre, figure 14.20)

Figure 14.19 – Choix d’un axe de bout. Figure 14.20 – Rotation des points.

Une fois la position des points obtenus, il ne reste plus qu’à dessiner les arêtes correspondantes
(figure 14.21).
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Figure 14.21 – Figure finale. 200
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Chapitre 15

Exemple d’exercices classiques avec résolu
pour la deuxième partie du cours
(Géométrie analytique)

Example isn’t another way to teach, it is the only way to teach.

- A. Einstein,

15.1 analyse de conique sous forme générale

Dans l’espace Euclidien R3, on considère la courbe définie par l’équation

F (x, y) ≡ 3x2 − 10xy + 3y2 − 4x− 4y − 12 = 0 (15.1)

Quelles sont les caractéristiques de cette courbe ?
Le déterminant caractéristique vaut ici ∆ = b2 − 4ac = 102 − 4 · 3 · 3 = 64 > 0, la conique est
donc une hyperbole.
Pour définir ses caractéristiques, on va commencer par en obtenir la forme réduite en procédant
à un changement de repère. Comme les paramètres a et c de la conique sont égaux, l’angle de
rotation est de π/4, les paramètres de la forme réduite de l’hyperbole sont donc :

a′ = 3 cos2 π
4
− 10 cos π

4
sin π

4
+ 3 sin2 π

4
= −2

b′ = 3 sin2 π
4
+ 10 cos π

4
sin π

4
+ 3 cos2 π

4
= 8

c′ = −4 cos π
4
− 4 sin π

4
= −4

√
2

d′ = 4 sin π
4
− 4 cos π

4
= 0

e′ = −12

(15.2)

L’équation de l’hyperbole dans le nouveau repère devient donc :

F (x′, y′) ≡ −2x′2 + 8y′2 − 4
√
2x′ − 12 = 0 (15.3)
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Cette équation peut ensuite être mise sous forme canonique en commençant par regrouper es
termes sous forme de produits remarquables :

−2x′2 + 8y′2 − 4
√
2x′ − 12 = 0 (15.4)

−2
(
x′2 + 2

√
2x′ + 2

)
+ 8y′2 − 12 + 4 = 0 (15.5)

−2
(
x′ +

√
2
)2

+ 8y′2 − 8 = 0 (15.6)(
x′ +

√
2
)2

22
− y′2 + 1 = 0 (15.7)

On est donc en présence d’une hyperbole dont le centre est situé en
(
−
√
2, 0
)

(dans Ox′y′) et
dont les asymptotes ont pour équation :{

d1 ≡ y′ = 1
2

(
x′ +

√
2
)

d2 ≡ y′ = −1
2

(
x′ +

√
2
) (15.8)

Le retour dans le repère initial passe par le changement de base inverse :{
x = x′ cos π

4
− y′ sin π

4
= −

√
2 cos π

4
− 0 · sin π

4
= −1

y = −x′ sin π
4
+ y′ cos π

4
= −

√
2 sin π

4
+ 0 · cos π

4
= −1

(15.9)

Ce qui donne pour coordonnées dans Oxy (-1,-1).
Le même changement de repère est appliqué aux équations des asymptotes pour obtenir leur
équation dans Oxy :{

d1 ≡ −x sin π
4
+ y cos π

4
= 1

2

(
x cos π

4
+ y sin π

4
+
√
2
)

d2 ≡ −x sin π
4
+ y cos π

4
= −1

2

(
x cos π

4
+ y sin π

4
+
√
2
) (15.10)

c’est-à-dire : {
d1 ≡ y − 3x− 2 = 0
d2 ≡ 3y − x+ 2 = 0

(15.11)

15.2 Matrices de transformation

15.2.1 Changement de repère

Soit un repère orthonormé Oxyz dans lequel on place un point O′ de coordonnées (-2,4,6). Le
repère O′x′y′z′ est tel que O′x′ est orienté selon un vecteur

−→
X de composantes (2, 1, 3) tandis

que O′y′ est orienté selon un vecteur
−→
Y de composantes (1,−2, 0). Quelle est la matrice de

changement de repère pour passer de Oxyz à O′x′y′z′ ?
La matrice de translation est obtenue de manière triviale à partir des coordonnées du point O′ :

[M1] =


1 0 0 2
0 1 0 −4
0 0 1 −6
0 0 0 1

 (15.12)

Pour la rotation, on peut vérifier que
−→
X et

−→
Y sont bien orthogonaux :

−→
X ·

−→
Y = 2 · 1 + 1 · (−2) + 3 · 0 = 0 (15.13)
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La direction de l’axe O′z′ est donnée par un vecteur
−→
Z obtenu selon :

−→
Z =

−→
X ∧

−→
X =

∣∣∣∣∣∣
−→ux −→uy −→uz
2 1 3
1 −2 0

∣∣∣∣∣∣ = 6 · −→ux + 3 · −→uy − 5 · −→uz (15.14)

La matrice de rotation s’obtient par l’intermédiaire des cosinus directeurs (composantes de
vecteurs unitaires définissant la nouvelle base). Elle vaut donc :

[M2] =


2√
14

1√
14

3√
14

0
1√
5

− 2√
5

0 0
6√
70

3√
70

− 5√
70

0

0 0 0 1

 (15.15)

La matrice de changement de repère globale est donc :

[M ] = [M2] · [M1] =


2√
14

1√
14

3√
14

− 18√
14

1√
5

− 2√
5

0 10√
5

6√
70

3√
70

− 5√
70

− 30√
70

0 0 0 1

 (15.16)

Si on choisit d’effectuer les opérations dans l’autre ordre (rotation puis translation), la matrice
[M2] est inchangée. Par contre il ne faut pas oublier que le vecteur utilisé dans la matrice
de translation est exprimé dans le repère courant. Les coordonnées de O′ dans le repère
intermédiaire : 

O′
xi

O′
yi

O′
zi

1

 =


2√
14

1√
14

3√
14

0
1√
5

− 2√
5

0 0
6√
70

3√
70

− 5√
70

0

0 0 0 1

 ·


−2
4
6
1

 =


18√
14

− 10√
5

− 30√
70

1

 (15.17)

La matrice de translation sera donc :

[M3] =


1 0 0 − 18√

14

0 1 0 10√
5

0 0 1 30√
70

0 0 0 1

 (15.18)

La matrice résultante se calcule dans ce cas comme :

[M ] = [M3] · [M2] =


2√
14

1√
14

3√
14

− 18√
14

1√
5

− 2√
5

0 10√
5

6√
70

3√
70

− 5√
70

− 30√
70

0 0 0 1

 (15.19)

Ce qui donne bien évidemment le même résultat que précédemment.

15.2.2 Rotation autour d’un axe quelconque

Construire la matrice de transformation homogène qui permet de faire tourner de π/3 radians
les points de l’espace autour de la droite d définie par les équations :

d ≡
{

2x+ 3y + 6z − 1 = 0
x+ y + z − 2 = 0

(15.20)
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On va tout d’abord rechercher les équations paramétriques de la droite. Son vecteur directeur
est obtenu en prenant le produit vectoriel des vecteurs normaux des deux plans définissant les
équations cartésiennes de la droite :

−→
d =

−→
N1 ∧

−→
N2 =

∣∣∣∣∣∣
−→ux −→uy −→uz
2 3 6
1 1 1

∣∣∣∣∣∣ = −3−→ux + 4−→uy −−→uz (15.21)

pour trouver un point particulier, on fixe arbitrairement une coordonnée (exemple : z = 0) et
on recherche la solution du système formé par les équations cartésiennes de la droite et cette
relation. On obtient le point A(5,−3, 0) appartenant à la droite.

15.2.2.1 Combinaison de matrices élémentaires

La matrice de transformation globale est obtenue en combinant différentes opérations. La
première une translation pour amener le point A en l’origine. La matrice de translation s’écrit

M1 =


1 0 0 −5
0 1 0 3
0 0 1 0
0 0 0 1

 (15.22)

On calcule ensuite le sinus et le cosinus de l’angle θ entre la projection du vecteur directeur et
le plan Oxz :

— sin θ =
3√

32 + 42
= 3/5 ;

— cos θ =
4√

32 + 42
= 4/5.

La deuxième opération est donc définie par :

M2 =


4/5 3/5 0 0
−3/5 4/5 0 0
0 0 1 0
0 0 0 1

 (15.23)

On peut procéder de la même façon pour le cosinus et le sinus de ϕ :

— sinϕ =
−5√
26

;

— cosϕ =
−1√
26

.

La troisième opération est une rotation autour de l’axe Ox d’un angle ϕ :

M3 =


1 0 0 0

0 −1/
√
26 −5/

√
26 0

0 5/
√
26 −1/

√
26 0

0 0 0 1

 (15.24)

la droite est maintenant rendue confondue avec l’axe Oz. On peut donc appliquer la rotation
autour de cet axe d’angle π/3 :

M4 =


0, 5 −

√
3/2 0 0√

3/2 0, 5 0 0
0 0 1 0
0 0 0 1

 (15.25)
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on revient ensuite à la configuration d’origine en inversant les opérations 3 puis 2 puis 1. La
matrice résultante est donc calculée par :

M = (M3 ·M2 ·M1)
−1 ·M4 ·M3 ·M2 ·M1 =M−1

1 ·MT
2 ·MT

3 ·M4 ·M3 ·M2 ·M1 (15.26)

Au final, on obtient :

M =


0, 6731 −0, 0609 0, 7371 1, 4518
−0, 4006 0, 8077 0, 4326 1, 4216
−0, 6217 −0, 5864 0, 5192 1, 3490

0 0 0 1

 (15.27)

15.2.2.2 Opération globale

La première opération est similaire puisque le plan doit passer par l’origine. La matrice M1
définie par l’équation 15.22 reste la même. Par la suite, il suffit d’appliquer la relation 9.56 avec
θ = π/3. Le vecteur normal unitaire est obtenu par :

−→n =

−→
N

∥
−→
N ∥

=


−3/

√
26

4/
√
26

−1/
√
26

 (15.28)

La matrice associée au produit vectoriel est donc :

[Jn] =

 0 1/
√
26 4/

√
26

−1/
√
26 0 3/

√
26

−4/
√
26 −3/

√
26 0

 (15.29)

La matrice décrivant la rotation est donc :

MR =

 1 0 0
0 1 0
0 0 1

+ sin π/3 ·

 0 1/
√
26 4/

√
26

−1/
√
26 0 3/

√
26

−4/
√
26 −3/

√
26 0

 (15.30)

+ (1− cos π/3) ·

 0 1/
√
26 4/

√
26

−1/
√
26 0 3/

√
26

−4/
√
26 −3/

√
26 0

2

(15.31)

Ce qui permet d’établir la matrice M2 :

M2 =


0, 6731 −0, 0609 0, 7371 0
−0, 4006 0, 8077 0, 4326 0
−0, 6217 −0, 5864 0, 5192 0

0 0 0 1

 (15.32)

La matrice résultante est calculée par la relation suivante :

M =M1−1 ·M2 ·M1 (15.33)

Tous calculs faits, on obtient :
0, 6731 −0, 0609 0, 7371 1, 4518
−0, 4006 0, 8077 0, 4326 1, 4216
−0, 6217 −0, 5864 0, 5192 1, 3490

0 0 0 1

 (15.34)

Qui est comme attendu le même résultat qu’avec l’approche précédente.
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15.2.3 Symétrie centrale par rapport à un plan quelconque

15.2.3.1 Combinaison de matrices élémentaires

Si le plan est quelconque et caractérisé par un vecteur normal
−→
N et un point P0, la construction

de l’opérateur de symétrie par rapport à ce point peut s’établir par transformation homogène
en combinant sept opérations élémentaires :

— une translation pour amener P0 à l’origine ;
— deux rotations pour amener la normale au plan alignée sur un des axes (Oz par exemple) ;
— la réflexion de points par rapport au plan perpendiculaire à l’axe choisi (ici Oxy) ;
— l’inversion des trois premières étapes pour revenir dans la configuration initiale (deux

rotations et une translation).
A titre d’exemple, considérons le plan d’équation 3x + 4y − 2z − 9 = 0. Si on fixe y = 0 et
z = 0, on déduit que le point (3,0,0) appartient au plan. La première matrice est donc :

M1 =


1 0 0 −3
0 1 0 0
0 0 1 0
0 0 0 1

 (15.35)

On calcule ensuite le sinus et le cosinus de l’angle θ entre la projection du vecteur directeur et
le plan Oxz :

— sin θ =
−3√
32 + 42

= 3/5 ;

— cos θ =
4√

32 + 42
= 4/5.

La deuxième opération est donc définie par :

M2 =


4/5 −3/5 0 0
3/5 4/5 0 0
0 0 1 0
0 0 0 1

 (15.36)

On peut procéder de la même façon pour le cosinus et le sinus de ϕ :

— sinϕ =
−5√
29

;

— cosϕ =
−2√
29

.

La troisième opération est une rotation autour de l’axe Ox d’un angle ϕ :

M3 =


1 0 0 0

0 −2/
√
29 −5/

√
29 0

0 5/
√
29 −2/

√
29 0

0 0 0 1

 (15.37)

la normale est maintenant rendue parallèle à l’axe Oz, la quatrième opération est donc
simplement M4 = ROxy. La matrice résultante est obtenue par la composition des opérations
élémentaires selon :

M = (M3 ·M2 ·M1)−1 ·M4 ·M3 ·M2 ·M1 (15.38)
Ce qui donne au final

M =


0, 3793 −0, 8276 0, 4138 1, 8621
−0, 8276 −0, 1034 0, 5517 2, 4828
0, 4138 0, 5517 0, 7241 −1, 2414

0 0 0 1

 (15.39)
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15.2.3.2 Approche générale

Il est également possible de condenser la recherche de la relation matricielle en une étape par
l’intermédiaire de l’algèbre vectorielle.

Figure 15.1 – Réflexion par rapport à un plan quelconque.

Si la plan passe par l’origine, on peut calculer la position de l’image d’un point P (figure 15.1)
par : −−→

OP ′ =
−→
OP − 2 ·

(−→
OP · −→n

)
· −→n (15.40)

La deuxième partie de la formule se calcule selon :

(−→
OP · −→n

)
· −→n = (x · nx + y · ny + z · nz) ·


nx

ny

nz

 (15.41)

Sous forme matricielle, cette relation est équivalente à

(−→
OP · −→n

)
· −→n =

 nx · nx nx · ny nx · nz

ny · nx ny · ny ny · nz

nz · nx nz · ny nz · nz

 ·


x
y
z

 (15.42)

La matrice intervenant dans cette relation est équivalente au produit −→n · −→n T . La matrice
supérieure (3x3) est donc établie par :

Rπ = I − 2 · −→n · −→n T (15.43)
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Si on reprend le même exemple que celui traité au paragraphe précédent, l’opération 1
reste similaire. Une fois le plan passant par l’origine, on peut appliquer directement la
formule précédente pour établir la deuxième partie de l’expression. Le vecteur unitaire a pour
coordonnées

{
3/
√
29; 4/

√
29;−2/

√
29
}
. La partie supérieure (3x3) de la matrice s’établit selon :

Msym =

 1 0 0
0 1 0
0 0 1

− 2 ·
{
3/
√
29; 4/

√
29;−2/

√
29
}
·


3/
√
29

4/
√
29

−2/
√
29

 (15.44)

La matrice complète est donc :

M2 =


0, 3793 −0, 8276 0, 4138 0
−0, 8276 −0, 1034 0, 5517 0
0, 4138 0, 5517 0, 7241 0

0 0 0 1

 (15.45)

La matrice résultante obtenue par M =M1−1 ·M2 ·M1 donne au final

M =


0, 3793 −0, 8276 0, 4138 1, 8621
−0, 8276 −0, 1034 0, 5517 2, 4828
0, 4138 0, 5517 0, 7241 −1, 2414

0 0 0 1

 (15.46)

qui est comme attendu similaire au résultat obtenu précédemment.

15.3 Surface cartésienne

15.3.1 Lieu géométrique

Soient deux points A et B, quel est le lieu des points équidistants de A et de B ?
La condition géométrique s’exprime selon :√

(x− xA)
2 + (y − yA)

2 + (z − zA)
2 =

√
(x− xB)

2 + (y − yB)
2 + (z − zB)

2 (15.47)

En élevant au carré les deux membres et en développant les produits remarquables, on obtient :

x2 − 2xAx+ x2A + y2 − 2yAy + y2A + z2 − 2zAz + z2A = . . .

. . . x2 − 2xBx+ x2B + y2 − 2yBy + y2B + z2 − 2zBz + z2B (15.48)
F (x, y, z) ≡ (2xA − 2xB)x+ (2yA − 2yB) y + (2zA − 2zB) z . . .

. . .+
(
x2A + y2A + z2A − x2B − y2B − z2B

)
= 0 (15.49)

Qui est l’équation d’un plan (il s’agit en fait de l’équation du plan bissecteur du segment AB,
figure 15.2).

15.3.2 Quadriques

Déterminer la nature de la quadrique définie par l’équation suivante et donnez ses équations
paramétriques :

4x2 − 16x− 36y + 9z2 + 18z − 83 = 0 (15.50)
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Figure 15.2 – Plan bissecteur.

On va regrouper les termes sous forme de produits remarquables :

4
(
x2 − 4x

)
− 36y + 9

(
z2 + 2z

)
− 83 = 0 (15.51)

4
(
x2 − 4x+ 4

)
− 36y + 9

(
z2 + 2z + 1

)
− 83− 4 · 4− 9 · 1 = 0 (15.52)

4 (x− 2)2 − 36y − 108 + 9 (z + 1)2 = 0 (15.53)
4 (x− 2)2 − 36 (y + 3) + 9 (z + 1)2 = 0 (15.54)

(15.55)

On trouve la forme canonique suivante :

(x− 2)2

32
− (y + 3) +

(z + 1)2

22
= 0 (15.56)

Cette expression est celle d’un paraboloïde elliptique dont les axes sont orientés différemment
de ce qui est donné dans le formulaire. En effet, si on effectue la permutation circulaire X=z,
Y=x, Z=y, on trouve :

(X + 1)2

22
+

(Y − 2)2

32
− (Z + 3) = 0 (15.57)

On peut établir les équations paramétriques par substitution :
X = −1 + 2

√
u cos v

Y = 2 + 3
√
u sin v

Z = −3 + u
(15.58)

En revenant au système d’axe de départ, on trouve donc :
x = 2 + 3

√
u sin v

y = −3 + u
z = −1 + 2

√
u cos v

(15.59)
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15.3.3 Cylindrique inclinée

Quelle est l’équation cartésienne d’un cylindre circulaire de rayon 2 dont l’axe est défini par la
droite d’équation : 

x = 3 + 2µ
y = −2 + µ
z = 4 + 5µ

(15.60)

15.3.3.1 Approche par changement de repère

On établit tout d’abord les équations de la surface dans un repère lié au cylindre :

x′′2 + y′′2 − 4 = 0 (15.61)

Pour passer du repère global Oxyz au repère local O′x′′y′′z′′, on effectue simultanément (cf
figure 15.3) :

— un changement de repère par translation pour avoir l’origine en O’ ;
— un changement de repère par rotation pour aligner les axes.

Figure 15.3 – Exemple de figure dont l’axe est orienté de manière quelconque, approche par
changement de repère.

La matrice de changement de repère pour passer de Oxyz à O′x′y′z′ est la matrice de
changement de repère par translation de vecteur

−→
T =

−−→
OO′ = (3,−2, 4). Cette matrice est

donc :

[T ] =


1 0 0 −3
0 1 0 2
0 0 1 −4
0 0 0 1

 (15.62)
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Pour obtenir la matrice de changement de base, il est nécessaire de rechercher les cosinus
directeurs des vecteurs unitaires du nouveau repère O′x′′y′′z′′ exprimées dans la base de l’ancien
repère O′x′y′z′ (parallèle à Oxyz). Un vecteur aligné sur O′z′′ est le vecteur directeur de la
droite : −→

Z ′′ = 2−→ux′ + 1−→uy′ + 5−→uz′ (15.63)

Comme le cylindre est une figure de révolution, le choix des deux autres vecteurs directeurs
est libre (pour autant que les trois vecteurs directeurs forment une base orthonormée). On
peut donc choisir de manière arbitraire deux des coordonnées du vecteur

−→
X ′′ (par exemple

−→
X ′′ = (1, y, 0)) et de chercher la troisième en exprimant la nullité du produit scalaire entre

−→
X ′′

et
−→
Z ′′ : −→

X ′ ·
−→
Z ′ = 2 + y = 0 ⇒

−→
X ′′ = (1,−2, 0) (15.64)

Le troisième vecteur est obtenu par le produit vectoriel :

−→
Y ′′ =

−→
Z ′′ ∧

−→
X ′′ =

∣∣∣∣∣∣
−→ux′

−→uy′ −→uz′
2 1 5
1 −2 0

∣∣∣∣∣∣ = (10, 5,−5) (15.65)

Les vecteurs unitaires sont obtenus en divisant ces vecteurs par leur norme :

−→ux′′ =

−→
X ′′∥∥∥−→X ′′
∥∥∥ =

(
1√
5
,
−2√
5
, 0

)
(15.66)

−→uy′′ =
−→
Y ′′∥∥∥−→Y ′′
∥∥∥ =

(
2√
6
,
1√
6
,
−1√
6

)
(15.67)

−→uz′′ =
−→
Z ′′∥∥∥−→Z ′′
∥∥∥ =

(
2√
30
,

1√
30
,

5√
30

)
(15.68)

La matrice de changement de repère est donc :

[R] =



1√
5

−2√
5

0 0

2√
6

1√
6

−1√
6

0

2√
30

1√
30

5√
30

0

0 0 0 1


(15.69)

On a donc les relations suivantes entre les coordonnées de points du cylindre exprimées dans
les différents repère : 

x′

y′

z′

1

 = [T ]


x
y
z
1




x′′

y′′

z′′

1

 = [R]


x′

y′

z′

1

 (15.70)

On a donc la relation synthétique suivante :
x′′

y′′

z′′

1

 = [R] · [T ]


x
y
z
1

 (15.71)
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La matrice résultante est donc obtenue par :

[R] · [T ] =



1√
5

−2√
5

0
−7√
5

2√
6

1√
6

−1√
6

0

2√
30

1√
30

5√
30

−24√
30

0 0 0 1


(15.72)

Cette relation permet d’exprimer les coordonnées (x′′, y′′, z′′) en fonction des coordonnées
(x, y, z) selon :

x′′ =
1√
5
x− 2√

5
y − 7√

5
(15.73)

y′′ =
2√
6
x+

1√
6
y − 1√

6
z (15.74)

z′′ =
2√
30
x+

1√
30
y +

5√
30
z − 24√

30
(15.75)

L’équation de la surface s’établit donc en remplaçant ces relations dans l’équation 15.61 :(
1√
5
x− 2√

5
y − 7√

5

)2

+

(
2√
6
x+

1√
6
y − 1√

6
z

)2

− 4 = 0 (15.76)

1

5
(x− 2y − 7)2 +

1

6
(2x+ y − z)2 − 4 = 0 (15.77)

6
(
x2 + 4y2 + 49− 14x+ 28y − 4xy

)
. . . (15.78)

. . .+ 5
(
4x2 + y2 + z2 − 4xz − 2yz + 4xy

)
− 120 = 0

26x2 + 29y2 + 5z2 − 4xy − 10xz − 10yz + 84x+ 168y + 174 = 0 (15.79)

Ce qui donne l’équation d’une quadrique comme attendu.

15.3.3.2 Approche par matrice de transformation

Dans l’approche par matrice de transformation (cf figure 15.4), on va transformer une figure
simple pour l’orienter de manière quelconque dans le repère Oxyz.

On partira de l’expression d’un cylindre d’axe Oz :

F (x, y, z) ≡ x2 + y2 − 4 = 0 (15.80)

Appelons (xP , yP , zP ) L’ensemble des points de ce cylindre. On va successivement appliquer à
ces points :

— deux rotations pour aligner Oz avec l’axe du cylindre final ;
— une translation pour placer correctement l’axe.

Pour aligner sur le vecteur directeur de la droite l’axe Oz, on peut employer deux rotations (cf
§ 9.4.4.1) : une rotation d’un angle −ϕ autour de Ox pour se placer dans le plan Oyz, puis une
rotation d’angle −θ autour de Oz pour s’aligner sur le vecteur directeur de l’axe (figure 15.5).

On peut calculer :
— sin θ = 2√

5
(donc cos θ = 1√

5
) ;

— cosϕ = 5√
30

(donc cosϕ = 1√
6
).
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Figure 15.4 – Exemple de figure dont l’axe est orienté de manière quelconque, approche par
matrices de transformation.

Figure 15.5 – Définition des angles θ et ϕ.

Les rotations sont exprimées par :
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
xP ′

yP ′

zP ′

1

 = [M1] ·


xP
yP
zP
1

 =


1 0 0 0
0 5√

30
1√
6

0

0 −1√
6

5√
30

0

0 0 0 1

 ·


xP
yP
zP
1

 (15.81)


xP ′′

yP ′′

zP ′′

1

 = [M2] ·


xP ′

yP ′

zP ′

1




1√
5

2√
5

0 0
−2√
5

1√
5

0 0

0 0 1 0
0 0 0 1

 ·


xP ′

yP ′

zP ′

1

 (15.82)

La dernière transformation est une translation amenant l’origine sur un des points de
l’axe (par exemple (3,-2,4)). On transforme les points (xP ′′ , yP ′′ , zP ′′) du cylindre en points
(xP ′′′ , yP ′′′ , zP ′′′). Sous forme matricielle, on a :

xP ′′′

yP ′′′

zP ′′′

1

 = [M1] ·


xP
yP
zP
1

 =


1 0 0 −3
0 1 0 2
0 0 1 −4
0 0 0 1

 ·


xP ′′

yP ′′

zP ′′

1

 (15.83)

La relation finale permettant de passer de la figure initiale à la figure alignée sur l’axe Oz est
donc : 

xP ′′′

yP ′′′

zP ′′′

1

 = [M3] · [M2] · [M1]


xP
yP
zP
1

 (15.84)

Pour obtenir l’équation de la figure finale, il faut appliquer la transformation résultante à
l’équation 15.80. Tous les points de la figure initiale (xP , yP , zP ) vérifient cette équation, on
peut donc écrire :

x2P + y2P − 4 = 0 (15.85)

Pour obtenir l’équation de la figure finale, il suffit d’employer la relation 15.84 pour tirer les
expressions de (xP , yP , zP ) en fonction de (xP ′′′ , yP ′′′ , zP ′′′), ce qui revient simplement à inverser
la relation matricielle : 

xP
yP
zP
1

 = ([M3] · [M2] · [M1])
−1


xP ′′′

yP ′′′

zP ′′′

1

 (15.86)

On peut calculer aisément que :

([M3] · [M2] · [M1])
−1 =


1√
5

−2√
5

0 −7√
5

2√
6

1√
6

−1√
6

0
2√
30

1√
30

5√
30

−24√
30

0 0 0 1

 (15.87)

Après substitution, on retrouve L’équation cartésienne du cylindre :

26x2P ′′′+29y2P ′′′+5z2P ′′′−4xP ′′′yP ′′′−10xP ′′′zP ′′′−10yP ′′′zP ′′′+84xP ′′′+168yP ′′′+174 = 0 (15.88)

Qui est similaire à celle obtenue par la méthode précédente.
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15.3.4 Equation cartésienne du tore

Un exemple de surface de révolution est le tore (figure 15.6) engendré par la rotation d’un cercle
décrit dans un plan Oxz autour de l’axe Oz.

Figure 15.6 – Tore.

L’équation de la circonférence de base est :

F (x, z) ≡ (x−R)2 + z2 − r2 = 0 (15.89)

L’équation cartésienne de la surface de révolution s’exprime donc par :

F (x, y, z) ≡
(√

x2 + y2 −R
)2

+ z2 − r2 = 0 (15.90)

Cette expression peut être mise sous forme polynomiale :(√
x2 + y2 −R

)2
+ z2 − r2 = 0 (15.91)(

x2 + y2 − 2R
√
x2 + y2 +R2

)
+ z2 − r2 = 0 (15.92)

x2 + y2 + z2 +R2 − r2 = 2R
√
x2 + y2 (15.93)(

x2 + y2 + z2 +R2 − r2
)2 − 4R2

(
x2 + y2

)
= 0 (15.94)

Il s’agit d’une quartique (courbe du quatrième ordre).

A titre de vérification, recherchons l’intersection du tore avec le plan z = 0, on obtient une
courbe de la forme : (

x2 + y2 +R2 − r2
)2

= 4R2
(
x2 + y2

)
(15.95)(

x2 + y2 +R2 − r2
)
= ±2R

√
x2 + y2 (15.96)

Seul le signe plus doit être retenu car le membre de droite est toujours positif et le membre de
gauche est également positif. Le développement peut se poursuivre par :

x2 + y2 − 2R
√
x2 + y2 +R2 = r2 (15.97)(√
x2 + y2 −R

)2
= r2 (15.98)√

x2 + y2 −R = ±r (15.99)
x2 + y2 = (R± r)2 (15.100)
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On obtient donc bien l’équation de deux cercles de rayon R + r et R− r (figure 15.7).

Figure 15.7 – Intersection d’un tore avec le plan z=0.

15.4 Surface paramétrique

15.4.1 Cylindrique inclinée

Quelle est l’équation cartésienne d’un cylindre circulaire de rayon 2 dont l’axe est défini par la
droite d’équation : 

x = 3 + 2µ
y = −2 + µ
z = 4 + 5µ

(15.101)

15.4.1.1 Approche par changement de repère

On établit tout d’abord les équations paramétriques de la surface dans un repère lié au cylindre :
x = 2 cos θ
y = 2 sin θ
z = κ

(15.102)

Pour passer du repère global Oxyz au repère local O′x′′y′′z′′, on effectue simultanément (cf
figure 15.3) :

— un changement de repère par translation pour avoir l’origine en O′ ;
— un changement de repère par rotation pour aligner les axes.

On a vu au §15.3.3 la relation résultante qui est :

x′′ =
1√
5
x− 2√

5
y − 7√

5
(15.103)

y′′ =
2√
6
x+

1√
6
y − 1√

6
z (15.104)

z′′ =
2√
30
x+

1√
30
y +

5√
30
z − 24√

30
(15.105)
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Les équations paramétriques de la surface s’établit donc en remplaçant x, y et z par leur
expression en fonction des paramètres :

x′′ = 1√
5
2 cos θ − 2√

5
2 sin θ − 7√

5

y′′ = 2√
6
2 cos θ + 1√

6
2 sin θ − 1√

6
κ

z′′ = 2√
30
2 cos θ + 1√

30
2 sin θ + 5√

30
κ− 24√

30

(15.106)

15.4.1.2 Approche par matrice de transformation

On va transformer une figure simple pour l’orienter de manière quelconque dans le repère Oxyz
(cf figure 15.4). On partira de l’expression d’un cylindre d’axe Oz :

x = cos θ
y = sin θ
z = κ

(15.107)

Appelons (xP , yP , zP ) L’ensemble des points de ce cylindre. On va successivement appliquer à
ces points :

— deux rotations pour aligner Oz avec l’axe du cylindre final ;
— une translation pour placer correctement l’axe.

Pour aligner sur le vecteur directeur de la droite l’axe Oz, on peut employer deux rotations (cf
§ 9.4.4.1) : une rotation d’un angle −ϕ autour de Ox pour se placer dans le plan Oyz, puis une
rotation d’angle −θ autour de Oz pour s’aligner sur le vecteur directeur de l’axe (figure 15.5).
On a démontré au §15.3.3 que la relation finale permettant de passer de la figure initiale à la
figure alignée sur l’axe Oz est :

xP ′′′

yP ′′′

zP ′′′

1

 = [M3] · [M2] · [M1]


xP
yP
zP
1

 (15.108)

Pour obtenir l’équation de la figure finale, il suffit de remplacer xP , yP et zP par leurs expressions
en fonction des paramètres :

xP ′′′

yP ′′′

zP ′′′

1

 =


2√
5

− 2√
5

0 − 7√
5

4√
6

2√
6

− 1√
6

0
4√
30

2√
30

5√
30

− 24√
30




cos θ
sin θ
κ
1

 (15.109)

Ce qui donne un résultat similaire à celui obtenu par la méthode précédente.

15.4.2 Equations d’un tore

Les coordonnées d’un point courant sur la surface d’un tore sont obtenues à partir du paramètre
θ donnant la rotation autour de l’axes Oz et d’un paramètre ϕ permettant de décrire le cercle
mineur (figure 15.8).

Les équations paramétriques peuvent donc s’écrire :
x = (R + r cosϕ) cos θ
y = (R + r cosϕ) sin θ
z = r sinϕ

(15.110)
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Figure 15.8 – Paramétrisation pour un tore.

L’élimination des deux paramètres dans cette équation permet de retrouver l’équation
cartésienne de la surface :

x2 + y2 = (R + r cosϕ)2
(
cos2 θ + sin2 θ

)
= (R + r cosϕ)2 (15.111)(z

r

)2
= sin2 ϕ⇒ cosϕ = ±

√
1− sin2 ϕ = ±

√
1−

(z
r

)2
(15.112)

x2 + y2 =
(
R±

√
r2 − z2

)2
(15.113)

x2 + y2 = r2 ± 2R
√
r2 − z2 + r2 − z2 (15.114)[

x2 + y2 + z2 −
(
R2 + r2

)]2 − 4R2
(
r2 − z2

)
= 0 (15.115)

Qui est identique à la forme obtenue au § 15.3.4.

15.4.3 Surfaces réglées

15.4.3.1 Deux génératrices, un plan directeur

soit une surface réglée admettant C1 et C2 comme courbes directrices et le plan frontal (Oyz)
comme plan directeur.

C1 ≡


x = 2 cos θ
y = 2 sin θ
z = 3

(15.116)
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C1 ≡


x = 3 cosϕ
y = 2 sinϕ
z = 0

(15.117)

On peut obtenir un vecteur directeur de la surface en reliant un point de C1 à un point de C2 :

−→
V (θ, ϕ) = (3 cosϕ− 2 cos θ; 2 sinϕ− 2 sin θ; 0− 3) (15.118)

La condition de parallélisme à π est obtenue en égalant le produit scalaire entre
−→
V et le vecteur

normal au plan à zéro : −→
V · (1, 0, 0) = 3 cosϕ− 2 cos θ = 0 (15.119)

On peut donc déduire ϕ = arccos
(
2 cos θ

3

)
. Les équations paramétriques de la surface sont donc :

x = 2 cos θ
y = 2 sin θ + λ

(
2 sin

(
arccos

(
2 cos θ

3

))
− 2 sin θ

)
z = 3− 3λ

(15.120)

La surface est représentée en figure 15.9).

Figure 15.9 – Surface réglée.

Il faut noter que l’équation 15.119 a une deuxième solution qui est ϕ = − arccos
(
2 cos θ

3

)
qui

donne une deuxième branche de solution :
x = 2 cos θ
y = 2 sin θ − λ

(
2 sin

(
arccos

(
2 cos θ

3

))
− 2 sin θ

)
z = 3− 3λ

(15.121)

15.4.3.2 Cône de révolution

Prenons un cône dont le sommet est situé en (0, 0, 0) et passant par un cercle (dessiné dans un
plan parallèle à Oxy à une hauteur c) de rayon a. Le vecteur directeur d’une génératrice joint
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le sommet à un point P dont les coordonnées sont :

x = a cos θ (15.122)
y = a sin θ (15.123)
z = c (15.124)

La fonction vectorielle de la surface conique s’établit donc selon :

−→
V = λ

−→
OP (15.125)

La projection de cette équation sur les axes du repère donne :

x = aλ cos θ (15.126)
y = aλ sin θ (15.127)
z = cλ (15.128)

qui sont les équations paramétriques de la surface.

15.4.3.3 Surface conique d’axe incliné

Déterminons les équations d’un cône dont le sommet S a pour coordonnées (0, b, b) et dont les
génératrices passent par une ellipse dessinée dans Oxy de demi grand axe a et de demi petit
axe b (le grand axe est parallèle à Ox). On peut déterminer :

−→
OS = (0, b, b) (15.129)
−→
OP = (a cos θ, b sin θ, 0) (15.130)

⇒
−→
SP = (a cos θ, b sin θ − b,−b) (15.131)

Les équations paramétriques de cette surface conique sont donc :

x = aλ cos θ (15.132)
y = b+ λb (sin θ − 1) (15.133)
z = b (λ− 1) (15.134)

15.4.3.4 Conique 1 noyau

Déterminons les équations d’une surface conique dont le sommet est en (1, 2, 3) et dont toutes
les génératrices sont tangentes au paraboloïde hyperbolique donné par l’équation suivante :

(x− 1)2

22
− (y − 2)2

32
− z = 0 (15.135)

Les génératrices du cône ont pour équations :
x = 1 + λ · a
y = 2 + λ · b
z = 3 + λ · c

(15.136)
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Figure 15.10 – Surface conique d’axe incliné.

Les intersections entre ces génératrices et le paraboloïdes sont obtenues en résolvant le système
suivant : 

x = 1 + λ · a
y = 2 + λ · b
z = 3 + λ · c
(x−1)2

22
− (y−2)2

32
− z = 0

(15.137)

Par substitution, on trouve l’équation suivante :

(1 + λ · a− 1)2

22
− (2 + λ · b− 2)2

32
− (3 + λ · c) = 0 (15.138)

On trouve successivement :

9λ2a2 − 4λ2b2 − 108− 36λc = 0 (15.139)
λ2
(
9a2 − 4b2

)
+ λ (−36c)− 108 = 0 (15.140)

Il y a tangence entre le cône et l’hyperboloïde si cette équation du deuxième degré en λ présente
une racine double, c’est-à-dire si :

∆ = 362c2 − 4 ·
(
9a2 − 4b2

)
· −108 = 0 (15.141)

1296c2 + 3888a2 − 8748b2 = 0 (15.142)
3c2 + 9a2 − 4b2 = 0 (15.143)

Le vecteur directeur des génératrices peut être normalisé de manière arbitraire. si on le considère
unitaire, on a la relation additionnelle a2 + b2 + c2 = 1, ce qui permet d’obtenir :

3
(
1− a2 − b2

)
+ 9a2 − 4b2 = 0 → b2 =

6a2 + 3

7
(15.144)

En combinant cette relation avec le condition de normalisation, on trouve finalement :

a2 +
6a2 + 3

7
+ c2 = 1 → c2 =

4− 13a2

7
(15.145)
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On trouve donc les équations paramétriques de la surface conique :
x = 1 + λ · a
y = 2 + λ ·

√
6a2+3

7

z = 3± λ ·
√

4−13a2

7

(15.146)

avec λ ∈ R et |a| ≤
√

4
13

. La figure 15.11 présente une visualisation des deux surfaces.

Figure 15.11 – Surface conique avec noyau.

15.5 Courbe 3D

15.5.1 Cylindre projetant d’une courbe

On cherche à déterminer les cylindres projetant d’une courbe définie par l’intersection d’une
sphère centrée en l’origine de rayon R et un plan d’équation cartésienne x + y + z − R = 0.
La courbe d’intersection est nécessairement un cercle qui est situé dans un plan incliné par
rapport aux plans coordonnés. Le cylindre projetant doit donc dans ce cas être un cylindre à
base elliptique. Ses équations s’établissent en éliminant une des inconnues x, y ou z dans le
système formé des équations de la sphère et du plan. Prenons par exemple le cylindre projetant
parallèle à Oz :

F1(x, y, z) ≡ x2 + y2 + z2 −R2 = 0 (15.147)
F2(x, y, z) ≡ x+ y + z −R = 0 (15.148)

De 15.148, on peut tirer :
z = R− (x+ y) (15.149)

qui, introduit dans 15.147, donne :

F3(x, y, z) ≡ x2 + y2 + (R− (x+ y))2 −R2 = 2x2 + 2xy + 2y2 − 2Rx− 2Ry = 0 (15.150)
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Il s’agit bien de l’équation d’un cylindre d’axe z dont la base est une conique. Etudions cette
conique comme une courbe plane de Oxy :

F (x, y) ≡ 2x2 + 2xy + 2y2 − 2Rx− 2Ry = 0 (15.151)

pour éliminer le terme en xy, il faut opérer une rotation de repère dont l’angle vaut ici π/4 car
le coefficient du terme en x2 est égal à celui du terme en y2. Suite à ce changement de repère,
l’équation de la conique devient :

3x′2 + y′2 − 2R
√
2x′ = 0 (15.152)

La forme canonique de cette ellipse s’obtient par :

3x′2 + y′2 − 2R
√
2x′ = 3

(
x′2 − 2

√
2R

3
x′ +

2

9
R2

)
+ y′2 − 2

3
R2 = 0 (15.153)

qui peut être factorisée en : (
x′ −

√
2R
3

)2
(√

2R
3

)2 +
y′2(√
2R√
3

)2 − 1 = 0 (15.154)

Qui est l’équation d’une ellipse centrée en (
√
2R
3

,0) dont le petit axe est orienté selon x′ et vaut
√
2R
3

tandis que le grand axe vaut
√
2R√
3

.

15.5.2 Caractère plan d’une courbe cartésienne

Considérons deux sphères de rayon R1 et R2 centrées en des points C1(a, b, c) et C2(d, e, f) en
imposant que la distance entre les centres soit inférieure à la somme des rayons.

(x− a)2 + (y − b)2 + (z − c)2 −R2
1 = 0 (15.155)

(x− d)2 + (y − e)2 + (z − f)2 −R2
2 = 0 (15.156)

Pour essayer d’éliminer les termes non-linéaires dans le système, prenons la différence entre
l’équation 15.155 et 15.156 :

(x− a)2 − (x− d)2 + (y − b)2 − (y − e)2 + (z − c)2 − (z − f)2 −R2
1 +R2

2 = 0 (15.157)
(2x− a− d) (d− a) + (2y − b− e) (e− b) + (2z − c− f) (f − c)−

(
R2

1 −R2
2

)
= 0(15.158)

2 (d− a)x+ 2 (e− b) y + 2 (f − c) z . . . (15.159)
. . .−

[
(a+ d) (d− a) + (b+ e) (e− b) + (c+ f) (f − c) +

(
R2

1 −R2
2

)]
= 0 (15.160)

Cette équation est bien l’équation d’un plan, ce qui confirme le caractère plan de la courbe (il
s’agit en fait d’un cercle dans ce cas). On peut également remarquer que le vecteur normal au
plan est colinéaire avec le vecteur joignant les centres des sphères. En effet :

−→
N = 2 (d− a)−→ux + 2 (e− b)−→uy + 2 (f − c)−→uz (15.161)
−−−→
C1C2 = (d− a)−→ux + (e− b)−→uy + (f − c)−→uz (15.162)

(15.163)
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Figure 15.12 – Intersection de deux
sphères.

Figure 15.13 – Intersection de deux
sphères : vue dans un plan contenant la
droite joignant les centres.

15.5.3 Caractère plan d’une courbe cartésienne, 2e exemple

Considérons l’intersection d’un cylindre circulaire dont l’axe est confondu avec l’axe Oz de
rayon R1 et une sphère centrée en l’origine de rayon R2 (R2>R1). Les équations de ces surfaces
sont :

x2 + y2 −R2
1 = 0 (15.164)

x2 + y2 + z2 −R2
2 = 0 (15.165)

en soustrayant la première relation de la seconde, on obtient l’équation suivante :

z2 −R22 +R12 = 0 (15.166)

Cette relation ne faisant apparaître qu’une seule variable (z en l’occurrence) représente un
ensemble de plans perpendiculaires à l’axe Oz. Dans ce cas précis, elle représente l’équation de
deux plans d’équations :

z =
√
R22 −R12 (15.167)

z = −
√
R22 −R12 (15.168)

(15.169)

L’intersection de la sphère et du cylindre donne donc deux courbes planes qui sont l’intersection
entre ces plans et le cylindre (ou entre ces plans et la sphère). Il s’agit donc de cercles de rayon
R1 situés dans des plans perpendiculaires à l’axe Oz et dont les centres sont situés en des points
de coordonnées

(
0, 0,

√
R2

2 −R2
1

)
et
(
0, 0,−

√
R2

2 −R2
1

)
.

15.5.4 Analyse de courbe plane dans un plan non parallèle à un plan
coordonné

Reprenons l’exemple présenté en § 15.5.1, c’est-à-dire l’intersection entre une sphère de rayon
R centrée en l’origine et un plan incliné de manière équivalente sur les trois axes du repère.
Pour rappel, les équations de la courbe d’intersection sont :

F1(x, y, z) ≡ x2 + y2 + z2 −R2 = 0 (15.170)
F2(x, y, z) ≡ x+ y + z −R = 0 (15.171)
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Figure 15.14 – Intersection d’une sphère et d’un cylindre.

Pour pouvoir étudier la courbe d’intersection entre la sphère et le plan, il faut définir un nouveau
système d’axes Ox′y′z′ pour lequel l’axe Oz′ est orienté perpendiculairement au plan. La
recherche de la matrice de changement de repère et obtenue par l’intermédiaire de la recherche
des cosinus directeurs des vecteurs de la nouvelle base. L’axe Oz′ est orienté selon la normale
au plan, ce qui implique d’avoir : −→

Z ′ = (1, 1, 1) (15.172)

L’axe Ox′ doit être perpendiculaire à 0z′ ; au-delà de cette constatation, son orientation peut
être choisie de manière arbitraire. Par exemple, il peut être choisi de manière à être horizontal,
ce qui implique que ses coordonnées soient égales à :

−→
X ′ = (1,−1, 0) (15.173)

Comme précédemment, l’axe Oy′ est obtenu en réalisant le produit vectoriel entre les vecteurs−→
Z ′ et

−→
X ′.

−→
Y ′ =

−→
Z ′ ∧

−→
X ′ =

∣∣∣∣∣∣
−→ux −→uy −→uz
1 1 1
1 −1 0

∣∣∣∣∣∣ = (1, 1,−2) (15.174)
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Les vecteurs unitaires sont obtenus en divisant ces vecteurs par leur norme :

−→
u′x =

−→
X ′∥∥∥−→X ′
∥∥∥ =

(
1√
2
,
−1√
2
, 0

)
(15.175)

−→
u′y =

−→
Y ′∥∥∥−→Y ′
∥∥∥ =

(
1√
6
,
1√
6
,
−1√
6

)
(15.176)

−→
u′z =

−→
Z ′∥∥∥−→Z ′
∥∥∥ =

(
1√
3
,
1√
3
,
1√
3

)
(15.177)

La matrice de changement de repère pour le passage des coordonnées (x, y, z) vers les
coordonnées (x′, y′, z′) s’établit donc selon :

R =


1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6

1√
3

 (15.178)

Ce qui permet d’exprimer les relations entre les deux systèmes de coordonnées :

x =
1√
2
x′ +

1√
6
y′ +

1√
3
z′ (15.179)

y =
−1√
2
x′ +

1√
6
y′ +

1√
3
z′ (15.180)

z =
−2√
6
y′ +

1√
3
z′ (15.181)

(15.182)

La substitution de ces valeurs dans l’équation de la sphère permet d’obtenir son équation
cartésienne dans Ox’y’z’ :

x2 + y2 + z2 −R2 = 0 (15.183)(
1√
2
x′ +

1√
6
y′ +

1√
3
z′
)2

+

(
−1√
2
x′ +

1√
6
y′ +

1√
3
z′
)2

. . . (15.184)

. . .+

(
−2√
6
y′ +

1√
3
z′
)2

−R2 = 0 (15.185)

1

6

(√
3x′ + y′ +

√
2z′
)2

+
1

6

(
−
√
3x′ + y′ +

√
2z′
)2
. . . (15.186)

. . .+
1

6

(
−2y′ +

√
2z′
)2

−R2 = 0 (15.187)

1

6

(
3x′2 + y′2 + 2z′2 + 2

√
3x′y′ + 2

√
6x′z′ + 2

√
2y′z′ + 3x′2 + y′2 + 2z′2 . . . (15.188)

. . .− 2
√
3x′y′ − 2

√
6x′z′ + 2

√
2y′z′ + 4y′2 + 2z′2 − 4

√
2y′z′

)
−R2 = 0 (15.189)

x′2 + y′2 + z′2 −R2 = 0 (15.190)
(15.191)
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Ce résultat était attendu car la sphère est invariante par rotation.
L’équation du plan dans le nouveau système de coordonnées est :

x+ y + z −R = 0 (15.192)
1√
2
x′ +

1√
6
y′ +

1√
3
z′ +

−1√
2
x′ +

1√
6
y′ +

1√
3
z′ +

−2√
6
y′ +

1√
3
z′ −R = 0 (15.193)

3√
3
z −R = 0 (15.194)

Qui représente bien un plan perpendiculaire à Oz′. La courbe d’intersection s’obtient en
éliminant z′ entre ces deux équations, ce qui donne :

x′2 + y′2 +

(√
3R

3

)2

−R2 = 0 (15.195)

x′2 + y′2 − 6R2

9
= 0 (15.196)

En analysant cette équation comme l’équation d’une courbe plane (F (x′, y′) = 0), on reconnaît
l’équation d’un cercle centré en l’origine et de rayon

√
2R√
3

.

15.5.5 Caractère plan d’une courbe donnée par ses équations
paramètriques

Soit la courbe définie par les équations paramétriques suivantes :

x =
R cos θ

R cos θ +R sin θ + k
(15.197)

y =
R sin θ

R cos θ +R sin θ + k
(15.198)

z =
k

R cos θ +R sin θ + k
(15.199)

(15.200)

Cette courbe est-elle une courbe plane ? Pour le vérifier, on peut contrôler s’il existe un
quadruplet (a, b, c, d) non identiquement nul tel que l’équation cartésienne d’un plan (ax +
by + cz − d = 0) se vérifie pour l’ensemble des points de la courbe. Ceci revient à vérifier qu’il
existe (a, b, c, d) non identiquement nul tel que :

a
R cos θ

R cos θ +R sin θ + k
+ b

R sin θ

R cos θ +R sin θ + k
+ c

k

R cos θ +R sin θ + k
− d = 0 (15.201)

pour toute valeur de θ. Cette expression, une fois réduite au même dénominateur devient :

(a− d)R cos θ + (b− d)R sin θ + (c− d) k ≡ 0 (15.202)

Pour que cette identité soit satisfaite pour tout θ, il faut vérifier simultanément :

a− d ≡ 0 (15.203)
b− d ≡ 0 (15.204)
c− d ≡ 0 (15.205)

(15.206)
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Figure 15.15 – Représentation de la courbe pour R=4 et k=9.

Ce qui est possible si on a les quatre coefficients égaux. La courbe est donc bien une courbe
plane inscrite dans un plan d’équation :

x+ y + z − 1 = 0 (15.207)

La vérification du caractère plan de la courbe pouvait également s’effectuer en vérifiant que la
somme des équations 15.197, 15.198 et 15.199 donnait la relation :

x+ y + z =
R cos θ +R sin θ + k

R cos θ +R sin θ + k
= 1 (15.208)

ce qui signifie que la courbe peut être définie par l’intersection d’une surface avec un plan, ce
qui démontre le caractère plan de la courbe.

15.5.6 Intersection de surfaces paramétriques

On recherche les équations paramétriques de la courbe définie par l’intersection d’une sphère
centrée en l’origine de rayon R et d’un cylindre droit d’axe Oz de diamètre R tangent à la
sphère. Les équations paramétriques de la sphère sont :

x = R cosϕ cos θ
y = R cosϕ sin θ
z = R sinϕ

(15.209)

Les équations de la surface cylindrique sont :
x = R

2
cosα

y = R
2
+ R

2
sinα

z = λ
(15.210)

Les relations entre les différents paramètres sont obtenues en égalant les coordonnées x, y et z
des points d’intersection des deux surfaces, ce qui donne :

R cosϕ cos θ =
R

2
cosα (15.211)

R cosϕ sin θ =
R

2
(1 + sinα) (15.212)

R sinϕ = λ (15.213)
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Figure 15.16 – Intersection d’une sphère et d’un cylindre tangents.

On va chercher à éliminer trois des paramètres de ces relations pour obtenir les coordonnées x, y
et z des points de la courbe comme des fonctions d’un seul paramètre (le choix de ce paramètre
parmi les quatre est bien évidemment libre), et donc d’exprimer soit ϕ en fonction de θ ; soit
α en fonction de λ. En élevant les deux premières expressions au carré et en les sommant, on
obtient :

R2 cos2 ϕ cos2 θ +R2 cos2 ϕ sin2 θ =
R2

4
cos2 α +

R2

4
(1 + sinα)2 (15.214)

ce qui donne après simplification :

cos2 ϕ =
1 + sinα

2
(15.215)

La relation 15.213 permet de tirer :

sin2 ϕ =
λ2

R2
(15.216)

En sommant ces deux dernière relations, on obtient :

1 + sinα

2
+
λ2

R2
= 1 (15.217)

Qui, une fois réarrangé donne :

sinα = 1− 2
λ2

R2
(15.218)
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on peut donc immédiatement obtenir l’expression du cosinus de α en fonction de λ :

cosα = ±
√

1− sin2 α = ±

√
1−

(
1− 2

λ2

R2

)2

(15.219)

Après simplification, on obtient :

cosα = ±
√

1− 1 + 4
λ2

R2
+ 4

λ4

R4
= ±2

λ

R

√
1− λ2

R2
(15.220)

En remplaçant ces expressions dans le système 15.210, on obtient les équations paramétriques
de la courbe, à savoir :


x = ±λ

√
1− λ2

R2

y = R− λ2

R
z = λ

(15.221)

15.6 Géométrie différentielle

15.6.1 Vecteur tangent à une courbe spatiale

Reprenons l’exemple de la courbe de Viviani étudiée au § 15.5.6 dont les équations
paramétriques sont : 

x = ±λ
√

1− λ2

R2

y = R− λ2

R
z = λ

(15.222)

Le signe ± indique qu’à une altitude déterminée, on a deux points distincts sur la courbe. Si
on cherche l’expression du vecteur dérivé à mi-hauteur (λ = R/2), il suffit de déterminer les
dérivées premières de la fonction vectorielle par rapport au paramètre λ :

dx

dλ
= ±


√

1− λ2

R2
+ λ

−2λ

R2√
1− λ2

R2

 = ± 1√
1− λ2

R2

dy

dλ
= −2

λ

R
dz

dλ
= 1

(15.223)

Les deux tangentes en λ = R/2 ont donc pour direction respectivement
(

2
√
3

3
,−1, 1

)
et(

−2
√
3

3
,−1, 1

)
. Les figures 15.17 et 15.18 représentent ces tangentes sur la courbe.

On peut également noter que la courbe de Viviani présente un point double en λ = 0 (la courbe
passe deux fois par le même point de l’espace) ; la dérivée première de la fonction vectorielle ne
s’y annule toutefois pas et on peut y calculer deux tangentes distinctes (1,-2,1) et (-1,-2,1).
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Figure 15.17 – Tangentes en λ = R/2 à la
courbe de Viviani.
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Figure 15.18 – Tangentes en λ = R/2 à la
courbe de Viviani..

15.6.2 Plan tangent

15.6.2.1 Cartésien

Soit une surface définie par la fonction implicite F (x, y, z) ≡ xyz − k3 = 0 (figure 15.19).
Démontrer que le tétraèdre formé par les plans Oxy, Oxz, Oyz et n’importe quel plan tangent
à la courbe a un volume constant.
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Figure 15.19 – Surface définie par l’équation F (x, y, z) ≡ xyz − k3 = 0 .

L’équation cartésienne du plan tangent au point P s’écrit :

yP · zP (x− xP ) + xP · zP (y − yP ) + xP · yP (z − zP ) = 0 (15.224)
yP · zP · x+ xP · zP · y + xP · yP · z − 3 · xP · yP · zP = 0 (15.225)
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L’ntersection de ce plan avec les axes du repère ont pour coordonnées A (3xP , 0, 0), B (0, 3yP , 0)
et C (0, 0, 3zP ). Le tétraèdre OABC a pour volume :

V =
1

3
· base · hauteur (15.226)

=
1

3
·
(
1

2
·OA ·OB

)
·OC (15.227)

=
1

3
·
(
1

2
· 3xP · 3yP

)
· 3zP (15.228)

=
9

2
xP · yP · zP (15.229)

Comme P appartient à la surface, xP · yP · zP est une constante qui vaut k3, ce qui signifie que
le volume du tétraèdre est constant et vaut :

V =
9

2
k3 (15.230)

15.6.2.2 Paramétrique

Soit une sphère définie par ses équations paramétriques :
x = 4 · cosϕ · cos θ
y = 4 · cosϕ · sin θ
z = 4 · sinϕ

(15.231)

Déterminez les équations du plan tangent au point P défini par θ = π/4, ϕ = π/3.

Les dérivées partielles de la fonction vectorielle s’établissent selon :
∂x

∂θ
= −4 · cosϕ · sin θ

∂y

∂θ
= 4 · cosϕ · cos θ

∂z

∂θ
= 0



∂x

∂ϕ
= −4 · sinϕ · cos θ

∂y

∂ϕ
= −4 · sinϕ · sin θ

∂z

∂ϕ
= 4 · cosϕ

(15.232)

Les équations paramétriques du plan tangent s’établissent donc comme suit :
x = 4 · cos π

3
· cos π

4
− α · 4 · cos π

3
· sin π

4
− β · 4 · sin π

3
· cos π

4
y = 4 · cos π

3
· sin π

4
+ α · 4 · cos π

3
· cos π

4
− β · 4 · sin π

3
· sin π

4
z = 4 · sin π

3
+ β · 4 · cos π

3

(15.233)

ce qui donne : 
x =

√
2−

√
2α−

√
6β

y =
√
2 +

√
2α−

√
6β

z = 2
√
3 + 2β

(15.234)

En additionnant les deux premières équations, on obtient{
x+ y = 2

√
2− 2

√
6β

z = 2
√
3 + 2β

(15.235)
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En éliminant β entre ces deux équations, on obtient l’équation cartésienne du plan tangent
(figure 15.20) qui est :

x+ y + 2
√
2− 2

√
6
z − 2

√
3

2
(15.236)

qui peût être réarrangée en :
x+ y −

√
6z + 8

√
2 = 0 (15.237)
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Figure 15.20 – Plan tangent à une sphère.

15.6.3 Vecteur normal à une surface

15.6.3.1 Cartésien

Soit une sphère de centre C et de rayon R définie par son équation cartésienne :

F (x, y, z) ≡ (x− xC)
2 + (y − yC)

2 + (z − zC)
2 −R2 = 0 (15.238)

Vérifions que les normales en tout point de la sphère passent bien par son centre.
Les composantes du vecteur normal sont :

(
∂F

∂x

)
P

= 2 (xP − xC)(
∂F

∂y

)
P

= 2 (yP − yC)(
∂F

∂z

)
P

= 2 (zP − zC)

(15.239)

Les équations paramétriques des normales sont donc :
x = xP + λ · 2 (xP − xC)
y = yP + λ · 2 (yP − yC)
z = zP + λ · 2 (zP − zC)

(15.240)
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On remarque donc que si λ = −1/2, on obtient
x = xC
y = yC
z = zC

(15.241)

ce qui démontre la passage de la normale par le centre de la sphère.

15.6.3.2 Paramétrique

Soit une sphère de centre C et de rayon R définie par ses équations paramétriques :
x = xC +R · cosϕ · cos θ
y = yC +R · cosϕ · sin θ
z = zC +R · sinϕ

(15.242)

Un premier vecteur directeur du plan tangent est obtenu par :

(
∂
−→
V

∂θ

)
θP ,ϕP


(
∂x
∂θ

)
θP ,ϕP

= (−R cosϕ · sin θ)θP ,ϕP
= −R cosϕP · sin θP(

∂y
∂θ

)
θP ,ϕP

= (R cosϕ · cos θ)θP ,ϕP
= R cosϕP · cos θP(

∂z
∂θ

)
θP ,ϕP

= 0

(15.243)

Un second vecteur directeur du plan tangent est obtenu par :

(
∂
−→
V

∂ϕ

)
θP ,ϕP



(
∂x
∂ϕ

)
θP ,ϕP

= (−R sinϕ · cos θ)θP ,ϕP
= −R sinϕP · cos θP(

∂y
∂ϕ

)
θP ,ϕP

= (−R sinϕ · sin θ)θP ,ϕP
= −R sinϕP · sin θP(

∂z
∂ϕ

)
θP ,ϕP

= (R · cosϕ)θP ,ϕP
= R · cosϕP

(15.244)

Le vecteur normal à la surface est obtenu par :

−→
N =

(
∂
−→
V

∂θ

)
θP ,ϕP

∧

(
∂
−→
V

∂ϕ

)
θP ,ϕP

(15.245)

=

∣∣∣∣∣∣
−→u x

−→u y
−→u z

−R cosϕP · sin θP R cosϕP · cos θP 0
−R sinϕP · cos θP −R sinϕP · sin θP R · cosϕP

∣∣∣∣∣∣ (15.246)

=
(
R2 cos2 ϕP cos θP ;R

2 cos2 ϕP sin θP ;R
2 cosϕP sinϕP

)
(15.247)

= (cosϕP cos θP ; cosϕP sin θP ; sinϕP ) (15.248)
(15.249)

La normale à la sphère en un point a donc pour équations paramétriques :
x = xC +R · cosϕP · cos θP + λ (cosϕP cos θP )
y = yC +R · cosϕP · sin θP + λ (cosϕP sin θP )
z = zC +R · sinϕP + λ (sinϕP )

(15.250)

On voit que si λ = −R, on trouve bien que le centre de la sphère appartient à la normale à la
sphère.
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Chapitre 16

Rappels d’éléments de géométrie
analytique plane

Recollect : to recall with additions something not previously known.

- A. Bierce, The Devil’s Dictionary

16.1 Equation de droite

La forme générale de représentation d’une droite est l’équation cartésienne implicite suivante :

F (x, y) ≡ Ax+By + C = 0 (16.1)

A, B et C sont définies à une constante multiplicative près. Tous les points du plan dont
les coordonnées (x, y) vérifient cette relation appartiennent à la droite. Si la droite n’est pas
verticale, A ̸= 0 et on peut transformer l’équation en sa forme explicite :

y = mx+ p (16.2)

Dans ce cas, on a :
— m qui est le coefficient directeur permettant d’évaluer la pente de la droite (m = ∆y

∆x
=

tan θ avec θ l’angle entre la droite et l’horizontale ;
— p qui est l’ordonnée à l’origine, c’est-à-dire la coordonnée y du point d’intersection de la

droite avex l’axe Oy.
Deux droites parallèles ont même coefficient directeur. Des droites sont perpendiculaires si le
produit de leurs coefficients directeurs vaut -1. Une droite verticale a pour équation x = k.
Les équations paramétriques d’une droite sont :{

x = xP + αλ
y = yP + βλ

(16.3)

avec (xP , yP ) les coordonnées d’un point de la droite et (α, β) les composantes d’un vecteur
directeur de la droite. On peut relier les composantes de ce vecteur aux autres formes en
remarquant que les vecteurs (α, β), (1,m) et (B,−A) sont colinéaires.
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16.2 Equations de coniques sous forme réduite

On parle de forme réduite pour les coniques dans le cas où leur axe focal est parallèle à l’un
des axes du système de coordonnées.

16.2.1 Ellipse

La forme réduite d’une ellipse est

F (x, y) ≡ (x− xc)
2

a2
+

(y − yc)
2

b2
− 1 = 0 (16.4)

avec (xc, yc) définissant le centre de l’ellipse, a et b définissant les mesures des demis axes (figure
16.1). Ses équations paramétriques sont :{

x = xc + a · cos θ
y = yc + b · sin θ (16.5)

Figure 16.1 – Ellipse réduite.

Le grand axe de l’ellipse est horizontal si a ≥ b et vertical si a ≤ b. Si a = b = R, on retrouve
l’équation d’un cercle :

(x− xc)
2 + (y − yc)

2 −R2 = 0 (16.6)

Les foyers sont situés à une distance c de part et d’autre du centre de l’ellipse sur son grand
axe (c =

√
|a2 − b2|). L’excentricité de l’ellipse ϵ vaut c/a.
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16.2.2 Hyperbole

La forme réduite d’une hyperbole est

F (x, y) ≡ (x− xc)
2

a2
− (y − yc)

2

b2
± 1 = 0 (16.7)

avec (xc, yc) définissant le centre de l’hyperbole (figure 16.2). Si le signe du terme indépendant
est négatif, l’axe focal est parallèle à l’axe Ox. Dans ce cas, ses équations paramétriques sont :{

x = xc ± a · cosh θ
y = yc + b · sinh θ (16.8)

Si le signe du terme indépendant est positif, l’axe focal est parallèle à l’axe Oy. Dans ce cas,
ses équations paramétriques sont : {

x = xc + a · sinh θ
y = yc ± b · cosh θ (16.9)

Les foyers sont situés à une distance c de part et d’autre du centre de l’hyperbole (c =
√
a2 + b2)

sur son axe focal. L’hyperbole présente deux asymptotes obliques d’équation

y = yc +
b

a
(x− xc) (16.10)

y = yc −
b

a
(x− xc) (16.11)

L’hyperbole est dite équilatère si a=b (ses asymptotes sont perpendiculaires).

Figure 16.2 – Hyperbole réduite.
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16.2.3 Parabole

La forme centrée et réduite d’une parabole d’axe Ox est

(y − yS)
2 − 4p (x− xS) = 0 (16.12)

avec (xS, yS) définissant le sommet (figure 16.3). Le foyer de la parabole se situe en (xS + p, yS).

Figure 16.3 – Parabole d’axe parallèle à x.

La forme centrée et réduite d’une parabole d’axe Oy est

(x− xS)
2 − 4p (y − yS) = 0 (16.13)

avec (xS, yS) définissant le sommet (figure 16.3). Le foyer de la parabole se situe en (xS, yS + p).

16.3 Analyse de courbes planes

16.3.1 Recherche des asymptotes d’une courbe plane

Par définition, une droite du plan est appelée asymptote d’une courbe plane si la distance d’un
point variable M de cette courbe à la droite tend vers zéro quand le point M tend vers l’infini.
Il existe trois types d’asymptotes suivant leur orientation :

— une asymptote horizontale est parallèle à l’axe Ox ;
— une asymptote verticale est parallèle à l’axe Oy ;
— une asymptote oblique a une orientation qui n’est parallèle ni à l’axe des x ni à l’axe des

y.
De manière générale, une courbe peut présenter un nombre indéfini d’asymptotes (voire aucune
asymptote). Nous nous limiterons à l’étude des courbes en formulation explicite.
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16.3.1.1 Asymptote horizontale

La courbe présente une asymptote horizontale si

lim
x→+∞

y(x) = a (16.14)

avec a fini (dans ce cas, y=a est l’équation de l’asymptote) ou si

lim
x→−∞

y(x) = b (16.15)

avec b fini (dans ce cas, y=b est l’équation de l’asymptote). Une courbe en formulation explicite
présente donc au plus deux asymptotes horizontales (éventuellement confondues).

16.3.1.2 Asymptote verticale

La courbe présente une asymptote verticale si

lim
x→a

y(x) = ±∞ (16.16)

avec a fini (dans ce cas, x = a est l’équation de l’asymptote). Une courbe en formulation
explicite peut potentiellement présenter une infinité d’asymptotes verticales.

16.3.1.3 Asymptote oblique

Pour qu’une courbe en formulation explicite présente une asymptote oblique, il faut que la
distance entre l’asymptote et la courbe tende vers zéro pour x tendant vers plus ou moins
l’infini. On peut démontrer que ceci est équivalent à rechercher :

m = lim
x→+∞

y(x)

x
(16.17)

Si m est infini, la courbe ne présente pas d’asymptote oblique vers + l’infini ; si m est fini, on
peut calculer :

p = lim
x→+∞

[y(x)−mx] (16.18)

Deux cas de figure sont possibles :
— p est fini, l’asymptote a pour équation y = mx+ p ;
— p est infini, on dit que la courbe admet une branche parabolique sans asymptote, de

direction asymptotique y = mx (exemple : y(x) = x+
√
x) ;

Le même calcul peut être mené pour la limite vers - l’infini ; une courbe définie par sa forme
explicite possède donc au plus deux asymptotes obliques (éventuellement confondues).
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16.4 Exemples d’application

16.4.1 Droite

Déterminer les équations d’une droite reliant les points de coordonnées (1, 3) et (−2, 5).

16.4.2 Equation explicite

Le coefficient directeur de la droite est calculé selon :

m =
5− 3

−2− 1
= −2/3 (16.19)

pour trouver l’ordonnée à l’origine, il suffit de remplacer les coordonnées d’un point dans
l’équation :

3 = −2/3 · 1 + p→ p = 11/3 (16.20)

La droite a donc pour équation :
y = −2/3x+ 11/3 (16.21)

16.4.2.1 Equation implicite

En remplaçant les coordonnées des point dans l’équation générale de la droite, on trouve un
système de deux équations :

A · 1 +B · 3 + C = 0 (16.22)
A · −2 +B · 5 + C = 0 (16.23)

A, B et C étant définis à une constante multiplicative près, on peut fixer arbitrairement C = 1
pour résoudre le système :{

A · 1 +B · 3 + 1 = 0
A · −2 +B · 5 + 1 = 0

→
{

2A · 1 + 2B · 3 + 2 + A · −2 +B · 5 + 1 = 0
A · −2 +B · 5 + 1 = 0

(16.24)

{
11B ·+3 = 0 → B = −3/11
A · −2 +B · 5 + 1 = 0 → A = −2/11

(16.25)

La droite a donc pour équation :

−2/11x− 3/11y + 1 = 0 → 2x+ 3y − 11 = 0 (16.26)

16.4.2.2 Equations paramétriques

On peut prendre comme vecteur directeur un vecteur joignant le second point et le premier
(
−→
V = (−2 − 1, 5 − 3) = (−3, 2). En prenant comme point de départ le premier point, les

équations paramétriques de la droite sont :{
x = 1− 3λ
y = 3 + 2λ

(16.27)

En éliminant le paramètre entre ces deux équations, on retrouve bien l’équation cartésienne de
la droite.
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16.4.3 Conique

16.4.3.1 Ellipse

Déterminer les caractéristiques de la conique définie par l’équation cartésienne suivante :

4x2 − 16x+ 9y2 + 18y − 11 = 0 (16.28)

On commence par regrouper les termes en x et en y pour former des produits remarquables :

4
(
x2 − 4x

)
+ 9

(
y2 + 2y

)
− 11 = 0 (16.29)

4
(
x2 − 4x+ 4

)
+ 9

(
y2 + 2y + 1

)
− 11− 16− 9 = 0 (16.30)

4 (x− 2)2 + 9
(
y2 + 1

)2 − 36 = 0 (16.31)
(16.32)

On divise ensuite par le terme indépendant pour trouver la forme réduite :

(x− 2)2

32
+

(y2 + 1)
2

22
− 1 = 0 (16.33)

Il s’agit donc d’une ellipse centrée en (2,−1) dont le demi-axe selon Ox mesure 3 unités de
longueur et le demi-axe selon Oy 2 unités de longueur. La constante c vaut

√
32 − 22 =

√
5, les

foyer de l’ellipse sont donc situés en (2−
√
5,−1) et (2 +

√
5,−1).

16.4.3.2 Hyperbole

Déterminer les caractéristiques de la conique définie par l’équation cartésienne suivante :

4x2 − 16x− 9y2 − 18y − 29 = 0 (16.34)

On commence par regrouper les termes en x et en y pour former des produits remarquables :

4
(
x2 − 4x

)
− 9

(
y2 + 2y

)
− 29 = 0 (16.35)

4
(
x2 − 4x+ 4

)
− 9

(
y2 + 2y + 1

)
− 29− 16 + 9 = 0 (16.36)

4 (x− 2)2 − 9
(
y2 + 1

)2 − 36 = 0 (16.37)
(16.38)

On divise ensuite par le terme indépendant pour trouver la forme réduite :

(x− 2)2

32
− (y2 + 1)

2

22
− 1 = 0 (16.39)

Il s’agit donc d’une hyperbole d’axe focal horizontal centrée en (2,−1). La constante c vaut√
32 + 22 =

√
13, les foyer de l’ellipse sont donc situés en (2 −

√
13,−1) et (2 +

√
13,−1). ses

asymptotes ont pour équation :

y = −1 + 2/3(x− 2) (16.40)
y = −1− 2/3(x− 2) (16.41)

(16.42)
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16.4.3.3 Parabole

Déterminer les caractéristiques de la conique définie par l’équation cartésienne suivante :

3x+ 2y2 − 4y + 8 = 0 (16.43)

On commence par regrouper les termes en x et en y pour former des produits remarquables :

2
(
y2 − 2y

)
+ 3x+ 8 = 0 (16.44)

2
(
y2 − 2y + 1

)
+ 3x+ 6 = 0 (16.45)

2 (y − 1)2 + 3 (x+ 2) = 0 (16.46)

(y − 1)2 +
3

2
(x+ 2) = 0 (16.47)

(16.48)

Il s’agit donc d’une parabole d’axe focal horizontal. Le sommet est situé en (−2, 1). p vaut 3/8,
le foyer est donc situé en (−2 + 3/8, 1).

16.4.4 Asymptotes

Soit la fonction :

f(x) = 2 +
x
√
x2 − 1 + x2

x− 1
(16.49)

Son domaine de définition est ]− inf −1[ ∩ [1 + inf[. Présente-t-elle des asymptotes ?

lim
x→1

=
1

0
(16.50)

x=1 est asymptote verticale de la fonction.

lim
x→−∞

f(x) = 2 + lim
x→−∞

(
x

x− 1

)
︸ ︷︷ ︸

1

lim
x→−∞

(√
x2 − 1 + x

)
︸ ︷︷ ︸

+∞−∞

(16.51)

= 2 + lim
x→−∞

(√
x2 − 1 + x

)
(16.52)

= 2 + lim
x→−∞

x2 − 1− x2√
x2 − 1− x

(16.53)

= 2 + lim
x→−∞

−1√
x2 − 1− x

= 2 (16.54)

(16.55)

y=2 est asymptote horizontale de la fonction.

lim
x→+∞

f(x) = 2 + lim
x→+∞

(
x

x− 1

)
︸ ︷︷ ︸

1

lim
x→+∞

(√
x2 − 1 + x

)
︸ ︷︷ ︸

+∞

= +∞ (16.56)
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Recherche d’éventuelle asymptote oblique :

lim
x→+∞

f(x)

x
= lim

x→+∞

(
2

x

)
︸ ︷︷ ︸

0

+ lim
x→+∞

(
x

x− 1

)
︸ ︷︷ ︸

1

lim
x→+∞

(√
x2 − 1 + x

x

)
︸ ︷︷ ︸

+∞/+∞

(16.57)

= lim
x→+∞

(√
x2 − 1 + x

x

)
(16.58)

= lim
x→+∞

(√
1− 1/x2 + 1

)
= 2 (16.59)

(16.60)

On a potentiellement une asymptote oblique de coefficient directeur 2. Son ordonnée à l’origine
se calcule par :

lim
x→+∞

(f(x)− 2x) = 2 + lim
x→+∞

(
x
√
x2 − 1 + x2

x− 1
− 2x

)
(16.61)

= 2 + lim
x→+∞

(
x
√
x2 − 1 + x2

x− 1
− 2x2 − 2x

x− 1

)
(16.62)

= 2 + lim
x→+∞

(
x
√
x2 − 1− x2 + 2x

x− 1

)
(16.63)

= 2 + lim
x→+∞

(
x

x− 1

)
︸ ︷︷ ︸

1

lim
x→+∞

(√
x2 − 1− x+ 2

)
︸ ︷︷ ︸

+∞−∞

(16.64)

= 2 + lim
x→+∞

(√
x2 − 1− x+ 2

)
(16.65)

= 2 + lim
x→+∞

(
x2 − 1− (x− 2)2√
x2 − 1 + (x− 2)

)
(16.66)

= 2 + lim
x→+∞

(
4x− 5√

x2 − 1 + (x− 2)

)
(16.67)

= 2 + lim
x→+∞

(
4− 5/x√

1− 1/x2 + (1− 2/x)

)
= 4 (16.68)

La droite y=2x+4 est donc asymptote oblique quand x tend vers +∞. Le graphe de la fonction
est représenté en figure 16.4
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Figure 16.4 – Graphe de la fonction prise pour exemple dans la recherche d’asymptotes.

16.4.5 Intersection

16.4.5.1 Cas de base

Rechercher l’intersection entre l’ellipse d’équation

(x− 2)2

52
+

(y + 3)2

22
− 1 = 0 (16.69)

avec la droite d’équation
y = −x+ 2 (16.70)

Les éventuels points d’intersection sont obtenus en résolvant le système d’équations suivant : (x− 2)2

52
+

(y + 3)2

22
− 1 = 0

y = −x+ 2
(16.71)

En combinant les deux équations, on trouve successivement :

(x− 2)2

52
+

(−x+ 2 + 3)2

22
− 1 = 0 (16.72)

4 (x− 2)2 + 25 (−x+ 5)2 − 100 = 0 (16.73)
4
(
x2 − 4x+ 4

)
+ 25

(
x2 − 10x+ 25

)
− 100 = 0 (16.74)

4x2 − 16x+ 16 + 25x2 − 250x+ 625− 100 = 0 (16.75)
29x2 − 266x+ 541 = 0 (16.76)

On peut résoudre cette équation du second degré :

∆ = (−266)2 − 4 · 29 · 541 = 8000 (16.77)

x1 =
266 +

√
8000

2 · 29
= 6, 128... (16.78)

x2 =
266−

√
8000

2 · 29
= 3, 044... (16.79)

(16.80)

245



CHAPITRE 16. RAPPELS D’ÉLÉMENTS DE GÉOMÉTRIE ANALYTIQUE PLANE

Il suffit ensuite de remplacer ces valeurs dans l’équation de la droite pour trouver les
coordonnées y des points d’intersection. On trouve au final I1 = (6, 128...;−4, 128...) et
I2 = (3, 044...;−1, 045...)

16.4.5.2 Tangence

En conservant l’ordonnée à l’origine, quelle devrait être le coefficient directeur de la droite pour
qu’elle soit tangente à l’ellipse ? Repartons du système d’équation déterminant l’intersection
entre la droite et l’ellipse :  (x− 2)2

52
+

(y + 3)2

22
− 1 = 0

y = mx+ 2
(16.81)

Les points d’intersection sont toujours obtenus en résolvant ce système. On peut donc à nouveau
substituer pour trouver :

(x− 2)2

52
+

(mx+ 2 + 3)2

22
− 1 = 0 (16.82)

4 (x− 2)2 + 25 (mx+ 5)2 − 100 = 0 (16.83)
4
(
x2 − 4x+ 4

)
+ 25

(
m2x2 − 10mx+ 25

)
− 100 = 0 (16.84)

4x2 − 16x+ 16 + 25m2x2 − 250mx+ 625− 100 = 0 (16.85)(
4 + 25m2

)
x2 − (16 + 250m)x+ 541 = 0 (16.86)

La droite est tangente à l’ellipse si cette équation présente une racine double, la condition de
tangece est donc exprimée par :

∆ = (− (16 + 250m))2 − 4 ·
(
4 + 25m2

)
· 541 = 0 (16.87)

256 + 8000m+ 62500m2 − 54100m2 − 8656 = 0 (16.88)
8400m2 + 8000m− 8400 = 0 (16.89)

(16.90)

Ce qui conduit à résoudre une nouvelle équation du second degré :

∆ = 80002 − 4 · 8400 · −8400 = 346240000 (16.91)

m1 =
−8000 +

√
346240000

2 · 8400
= −0, 631... (16.92)

m2 =
−8000−

√
346240000

2 · 8400
= 1, 583... (16.93)

Il y a donc deux droite tangentes à l’ellipse, comme le montre la figure 16.5.
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Chapitre 17

Rappels de géométrie analytique spatiale

Look behind you, a Three-Headed Monkey !

- G. Threepwood, Monkey island

17.1 Introduction

La géométrie analytique spatiale étend les concepts de géométrie plane en considérant une
troisième coordonnée z.

17.2 Géométrie vectorielle et repère

Dans l’espace Rn, un repère est constitué d’un point origine O et de n vecteurs linéairement
indépendants u⃗1, u⃗2, . . . , u⃗n. Ce repère permet de décrire la position de tout point par
l’intermédiaire d’une combinaison linéaire unique des vecteurs de base. La géométrie analytique
associe à tout point P de l’espace une représentation sous la forme de coordonnées
(p1, p2, . . . , pn). Ces coordonnées sont les composantes du vecteur joignant l’origine au point
dans le repère qui a été choisi :

−→
OP =

n∑
i=1

pi
−→ui (17.1)

La pratique recommande toutefois d’employer un repère orthonormé (c’est-à-dire dont les
vecteurs de base sont orthogonaux entre eux et dont les mesures sont égales et équivalentes
à l’unité de mesure employée) qui conduit à de nombreuses simplifications dans les calculs.

17.2.1 Opérations courantes de géométrie vectorielle

Dans le cadre de ce cours, un grand nombre de relations feront appel aux notions de géométrie
vectorielle classiques déjà évoquées notamment dans le cours de mécanique rationnelle[1] ou de
physique [2] dont voici quelques rappels.

La norme d’un vecteur dans un repère orthonormé :

∥−→a ∥ =

√√√√ n∑
i=1

a2i (17.2)
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Figure 17.1 – Opérations de base en géométrie vectorielle.

Ce qui permet de définir un vecteur unitaire −→u (de norme 1) parallèle à −→a par :

−→u = ±
−→a

∥−→a ∥
(17.3)

La combinaison linéaire de deux vecteurs −→a et
−→
b donne un vecteur −→c :

−→c = k · a⃗+ l · b⃗⇒ ci = k · ai + l · bi (17.4)

17.2.1.1 Produit scalaire

Le produit scalaire de deux vecteurs −→a et
−→
b formant un angle θ entre eux donne un scalaire :

−→a ·
−→
b = ∥−→a ∥

∥∥∥−→b ∥∥∥ cos θ = n∑
i=1

aibi (17.5)

Son emploi est pratique pour la calcul d’angle entre éléments.

17.2.1.2 Produit vectoriel

Le produit vectoriel de deux vecteurs −→a et
−→
b donne un vecteur −→c perpendiculaire au plan

défini par −→a et
−→
b (orienté positivement selon la règle de la main droite) dont la norme vaut

l’aire du parallélogramme défini par −→a et
−→
b :

−→a ∧
−→
b = −→c ⇒ ∥−→c ∥ = ∥−→a ∥

∥∥∥−→b ∥∥∥ sin θ (17.6)

Le produit vectoriel peut être calculé comme :

−→a ∧
−→
b =

∣∣∣∣∣∣
−→ux −→uy −→uz
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (a2b3 − a3b2)
−→ux + (a3b1 − a1b3)

−→uy + (a1b2 − a2b1)
−→uz (17.7)
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17.2.1.3 Produit mixte

On appelle produit mixte une expression de la forme :

−→
V1 ·

(−→
V2 ∧

−→
V3

)
(17.8)

dont le résultat donne un scalaire. Ce scalaire représente le volume d’un parallélépipède porté
par les trois vecteurs

−→
V1,

−→
V2 et

−→
V3 (figure 17.2).

Figure 17.2 – Parallélépipède construit sur trois vecteurs.

17.3 Représentation de plans

La surface spatiale la plus simple, à savoir le plan, va être utilisée pour introduire les diverses
formes de représentation d’une surface dans l’espace.

17.3.1 Equation vectorielle

L’équation vectorielle d’un plan représente le vecteur
−→
V variable qui joint l’origine du repère à

tous les points du plan (figure 17.3).

Son expression est établie de la manière suivante :

−→
V (λ, µ) =

−→
OR +

−→
RP =

−→
OR + λ

−→
V1 + µ

−→
V2 (17.9)

avec R=(x0, y0, z0) un point du plan,
−→
V1 = (a, b, c) et

−→
V2 = (d, e, f) deux vecteurs linéairement

indépendants du plan. Physiquement, le fait de pouvoir représenter tout point du plan par
l’intermédiaire de deux paramètres λ et µ revient à laisser deux degrés de liberté en translation
au point parcourant le plan. En termes d’algèbre, la représentation d’un plan est donc une
application de R2 → R3 qui associe à tout point du plan (coordonnées λ et µ du point dans le
plan) un point de l’espace.
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Figure 17.3 – Equation vectorielle du plan.

17.3.1.1 Forme normale

Soit
−→
N un vecteur normal au plan (

−→
N =

−→
V1 ∧

−→
V2 par exemple). On peut exprimer que

−→
N est

orthogonal à tout vecteur du plan par (figure 17.4) :
−→
N ·

(−→
V −

−→
OR
)
= 0 (17.10)

avec
−→
V un vecteur (variable) reliant l’origine du repère à chaque point du plan. Cette équation

Figure 17.4 – Equation vectorielle normale du plan.

peut également s’exprimer par :
−→
N ·

−→
V =

−→
N ·

−→
OR = k (17.11)
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Où k est une constante pour le plan considéré (car
−→
OR et

−→
N sont constants). Cette expression

est dénommée forme normale constante du plan, elle exprime que la projection de tout vecteur
joignant l’origine à un point du plan sur la normale au plan est constante.

17.3.2 Equations paramétriques

En projetant la relation 17.9 selon les axes, on obtient le système d’équations suivant :
x = x0 + λa+ µd
y = y0 + λb+ µe
z = z0 + λc+ µf

(17.12)

Ce système d’équation constitue les équations paramétriques du plan (ou forme paramétrique
du plan). En faisant varier λ et µ de −∞ à ∞, on obtient les coordonnées de l’ensemble des
points constituant le plan.

17.3.3 Equation cartésienne

En éliminant les paramètres λ et µ dans le système 17.12, on obtient successivement :
λ =

x− x0 − µd

a

y = y0 +
x− x0 − µd

a
b+ µe

z = z0 +
x− x0 − µd

a
c+ µf

(17.13)


µ =

(
y − y0 − b

a
(x− x0)

)
/
(
e− db

a

)
=

a (y − y0)− b (x− x0)

ea− db

z = z0 +
x− x0 − µd

a
c+ µf

(17.14)

a (z − z0) = c (x− x0) + (af − cd)
a (y − y0)− b (x− x0)

ea− db
(17.15)

ce qui donne en développant :(
b
af − cd

ae− bd
− c

)
x+

(
cd− af

ae− bd

)
y + az +

[
cx0 −

af − cd

ae− bd
(bx0 − ay0)− az0

]
= 0 (17.16)

C’est-à-dire une équation linéaire en x,y et z de la forme suivante :

Ax+By + Cz −D = 0 (17.17)

Cette équation est appelée équation cartésienne du plan (ou forme cartésienne implicite du
plan). L’ensemble des points ayant des coordonnée x,y et z vérifiant l’équation sont des points
appartenant au plan. Il faut noter que les coefficients A,B,C et D de cette équation sont définis
à une constante multiplicative près.
On peut définir un vecteur normal au plan en prenant un vecteur de coordonnées (A,B,C)
(figure 17.5).
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Figure 17.5 – Normale à un plan.

Ceci se démontre de manière simple en prenant trois points quelconques du plan :

P1

(
x1, y1,

D − A · x1 −Bb · y1
C

)
P2

(
x2, y2,

D − A · x2 −B · y2
C

)
P3

(
x3, y3,

D − A · x3 −B · y3
C

) (17.18)

Un vecteur normal du plan peut être défini par :

−→
N =

−−→
P2P1 ∧

−−→
P3P1 =

∣∣∣∣∣∣∣∣∣
−→ux −→ux −→ux

x1 − x2 y1 − y2 −A
C

(x1 − x2)−
B

C
(y1 − y2)

x1 − x3 y1 − y3 −A
C

(x1 − x3)−
B

C
(y1 − y3)

∣∣∣∣∣∣∣∣∣ (17.19)

Ce qui donne : 
Nx = −A

C
· [(y1 − y3) · (x1 − x2)− (y1 − y2) · (x1 − x3)]

Ny = −B
C

· [(y1 − y3) · (x1 − x2)− (y1 − y2) · (x1 − x3)]

Nz = − (y1 − y3) · (x1 − x2) + (y1 − y2) · (x1 − x3)

(17.20)

En divisant l’ensemble des termes par −(y1 − y3) · (x1 − x2)− (y1 − y2) · (x1 − x3)

C
, on retrouve

bien (A,B,C) comme vecteur normal.

17.3.3.1 Forme implicite d’un plan donné par les points de percée des axes dans
ce plan

Si ax+by+cz-d=0 est l’équation cartésienne d’un plan, les points U=(d/a ;0 ;0), V=(0 ;d/b ;0)
et W=(0 ;0 ;d/c) situés sur les axes appartiennent à ce plan (on parle des coordonnées à l’origine
du plan, figure 17.6).
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Figure 17.6 – Coordonnées à l’origine d’un plan.

De manière réciproque, si un plan passe par les points U=(xU ;0 ;0), V=(0 ;yV ;0) et
W=(0 ;0 ;zW ), ce plan aura pour équation :

(1/xU)x+ (1/yV ) y + (1/zW ) z − 1 = 0 (17.21)

17.3.4 Passage d’une représentation d’un plan à une autre

17.3.4.1 Passage de la forme normale à la forme implicite

Si la forme normale est donnée par un produit mixte(−→
V −

−→
OR
)
·
(−→
V1 ∧

−→
V2

)
= 0 (17.22)

le développement du produit mixte donne immédiatement[1] :∣∣∣∣∣∣
x− xR y − yR z − zR
V1x V1y V1z
V2x V2y V2z

∣∣∣∣∣∣ = 0 (17.23)

Qui permet par développement de retrouver la forme implicite ax+by+cz-d=0 du plan.
Si l’équation normale est donnée sous la forme :

−→
N ·

(−→
V −

−→
OR
)
= 0 (17.24)

un simple développement du produit scalaire donne

Nx (x− xR) +Ny (y − yR) +Nz (z − zR) = 0 (17.25)

Qui donne également accès à la forme implicite du plan.
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17.3.4.2 Passage de la forme normale à la forme vectorielle

Pour établir la forme vectorielle il est nécessaire de déterminer deux vecteurs qui doivent
satisfaire aux conditions suivantes :

— Les deux vecteurs doivent êtres orthogonaux à
−→
N ;

— les deux vecteurs doivent être linéairement indépendants (en particulier, ils ne peuvent
être nuls).

L’idée de base est de choisir un premier vecteur du plan
−→
V1 puis de rechercher un second

vecteur par le produit vectoriel
−→
V2 =

−→
N ∧

−→
V1 qui est à la fois orthogonal à

−→
N comme demandé,

mais également orthogonal à
−→
V1. L’emploi de vecteurs unitaires pour

−→
N ,

−→
V1 et

−→
V2 permet une

simplification des calculs en ajoutant des contraintes sur les coordonnées des vecteurs (seules
deux composantes doivent être déterminées au lieu de trois).

17.3.4.3 Passage de la forme cartésienne à la forme normale

La forme normale nécessite la définition d’un point du plan et d’un vecteur normal au plan.
Ce vecteur normal est trouvé de manière immédiate comme ayant des coordonnées (a,b,c) si le
plan a pour équation ax+by+cz-d=0. La recherche des coordonnées d’un point du plan revient
à se fixer arbitrairement deux coordonnées de ce point et de rechercher la troisième coordonnée
qui garantit l’appartenance de ce point au plan.

17.3.4.4 Passage de la forme implicite à la forme paramétrique

Il existe une infinité de paramétrisations possibles pour un plan. Le choix le plus simple consiste
à employer la paramétrisation suivante :

x = α
y = β
z = 1

c
· [d− (aα + bβ)]

(17.26)

La fonction vectorielle du plan s’établira ensuite par :

−→
V = α−→ux + β−→uy +

1

c
· [d− (aα + bβ)]−→uz (17.27)

ou encore
−→
V =

d

c
−→uz + α

(−→ux − a

c
−→uz
)
+ β

(
−→uy −

b

c
−→uz
)

(17.28)
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17.4 Représentation de droites

17.4.1 Equations cartésiennes

La droite est l’exemple le plus simple d’une courbe de l’espace. Sa définition peut être réalisée
par l’intermédiaire de l’intersection de deux plans π et ρ (figure 17.7). Une droite possède donc
deux équations cartésiennes de la forme suivante :{

Ax+By + Cz −D = 0
Ex+ Fy +Gz −H = 0

(17.29)

Les deux plans π et ρ ne doivent bien évidemment pas être parallèles pour présenter une droite

d’intersection. Ceci implique que la matrice
[
A B C
E F G

]
soit de rang 2 ((A,B,C) linéairement

indépendant de (E,F,G)).

Figure 17.7 – Définition de droite par ses équations cartésiennes.

17.4.2 Forme canonique

Si on considère un point P(xP , yP , zP ) quelconque de la droite, celui-ci appartient aux deux
plans, on peut donc écrire : {

AxP +ByP + CzP −D = 0
ExP + FyP +GzP −H = 0

(17.30)

En soustrayant les relations 17.30 de 17.29, on obtient un système équivalent :{
A (x− xP ) +B (y − yP ) + C (z − zP ) = 0
E (x− xP ) + F (y − yP ) +G (z − zP ) = 0

(17.31)

Comme le système est de rang 2, il existe ∞1 de solutions, les solutions sont de la forme :

x− xP = k (BG− FC)
y − yP = k (EC −GA)
z − zP = k (AF − EB)

(17.32)
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Avec k un paramètre (pouvant varier de − inf à + inf. Ces trois équations peuvent se synthétiser
sous la forme suivante :

x− xP
BG− FC

=
y − yP

EC −GA
=

z − zP
AF − EB

(17.33)

Cette forme est appelée forme canonique de la droite.

17.4.2.1 Forme canonique d’une droite orthogonale aux axes de coordonnées

Soit une droite passant par les points P1(x1, y1, z1) et P2(x2, y2, z1). Cette droite est bien
évidemment orthogonale à l’axe Z (sa cote Z reste constante). La forme canonique de cette
droite s’écrirait sous la forme :

x− x1
x2 − x1

=
y − y1
y2 − y1

=
0

0
(17.34)

Ce qui n’a pas beaucoup de sens. Dans ce cas particulier, il faut substituer à la forme canonique
le système suivant :  z = z1

x− x1
x2 − x1

=
y − y1
y2 − y1

(17.35)

qui revient en fait à la définition d’une droite sous la forme de l’intersection de deux plans
(figure 17.8).

Figure 17.8 – Droite orthogonale à l’axe Z.

17.4.2.2 Forme canonique d’une droite perpendiculaire à un des plans de
coordonnées

Soit une droite passant par les points P1(x1, y1, z1) et P2(x1, y1, z2). Cette droite est bien
évidemment parallèle à l’axe Z (figure 17.9). La forme canonique de cette droite s’écrirait
sous la forme :

0

0
=

0

0
=

z − z1
z2 − z1

(17.36)
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Qui, comme pour le § précédent n’a pas beaucoup de sens. De nouveau, il faut substituer à la
forme canonique le système suivant : {

x = x1
y = y1

(17.37)

qui correspond à nouveau à une définition de la droite sous forme d’équations cartésiennes.

Figure 17.9 – Droite parallèle à l’axe Z.

17.4.3 Equation vectorielle

La définition vectorielle d’une droite se base sur le vecteur joignant l’origine à un point de la
droite et sur un vecteur directeur de la droite (figure 17.10). Cette équation a la forme suivante :

−→
OP =

−→
OA+ k ·

−→
V (17.38)

Figure 17.10 – Equation vectorielle de droite.
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Le passage des équations cartésiennes à l’équation vectorielle d’une droite se réalise de manière
aisée en considérant que le vecteur directeur de l’intersection de deux plans. Un vecteur directeur
est obtenu par le produit vectoriel entre les vecteurs normaux aux deux plans (le vecteur −→v est
parallèle au vecteur

−→
N1 ∧

−→
N2).

En considérant que la droite passe par deux points connus P1 et P2, la fonction vectorielle de
la droite peut également s’écrire sous la forme :

−→
OP =

−−→
OP1 + λ

−−→
P1P2 (17.39)

ou encore
−→
OP −

−−→
OP1 =

−−→
P1P = λ

−−→
P1P2, ce qui implique que les vecteurs

−−→
P1P et

−−→
P1P2 sont

colinéaires. Une autre présentation de l’équation vectorielle d’une droite est donc :(−→
OP −

−−→
OP1

)
∧
(−−→
OP2 −

−−→
OP1

)
= 0 (17.40)

17.4.4 Equations paramétriques

Comme dans le cas des équations paramétriques d’un plan, les équations paramétriques d’une
droite sont obtenues en projetant l’équation vectorielle d’une droite dans un repère orthonormé :

x = xA + k · l
y = yA + k ·m
z = zA + k · n

(17.41)

Ces équations paramétriques permettent également d’interpréter les équations sous forme
canonique d’une droite. En effet, ces équations ont une forme générale :

x− xA
l

=
y − yA
m

=
z − zA
n

= k (17.42)

Les numérateurs de ces équations correspondent donc aux paramètres directeurs de la droite.

17.5 Mesure de distances

17.5.1 Distance entre points

La notion de distance classiquement employée dans l’espace est la distance euclidienne (figure
17.11) entre deux points définie dans un repère orthonormé par :

dP→Q =
∥∥∥−→PQ∥∥∥ =

√
(xP − xQ)

2 + (yP − yQ)
2 + (zP − zQ)

2 (17.43)
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Figure 17.11 – Calcul de la distance entre deux points.

17.5.2 Distance point droite

Soit une droite passant par un point P1 et de vecteur directeur (l,m,n) et un point P0 extérieur
à cette droite (figure 17.12). La distance entre le point et la droite est mesurée selon la
perpendiculaire à la droite, c’est-à-dire dans un plan perpendiculaire à la droite. Le problème
revient à la détermination du point de percée P de la droite d dans le plan normal à d passant
par P0. La démarche de résolution est donc la suivante :

— établissement de l’équation cartésienne du plan normal :
— (l · (x− x0) +m · (y − y0) + n · (z − z0) = 0) ;

— recherche du point de percée P de d dans ce plan ;
— calcul de la distance entre P et P0.

Figure 17.12 – Calcul de la distance entre un point et une droite.
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17.5.3 Distance point plan

La distance d’un point à un plan est mesurée parallèlement à la normale au plan (figure 17.13).
Soit un point P = (x0; y0; z0) et un plan d’équation cartésienne Ax+By+Cz-D=0.

Figure 17.13 – Calcul de la distance entre un point et un plan.

Le point de percée de la normale au plan passant par P est obtenu en combinant les équations
paramétriques de la droite perpendiculaire au plan passant par P :

x = x0 + Aλ
y = y0 +Bλ
z = z0 + Cλ

(17.44)

Avec l’équation cartésienne du plan. L’intersection se produit pour λQ′ = −(Ax0+By0+Cz0−
D)/(A2 +B2 + C2). Le point de percée Q′ a donc pour coordonnées :

x = x0 + AλQ′

y = y0 +BλQ′

z = z0 + CλQ′

(17.45)

La distance entre le point P et le plan π est donc calculé comme étant la norme de PQ′, à
savoir ∥∥∥−−→PQ′

∥∥∥ =

√
(x0 + AλQ′ − x0)

2 + (y0 +BλQ′ − y0)
2 + (z0 + CλQ′ − z0)

2 (17.46)

= |λQ′ |
√
A2 +B2 + C2 (17.47)

Ce qui correspond donc à : ∥∥∥−−→PQ′
∥∥∥ =

|Ax0 +By0 + Cz0 −D|√
A2 +B2 + C2

(17.48)
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17.6 Angle entre plans

17.6.1 Angle dièdre

Par définition, la mesure de l’angle dièdre (ou le rectiligne du dièdre) que forment deux plans
est l’angle mesuré dans un plan perpendiculaire à l’intersection entre les deux plans.

Soit un plan γ perpendiculaire à l’intersection de π et ρ, si nous menons dans ce plan
des perpendiculaires aux traces des deux plans, on définit un quadrilatère JMNP. Dans ce
quadrilatère, la somme des angles vaut 2π radians, l’angle entre les perpendiculaires est donc
le supplémentaire de l’angle formé entre les plans.

Figure 17.14 – Angle entre deux plans.

En orientant les normales dans la direction inverse, on obtiendrait directement l’angle entre les
plans. En résumé, l’angle entre deux plans d’équation cartésienne

A1x+B1y + C1z −D1 = 0
A2x+B2y + C2z −D2 = 0

(17.49)

peut être calculé par

α = arccos

(
± A1A2 +B1B2 + C1C2√

A2
1 +B2

1 + C2
1

√
A2

2 +B2
2 + C2

2

)
(17.50)

Si les plans sont donnés sous leur forme normale, cette expression se réduit à

α = arccos (± (a1a2 + b1b2 + c1c2)) (17.51)
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17.6.2 Perpendicularité entre plans

Si deux plans sont perpendiculaires entre eux leurs vecteurs normaux sont orthogonaux entre
eux (figure 17.15).

Figure 17.15 – Plans perpendiculaires (vue orientée selon la droite d’intersection).

Donc si deux plans sont définis par leurs équations cartésiennes :

A1x+B1y + C1z −D1 = 0
A2x+B2y + C2z −D2 = 0

(17.52)

La condition de perpendicularité s’écrira
−→
N1 ·

−→
N2 = 0 ou encore A1A2 +B1B2 + C1C2 = 0.

17.6.3 Plans parallèles

Deux plans parallèles entre eux ont nécessairement leurs normales parallèles (figure 17.16). La
condition de parallélisme entre deux plans définis par leurs équations cartésiennes (équation
17.52) s’exprimera donc par :

A1

A2

=
B1

B2

=
C1

C2

(17.53)

Si les vecteurs normaux sont unitaires, la condition de parallélisme peut également s’exprimer
par

−→n1 · −→n2 = 1 (17.54)
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Figure 17.16 – Plans parallèles.

17.7 Angle droite/plan

17.7.1 Perpendicularité plan/droite

Soient :
— une droite de paramètres directeurs (l,m,n) ;
— un plan d’équation cartésienne Ax+By+Cz-D=0.

Pour que la droite soit perpendiculaire au plan, il faut que le vecteur directeur de cette droite soit
parallèle au vecteur normal du plan (figure 17.17), ce qui implique d’avoir une proportionnalité
entre les composantes de ces vecteurs :

l

A
=
m

B
=
n

C
(17.55)

L’expression d’un plan perpendiculaire à une droite passant par un point R(xR, yR, zR) sera
donc :

l (x− xR) +m (y − yR) + n (z − zR) = 0 (17.56)

L’ensemble des plans perpendiculaires à une droite donnée (famille de plans perpendiculaires à
une droite) s’exprime donc par :

lX +mY + nZ = β (17.57)

avec le paramètre β valant l · xR +m · yR + n · zR.
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Figure 17.17 – Droite perpendiculaire à un plan.

17.7.2 Droite parallèle à un plan donné

Rappelons que pour qu’une droite soit parallèle à un plan, il suffit qu’elle soit parallèle à une
droite de ce plan. Comme la droite est parallèle à une droite du plan, elle est donc orthogonale
au vecteur normal au plan. La condition de parallélisme entre une droite de vecteur directeur
(l,m, n) et un plan d’équation cartésienne AX +BY + CZ −D = 0 s’écrit donc :

lA+mB + nC = 0 (17.58)

17.8 Etablissement de l’équation de plans particuliers

17.8.1 Plan passant par une droite et parallèle à une autre droite

Rechercher un plan passant par une droite d1 et parallèle à une droite d2 passe par
l’établissement de la fonction vectorielle du plan. Soit R un point quelconque de d1,

−→
V1 le

vecteur directeur de d1 et
−→
V2 le vecteur directeur de d2. La fonction vectorielle du plan s’établit

simplement par : −→
V =

−→
OR + λ

−→
V1 + µ

−→
V2 (17.59)
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17.8.2 Plan passant par une droite et par un point extérieur à cette
droite

Soit S le point donné et R un point quelconque de la droite d. Le vecteur
−→
RS peut être pris

comme deuxième vecteur permettant de définir l’équation vectorielle du plan.

Figure 17.18 – Plan passant par une droite et un point.

17.8.3 Plan passant par trois points

Soient les trois points R(xR, yR, zR), S(xS, yS, zS) et T(xT , yT , zT ). En considérant les vecteurs
−→
V 1 =

−→
RS et

−→
V 2 =

−→
ST , l’expression vectorielle peut être obtenue. Par développement, on obtient

la forme implicite cartésienne qui est équivalente à :∣∣∣∣∣∣
x− xR y − yR z − zR
xS − xR yS − yR zS − zR
xT − xR yT − yR zT − zR

∣∣∣∣∣∣ = 0 (17.60)

Il faut noter que cette méthode n’est pas la plus rapide en pratique pour obtenir l’équation
d’un plan.

17.8.4 Plan passant par une droite et perpendiculaire à un plan donné

Pour rappel, deux plans sont perpendiculaires si l’un contient une droite perpendiculaire à
l’autre. Ce problème se résoud donc en employant le vecteur normal au plan donné comme
deuxième vecteur utilisé dans l’équation vectorielle du plan recherché.

17.8.5 Plan perpendiculaire à deux plans donnés et passant par un
point donné

Les vecteurs normaux
−→
N1 et

−→
N2 des deux plans donnés peuvent être employés pour obtenir

l’expression vectorielle du plan :

−→
V =

−→
OR + λ

−→
N1 + µ

−→
N2 (17.61)
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Comme le plan recherché est perpendiculaire à la fois aux deux plans donnés, ce plan est donc
perpendiculaire à leur intersection. Le vecteur

−→
N1 ∧

−→
N2 peut donc être employé comme vecteur

normal au plan, permettant de retrouver directement l’équation implicite du plan.

17.9 Traitement de l’intersection d’objets

De manière générale, pour obtenir l’intersection de deux éléments décrits par leurs équations,
il suffit de résoudre le système formé en rassemblant les équations des deux figures. Une courbe
de l’espace sera donc définie par l’intersection de deux surfaces (par exemple d’un plan avec
une surface pour définir une courbe plane).

Un exemple simple consiste à rechercher l’intersection de trois plans définis par leurs équations
cartésiennes. Le système résultant est constitué de trois équations linéaires à trois inconnues :

Ax+By + Cz −D = 0
Ex+ Fy +Gz −H = 0
Ix+ Jy +Kz − L = 0

(17.62)

Ce système peut également se mettre sous forme matricielle : A B C
E F G
I J K

 ·


x
y
z

 =


D
H
L

 (17.63)

Suivant les positions relatives des plans, le système peut être inversible (un seul point
d’intersection) sous-déterminé (intersection donnant une droite ou un plan) ou impossible
(intersections parallèles entre elles par exemple). Les différents cas sont résumés sur la figure
17.19.
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Figure 17.19 – Différents cas de figure pour l’intersection de trois plans.

17.9.1 Application

Soient trois plans déterminés par leur équation cartésienne :

π ≡ 3x+ 2y + 2z + 1 = 0
ρ ≡ −2x+ y − z − 2 = 0
σ ≡ 12x+ y + 7z + 8 = 0

(17.64)

L’intersection des trois plans est obtenue résolvant le système formé des équations des trois
plans, à savoir : 

3x+ 2y + 2z + 1 = 0
−2x+ y − z − 2 = 0
12x+ y + 7z + 8 = 0

(17.65)

La résolution de ce système par la méthode de Gauss [3] donne successivement :

3 2 2
... −1 L1

−2 1 −1
... 2 L2

12 1 7
... −8 L3

(17.66)

3 2 2
... −1

0 7 1
... 4 2L1 + 3L2

0 −7 −1
... −4 L3− 4L1

(17.67)
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3 2 2
... −1

0 7 1
... 4

0 0 0
... 0 L3− L2

(17.68)

21 0 12
... −15 7L1− 3L2

0 7 1
... 4

0 0 0
... 0

(17.69)

1 0 4
7

... −5
7

L1/7

0 1 1
7

... 4
7

L2/7

0 0 0
... 0

(17.70)

L’intersection des trois plans forme donc une droite dont l’équation paramétrique est :
x = −5

7
− 4

7
λ

y = 4
7
− 1

7
λ

z = λ
(17.71)

17.9.2 Projection d’une droite sur les plans de coordonnées

Soit une droite donnée par ses équations cartésiennes :{
Ax+By + Cz −D = 0
Ex+ Fy +Gz −H = 0

(17.72)

Figure 17.20 – Projection d’une droite sur le plan horizontal.

La recherche de sa projection dans le plan Oxy s’obtient en réalisant l’intersection du plan
vertical contenant la droite avec le plan d’équation z = 0. N’importe quel point du plan vertical
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contenant la droite est caractérisé par le fait que les coordonnées x et y sont liées par une
relation indépendante de z. L’équation de ce plan est donc obtenue en éliminant z entre les
deux équations cartésiennes :

(AG− CE)x+ (BG− CF ) y + (CH −DG) = 0 (17.73)

Cette relation correspond à l’équation cartésienne du plan vertical contenant la droite.

Le même type de raisonnement peut être suivi pour la recherche de la projection dans les autres
plans de coordonnées.

17.10 Vecteur directeur et cosinus directeurs

Un vecteur permet de définir une direction dans l’espace (sauf le vecteur nul bien entendu).
Toute vecteur colinéaire définit la même direction, il est donc possible de normaliser le vecteur
de manière libre. Une méthode classique de normalisation consiste à rendre ce vecteur unitaire,
dans ce cas, ses composantes (l,m, n) sont telles que l2+m2+n2 = 1. On les appelle paramètres
directeurs absolus de la droite.
Projetons orthogonalement ce vecteur

−→
V sur les axes de coordonnées (figure 17.21) et appelons

α, β et γ les angles formés par le vecteur avec Ox, Oy et Oz.

Figure 17.21 – Cosinus directeurs d’une droite.

Dans les triangles rectangles OAD, OBD et OCD, on obtient de manière directe que cosα = l,
cos β = m et cos γ = n (car on a

∥∥∥−−→OD∥∥∥ =
∥∥∥−→V ∥∥∥ = 1). Les paramètres directeurs absolus

d’une droite sont donc les cosinus directeurs de la droite. On vérifie de manière évidente que
cos2 α + cos2 β + cos2 γ = 1.
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17.11 Forme implicite normalisée d’un plan

Une méthode de normalisation de l’équation cartésienne d’un plan consiste à rendre unitaire
son vecteur normal en divisant les coefficients A, B et C par le facteur

√
A2 +B2 + C2 :

ax+ by + cz − d = 0 avec



a=
A√

A2 +B2 + C2

b=
B√

A2 +B2 + C2

c=
C√

A2 +B2 + C2

d=
D√

A2 +B2 + C2

(17.74)

dans ce cas, le vecteur normal au plan rendu unitaire est noté −→n . Nous avons défini
précédemment que le cosinus des angles formés par la normale à un plan avec les axes sont
donnés par les coefficients de x, y et z dans la forme normalisée. Cette normale peut être
orientée du plan vers l’origine ou inversement suivant les cas (si le coefficient d dans la forme
normalisée est positif, le vecteur normal est orienté de l’origine vers le plan ; les conclusions
sont inverses dans le cas contraire).
Si on recherche les coordonnées du point de percée O′ de la normale au plan passant par
l’origine, il faut résoudre le système formé des équations paramétriques de la droite combinées
avec l’équation cartésienne du plan :

x = aλ
y = bλ
z = cλ
ax+ by + cz − d = 0

(17.75)

Le point de percée est donc défini pour λ = d/(a2 + b2 + c2), il a donc pour coordonnées :
x = ad/(a2 + b2 + c2)
y = bd/(a2 + b2 + c2)
z = cd/(a2 + b2 + c2)

(17.76)

la distance |OO′| vaut donc :

|OO′| =
√
X2 + Y 2 + Z2 =

√
a2d2

(a2 + b2 + c2)2
+

b2d2

(a2 + b2 + c2)2
+

c2d2

(a2 + b2 + c2)2
= d (17.77)

Une nouvelle interprétation de l’équation sous forme normalisée est donc la suivante :

cosα + cos β + cos γ − |OO′| = 0 (17.78)

Cette forme est également appelée forme polaire du plan ; le vecteur
−−→
OO′ est appelé vecteur

polaire du plan. Sur ce canevas, les formes polaires des différentes équations peuvent être
établies. On déduit par exemple que les points de percée des axes dans le plan sont les
points A, B et C tels que A = ((|OO′| / cosα); 0; 0), B = (0; (|OO′| / cos β); 0) et C =
(0; 0; (|OO′| / cos γ)). Une fonction vectorielle du plan peut donc être établie par

−→
VP =

−−→
OO′ + λ

−→
CA+ µ

−−→
CB (17.79)
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Figure 17.22 – Forme polaire d’un plan.

Un système d’équations paramétriques peut donc être immédiatement déduit :
x = |OO′| (cosα + λ/ cosα)
y = |OO′| (cos β + µ/ cos β)
z = |OO′| (cos γ − (λ+ µ) / cos γ)

(17.80)

L’équation vectorielle polaire se détermine en exprimant le vecteur
−−→
O′P constamment

perpendiculaire à
−−→
OO′ : −−→

OO′ ·
(−→
OP −

−−→
OO′

)
= 0 (17.81)

ou −−→
OO′ ·

−→
OP =

∣∣∣−−→OO′
∣∣∣2 (17.82)

17.12 Exemples d’application

17.12.1 Plan

Déterminer les équations d’un plan passant par les points A(1, 2, 3), B(4,−1, 5) et
C(−1,−1,−1).
La méthode la plus directe est de rechercher les équations paramétriques du plan en employant
par exemple A comme point particulier et

−→
AB et

−→
AC comme vecteurs directeurs. On trouve

immédiatement : 
x = 1 + 3λ− 2µ
y = 2− 3λ− 3µ
z = 3 + 2λ− 4µ

(17.83)
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Pour trouver l’équation cartésienne, il suffit d’éliminer les paramètres dans le système
d’équation :{

3(1)− 2(2) → 3x− 2y = 3 + 9λ− 6µ− 4 + 6λ+ 6µ = −1 + 15λ
2(1)− (3) → 2x− z = 2 + 6λ− 4µ− 3− 2λ+ 4µ = −1 + 4λ

(17.84)

4(1)− 15(2) → 12x− 8y − 30x+ 15z = −4 + 60λ+ 15− 60λ = 11 (17.85)

Le plan a donc pour équation :

−18x− 8y + 15z − 11 = 0 (17.86)

On peut vérifier que si on remplace les coordonnées de l’un des points dans cette équation,
l’égalité est bien vérifiée.

17.12.2 Droite

Déterminer les équations de la droite reliant les points P1(−4,−5, 1) et P2(1, 7, 6).
En considérant l’équation vectorielle de la droite

−→
V (α) =

−−→
OP1 + α

−−→
P1P2, on trouve de manière

immédiate les équations paramétriques de la droite :
x = −4 + 5α
y = −5 + 12α
z = 1 + 5α

(17.87)

17.12.3 Intersection

Rechercher l’intersection entre le plan et la droite recherchés précédemment.
L’intersection est obtenue en résolvant le système reprenant les équations du plan et de la
droite, par exemple : 

−18x− 8y + 15− 11 = 0
x = −4 + 5α
y = −5 + 12α
z = 1 + 5α

(17.88)

En remplacant x, y et z dans la première équation, on trouve la relation linéaire en α suivante :

−18 (−4 + 5α)− 8 (−5 + 12α) + 15 (1 + 5α)− 11 = 0 (17.89)
72− 90α + 40− 96α + 15 + 75α− 11 = = 0 (17.90)

−111α + 116 = 0 (17.91)

α =
116

111
(17.92)

En utilisant cette valeur dans les équations paramétriques de la droite, on trouve les coordonnées
du point d’intersection I (1, 226...; 7, 541...; 6, 225).
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Annexe A

Figures vierges de certains problèmes

Tout le succès d’une opération réside dans sa préparation.

- S. Tzu, L’art de la guerre

A.1 Introduction

Cette annexe rassemble un ensemble de figures vierges qui seront utilisées durant le cours oral.

A.2 Figures
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Figure A.1 – Traces d’un plan défini par deux droites sécantes (cf page 42).
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Figure A.2 – Traces d’un plan défini par deux droites parallèles (cf page 43).

Géométries et communication graphique 278



ANNEXE A. FIGURES VIERGES DE CERTAINS PROBLÈMES

Figure A.3 – Traces d’un plan défini par trois points (cf page 43).
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Figure A.4 – Trace d’un plan défini par une droite et un point (cf page 43).
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Figure A.5 – Point dans un plan défini par trois points (cf page 47).
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Figure A.6 – Point dans un plan défini par deux droites sécantes (cf page 48).
Géométries et communication graphique 282



ANNEXE A. FIGURES VIERGES DE CERTAINS PROBLÈMES

Figure A.7 – Point dans un plan défini par deux droites parallèles (cf page 48).
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Figure A.8 – Point dans un plan défini par une droite et un point (cf page 49).
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Figure A.9 – Reconstruction de l’épure de Monge à partir du plan (cf page 61).
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Figure A.10 – Recherche du vu et du caché (cf page 64).
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Figure A.11 – Recherche du vu et du caché sur plan (cf page 65).
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Figure A.12 – Intersection entre deux plans quelconques (LT = πh
f = πf

h = ρhf = ρfh), cf page
72. Géométries et communication graphique 288
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Figure A.13 – Point de percée d’une droite dans un plan (LT = πh
f = πf

h), cf page 75.Géométries et communication graphique 289
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Figure A.14 – Vraie grandeur par la règle du triangle rectangle (cf page 82).
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Figure A.15 – Rotation autour d’un axe vertical (cf page 87).
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Figure A.16 – Opération de rotation inverse pour retrouver le point P (cf page 90).
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Annexe B

Formulaire

Géométrie vectorielle

Norme d’un vecteur dans un repère orthonormé : ∥−→a ∥ =

√
n∑

i=1

a2i

Vecteur unitaire −→u parallèle à −→a : −→u = ± −→a
∥−→a ∥

Combinaison linéaire de deux vecteurs : −→c = k · a⃗+ l · b⃗⇒ ci = k · ai + l · bi

Produit scalaire : −→a ·
−→
b = ∥−→a ∥

∥∥∥−→b ∥∥∥ cos θ = n∑
i=1

aibi

Produit vectoriel :−→a ∧
−→
b = −→c ⇒ ∥−→c ∥ = ∥−→a ∥

∥∥∥−→b ∥∥∥ sin θ
−→a ∧

−→
b =

∣∣∣∣∣∣
−→ux −→uy −→uz
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (a2b3 − a3b2)
−→ux + (a3b1 − a1b3)

−→uy + (a1b2 − a2b1)
−→uz

Coniques

Forme implicite F (x, y) ≡ ax2 + bxy + cy2 + dx + ey + f = 0. Déterminant caractéristique
∆ = b2 − 4ac (∆ < 0 : ellipse ; ∆ = 0 : parabole ; ∆ > 0 : hyperbole).
Pour la réduction :

— si a ̸= c, θ = 0, 5 arctan b
a−c

;
— si a = c, θ = π/4.

Forme réduite F (x′y′) ≡ a′x′2 + b′y′2 + c′x′ + d′y′ + e′ = 0
a′ = a cos2 θ + b cos θ sin θ + c sin2 θ
b′ = a sin2 θ − b cos θ sin θ + c cos2 θ
c′ = d cos θ + e sin θ
d′ = −d sin θ + e cos θ
e′ = f
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tangente et normale à une courbe

Tangente : y = yM0 +

(
dy

dx

)
M0

(x− xM0)

Normale :y = yM0 − 1(
dy

dx

)
M0

(x− xM0)

— Forme implicite :
dy

dx
= −

∂F (x, y)

∂x
∂F (x, y)

∂y

;

— Forme paramétrique :
dy

dx
=

dy

dp
dx

dp

;

— Forme polaire :
dy

dx
=
r′(θ) sin θ + r(θ) cos θ

r′(θ) cos θ − r(θ) sin θ
;

Points singuliers

Tangente à une courbe sous forme vectorielle :

−→
T (λ) =

−→
T (t0) + λ

−→
T p (t0) avec


−→
T p (t0) ̸=

−→
0

p ∈ N∗

p est minimum

(B.1)

si p=1 on parle de point régulier, dans le cas contraire, le point est singulier.

Asymptotes

Asymptote horizontale lim
x→±∞

y(x) = a. Asymptote verticale lim
x→a

y(x) = ±∞.

Asymptote oblique y = mx+ p : m = lim
x→+∞

y(x)
x

; p = lim
x→+∞

[y(x)−mx].

Longueur

s =
∫ u

u0
ds avec ds2 = dx2 + dy2. Forme explicite :

∫ tn

t0

√
1 +

(
∂y(t)

∂t

)2

dt

Forme polaire : s =
∫ θ

θ0

√(
df(θ)

dθ

)2

+ (f(θ))2 · dθ ;
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Courbure

1

ρ
= lim

∆s→0

∣∣∣∣∆φ∆s
∣∣∣∣ = ∣∣∣∣(dφds

)
s

∣∣∣∣ =
∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2)3/2

En équation implicite : 1
ρ
=

∂F
∂y

2 ∂2F

∂x2
− 2

∂2F

∂x∂y

∂F

∂x

∂F

∂y
+
∂2F

∂y2

(
∂F

∂x

)2

∂F
∂x

2

+

∂F
∂y

2
3
2

En équation paramétrique : 1
ρ
=

∂ψ

∂t
· ∂

2η

∂t2
− ∂η

∂t
· ∂

2ψ

∂t2∂ψ
∂t

2

+

∂η
∂t

2
3
2

En équation polaire : 1
ρ
=

∣∣∣∣∣r2 + 2

(
dr

dθ

)2

− r
d2r

dθ2

∣∣∣∣∣[(
dr

dθ

)2

+ r2

] 3
2

Géométrie spatiale

Distance entre un point (x0, y0, z0) et un plan Ax+By+Cz−D = 0 :
|Ax0 +By0 + Cz0 −D|√

A2 +B2 + C2

Matrice de transformation homogène

Rotation autour des axes de coordonnées

R (X, θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 R (Y, θ) =


cos θ 0 sin θ 0
0 1 0 0
− sin θ 0 cos θ 0
0 0 0 1

 (B.2)

R (Z, θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 (B.3)
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Rotation autour d’un axe quelconque

Jn =

 0 −nz ny

nz 0 −nx

−ny nx 0

 R
(−→
N , θ

)
= I + sin θ · Jn + (1− cos θ) · J2

n (B.4)

Translation


1 0 0 Tx
0 1 0 Ty
0 0 1 Tz
0 0 0 1

 (B.5)

Symétrie orthogonale par rapport aux plans coordonnés

ROXY =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ROXZ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ROY Z =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (B.6)

Symétrie orthogonale par rapport à un plan quelconque

Rπ = I − 2 · −→n · −→n T (B.7)

Scaling

H =


hx 0 0 0
0 hy 0 0
0 0 hz 0
0 0 0 1

 (B.8)
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Quadriques

Forme générale

F (x, y, z) ≡ Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz +Gx+Hy + Iz + J = 0 (B.9)

Forme réduite

F (x, y, z) = A′x2 +B′y2 + C ′z2 +D′x+ E ′y + F ′z +G′ = 0 (B.10)

Formes propres :

— l’ellipsoïde F (x, y, z) =
(x− xC)

2

a2
+

(y − yC)
2

b2
+

(z − zC)
2

c2
− 1 = 0 ;

— l’hyperboloïde à une nappe F (x, y, z) =
(x− xC)

2

a2
+

(y − yC)
2

b2
− (z − zC)

2

c2
− 1 = 0 ;

— l’hyperboloïde à deux nappes F (x, y, z) =
(x− xC)

2

a2
+

(y − yC)
2

b2
− (z − zC)

2

c2
+ 1 = 0 ;

— le paraboloïde hyperbolique F (x, y, z) =
(x− xC)

2

a2
− (y − yC)

2

b2
− (z − zC) = 0 ;

— le paraboloïde elliptique F (x, y, z) =
(x− xS)

2

a2
+

(y − yS)
2

b2
− (z − zS) = 0 ;

— le cône à base elliptique F (x, y, z) =
(x− xS)

2

a2
+

(y − yS)
2

b2
− (z − zS)

2

c2
= 0 ;

Figure B.1 – Ellipsoïde.
Figure B.2 – hyperboloïde
à une nappe.

Figure B.3 – hyperboloïde
à deux nappes.

Figure B.4 – Paraboloïde
hyperbolique.

Figure B.5 – Paraboloïde
elliptique.

Figure B.6 – Cône
elliptique.

Surface de révolution autour de l’axe z

F (
√
x2 + y2, z) = 0 (B.11)
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Paramétrisations classiques

Figure B.7 – Coordonnées sphériques. Figure B.8 – Coordonnées cylindriques.

Equation paramétrique des quadriques

Ellipsoïde Hyperboloïde à une nappe Hyperboloïde à deux nappes
x = xC + a · cosu · cos v
y = yC + b · cosu · sin v
z = zC + c · sinu


x = xC + a · coshu · cos v
y = yC + b · coshu · sin v
z = zC + c · sinhu


x = xC + a · sinhu · cos v
y = yC + b · sinhu · sin v
z = zC ± c · coshu

Paraboloïde hyperbolique Paraboloïde elliptique Cône à base elliptique
x = xC + a · u
y = yC + b · v
z = zC + (u2 − v2)


x = xS + a ·

√
u cos v

y = yS + b ·
√
u sin v

z = zS + u


x = xS + a · u cos v
y = yS + b · u sin v
z = zS + c · u

Géométrie différentielle de surfaces

Forme cartésienne

point singulier surface : ∣∣∣∣(∂F∂x
)

P

∣∣∣∣+ ∣∣∣∣(∂F∂y
)

P

∣∣∣∣+ ∣∣∣∣(∂F∂z
)

P

∣∣∣∣ = 0 (B.12)

Plan tangent à une surface en un point régulier :(
∂F

∂x

)
P

(x− xP ) +

(
∂F

∂y

)
P

(y − yP ) +

(
∂F

∂z

)
P

(z − zP ) = 0 (B.13)

En forme explicite :

−
(
∂f

∂x

)
P

(x− xP )−
(
∂f

∂y

)
P

(y − yP ) + (z − zP ) = 0 (B.14)

Forme vectorielle

Plan tangent :

−→
T (α, β) ≡

−→
V (λP , µP ) + α ·

(
∂
−→
V

∂λ

)
λP ,µP

+ β ·

(
∂
−→
V

∂µ

)
λP ,µP

(B.15)
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Sixième partie

Chapitre qui ne sont plus couverts dans le
cours
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Annexe C

Longueur, rectification et courbure de
courbes planes

Le chemin le plus court d’un point à un autre c’est de ne pas y aller

- P. Geluck, L’Excellent du chat

C.1 Longueur d’un arc de courbe

Soit une courbe donnée par ses équations paramétriques employant un paramètre t. On peut
approcher l’arc joignant les points A et B (définis par les valeurs t0 et tn du paramètre) par
la ligne brisée joignant les points définis par les paramètres t0, t1, ..., tn (avec t0<t1< ...< tn,
figure C.1). Si on fait tendre le nombre de points vers l’infini, la longueur des segments tend
vers zéro et le périmètre de la ligne brisée tend vers la longueur de l’arc entre A et B.

Figure C.1 – Discrétisation d’une portion de courbe.

La longueur d’une corde est exprimée par :

li+1 =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (C.1)

La longueur de la ligne brisée vaudra donc :

l =
n−1∑
i=0

li+1 =
n−1∑
i=0

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (C.2)
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l =
n−1∑
i=0

li+1 =
n−1∑
i=0

√(
xi+1 − xi

∆t

)2

+

(
yi+1 − yi

∆t

)2

∆t (C.3)

On peut démontrer ([1],[2]) qu’à la limite, cette expression tend vers la longueur de l’arc (notée
s) qui peut être calculée par :

s =

∫ tn

t0

√(
dx(t)

dt

)2

+

(
dy(t)

dt

)2

dt (C.4)

On peut également démontrer que la différentielle de cette fonction s’établit selon :

ds2 = dx2 + dy2 (C.5)

C.1.1 Abscisse curviligne d’un point sur un arc

Pour un arc donné, on a l’expression générale :

s =

∫ u

u0

ds (C.6)

On peut définir de manière arbitraire :
— une origine à l’arc pour la valeur u0 du paramètre ;
— un sens positif de parcours du point défini par u0 vers celui défini par u1.

La valeur définie par la relation est alors appelée abscisse curviligne d’un point sur l’arc orienté.

C.2 Rectification d’une courbe

Le calcul de la longueur d’un arc est dénommé rectification de l’arc. Ce calcul va être présenté
sur base d’exemples pour différentes formulations de courbes.

C.2.1 Courbe donnée par ses équations paramétriques

Soit par exemple une cycloïde, courbe décrite par un point d’un cercle qui roule sans glisser sur
l’axe OX (figure C.2). Ses équations paramétriques sont :{

x = R (θ − sin θ)
y = R (1− cos θ)

(C.7)

L’abscisse curviligne sur cette courbe se calcule comme suit :

dx

dθ
= R (1− cos θ) (C.8)

dy

dθ
= R sin θ (C.9)

s =

∫ θ

θ0

√
(R (1− cos θ))2 + (R sin θ)2 · dθ (C.10)
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Les développements successifs donnent :

s =

∫ θ

θ0

√
R2 − 2R2 cos θ +R2 cos2 θ +R2 sin2 θ · dθ (C.11)

=

∫ θ

θ0

√
2R2 − 2R2 cos θ · dθ (C.12)

=

∫ θ

θ0

√
2R2 (1− cos θ) · dθ (C.13)

=

∫ θ

θ0

√
2R22 sin2 θ

2
· dθ (C.14)

=

∫ θ

θ0

2R

∣∣∣∣sin θ2
∣∣∣∣ · dθ (C.15)

(C.16)

Si on se limite à une variation d’angle de 0 à 2π, le sinus reste positif, on peut donc lever la
valeur absolue (si on considère des valeurs faisant changer de signe le sinus, il faut intégrer par
morceaux). En imposant θ0=0, l’expression de l’abscisse curviligne est donc :

s = 4R

[
− cos

(
θ

2

)]θ
0

(C.17)

= −4R cos
θ

2
+ 4R (C.18)

= 4R

(
1− cos

θ

2

)
(C.19)

= 8R sin2 θ

4
(C.20)

Pour un seul cycle de roulement (θ = 2π), la longueur de l’arc est donc de 8 R.

Figure C.2 – Représentation de la cycloïde pour R=5.

C.2.2 Courbe donnée par son équation explicite

Une courbe donnée sous la forme y = f(x) peut être représentée sous une forme paramétrique
de manière évidente : {

x = t
y = f(t)

(C.21)

La formule de l’abscisse curviligne s’établit donc dans ce cas (on a bien sûr
dx

dt
= 1) :

∫ tn

t0

√
1 +

(
dy(t)

dt

)2

dt (C.22)
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C.2.3 Courbe donnée par son équation polaire

Comme vu précédemment, si une courbe est donnée par son équation polaire r = f(θ), il est
possible de se ramener à ses équations paramétriques de la manière suivante :{

x = f(θ) cos θ
y = f(θ) sin θ

(C.23)

Les dérivées partielles selon θ s’établissent comme :

dx

dθ
= f ′(θ) cos θ − f(θ) sin θ (C.24)

dy

dθ
= f ′(θ) sin θ + f(θ) cos θ (C.25)

La longueur d’arc s’obtient dès lors comme :

s =

∫ θ

θ0

√
(f ′(θ) cos θ − f(θ) sin θ)2 + (f ′(θ) sin θ + f(θ) cos θ)2 · dθ (C.26)

Ou encore :

s =

∫ θ

θ0

√(
df(θ)

dθ

)2

+ (f(θ))2 · dθ (C.27)

Par exemple, si on considère la spirale (figure C.3) donnée par l’équation polaire r = θ, on peut
calculer :

s = ±
∫ θ

θ0

√
u2 + 1 · du (C.28)

Figure C.3 – Spirale d’équation polaire r = θ.

En prenant pour origine θ = 0 et en considérant le sens positif dans le sens des θ croissants, on
peut calculer (La primitive se trouve dans les tables d’intégrales) :

s =
[
0, 5

(
u
√
u2 + 1 + ln

(
u+

√
u2 + 1

))]θ
0

(C.29)

ce qui donne :
s = 0, 5

(
θ
√
θ2 + 1 + ln

(
θ +

√
θ2 + 1

))
(C.30)

Pour un tour complet, la longueur de spirale vaudra approximativement 2,08.
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C.3 Notion de courbure

La notion de courbure est un concept lié à la morphologie d’une courbe ; elle traduit
physiquement l’accélération plus ou moins brusque d’un mobile parcourant la courbe à vitesse
constante.

C.3.1 Définition

Soit une courbe C dans un repère Oxy sur laquelle on choisit arbitrairement un sens de parcours.
Soit φ l’angle que fait la tangente à la courbe au point d’abscisse curviligne s et φ+∆φ l’angle
que fait la tangente à la courbe au point d’abscisse curviligne s+∆s (figure C.4).

Par définition, la courbure de C au point d’abscisse curviligne s se définit comme :

1

ρ
= lim

∆s→0

∣∣∣∣∆φ∆s
∣∣∣∣ = ∣∣∣∣(dφds

)
s

∣∣∣∣ (C.31)

La courbure est donc une valeur essentiellement positive homogène à l’inverse d’une distance.
On nomme rayon de courbure ρ l’inverse de la courbure.

Figure C.4 – Définition de la courbure.

Le centre de courbure en un point d’une courbe est le point situé sur la normale à la courbe
à une distance équivalente au rayon de courbure dans la direction de la concavité. Le lieu des
centres de courbure à une courbe est appelée développée de la courbe. Inversement, la courbe
originale est appelée développante de la courbe développée.
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C.3.1.1 Cas particulier du cercle

Soient M1 et M2 deux points particuliers d’un cercle de centre C et de rayon R. On sait que
si ∆φ est l’angle au centre interceptant l’arc M1M2, alors |∆s| = ±R∆φ. Soit K le point
d’intersection des deux tangentes aux cercle en M1 et M2 (figure C.5).

Figure C.5 – Calcul de la courbure d’un cercle.

Dans le quadrilatère CM1KM2, les angles ĈM1K et ĈM2K sont droits. L’angle α est donc le
supplémentaire de l’angle au centre. α+β est un angle plat, ce qui implique donc que β = ∆φ.
Le calcul de la courbure en un point du cercle donne donc :

1

ρ
= lim

∆s→0

∣∣∣∣∆φ∆s
∣∣∣∣ = lim

∆s→0

∣∣∣∣ ∆φR∆φ

∣∣∣∣ = ∣∣∣∣ 1R
∣∣∣∣ (C.32)

Une circonférence est donc une courbe dont la courbure est constante et vaut l’inverse de son
rayon. Par extension, une droite peut être vue comme un cercle de rayon infini, sa courbure est
donc nulle.
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C.3.2 Calcul de la courbure

C.3.2.1 Courbe donnée par son équation explicite

Il est clair que ψ et s sont des fonctions de x. Dans l’équation C.31, le calcul de la dérivée
partielle peut donc être réalisé par :

dφ

ds
=

dφ

dx
ds

dx

(C.33)

Dans le cas de la formulation explicite, l’angle φ que fait une courbe avec l’axe des x peut être
calculé par :

tanφ =
dy

dx
ou φ = arctan

(
dy

dx

)
(C.34)

la dérivation par rapport à x de cette expression donne :

dφ

dx
=

(
d2y
dx2

)
1 +

(
dy

dx

)2 (C.35)

On a également démontré (relation C.5) que

ds

dx
=

√
1 +

(
dy

dx

)2

(C.36)

La courbure se calcule donc par :

1

ρ
=

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2) 3
2

(C.37)

C.3.2.2 Courbe donnée par ses équations paramétriques

Soit les équations paramétriques d’une courbe :{
x = ψ(t)
y = η(t)

(C.38)

Pour calculer la courbure selon C.37, il faut pouvoir déterminer les dérivées première et seconde
de y par rapport à x. Il a été démontré au §8.3.4 que la dérivée première peut s’exprimer sous
la forme :

dy

dx
=

dη

dt
dψ

dt

(C.39)

La seconde dérivation de cette expression donne :

d2y

dx2
=

d

dx

 dη

dt
dψ

dt

 =
d

dt

 dη

dt
dψ

dt

 1

dψ

dt

(C.40)
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Le développement de l’expression précédente donne :

d2y

dx2
=

dψ

dt
· d

2η

dt2
− dη

dt
· d

2ψ

dt2(
dψ

dt

)3 (C.41)

En intégrant dans C.37 les résultats de C.39 et C.41, on obtient :

1

ρ
=

dψ

dt
· d

2η

dt2
− dη

dt
· d

2ψ

dt2[(
dψ

dt

)2

+

(
dη

dt

)2
] 3

2

(C.42)

C.3.2.2.1 Exemple d’application Déterminer la courbure d’une ellipse donnée par ses
équations paramétriques : {

x = a cos θ
y = b sin θ

(C.43)

On peut calculer :
dψ

dθ
= −a sin θ dη

dθ
= b cos θ

d2ψ

dθ2
= −a cos θ d2η

dθ2
= −b sin θ

(C.44)

La courbure se calcule par C.42 :

1

ρ
=

(−a sin θ) (−b sin θ)− (b cos θ) (−a cos θ)[
(−a sin θ)2 + (b cos θ)2

] 3
2

=
ab[

a2 sin2 θ + b2 cos2 θ
] 3

2

(C.45)

Pour obtenir la courbure en tout point (x, y) de la courbe, on peut substituer :

a2 sin2 θ + b2 cos2 θ = a2 sin2 θ + b2 cos2 θ + a2 cos2 θ + b2 sin2 θ (C.46)
−
(
a2 cos2 θ + b2 sin2 θ

)
= a2 + b2 −

(
x2 + y2

)
(C.47)

Ce qui donne finalement
1

ρ
=

ab

[a2 + b2 − (x2 + y2)]
3
2

(C.48)

On peut vérifier que si a = b = R, on retrouve bien la propriété du cercle d’avoir ρ = R.

C.3.2.3 Courbe donnée par sa forme implicite

Comme pour le cas précédent, il faut rechercher les dérivées première et seconde de y par
rapport à x. Comme présenté au § 8.3.2 on calcule les deux premières dérivées de la fonction
explicite par :

dF

dx
=
∂F

∂x

dx

dx
+
∂F

∂y

dy

dx
= 0 (C.49)

d2F

dx2
=

d

dx

(
dF

dx

)
= 0 (C.50)
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Cette expression donne :

∂2F

∂x2
+ 2

∂2F

∂x∂y

dy

dx
+
∂2F

∂y2

(
dy

dx

)2

+
∂F

∂y

d2y

dx2
= 0 (C.51)

donc
d2y

dx2
= − 1

∂F
∂y

[
∂2F

∂x2
+ 2

∂2F

∂x∂y

dy

dx
+
∂2F

∂y2

(
dy

dx

)2
]

(C.52)

Il suffit de replacer C.49 et C.52 dans C.37 pour obtenir :

1

ρ
=

(
∂F

∂y

)2
∂2F

∂x2
− 2

∂2F

∂x∂y

∂F

∂x

∂F

∂y
+
∂2F

∂y2

(
∂F

∂x

)2

[(
∂F

∂x

)2

+

(
∂F

∂y

)2
] 3

2

(C.53)

C.3.2.3.1 Exemple Reprenons le cas de l’ellipse, cette fois-ci donnée par son équation
implicite :

F (x, y) ≡ x2

a2
+
y2

b2
− 1 = 0 (C.54)

ou encore b2x2 + a2y2 − a2b2 = 0. On peut calculer immédiatement :

∂F

∂x
= 2b2x

∂F

∂y
= 2a2y

∂2F

∂x2
= 2b2

∂2F

∂x∂y
= 0

∂2F

∂y2
= 2a2

(C.55)

Ce qui permet de calculer la courbure :

1

ρ
=

4a4y22b2 − 0 + 4b4x22a2

(4b4x2 + 4a4y2)
3
2

(C.56)

=
8 (a2b2) (y2b2 + x2y2)

8 (b4x2 + a4y2)
3
2

(C.57)

=
a4b4

(b4x2 + a4y2)
3
2

(C.58)

(C.59)

Le dénominateur peut être réorganisé selon :

b4x2 + a4y2 = b2
(
a2b2 − a2y2

)
+ a2

(
a2b2 − b2x2

)
= a2b2

[
a2 + b2 −

(
x2 + y2

)]
(C.60)

Ce qui donne au final :

1

ρ
=

a4b4

[a2b2 [a2 + b2 − (x2 + y2)]]
3
2

(C.61)

=
ab

[a2 + b2 − (x2 + y2)]
3
2

(C.62)

Ce qui est équivalent au résultat obtenu avec le calcul mené à partir de la forme paramétrique.
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C.3.2.4 Courbe donnée par sa forme polaire

La forme polaire d’une courbe r = f(θ) peut être transformée de manière simple en une forme
paramétrique : {

x = f(θ) cos θ
y = f(θ) sin θ

(C.63)

Les relations étudiées au § C.3.2.2 peuvent être employées avec ces expressions. Le
développement complet[3] donne finalement l’expression de la courbure :

1

ρ
=

∣∣∣r2 + 2
(
dr
dθ

)2 − r d
2r

dθ2

∣∣∣[(
dr
dθ

)2
+ r2

] 3
2

(C.64)

C.3.2.5 Cas pratique

Un mobile circulant à vitesse constante sur une trajectoire constituée d’un segment de droite
suivi d’un arc de cercle verra au raccordement entre les deux courbes une discontinuité de
courbure (passage d’une valeur nulle à une valeur fini). Il en résultera une discontinuité
d’accélération du mobile. En effet, l’accélération d’un point parcourant une courbe se calcule
selon[2] :

−→a =
d2s

dt2
−→ut +

(
ds

dt

)2 −→un
ρ

(C.65)

Cette discontinuité d’accélération provoquera des effets sensibles pour les passagers du mobile
(vibrations) qui entraîneront un certain inconfort. C’est pourquoi dans la pratique, les
raccordements à l’entrée et à la sortie des virages devant être pris à grande vitesse (autoroutes,
chemins de fer,...) sont constitués d’un raccordement intermédiaire à courbure continument
variable appelé clothoïde. Cette courbe peut être décrite par son équation intrinsèque :

s =
C2

ρ
(C.66)

avec C une constante homogène à une longueur. Il n’est pas possible d’établir une forme
analytique de cette fonction, sa construction doit se réaliser point par point par intégration
numérique.
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Annexe D

Génération de surfaces par lignes et par
points

La ligne est un point partie en promenade.

- P. Klee,

D.1 Génération par lignes

La génération par lignes d’une surface consiste à considérer la surface à obtenir comme la
réunion d’un ensemble de courbes variables appelées génératrices de la surface. Comme dans
l’espace R3 une courbe est constituée de l’intersection de deux surfaces, cette génératrice résulte
elle-même de l’intersection de deux surfaces variables S1 et S2.

La variabilité des surfaces S1 et S2 implique qu’elles dépendent d’un ou plusieurs paramètres
pour définir une famille de surfaces. Par exemple, une famille de plans parallèles entre eux peut
être définie par une famille à un paramètre de la forme :

F (x, y, z, λ) = ax+ by + cz − λ = 0 (D.1)

Avec λ le paramètre.

De manière générale, on peut rencontrer différents cas de figure :
— deux familles de courbes présentant un seul paramètre (commun aux deux familles) ;
— deux familles de courbes présentant plusieurs paramètres et un ensemble de relations

liant les paramètres entre eux.

D.1.1 Familles à un seul paramètre

Les deux équations des familles de surfaces sont de la forme :

F1(x, y, z, λ) = 0 (D.2)
F2(x, y, z, λ) = 0 (D.3)

Cela signifie que pour chaque valeur de λ, la réunion des deux équations précédentes donne une
courbe appartenant à la surface ; cela signifie que les points de ces courbes vérifient :

F1(xP , yP , zP , λi) = 0 (D.4)
F2(xP , yP , zP , λi) = 0 (D.5)
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De la relation D.5, on peut tirer une relation de la forme

λi = F2(xP , yP , zP ) (D.6)

En réinjectant cette expression dans D.4, on obtient une relation de la forme

F1(xP , yP , zP , f2(xP , yP , zP )) = 0 (D.7)

Cette expression est simplement l’équation résultante de l’élimination du paramètre entre les
deux expressions des familles de surface. Cette constatation permet de déduire que l’équation
d’une surface qui est le lieu des courbes d’intersection de deux familles de surfaces à un seul
paramètre s’obtient en éliminant le paramètre entre les expressions des deux familles de surfaces.

D.1.1.1 Exemple d’application

Soit une famille de circonférences définies par l’intersection entre un plan parallèle à Oxy et
un cylindre circulaire d’axe Oz dont le rayon vaut la moitié de la coordonnée z du plan (figure
D.1). Les équations de la famille de courbes s’établissent comme :{

z = λ

x2 + y2 −
(
λ
2

)2
= 0

(D.8)
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Figure D.1 – Famille de cercles.
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Figure D.2 – Cône résultant de la réunion
des cercles de la famille.

L’équation de la surface s’établit en éliminant le paramètre entre les deux équations de la
famille. On obtient finalement :

x2 + y2 − z2

4
= 0 (D.9)

Cette équation est celle d’un cône (cf § 10.3.1.6) à base circulaire (figure D.2).

D.1.2 Familles à plusieurs paramètres présentant plusieurs relations
entre ces paramètres

Si les équations de familles de courbes font intervenir n paramètres, leur réunion ne donne plus
une surface unique, mais bien une famille de surfaces à n-1 paramètres. Pour définir une surface
unique, il est nécessaire d’adjoindre aux équations de la famille de courbes n-1 relations liant
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les paramètres entre eux. Par exemple, si on considère les équations de la famille de courbes à
deux paramètres suivantes :

αx+ βy − 1 = 0 (D.10)
2αx+ 3βz − 1 = 0 (D.11)

La première équation représente une infinité de plans verticaux (parallèles à Oz), la seconde
représente une infinité de plans parallèles à Oy. En éliminant le paramètre α entre les deux
équations, on obtient la relation suivante :

3βz − 2βy + 1 = 0 (D.12)

Il s’agit de l’équation d’une famille de plans. Si on ajoute une relation entre α et β, on obtient
une surface unique ; par exemple :

αx+ βy − 1 = 0 (D.13)
2αx+ 3βz − 1 = 0 (D.14)

α− 3β = 0 (D.15)

permet par éliminations successives :

3βx+ βy − 1 = 0 (D.16)
6βx+ 3βz − 1 = 0 (D.17)

6x+ 3z

3x+ y
− 1 = 0 (D.18)

Ce qui donne finalement la relation 3x− y + 3z = 0 qui est l’équation cartésienne d’un plan.
Il faut noter que dans la majorité des cas, ce type de définition de surface n’a d’utilité pratique
que lorsque les courbes définissant la surface sont de droites. On parle alors de surfaces réglées
qui sont décrites plus en détail au § 10.5.

D.2 Génération par points

Trois surfaces S1, S2, S3 ont en commun un ou plusieurs points. Si ces surfaces sont variables,
l’ensemble des points formés par les points variables va constituer une surface S. Cette définition
générale permet d’introduire la notion de génération d’une surface par points. Les familles de
surfaces S1, S2 et S3 comportent deux paramètres. Le système d’équations peut se mettre sous
la forme : 

F1(x, y, z, λ, µ) = 0
F2(x, y, z, λ, µ) = 0
F3(x, y, z, λ, µ) = 0

(D.19)

L’élimination des deux paramètres entre les trois relations permet de trouver l’équation de
la surface. Par analogie avec ce qui a été présenté pour les courbes définies par lignes, il est
possible d’introduire un nombre n de paramètres supérieurs à deux. Dans ce cas, il est nécessaire
d’adjoindre n-2 relations liant ces paramètres entre eux pour définir une surface.
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