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Avant-propos

Ce cours a pour objectif de présenter les principes de représentation de figures géométriques,
tant du point de vue dessin que représentation mathématique. Il se base largement sur ses deux
premiéres versions qui ont été compilée durant les années académiques 2012-2013 et 2017-2018.
Pour partie, ce cours constitue une sélection d’éléments des ouvrages édités par le professeur
Yves Durand, avec certaines adaptations ou compléments.

Les ouvrages rédigés par le professeur Durand présentent l’avantage d’une description
exhaustive et, selon le souhait de son auteur, la possibilité de les parcourir de maniére
autodidacte. C’est pourquoi nous avons fait le choix de conserver ’ensemble des conventions
(notamment de notation des éléments) qui sont employées dans ces ouvrages. Ainsi, le lecteur
cherchant des renseignements complémentaires ou des précisions sur le cours pourra aisément
consulter (en plus des références bibliographiques propres aux différents chapitres) ces syllabus
de cours qui sont accessibles au format électronique sur Moodle.

Un ensemble d’exercices d’application résolus a également été compilé par le professeur
Durand, ceux-ci inclus dans les ouvrages précités. Ces exercices permettent, en complément
aux séances d’exercices et de laboratoires, de se préparer de maniére optimale aux différentes
épreuves associées a ce cours.



Table des matiéres

1 Introduction

1.1 Contenu du COUIS . . . . . . . o o

I Géométrie descriptive et plans techniques

2 Meéthodes de projection

2.1 Introduction . . . . . . . .

2.2 Projection centrale . . . . . . . ..
2.3 Axonométrie . . . ...
2.3.1 Isométrie. . . . . . ..
2.3.1.1 Calcul du rapport de réduction en isométrie . . . . . . . .. ..

2.3.1.2 Reéalisation de croquis en isométrie . . . . . . . ... ... ...

2.4 Meéthode de Monge . . . . . . . . . .
Références . . . . . . . L

3 Conventions de la méthode de Monge
3.1 Imtroduction . . . . . . . . .
3.2 Position d’un point dans 'espace . . . . . . . .. ... ... ...
3.2.1 Division de l'espace en diedres . . . . . . . . . ... ... ... ... ...
3.2.2 Point appartenant aux plans de projection . . . . .. . ... ... . ...

3.3 Représentation d'une droite . . . . . . . ... ... Lo

3.3.1 Généralités . . . . . . .
3.3.2 Traces d'une droite . . . . . . . . ...
3.3.3 Positions relatives de deux droites . . . . . . .. ..o
3.3.3.1 Représentation de droites sécantes . . . . . . .. ... ... ..

3.3.3.2 Représentation de droites paralleles . . . . . . . ... ... ...

3.3.4 Droites occupant une position particuliére de 'espace . . . . . . . . . ..

3.4 Représentation d'un point par trois projections. . . . . . .. .. ...
Références . . . . . . . L

13
13
14
16
18

19
19
22
22
24
24
24
26
27
27
28
29
34
39

1



4 Représentation de plans
4.1 Introduction . . . . . . . .. L
4.2 Tracesdunplan . . . . . . . . .
4.2.1 Définition . . . . . ...
4.2.2 Détermination des traces dunplan . . . . . . ... ... ... L.
4.3 Plans particuliers . . . . . . ...
4.4 Dessin d'un point appartenant aun plan . . . . . . . ... o000
4.5 Droites particuliéres de plans quelconques . . . . . . . ... ..o L
4.5.1 Droites horizontales et frontales . . . . . . . .. .. ... ... ..
4.5.2 Droites de bout et verticales . . . . . . . .. ..o
Références . . . . . . . L

5 Dessin technique
5.1 Imtroduction . . . . . . . ..
5.2 Représentation d'une machine . . . . . . . . ... oL
521 Croquis . . . . . . .
5.2.2 Dessin d’ensemble . . . . .. ..o
5.2.3 Schéma cinématique . . . . . . . ...
5.3 Plans de piéces mécaniques . . . . . . ... o
5.3.1 Elémentsde base . . . . .. ..o
5.3.2 Méthode de projection . . . . . . ...
5.3.3 Traitement des arétes cachées . . . . . . . ... ..o
5.3.4 Typesdetraits . . . . . .. L
5.3.5 Coupes et sections . . . . . . . ...
54 Lescorpsronds . . . . . . . ..
5.4.1 Notion de contour apparent a un volume . . . . . . . ... ... ... ..
5.5 Cotation . . . . . . .
5.6 Tolérances . . . . . . . ..
5.6.1 Tolérances dimensionnelles . . . . . . . . . .. ...
5.6.2 Tolérances géométriques . . . . . . . . ..o
5.6.3 Etatsdesurface . . . . . . . ...
Références . . . . . . .

11



6 Intersection d’éléments

6.1

6.2

Références

Intersection de deux plans . . . . . . . . .. ...

6.1.1 Introduction . . .

6.1.2 Cas particuliers de problémes d’intersection entre plans . . . . . . . . ..

6.1.2.1 Intersection avec un plan vertical ou de bout . . . . . . . .. ..

6.1.2.2 Intersection avec un plan horizontal ou frontal . . . . . . . . ..

Intersection d’une droite avec un plan . . . . . . . . ..o

6.2.1 Intersection d’une droite quelconque avec un plan quelconque . . . . . .

6.2.2 Intersection d'une droite quelconque avec un plan projetant . . . . . . .

6.2.3 Intersection d’une droite projetante avec un plan quelconque . . . . . . .

7 Mise en vraie grandeur d’éléments

7.1
7.2
7.3
7.4

7.5

Introduction . . . . . ..

Méthode du triangle rectangle . . . . . . . . ...

Mise en vraie grandeur d’une figure compléte . . . . . . .. ..o 0L

Mise en vraie grandeur par rotation . . . . . . . . ... L.

7.4.1 Introduction . . .

742 Rotation dunpoint . . . . . . . ..o

7.4.2.1 Rotation autour d’un axe vertical . . . . . . . . . ... ... ..

7.4.2.2 Rotation autour d’'un axede bout . . . . . . .. ... ... ...

7.4.3 Mise en vraie grandeur de figures . . . . .. .. ... L

7.4.3.1 Figures contenues dans un plan vertical ou de bout . . . . . ..

7.4.3.2 Plan quelconque . . . . ...

Rotations inverses . . . .

7.6 Application aux droites de profil . . . . . . .. ... ..

Références

II Géométrie analytique

8 Analyse des courbes planes

8.1
8.2

Introduction . . . . . ..

Différentes méthodes de représentation d’'une courbe plane . . . . . . ... . ..

8.2.1 Formes implicites

8.2.1.1 Coniques . . . . . . . .

8.2.1.1.1

8.2.2 Formes explicites

Réduction de coniques . . . . . . .. ...

72
72
72
73
73
74
75
75
7
78
79

80
80
82
84
85
85
85
85
86
86
86
88
89
91
91

92

93
93
94
94
94
96
97

v



8.2.3 Forme vectorielle (paramétrique) . . . . . ... ..o 97

8.2.4 Forme polaire . . . . . . .. 98
8.2.5 Passage d’'une forme a une autre . . . . . .. ..o L 98
8.2.5.1 Passage de la forme polaire a la forme paramétrique . . . . . . 98

8.2.5.2 Passage de la forme paramétrique a la forme cartésienne implicite 99

8.2.5.3 Passage de la forme cartésienne implicite la forme cartésienne

explicite . . . . . .. 100

8.2.5.4 Passage de la forme cartésienne explicite a la forme cartésienne
implicite . . . . . .. 100
8.2.5.5 Passage de la forme cartésienne a la forme paramétrique . . . . 100
8.3 Recherche de la tangente et de la normale a une courbe . . . . . . . .. ... .. 100
8.3.1 Courbe donnée par son équation cartésienne explicite . . . . . . . . . .. 101
8.3.2 Courbe donnée par son équation cartésienne implicite . . . . . . . . . .. 102
8.3.3 Courbe donnée par son équation vectorielle . . . . . . . .. .. ... ... 102
8.3.4 Courbe donnée sous forme paramétrique . . . . . . . .. . ... ... .. 104
8.3.5 Courbe donnée par sa forme polaire . . . . . . . .. ... ... L. 104
8.4 Points singuliers de courbes planes . . . . . .. .. ..o 105
8.4.1 Introduction . . . . . . . . . . 105
8.4.2 Points singuliers de premiére espéce . . . . . .. ... 105

8.4.3 Recherche des points singuliers d’une courbe donnée par sa forme

cartésienne implicite . . . . . ... oL 106

Références . . . . . . . L 107
Infographie 108
9.1 Imtroduction . . . . . . . .. 108
9.2 Changement de repére . . . . . . . . ..o 108
9.2.1 Changement de repére entre deux repéres d’origines identiques . . . . . . 110
9.2.2 Changement de repére entre deux repéres d’origines différentes . . . . . . 111
9.2.3 Conventions particulieres . . . . . . . .. ... 113
9.2.3.1 Orientation du repére . . . . . . . . ... ... ... .. ... . 113

9.2.3.2 Représentation des vecteurs . . . . . ... ... ... ... ... 114

9.2.4 Changement de repére entre deux repéres quelconques . . . . . . . . .. 115

9.3 Meéthodes de projection . . . . . . . ..o 116
9.3.1 Orientation durepére . . . . . . . . . . ... 116
9.3.2 Projections classiquement employées en infographie . . . . . . . .. . .. 118
9.3.2.1 Projection axonométrique . . . . . . . ... 118

9.3.2.2 Projection centrale . . . . . ... ..o 119

9.4 Matrices de transformation . . . . . ... ..o o000 121



9.4.1 Opérations élémentaires . . . . . . . . . . . ... 121

94.1.1 Translation . . . . . .. ... oo 121

9.4.1.2 Rotation autour d'un axe de coordonnées . . . . .. .. .. .. 122

9.4.2 Composition d’opérations . . . . . . .. .. 123
9.4.3 Lien entre changement de repére et matrices de transformation . . . . . . 125
9.4.4 Orientation d’'un volume dans une direction particuliere . . . . . . . . .. 126
9.4.4.1 Décomposition en opérations élémentaires . . . . . . . . . . .. 127

94.4.2 Anglesd’Euler . . ... ... 128

9.4.4.3 Opération globale . . . . . . . .. ... .. ... .. 130

9.4.5 Autres opérations de transformation 3D . . . . . ... ... 131
9.4.5.1 Reflexion . . .. .. ... 131

9.4.5.2 Scaling . . . . ... 132

9.5 Renduréaliste . . . . . . . . 133
9.5.1 Elémentsdebase . . . . .. ... L 134
9.5.2 Rendudelacouleur . . ... ... ... ... oo 135
9.5.3 Exemple de rendu de surface . . . . . . ... ..o 136
Références . . . . . . . L 139
10 Représentation cartésienne de surfaces 140
10.1 Introduction . . . . . . . . . . L 140
10.2 Interprétation d’équations particuliéres . . . . . . . . . . . ... ... .. ... 142
10.3 Quadriques . . . . . .. 142
10.3.1 Formes propres de quadriques . . . . . . . . . . ... 144
10.3.1.1 Ellipsoide . . . . . . . . . . 144

10.3.1.2 Hyperboloide a une nappe . . . . . . . . . ... ... ... ... 144

10.3.1.3 Hyperboloide a deux nappes . . . . . . . . . . . ... ... ... 144

10.3.1.4 Paraboloide hyperbolique . . . . . . . .. ... ... ... ... 145

10.3.1.5 Paraboloide elliptique . . . . . . . . ... ... .. ... ... 145

10.3.1.6 Coéne a base elliptique . . . . . . . ... ... 145

10.4 Méthode d’obtention de I’équation cartésienne de surfaces . . . . . . .. .. .. 146
10.4.1 Extrusion d’une courbe le long d’'un axe . . . . ... .. ... .. ... .. 147
10.4.2 Surface de révolution . . . . . . . ... 147
10.4.2.1 Révolution autour d’'un axe du repére . . . . . .. .. ... .. 147

10.4.2.2 Révolution autour d'un axe quelconque . . . . . . . . . ... .. 148

10.5 Surfaces réglées . . . . . . . L 148

10.5.1 Recherche des équations exprimant les contraintes sur les génératrices
d’'une surface réglée . . . . . . ..o 149

vi



10.5.1.1 Condition d’appui des génératrices sur une ligne . . . . . . . . . 149

10.5.1.2 Condition de parallélisme aun plan. . . . . . .. .. ... ... 150
10.5.1.3 Condition de tangence & une surface . . . .. .. .. ... ... 150
10.6 Surfaces coniques . . . . . . ... 150
Références . . . . . . . L 151
11 Représentation vectorielle et paramétrique de surfaces 152
11.1 Introduction . . . . . . . . . . 152
11.2 Formes classiques de paramétrisation de surfaces . . . . . . . . . . .. ... ... 153
11.2.1 Emploi des coordonnées sphériques . . . . . . . . .. ... ... .. ... 153
11.2.2 Coordonnée cylindriques . . . . . . . . .. . ... 154
11.3 Représentation paramétrique des quadriques . . . . . . . . . .. .. ... .. .. 154
11.4 Représentation vectorielle et paramétrique des surfaces de révolution . . . . . . 156
11.5 Représentation vectorielle et paramétrique de surfaces réglées . . . . . . . . . .. 157
11.5.1 Prise en compte de la condition de passage par une directrice . . . . . . . 158
11.5.2 Prise en compte de la présence d'un plan directeur . . . . . . .. .. .. 158
11.5.3 Prise en compte de la présence d’'un noyau . . . . . . ... .. ... ... 158
11.6 Représentation vectorielle et paramétrique de surfaces coniques . . . . . . . . .. 159
Références . . . . . . . L 159
12 Analyse des courbes spatiales 160
12.1 Représentation cartésienne de courbes spatiales . . . . . . . ... .. ... ... 160
12.1.1 Intersection d’une surface avecun plan . . . . . . . . .. ... ... ... 162
12.1.1.1 Courbes de niveaux . . . . . . . . . . . . ... ... ... .. 162

12.1.1.2 Etude de courbe plane résultant de l'intersection d’une surface
avec un plan quelconque . . . . . ... ... L. 164
12.1.2 Projection sur les plans coordonnés . . . . . . .. .. ... L. 165

12.1.3 Contréle du caractére plan d’une courbe donnée par ses équations

cartésiennes . . . . ... 167
12.2 Fonction vectorielle et paramétrique d’une courbe spatiale . . . . . ... . ... 168
12.2.1 Notion de lignes coordonnées . . . . . . . . . .. ... .. 170

12.2.2 Obtention des équations paramétriques d’une courbe a partir des
équations des surfaces dont 'intersection donne la courbe . . . . . . . .. 171

12.2.3 Contréle du caractére plan d’une courbe donnée par ses équations
paramétriques . . . ... Lo 171

12.2.4 Recherche des équations cartésiennes d’une courbe & partir de ses
équations paramétriques . . . . . . ... L Lo 172

Références . . . . . 173

vii



13 Géométrie différentielle 3D 174

13.1 Tangente & une courbe spatiale . . . . . .. . ... ... L. 174
13.1.1 Tangente en un point régulier d'une courbe spatiale . . . . . . .. .. .. 174
13.1.2 Notion de point singulier d’une courbe spatiale . . . . . . . ... ... .. 175
13.1.3 Equations de la tangente & une courbe . . . . . . ... ... 176

13.2 Plan tangent & une surface . . . . . . . . .. ... 177
13.2.1 Surface décrite par son équation implicite . . . . . . . . .. ... 177
13.2.2 Surface décrite par son équation explicite . . . . . . . ... ..o 179
13.2.3 Surface donnée par sa fonction vectorielle . . . . . . . . . . ... ... .. 179

13.3 Normale & une surface en un point . . . . . . . . . ... 180

Références . . . . . . . L 181

IIT Exercices résolus 182

14 Exemple d’exercices classiques avec résolu pour la premiére partie du cours

(Plans techniques et épures de Monge) 183
14.1 intersection polyedre - plan en axonométrie . . . . . . . . .. ... ... 183
142 Vuedeprofil . . . . . . . . 186
14.2.1 Mise en vraie grandeur . . . . . . . . . ... Lo 186
14.2.2 intersection de droites de profil . . . . . ... ..o 186

14.3 Traces d'un plan . . . . . . . . . L 190
14.3.1 Il n’y a que trois traces de droites dans ’épure . . . . . . . . . .. .. .. 190
14.3.2 Le plan contient une droite paralléle & un plan de projection . . . . . . . 190
14.3.3 Il n’y a que deux traces de droites dans I'épure. . . . . . . . ... .. .. 190

14.4 Exercice récapitulatif sur les plans techniques . . . . . . . .. .. .. ... ... 194
14.4.1 Isométrie. . . . . . . . .. 194
1442 Vuededessus . . . . . . . .. 194
14.4.2.1 Vraie grandeur de la face inclinée . . . . . . .. ... ... ... 199

15 Exemple d’exercices classiques avec résolu pour la deuxiéme partie du cours

(Géométrie analytique) 201
15.1 analyse de conique sous forme générale . . . . . . . . ... ... ... ... .. 201
15.2 Matrices de transformation . . . . . . .. ..o 202
15.2.1 Changement de repére . . . . . . . . . . . ... 202
15.2.2 Rotation autour d'un axe quelconque . . . . . . ... ... ... 203
15.2.2.1 Combinaison de matrices élémentaires . . . . . . . . . . . . .. 204

15.2.2.2 Opération globale . . . . . . . . ... ... ... ... ..., 205

15.2.3 Symétrie centrale par rapport & un plan quelconque . . . . . . . . .. .. 206



15.3

15.4

15.5

15.6

15.2.3.1 Combinaison de matrices élémentaires . . . . . . . . . . . . .. 206

15.2.3.2 Approche générale . . . . .. ..o 207
Surface cartésienne . . . . . . ... L 208
15.3.1 Lieu géométrique . . . . . . . . .. 208
15.3.2 Quadriques . . . . . ... 208
15.3.3 Cylindrique inclinée . . . . . . . . . . . ... 210

15.3.3.1 Approche par changement de repére . . . . . . ... ... ... 210

15.3.3.2 Approche par matrice de transformation . . . . . .. . ... .. 212
15.3.4 Equation cartésienne dutore. . . . . . . . .. ... 215
Surface paramétrique . . . . . . Lo 216
15.4.1 Cylindrique inclinée . . . . . . . . . .. oo 216

15.4.1.1 Approche par changement de repére . . . . . . . .. ... ... 216

15.4.1.2 Approche par matrice de transformation . . . . . . . . . .. .. 217
15.4.2 Equations dun tore. . . . . . . . . ... 217
15.4.3 Surfaces réglées . . . . . . .. 218

15.4.3.1 Deux génératrices, un plan directeur . . . . . .. .. ... ... 218

15.4.3.2 Coéne de révolution . . . . . . . ... ... 219

15.4.3.3 Surface conique d’axe incliné . . . . ... ... .. ... .. .. 220

15.4.3.4 Conique 1 noyau . . . . . . . . . . .. 220
Courbe 3D . . . . . . 222
15.5.1 Cylindre projetant d’'une courbe . . . . . . . . . ... .. ... ... ... 222
15.5.2 Caractére plan d'une courbe cartésienne . . . . . . . ... ... .. ... 223
15.5.3 Caractére plan d’une courbe cartésienne, 2e exemple . . . . . . . .. .. 224

15.5.4 Analyse de courbe plane dans un plan non paralléle & un plan coordonné 224

15.5.5 Caractére plan d’une courbe donnée par ses équations paramétriques . . 227
15.5.6 Intersection de surfaces paramétriques . . . . . . . . . .. .. ... .. 228
Géométrie différentielle . . . . . . ..o 230
15.6.1 Vecteur tangent a une courbe spatiale . . . . . . . .. .. ... ... ... 230
15.6.2 Plan tangent . . . . . . . . ... 231
15.6.2.1 Cartésien . . . . . . . .. 231
15.6.2.2 Paramétrique . . . . . . . ... 232
15.6.3 Vecteur normal a une surface . . . . . . ... ..o 233
15.6.3.1 Cartésien . . . . . . . ... 233
15.6.3.2 Paramétrique . . . . . . . ..o 234

X



IV  Rappels

16 Rappels d’éléments de géométrie analytique plane

16.1 Equation de droite . . . . ..

16.2 Equations de coniques sous forme réduite . . . . . .. ...

16.2.1 Ellipse . . . . . .. ..
16.2.2 Hyperbole . . . . . ..
16.2.3 Parabole . . . . . . ..
16.3 Analyse de courbes planes . .

16.3.1 Recherche des asymptotes d’'une courbe plane . . . . . . ... ... ...

16.3.1.1 Asymptote hor

izontale . . . . . . ...,

16.3.1.2 Asymptote verticale . . . . . . . ... ...
16.3.1.3 Asymptote oblique . . . . . . . ... ...

16.4 Exemples d’application . . . .
16.4.1 Droite . . ... .. ..
16.4.2 Equation explicite . . .

16.4.2.1 Equation impli

cite . ..

16.4.2.2 Equations paramétriques . . . . . . . . . ...

16.4.3 Conique . . . . .. ..
16.4.3.1 Ellipse . . . .
16.4.3.2 Hyperbole . .
16.4.3.3 Parabole . . .

16.4.4 Asymptotes . . . . ..

16.4.5 Intersection . . . . . .
16.4.5.1 Cas de base .
16.4.5.2 Tangence . .

Références . . . . . . .. ... ...

17 Rappels de géométrie analytique spatiale

17.1 Introduction . . . . . . . . ..
17.2 Géométrie vectorielle et repére

17.2.1 Opérations courantes de

géométrie vectorielle . . . . . ...

17.2.1.1 Produit scalaire . . . . . . . . . ...
17.2.1.2 Produit vectoriel . . . . . . . . . ...

17.2.1.3 Produit mixte
17.3 Représentation de plans . . .
17.3.1 Equation vectorielle . .

17.3.1.1 Forme normale

235

236
236
237
237
238
239
239
239
240
240
240
241
241
241
241
241
242
242
242
243
243
245
245
246
247

248
248
248
248
249
249
250
250
250
251



17.4

17.5

17.6

17.7

17.8

17.9

17.3.2 Equations paramétriques . . . . . . . . . . ... 252

17.3.3 Equation cartésienne . . . . . . . . . . .. ... 252

17.3.3.1 Forme implicite d'un plan donné par les points de percée des
axesdansceplan . . . .. ... oL 253
17.3.4 Passage d’une représentation d’un plan a une autre . . . . ... . .. .. 254
17.3.4.1 Passage de la forme normale a la forme implicite . . . . . . .. 254
17.3.4.2 Passage de la forme normale a la forme vectorielle . . . . . . . . 255
17.3.4.3 Passage de la forme cartésienne a la forme normale . . . . . . . 255
17.3.4.4 Passage de la forme implicite a la forme paramétrique . . . . . 255
Représentation de droites . . . . . . . . . . .. 256
17.4.1 Equations cartésiennes . . . . . . . . . . .. ... 256
17.4.2 Forme canonique . . . . . . . . . . ..o 256

17.4.2.1 Forme canonique d’une droite orthogonale aux axes de
coordonnées . . . ... 257

17.4.2.2 Forme canonique d’'une droite perpendiculaire & un des plans de
coordonnées . . . ... 257
17.4.3 Equation vectorielle . . . . . . . . . . . ... 258
17.4.4 Equations paramétriques . . . . . . . . . ... Lo 259
Mesure de distances . . . . . . . ... 259
17.5.1 Distance entre points . . . . . . . . ... 259
17.5.2 Distance point droite . . . . . . . . ... 260
17.5.3 Distance point plan . . . . . . . . ..o 261
Angle entre plans . . . . . ... 262
17.6.1 Anglediedre . . . . . . . . . 262
17.6.2 Perpendicularité entre plans . . . . . . . .. ... Lo 263
17.6.3 Plans paralléles . . . . . . . . .. . . 263
Angle droite/plan . . . . ... 264
17.7.1 Perpendicularité plan/droite . . . . . . . . . ... oL 264
17.7.2 Droite paralléle & un plan donné . . . . . . . . . ... .. ... ... ... 265
Etablissement de I’équation de plans particuliers . . . . . . . . . ... ... ... 265
17.8.1 Plan passant par une droite et paralléle & une autre droite . . . . . . .. 265
17.8.2 Plan passant par une droite et par un point extérieur a cette droite . . . 266
17.8.3 Plan passant par trois points . . . . . . . . . . ... ... ... ... ... 266
17.8.4 Plan passant par une droite et perpendiculaire a un plan donné . . . . . 266

17.8.5 Plan perpendiculaire a deux plans donnés et passant par un point donné 266

Traitement de l'intersection d’objets . . . . . . . . . . ... ... 267
17.9.1 Application . . . . . . . . 268
17.9.2 Projection d'une droite sur les plans de coordonnées . . . . . . . . .. .. 269

X1



17.10Vecteur directeur et cosinus directeurs . . . . . . . . . . . .. ...

17.11Forme implicite normalisée dun plan . . . . . . . . ... ...

17.12Exemples d’application . . . . . . . . . . ...
17.12.1Plan . . . . . .o
17.12.2Droite . . . . . . .
17.12.3Intersection . . . . . . ..o

Références

V  Annexes

A Figures vierges de certains problémes
A1 Introduction . . . . . . . ..
A2 Figures . . . . . . e

B Formulaire

VI Chapitre qui ne sont plus couverts dans le cours

C Longueur et courbure

C.1 Longueur d'un arc de courbe . . . . . . . . .. .o

C.1.1

Abscisse curviligne d’un point sur unarc . . . . . . ... ... ... ...

C.2 Rectification d’une courbe . . . . . . . ..

C.2.1
C.2.2
C.2.3

Courbe donnée par ses équations paramétriques . . . . . . . . . . .. ..
Courbe donnée par son équation explicite . . . . . . . .. ... ... ...

Courbe donnée par son équation polaire . . . . . .. ... ... .....

C.3 Notion de courbure . . . . . . . .

C.3.1

C.3.2

Références

Définition . . . . . . ...
C.3.1.1 Cas particulier du cercle . . . . . . .. ... ... ... .....
Calcul de la courbure . . . . . .. .. ..o
C.3.2.1 Courbe donnée par son équation explicite . . . . . . . ... ..
C.3.2.2 Courbe donnée par ses équations paramétriques . . . . . . . . .

C.3.2.2.1 Exemple d’application . . . . ... ... ... .. ...
C.3.2.3 Courbe donnée par sa forme implicite . . . . . . .. ... ...

C.3.23.1 Exemple . .. .. .. ... ...
C.3.2.4 Courbe donnée par sa forme polaire. . . . . . . . .. ... ...

C.3.2.5 Caspratique . . . . . . ...

275

276
276
276

293

299

300
300
301
301
301
302
303
304
304
305
306
306
306
307
307
308
309
309
309

xii



D Génération de surfaces par lignes et par points 310

D.1 Génération par lignes . . . . . . . . .. 310
D.1.1 Familles a un seul paramétre . . . . . . . . . .. ... 310
D.1.1.1 Exemple d’application . . . . . . . .. ... ... ... ... 311

D.1.2 Familles & plusieurs paramétres présentant plusieurs relations entre ces
parametres . . ... Lo e 311
D.2 Génération par points . . . . . . ... 312

xiil



Chapitre 1

Géométries et communication graphique :
introduction

Dieu toujours fait de la géométrie.
- Platon, Oeuvres complétes

Les réalisations de l'ingénieur se concrétisent fréquemment sous la forme d’objets ou de
machines congues dans un but précis. Aux différentes étapes de réflexion, il est nécessaire
de communiquer de maniére claire et précise 'information entre les différents intervenants
aussi bien a l'intérieur de lentreprise (concepteur, bureau d’études, bureau des méthodes,
fabrication,...) qu’a l'extérieur (client, sous-traitant,...). Le support le plus communément
employé pour la transmission de cette information reste majoritairement bidimensionnel (feuille
de papier ou écran d’ordinateur).

FIGURE 1.1 — Représentation CAO d’une presse a briques (projet de MA1, Blaise Mondouji).



CHAPITRE 1. INTRODUCTION

Il existe donc diverses méthodes pour synthétiser sur une représentation 2D un objet 3D.
L’évolution des performances du matériel et des logiciels de conception assistée par ordinateur
(CAO) permet actuellement d’effectuer des rendus photoréalistes d’objets avant leur réalisation
(figure 1.1). Ce type de représentation comprend malheureusement une information lacunaire
voire ambigué et n’est donc pas suffisante pour une utilisation industrielle.

La communication entre donneurs d’ordre et exécutants pour la réalisation de piéces ou de
batiments repose sur des plans d’exécution qui ont valeur de contrat. Ces plans suivent un
ensemble de régles communément admises qui sont issues de normalisation. Dans ce contexte,
ce cours aura pour objectif de permettre la compréhension des méthodes de réalisation et des
conventions liées a ce type de représentation. Ce cours a également pour objectif d’exercer les
capacités & manipuler et a représenter avec aisance cet espace 3D. Trois grands volets seront
étudiés de maniére commune :

— les techniques de représentation en perspective (axonométrie et en particulier
I'isométrie) ; la plupart des exemples traités dans ce cours seront accompagnés d'un
croquis en perspective qui respecte ces conventions;

— la représentation sous forme de plans techniques employant la méthode dite « de
Monge » ;

— la représentation sous forme analytique.

Ces trois méthodes de représentation ne sont que différentes voies pour représenter la méme
réalité; l'ingénieur est fréquemment appelé a les utiliser de maniére complémentaire (figure
1.2).

P!
X
: OP=10-u,+20-u,
i +30 - w,
i
i
%
ph P(10;20; 30)

FIGURE 1.2 — Trois représentations d’'un méme point : axonométrie, épure de Monge et
représentation analytique.



CHAPITRE 1. INTRODUCTION

1.1 Contenu du cours

Ce syllabus est subdivisé en cinq parties principales. La premiére traite de problémes de
géométrie descriptive en ayant pour but la compréhension des plans techniques. Le chapitre
2 présente les méthodes classiquement employées pour représenter une figure spatiale sur un
plan et décrit le dessin en perspective. Le chapitre 3 décrit les principales conventions de la
méthode « de Monge » employée dans la production de plans techniques. La représentation
de points et de droites y est abordée, celle des plans est présentée au chapitre 4. Les normes
de dessin technique sont ensuite abordées au chapitre 5, elles mettent en avant la nécessité de
disposer d’outils tels que le traitement de I'intersection d’objets (chapitre 6) ou la mise en vraie
grandeur (chapitre 7).

La deuxiéme partie du cours concerne la représentation analytique de figures et son application
a I'infographie. Le chapitre 8 reprend quelques notions de base de géométrie analytique plane.
Ces éléments servent de base a la description de I’algorithmique utilisée en infographie (chapitre
9). La description de surfaces sous forme cartésienne (chapitre 10) et paramétrique (chapitre
11) est ensuite abordée. Les courbes spatiales sont traitées au chapitre 12. Enfin, la géométrie
différentielle spatiale (recherche de vecteur tangent, normal et de plan tangent) est abordée au
chapitre 13.

La troisiéme reprend un ensemble d’exercices résolus pour les différents types de problémes
rencontrés durant le cours, tant pour la partie synthétique (chapitre 14) que pour la partie
analytique (chapitre 15).

La quatrieme partie reprend les rappels théoriques de notions essentielles de géométrie
analytique reprise de la matiére de 1’épreuve d’admission. Le chapitre 16 présente la géométrie
plane et le chapitre 17 aborde la géométrie spatiale.

La derniére partie reprend un ensemble d’annexes : les figures vierges qui seront traitées durant
le cours oral (annexe A), le formulaire de géométrie analytique utilisé dans ce cours (annexe B)
et des chapitre précédemment vus au cours qui ont été abandonnés (annexe C et D).
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Chapitre 2

Méthodes de projection

An elegant weapon from a more civilized time

- O. Kenobi, A new hope

2.1 Introduction

Les supports fréquemment employés pour la transmission d’information sont par nature
bidimensionnels (feuille de papier, écran), alors que les objets nous entourant sont par nature
tridimensionnels. Le passage de I'espace réel a sa représentation passe donc nécessairement par
une modification de I'information. Classiquement, les méthodes de représentation d’objets de
I’espace reposent sur la projection de figures spatiales sur un ou plusieurs plans de référence
(figure 2.1).

conique orthogonale

FIGURE 2.1 — Principaux types de projection employés.
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On distingue notamment :

— les méthodes de projection dites coniques ou ’ensemble des lignes de projection sont
issues d’'un méme point.

— les méthodes de projection dites cylindriques ot la méthode de projection privilégiée
est la projection orthogonale (les points sont projetés sur le plan suivant des droites
perpendiculaires a ce plan, ce qui implique que ’ensemble des lignes de projection sont
paralléles entre elles) ;

2.2 Projection centrale

La projection centrale (figure 2.2) est un exemple de projection conique ([1], [2]).

plan de
projection

FIGURE 2.2 — Projection centrale.

Le centre de projection représente 1’oeil de I'observateur, le plan de projection est le plan de
I’écran ou du tableau sur lequel la scéne est représentée.
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La projection centrale est d’usage intensif dans le domaine artistique pour faire ressortir 1’effet
de perspective dans une scéne (cf figures 2.3 et 2.4).

FIGURE 2.3 — Exemple d’utilisation de la perspective centrale en peinture (Annonciation, D.
Veneziano, 1445).

N o N e | i vond

i
1

W -

4
L R [Ty —
| v

FIGURE 2.4 — Etude des éléments de perspective dans I’annonciation de Veneziano [3].

Cette méthode permet un rendu naturel de la perspective, mais perd un ensemble d’informations
exploitables (mesure de distances, parallélisme entre éléments,...) ce qui la rend peu utile a
I'ingénieur. Au-dela du rendu réaliste de scéne (expliqué au chapitre 9), cette méthode ne sera
pas exploité dans ce cours.
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2.3 Axonométrie

L’axonomeétrie orthogonale (figure 2.5) est une méthode de projection cylindrique sur un
plan incliné par rapport aux plans de références de l'espace [4]. Cette méthode est la plus
classiquement employée pour effectuer des représentations « en perspective » d’objets. Elle
répond toutefois a des régles particuliéres qui seront partiellement détaillées dans ce cours. Le
§2.3.1 présente les bases théoriques de représentation de figures en isométrie qui est un cas
particulier d’axonométrie.

de projection

FIGURE 2.5 — Principe de la projection axonométrique.

L’axonométrie présente 'avantage de représenter des volumes par une seule vue (sans nécessiter
une reconstruction mentale du volume & partir de plusieurs vues comme c’est le cas dans la
méthode de Monge). Elle permet en outre des mesures directes de dimensions si une graduation
est associée aux axes. Cette technique se base sur la projection orthogonale d'une figure sur
un plan incliné par rapport aux axes (figure 2.5). L’observateur est supposé étre a U'infini, les
lignes de projection sont paralléles entre elles.
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Les distances mesurées sur une figure sont nécessairement inférieures aux distances mesurées
sur 'objet projeté (la projection orthogonale d’un segment est un segment dont les dimensions
sont multipliées par le cosinus de ’angle formé entre le segment et le plan, valeur nécessairement
inférieure ou égale a 1).

/<
PN

observateur
a lin fini

Plan de
projection

FIGURE 2.6 — Principe de 'axonométrie.
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Les rapports de réduction entre les dimensions réelles et la projection peuvent étre déterminés
via l'inclinaison du plan de projection par rapport aux axes de la figure (u est 'unité de longueur
de la figure spatiale, ., Uy, €t u,, sont les unités de longueur selon les trois axes projetés) :

Uppy = U-COSQq
Upy = U-COSQ
Uy, = U-COSQ3

FIGURE 2.7 — Rapport de réduction en axonométrie.

10
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La création d’une figure en axonométrie se base sur la représentation d’'un systéme d’axes Ozxyz
associé & une unité de mesure sur chacun des axes. Le report d’un point se fait en reportant
ses coordonnées parallélement & chacun des axes sur le dessin (figure 2.8).

P(1;-2;3)

FIGURE 2.8 — Construction d’un point de coordonnées (1;-2:3) en axonométrie.

La matérialisation des lignes de construction permet une représentation plus claire de la position
du point. Elle permet également de lever 'ambiguité inhérente & I'axonométrie. En effet, tous
les points situés sur une méme droite de projection sont représentées par un méme point sur
I’axonométrie (figure 2.9). C’est cette ambiguité qui explique que 'emploi de 1’axonométrie
soit limité a une aide a la visualisation de 'aspect tridimensionnel de la piéce plutot qu’a la
réalisation de plans techniques.

11
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FIGURE 2.9 — Deux points distincts de ’espace peuvent avoir la méme représentation en
axonomeétrie.

Les croquis en axonométrie permettent également de résoudre des problémes de construction
spatiale élémentaires sachant que les propriétés suivantes sont rencontrées :
— le parallélisme entre droites est conservé;
— des droites sécantes sur la projection les sont aussi dans 'espace a conditions qu’elles
soient coplanaires.
Un exemple de probléme classique pouvant étre résolu par cette voie est la section d’un polyedre
par un plan (figure 14.1). Un exemple détailé est présenté au §14.1 (page 183).

12
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2.3.1 Isométrie

L’isométrie est un cas particulier d’axonométrie pour laquelle le plan de projection coupe les
axes selon des points équidistants de l'origine (figure 2.10). Dans une isométrie, les échelles des
3 axes projetés sont identiques.

observateur

a l'in fini
C(0,0,1) Plan de / |
7

projection PR

FIGURE 2.10 — Cas particulier de I'isométrie.

2.3.1.1 Calcul du rapport de réduction en isométrie
Le plan de projection a pour équation :
r+y+z2z—1=0 (2.1)

La droite OO’ a pour équations paramétriques

(2.2)

S
I
> > >

13



CHAPITRE 2. METHODES DE PROJECTION

Le point O’ est a I'intersection de la droite et du plan, il est donc solution du systéme suivant :

r=A\
=\
A (2.3)

r+y+z—1=0

qui donne A = 1/3. O" a donc pour coordonnées (1/3;1/3;1/3). On peut finalement calculer le
cosinus de oy en utilisant

—
AG - A0 = | AO|| - ||AO|| - cos s (2.4)

Ce qui donne, avec les valeurs numériques :

(=1;0;0) - (=2/3;1/3;1/3) = \/(—1)2 + 02402 \/(—2/3)2 +(1/3)* 4+ (1/3)* -cosay (2.5)

cos oy vaut donc /2/3 = 0,816, ce qui veut dire qu’en toute rigueur il faudrait appliquer ce
rapport & toutes les dimensions sur le dessin en isométrie. Pour éviter cette complication, il est
classique de représenter directement sur le dessin le mesures réelles des objets (cela revient &
tracer le croquis isométrique a 1’échelle 1/0,816). C’est cette convention qui sera principalement
employée pour les figures du cours.

2.3.1.2 Reéalisation de croquis en isométrie

Deux choix sont généralement utilisés pour le plan de projection en isométrie : un plan
d’équation  + y + z + ¢ = 0 ou un plan d’équation x — y + z + ¢ = 0 (figure 2.11).

FIGURE 2.11 — Représentation des deux plans les plus fréquemment employés en isométrie.

Pour réaliser un croquis isométrique, on commence par disposer les projections isométriques
des 3 axes Oz, Oy et Oz, avec Oz généralement vertical et un angle de 120° (figure 2.12) ou 60°
(figure 2.13) entre les axes sur le dessin suivant le plan de projection retenu. Le positionnement
d’un point P de I'objet s’opére en reportant sur les axes projetés les coordonnées les longueurs
a, b et ¢ qui correspondent aux coordonnées selon les trois direction sde l'espace (figures 2.12
et 2.13).

14



CHAPITRE 2. METHODES DE PROJECTION

On trace des paralléles aux axes pour trouver la représentation du point P dans le croquis
spatial. L’opération est répétée autant de fois que nécessaire pour disposer de I’ensemble des
points dans le schéma.

FIGURE 2.13 - Realisation d’un
FIGURE 2.12 — Reéalisation d’un croquis en isométrie croquis en isométrie (60° entre les
(120° entre les axes). axes).

L’emploi de I'isométrie est parfois inadapté pour la représentation claire de certains éléments.
Ainsi par exemple, la représentation d’un plan incliné a 45° par rapport a Oxy (plan bissecteur
du diédre formé par les plans Ozy et Oxz) serait peu explicite (la vue du plan est dégénérée en
une droite, figure 2.14). Dans ce cas, on emploie un plan de projection présentant une inclinaison
différente de celle employée par 'isométrie pour représenter la vue.

plan

bissecteur

plan
bissecteur

FIGURE 2.14 — Représentation du premier bissecteur en isométrie et en axonométrie.

15



CHAPITRE 2. METHODES DE PROJECTION

2.4 Meéthode de Monge

La méthode de Monge est utilisée pour la représentation de plans techniques. Cette méthode
repose sur le principe suivant : l'objet de 'espace 3D est représenté par ses projections sur
deux plans de référence (plan Oyz appelé plan frontal et plan Ozy appelé plan horizontal)
perpendiculaires entre eux (figure 2.15).

ol
Bf
Al
i {
[
| | i :
12 A I B
| | !
! D™ |
| i *
{
Ah I
Bh
th

Epure

Vue spatiale

FIGURE 2.15 — Exemple de projection de Monge.

Par cette méthode, tout objet de 'espace 3D est représenté graphiquement sur un plan 2D,
dit plan de I’épure, dans 'objectif de résoudre, par les principes de la Géométrie Synthétique
2D, les problémes de Géométrie Synthétique 3D qui sont liés & cet objet ou & cet ensemble
d’objets [5]. La représentation des deux projections de points de I’espace sur un plan nécessite
au préalable de rendre les plans H et F coplanaires via une opération de rabattement (dans ce
cas, une rotation de 90° autour de leur droite d’intersection appelée ligne de terre, figure 2.16).

16



CHAPITRE 2. METHODES DE PROJECTION

FIGURE 2.16 — Opération de rabattement pour obtenir

I’épure d’un point.

eloignement

FIGURE 2.17 — Epure d’un
point par la méthode de Monge.

Sur une épure de Monge, un point de l'espace est nécessairement représenté par au moins
deux de ses projections (voire plus comme nous le verrons par la suite). Sur une épure, les
deux projections sont distinguées par une lettre en exposant (f pour la projection frontale,
c’est-a~dire sur le plan Oyz et h pour la projection horizontale , c’est-a-dire sur le plan Ozy).
Le chapitre 5 montrera que dans le cas de plans techniques, ce mentions sont ignorées ce qui
conduit a l'utilisation d’un plus grand nombre de projections pour des piéces complexes. La
correspondance entre épure de Monge et isométrie est présentée aux figures 2.18 et 2.19.

FIGURE 2.18 — Reéalisation d’'un croquis en isométrie (120° entre les axes) et correspondance

avec I’épure de Monge.
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FIGURE 2.19 — Reéalisation d’un croquis en isométrie (60° entre les axes) et correspondance
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Chapitre 3

Conventions de la méthode de Monge

La géomeétrie descriptive est l’art de représenter sur une feuille de dessin qui n’a
que deux dimensions, les corps de I’ espace qui en ont trois et qui sont susceptibles
d’ une définition rigoureuse

- G. Monge, Journal de I’Ecole polytechnique

3.1 Introduction

Le principe général de la géométrie de Monge repose sur la projection orthogonale des points
de l'espace 3D sur deux plans orthogonaux|1]. Elle est a la base de la production des plans
techniques. Par convention, on nomme le plan Ozy H (plan horizontal) et le plan Oyz F' (plan
de face ou frontal). La figure 3.1 présente par exemple la représentation d’'un triangle par la
méthode de Monge.

ol
, B
Al
| o
|
orlo
|
|
‘ ‘
|
\ i !
| |
|
|
|
Ah |
Bh,
C/v

Epure

Vue spatiale

FIGURE 3.1 — Exemple de projection d'un triangle par la méthode de Monge.
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La représentation des deux projections de points de ’espace sur un plan nécessite au préalable
de rendre les plans H et F coplanaires via une opération de rabattement (dans ce cas, une
rotation de 90° autour de leur droite d’intersection appelée ligne de terre, figure 3.2).

FIGURE 3.2 — Opération de rabattement pour obtenir

I’épure d’un point.

FIGURE 3.3 — Epure d’un point
par la méthode de Monge.

La figure 3.3 permet de fixer les conventions qui seront reprises tout au long de ce chapitre :
— les points de 'espace sont désignés par des lettres majuscules;
— la droite d’intersection des plans H et F' (C’est-a-dire 'axe Oy) est appelée ligne de terre

et est indiquée sur I’épure par l'abréviation LT et tracée en trait mixte (un trait long -
un trait court) fin;

la projection d’un point sur le plan H (appelée projection horizontale du point) est
désignée par la méme lettre que le point suivie d’'un A (minuscule) porté en exposant ;
la projection d’un point sur le plan F' (appelée projection frontale du point) est désignée
par la méme lettre que le point suivie d'un f (minuscule) porté en exposant ;

les deux projections d’un point sont reliées par un trait mixte fin appelé ligne de rappel ;
on peut démontrer simplement que la ligne de rappel est toujours perpendiculaire a la
ligne de terre;

la distance entre la projection frontale d’'un point et la ligne de terre (c’est-a-dire la
coordonnée z du point) est appelée cote ;

la distance entre la projection horizontale d’un point et la ligne de terre (c’est-a-dire la
coordonnée x du point) est appelée éloignement).

Géométries et communication graphique 20
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L’exemple simple de la figure 3.4 permet d’illustrer la nécessité de disposer de deux projections
simultanées de points pour une épure univoque.

FIGURE 3.4 — Nécessité d’employer deux projections.

L’emploi de la seule projection sur le plan horizontal par exemple ne permettrait pas de
distinguer le triangles ABC' du triangle A’B’'C" (ou plus généralement tout triangle obtenu
par intersection d'un plan avec le prisme droit de base A"B"C") comme indiqué sur la figure
3.4. Ceci est lié¢ au fait que tout point situé sur une droite perpendiculaire au plan horizontal !
présente la méme projection horizontale.

Le méme raisonnement est applicable & la projection sur le plan F' : les triangles ABC' et
A"B"C" sont également indissociables si on mentionne uniquement la projection frontale de
leurs sommets. Ceci est lié au fait que tout point situé sur une droite perpendiculaire au plan
frontal 2 présente la méme projection frontale.

1. Nous verrons par la suite qu’une telle droite est appelée droite verticale
2. Nous verrons par la suite qu’'une telle droite est appelée droite de bout
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3.2 Position d’un point dans ’espace

3.2.1 Division de ’espace en diédres

De maniére conventionnelle, les plans H et F' divisent I’espace en quatre diédres (figure 3.5) :
— premier diédre en avant de F' et au-dessus de H (coordonnées x et z positives);
— deuxiéme diédre en arriére de F' et au-dessus de H (coordonnée z négative, coordonnée
z positive) ;
— troisiéme diédre en arriére de F' et en-dessous de H (coordonnées x et z négatives) ;
— quatriéme diédre en avant de F' et en-dessous de H (coordonnée x positive, coordonnée
z négative) ;

2¢ diedre

S~ 1¢ diedre

3¢ diedre

4¢ diedre

FIGURE 3.5 — Définition conventionnelle des diédres.

De ces définitions découle la position des points sur I’épure de Monge en fonction du diédre
auquel ils appartiennent. Un point du premier diédre par exemple a sa projection dans le plan
F au-dessus de la ligne de terre et sa projection dans le plan H en-dessous de la ligne de terre
(cf figures 3.6 et 3.7). Comme nous le verrons par la suite, la convention utilisée dans les plans
techniques postule que les éléments représentés sur un plans techniques appartiennent soit au
premier diédre (méthode « du premier diédre » ou projection européenne) soit au troisiéme
(méthode « du troisiéme diédre » ou projection américaine).
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X
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Vue spatiale Epure

FIGURE 3.6 — Point A du premier diédre et point B du deuxiéme diédre.
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FIGURE 3.7 — Point A du troisiéme diédre et point B du quatriéme diédre.
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3.2.2 Point appartenant aux plans de projection

Certains points ont une de leurs projections située sur la ligne de terre (cf figure 3.8); c’est le

cas :
— d’un point appartenant au plan horizontal (sa projection frontale est sur la ligne de
terre) ;
— d’un point appartenant au plan frontal (sa projection horizontale est sur la ligne de
terre) ;
— d’un point appartenant a la ligne de terre (ses deux projections sont confondues sur la
ligne de terre, dans ce cas, on note P/ qui est équivalent & P/ = P").

Epure

Vue spatiale

FIGURE 3.8 — Point A appartenant au plan frontal, point B appartenant au plan horizontal et
point C' appartenant a la ligne de terre.

3.3 Représentation d’une droite

3.3.1 Généralités

De maniére générale, une droite de I'espace est définie par deux points non confondus. La
représentation dans une épure de Monge d’une droite peut donc étre donnée par la position de
deux points de cette droite.
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\\

Vue spatiale

FIGURE 3.9 — Représentation d'une droite dans une épure de Monge.

Cette constatation conduit naturellement au théoréme suivant :

Théoréme 3.1. Les projections d’une droite sur les deux plans de référence sont deux droites

Ce théoréeme se démontre 2] en consultant la figure 3.9 :
— la projetante BB" (perpendiculaire au plan H) forme un plan avec la droite d;
— ce plan (d,B,B") est perpendiculaire au plan H (si une droite est perpendiculaire & un
plan, tout plan passant par cette droite est perpendiculaire a ce plan);
— donc, toute les projetantes de la droite sont contenues dans le plan (d,B") (si deux plans
sont perpendiculaires et si, d’'un point de I'un d’entre eux on méne une perpendiculaire
a lautre, cette perpendiculaire sera entiérement contenue dans ce plan) ;
— donc, toutes les projetantes coupent le plan H selon la droite d’intersection entre le plan
(d,BB") et le plan H.
Le méme raisonnement peut étre suivi concernant le plan F. Les plans de type (d,BB") sont
dénommés plans projetants de la droite sur les plans de référence.
Nous avons démontré qu'un point appartenant & une droite se projette sur ses projections
orthogonales ; la réciproque est-elle vraie, a savoir :

Théoréme 3.2. S les projections d’un point sont sur les projections d’une droite, ce point
appartient a la droite

La démonstration se fait de la maniére suivante [2] :

— Comme, dans I’épure, les 2 projections d’un point se correspondent par une ligne de
rappel perpendiculaire a LT, les 2 fractions A"K" et Af K" de cette ligne de rappel
situées de part et d’autre de la ligne de terre lui restent perpendiculaires lorsque le plan
F est relevé (opération inverse du rabattement) perpendiculairement au plan H dans
I'espace (cf figure 3.9) ;
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— ces 2 droites A"K" et Af K" forment donc, un plan 7 perpendiculaire & LT ;

— or, si une droite est perpendiculaire & un plan, tout autre plan passant par cette droite est
perpendiculaire au plan donné ; dés lors, le plan H qui passe par LT est perpendiculaire
au plan 7 et le plan F' qui passe aussi par LT est aussi perpendiculaire au plan 7 ;

— or, les plans (d,d") et ( d,d’) étant les plans projetants de la droite d, ils sont
respectivement perpendiculaires & H et a F';

— or encore, si 2 plans sont perpendiculaires & un méme troisiéme, leur intersection est
perpendiculaire & ce troisiéme plan (théoréme classique de géométrie synthétique 3D) ;

— donc, comme les 2 plans (d,d") et 7 sont perpendiculaires & H, leur intersection P"P est
perpendiculaire & H et, de méme, comme les 2 plans (d,d’) et m sont perpendiculaires
a F, leur intersection P/ P est perpendiculaire a F'; Donc P"P est perpendiculaire & H
et P/ P est perpendiculaire a F';

— il s’agit donc nécessairement des projetantes du point P de la droite d.

3.3.2 Traces d’une droite

Par définition, les traces d’une droite sont les intersections de cette droite avec les plans de
projection. Elles sont respectivement désignées par I (trace dans le plan H appelée trace
horizontale de la droite) et J (trace dans le plan F' appelée trace frontale de la droite).

Vue spatiale Epure

FIGURE 3.10 — Traces d’une droite.

La détermination des traces d’'une droite & partir de ’épure de la droite est assez immédiate
(figure 3.10) :
— T'intersection de d" avec la ligne de terre donne J"; J/ est obtenue par I'intersection de
la perpendiculaire & LT passant par J" avec d” ;
— de méme, lintersection de df avec la ligne de terre donne I7; I" est obtenue par
l'intersection de la perpendiculaire & LT passant par I7 avec d”.
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3.3.3 Positions relatives de deux droites
3.3.3.1 Représentation de droites sécantes

Deux droites sécantes ont nécessairement un point commun. Les projections du point
d’intersection sont & l'intersection des projections horizontales et frontales des droites (figure
3.11).

bh

h

s}

Epure

Vue spatiale

FIGURE 3.11 — Droites sécantes.

La réciproque est également vraie : si 'intersection des projections horizontales et frontales de
deux droites sont alignées sur une méme ligne de rappel, les droites sont sécantes. On peut donc
en déduire le théoréme suivant :

Théoréme 3.3. Deux droites sont sécantes si et seulement si le point d’intersection de leurs
projections horizontales et le point d’intersection de leurs projections frontales se correspondent
par une méme ligne de rappel perpendiculaire a la ligne de terre.
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3.3.3.2 Représentation de droites paralléles

Deux droites paralléles non confondues sont coplanaires et ne présentent pas d’intersection
(figure 3.12). Leur représentation sur une épure de Monge vérifie le théoréme suivant :

Théoréme 3.4. Si 2 droites sont paralléles dans [’espace, leurs projections sur les plans
de référence H, F' et P sont aussi respectivement paralléles entre elles (tout en n’étant pas
nécessairement paralléles auzx 2 droites paralléles de ’espace).

Epure

Vue spatiale

FIGURE 3.12 — Droites paralléles.

Ce théoréme se démontre comme suit [2] :

— les 2 plans projetants de a et b sur H contiennent respectivement les 2 droites paralléles
entre elles a et b et les 2 droites projetantes AA" et BB"; ces 2 projetantes étant toutes
deux perpendiculaires & H, sont paralléles entre elles;

— donc, ces 2 plans projetants contiennent chacun 2 droites sécantes qui sont
respectivement paralléles entre elles; ils sont donc paralléles entre eux (pour que 2 plans
soient paralléles entre eux, il faut et il suffit que 'un d’eux contienne 2 droites sécantes
respectivement paralléles & 2 droites sécantes de l'autre) ;

— donc, les intersections des 2 plans projetants de a et b sur H sont paralleles entre elles
(les intersections de 2 plans paralléles entre eux avec un troisiéme plan qui ne leur est
pas paralléle sont paralléles entre elles) ;

— or, ces intersections ne sont rien d’autre que les projections horizontales des 2 droites a
et b; donc, les projections horizontales des 2 droites a et b, paralléles entre elles dans
Iespace, sont aussi paralléles entre elles (tout en n’étant pas nécessairement paralléles a
aetb).
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Un raisonnement tout a fait analogue conduirait a démontrer que les projections frontales des
2 droites a et b, paralleles entre elles dans ’espace, sont aussi paralléles entre elles (tout en
n’étant pas nécessairement paralléles a a et b) et en généralisant, les projections de profil des
2 droites a et b, paralléles entre elles dans l'espace, sont aussi paralléles entre elles (tout en
n’étant pas nécessairement paralléles & a et b).

3.3.4 Droites occupant une position particuliére de 1’espace

Par convention, des droites occupant des positions particuliéres par rapport aux plans de
référence ont une désignation propre.

une droite est dite horizontale (figure 3.13) si elle est paralléle au plan horizontal ; sa
projection frontale est paralléle & la ligne de terre; on la note généralement h ;

une droite est dite frontale si elle est paralléle (figure 3.14) au plan frontal ; sa projection
horizontale est parallele a la ligne de terre; on la note généralement f;

une droite est dite de profil si elle est orthogonale a la ligne de terre ; ses deux projections
sont confondues et perpendiculaires a la ligne de terre; on la note généralement p

une droite est dite verticale (figure 3.16) si elle est perpendiculaire au plan horizontal ;
sa projection frontale est perpendiculaire a la ligne de terre; sa projection horizontale
se réduit a sa trace [ ; on la note généralement v ;

une droite est dite de bout (figure 3.17) si elle est perpendiculaire au plan frontal; sa
projection horizontale est perpendiculaire & la ligne de terre; sa projection frontale se
réduit a sa trace .J; on la note généralement d;

une droite paralléle a la ligne de terre (figure 3.18) est a la fois est a la fois frontale et
horizontale ; ses projections sont donc paralléles a la ligne de terre (ce type de droite n’a
pas de trace frontale ni horizontale).

Epure

Vue spatiale

FIGURE 3.13 — Droite horizontale.
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Vue spatiale Epure
FIGURE 3.14 — Droite frontale.
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Epure

Vue spatiale

FIGURE 3.15 — Droite de profil.
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FIGURE 3.16 — Droite verticale.

dh
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Epure

Vue spatiale

FIGURE 3.17 — Droite de bout.
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a’

dh

Epure

Vue spatiale

FIGURE 3.18 — Droite paralléle a la ligne de terre.
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Le tableau 3.1 résume les caractéristiques principales des droites particuliéres, en prenant un
exemple sur un parallélépipéde rectangle ABCDEFH dont les faces sont paralléles aux plans
coordonnés (figure 3.19).

Ef = F/ af =g’
Al = Bf ,Cf = DI
| |
LT I
e e
| |
| |
Ah *‘Eh ! h _ H}
B]" — Fh' C}L _ G}L
H
Epure

vue spatiale

FIGURE 3.19 — Parallélipipéde rectangle dont les faces sont paralléles aux plans de référence.

Nom (-+symbole) | définition | projection h | projection f | trace I | trace J 7 exemple

Horizontale (h) /] H quelconque /] LT 7 3 (o, 8,0) AC
Frontale (f) /] F /] LT quelconque 3 3 0,a, B) AH
de Profil (p) 1L LT 1L LT 1L LT 3 = (e, 0,5) AF
Verticale (v) 1L H trace [ L LT 3 ? (0,0,a) | AE
De bout (d) 1L F L LT trace J 7 3 (,0,0) | AB
Paralléle LT /] LT /] LT /] LT 3 3 (0,0,0) |  AD

TABLE 3.1 — Résumé des positions particuliéres de droites
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3.4 Représentation d’un point par trois projections

La droite de profil (figure 3.15) met en évidence l'ambiguité qui peut résulter de la seule
utilisation de deux projections pour un élément. En effet deux droites de profil coplanaires sont
impossible & distinguer sur une épure (figure 3.20).

0 f
ph=pl=ph=p]

FEpure
vue spatiale

FIGURE 3.20 — Tracé de deux droites de profil coplanaires, elles ne sont pas distinguables.

Une maniére de lever 'ambiguité est de représenter également deux points de chacune des
droites (leurs traces par exemple, figure 3.20).

pl=p{=ph=pf

Jf

I

FEpure

vue spatiale

FIGURE 3.21 — Lors de la mention de leurs traces, les droites sont définies de maniére univoque.
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Cette méthode s’avére toutefois peu satisfaisante en pratique puisqu’elle nécessite une
reconstruction mentale des formes dessinées dans un plan perpendiculaire a la ligne de terre
(on parle de plan de profil). Dans ce type de cas, on doit faire appel a la projection des points
sur un troisiéme plan de référence orthogonal & H et F' : le plan de profil (plan Ozxz, figure
3.22).

FIGURE 3.22 — Vue spatiale des trois projections d’un point.

Par analogie avec ce qui a été présenté précédemment, la projection d’un point dans le plan de
profil est désignée par la méme lettre que le point suivie d’un p (minuscule) porté en exposant.
La représentation d’un point par ses trois projections passe par deux opérations de rabattement :
dans un premier temps, le plan de profil est rabattu sur le plan frontal autour de I’axe Oz appelé
ligne de terre secondaire (L’T’) (figure 3.23). Ensuite, le plan frontal est rabattu sur le plan
horizontal comme indiqué précédemment (figure 3.24).
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FIGURE 3.23 — Rabattement du plan de profil sur le plan frontal.

FIGURE 3.24 — Rabattement sur le plan horizontal.
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L’épure d’un point représenté par ses trois projections se présente comme suit (figures 3.25 et
3.26) :
— les projections frontale et horizontale se correspondent par une ligne de rappel
perpendiculaire a la ligne de terre;
— les projections frontale et de profil se correspondent par une ligne de rappel paralléle a
la ligne de terre (ou perpendiculaire 1'axe z sui est appelé la ligne de terre secondaire
T ),
— la distance entre P" et LT est égale a la distance entre PP et L'T";
Les figures 3.25 et 3.26 présentent la construction pour des points situés dans les quatre diédres.
La figure 3.27 présente le cas de points dans les plans de projection principaux.

\
[
AP : Af

Ah

FIGURE 3.25 — Projection de profil de point du premier (A) et deuxiéme diedre (B).
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FIGURE 3.26 — Projection de profil de point du troisiéme diédre (C') et quatriéme diédre (D).
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FIGURE 3.27 — Projection de profil de point contenus dans le plan horizontal () dans le plan
frontal (J) et sur la ligne de terre (K).
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Chapitre 4

Représentation de plans par la méthode
de Monge

The golden rule is that there are no golden rules.

- G.B. Shaw, Mazims for Revolutionists

4.1 Introduction

Un plan est classiquement défini de lune des quatre maniéres suivantes [1] :
— par trois points non colinéaires (figure 4.1) ;
— par deux droites sécantes (figure 4.2) ;
— par deux droites paralléles (figure 4.3);
— par une droite et un point n’appartenant pas a cette droite (figure 4.4).

b

/ I
A ; pf @ f b./

I
|
|
I

LT | ! ! \LT L

T T

i i
i ! | n

a
i %
14 | P! \ P
x i u/t
I

FIGURE 4.1 - Plan FIGURE 4.2 - Plan FIGURE 4.3 - Plan FIGURE 4.4 - Plan
défini par trois points. défini  par  deux défini  par  deux défini par une droite
droites sécantes. droites paralléles. et un point.
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4.2 'Traces d’un plan

4.2.1 Définition

Par analogie avec la définition des traces d’une droite, on définit les traces d’un plan par leur
intersection avec les plans de projection. Les traces sont désignées par la lettre grecque décrivant
le plan portant en indice f ou h (désignant respectivement la trace horizontale ou frontale).

Epure

Vue spatiale
FIGURE 4.5 — Traces d'un plan (LT = 7} = 7%).

Cette trace est une droite, qui posséde donc deux projections sur I’épure ; W}‘ désigne donc la
projection horizontale de la trace dans le plan frontal du plan 7!; dans la majorité des cas,
cette droite est confondue avec la ligne de terre (elle se réduit & un point de la ligne de terre
dans certains cas particuliers décrits plus loin)2. On peut également noter que, si les traces
d’un plan ne sont pas paralléles, elles ont nécessairement une intersection sur la ligne de terre.
L’avantage de cette représentation est de permettre de visualiser de maniére simple I'inclinaison
du plan sur les deux plans de référence, ce qui n’est pas permis de maniére immédiate par les
autres méthodes de définition d’un plan.

1. on peut également rencontrer le notation Tf:f
2. La méme observation peut étre faite pour la projection horizontale de la trace frontale
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4.2.2 Deétermination des traces d’un plan

Lorsqu'un plan est défini par deux droites sécantes (figure 4.6), les traces du plan sont les
droites qui joignent les traces respectives de ces deux droites. Cette méthode peut également
étre utilisée lorsque le plan est défini par deux droites paralléles (figure 4.7) ou par trois points
(utiliser deux droites s’appuyant sur les trois points, cf figure 4.8).

Epure

Vue spatiale

FIGURE 4.6 — Traces d'un plan défini par deux droites sécantes (LT:T('}]: = W’J;L, épure vierge
page 277).

Si le plan est défini par une droite et un point, il suffit de placer un deuxiéme point sur la
droite (choisir un point sur une des projection de la droite puis trouver son autre projection
grace a une ligne de rappel). La droite reliant les deux points de I’épure permet ensuite, via la
recherche de ses traces, d’obtenir la trace du plan (figure 4.9).
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Vue spatiale Epure

FIGURE 4.7 — Traces d'un plan défini par deux droites paralléles (LT:W]]: = ﬂ}’, épure vierge
page 278).

FIGURE 4.8 — Traces d’un plan défini par FIGURE 4.9 — Trace d’un plan défini par
trois points (LT:7r£ = 71'?, épure vierge page une droite et un point (LT:W]{ = W?, épure
279). vierge page 280).
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4.3

Plans particuliers

Comme au §3.3.4 pour des droites, il est possible de définir des plans occupant des positions
particuliéres de I'espace (le tableau 4.1 résume les propriétés de ces plans) :

un plan vertical est perpendiculaire au plan horizontal (figure 4.10) ; sa trace frontale est
une droite verticale? (7‘(‘? se réduit donc & un point) ; sa trace horizontale est quelconque ;
un plan de bout est perpendiculaire au plan frontal (figure 4.11); sa trace horizontale
est une droite de bout (71',{ se réduit donc & un point) ; sa trace frontale est quelconque;
un plan frontal est parallele au plan F (figure 4.12) ; sa trace horizontale est paralléle a
la ligne de terre; il ne posséde pas de trace frontale ;

un plan horizontal est paralléle au plan H (figure 4.13) ; sa trace frontale est paralléle a
la ligne de terre; il ne posséde pas de trace horizontale ;

un plan de profil est perpendiculaire a la fois & H et & F (figure 4.14) ; sa trace frontale

est un droite verticale (77}‘ se réduit donc & un point) ; sa trace horizontale est une droite
de bout (7] se réduit donc a un point).

Nom définition Th T ’7'}]: 7'}’} équation
Horizontal // H 7 // LT 7 =LT Z=c
Frontal /] F // LT 3 =LT ? r=c
Vertical 1 H quelconque 1L LT =LT |=K" |az+by=c
De bout 1F L LT quelconque | KM | = LT |ay+bz=c
De profil 1L LT 1 LT 1L LT KM K" y=c

TABLE 4.1 — Résumé des positions particuliéres de plans

Epure

Vue spatiale

FIGURE 4.10 — Plan vertical.

3. si deux plans sécants sont perpendiculaires & un méme troisiéme, leur intersection est perpendiculaire a

ce plan

Géomeétries et communication graphique 44



CHAPITRE 4. REPRESENTATION DE PLANS

h

Vue spatiale Epure

FIGURE 4.11 — Plan de bout.

Epure

Vue spatiale

FIGURE 4.12 — Plan frontal.
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f
Ty
LT=mp
Vue spatiale Epure
FIGURE 4.13 — Plan horizontal.
7r']': = TI'Z
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P
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Kv 7
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H
Vue spatiale Epure

FIGURE 4.14 — Plan de profil.
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4.4 Dessin d’un point appartenant a un plan

Le dessin d'un point P appartenant a un plan n’est pas une opération immédiate. La méthode
la plus simple pour résoudre ce probléme est de dessiner dans ce plan une droite (en reliant
deux points de ce plan), puis de placer un point sur cette droite car si une droite est incluse
dans un plan, tous ses points appartiennent a ce plan.

En pratique, si le plan est défini par une des méthodes exposées au §4.1 'opération peut étre
effectué de la maniére suivante :

— positionner la projection horizontale du point P & un endroit quelconque, un premier
lieu de sa projection frontale est la ligne de rappel perpendiculaire a LT ;

— si le plan est défini par trois points A B,C (figure 4.15), dessiner la droite joignant
deux des points du plan (A et C par exemple) ; la génératrice est la droite qui joint
le troisiéme point (B) a P;

— si le plan est défini par deux droites sécantes (figure 4.16) ou paralléles (figure 4.17),
la génératrice est la droite qui passe par P et qui coupe les deux droites définissant
le plan;

— si le plan est défini par une droite et un point (figure 4.18), la méthode est similaire
a celle qui est employée pour un plan défini par trois points;

— obtenir la projection frontale de la génératrice auxiliaire (on a toujours deux points
connus : une intersection de la génératrice avec une droite et soit une deuxieme
intersection, soit un point connu) qui est le deuxiéme lieu de la projection frontale du
point

FIGURE 4.15 — Point dans un plan défini par trois points (épure vierge page 281.)
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______________ ) I 77 S NI
Ph ah
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FIGURE 4.17 — Point dans un plan défini par deux droites paralléles (épure vierge page 283).
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FIGURE 4.18 — Point dans un plan défini par une droite et un point (épure vierge page 284).

4.5 Droites particuliéres de plans quelconques

4.5.1 Droites horizontales et frontales

Tout plan quelconque 7 (sauf un plan horizontal évidemment) peut étre coupé par une infinité
de plans horizontaux H’. Dans ce cas, la droite d’intersection entre ces deux plans est paralléle
a la trace horizontale du plan (les intersections de deux plans paralléles par un méme troisiéme
sont paralleles) ; il s’agit donc d’une droite horizontale (figure 4.19). Sur ’épure, elle peut étre
construite selon les étapes suivantes :

— la projection frontale de la droite est confondue avec la trace frontale du plan H';

— lintersection de cette projection avec la trace frontale du plan donne la trace frontale
de la droite recherchée ;

— Comme la droite recherchée est paralléle a la trace horizontale du plan 7, il suffit de
faire passer une paralléle & 7' passant par J" pour obtenir la projection horizontale de
la droite recherchée.

On peut déduire le théoréme suivant :

Théoréme 4.1. Dans un plan quelconque, une infinité de droites horizontales peuvent étre
définies, elles sont toutes paralléles a la trace horizontale de ce plan.
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Vue spatiale Epure

FIGURE 4.19 — Intersection entre un plan horizontal et un plan quelconque (LT:TF,J: = W}‘
H].
f

Une démarche tout a fait similaire permettrait 1’établissement d’une droite frontale par
intersection d’un plan frontal F’ avec un plan (figure 4.20). Le théoréme suivant est également
d’application :

Théoréme 4.2. Dans un plan quelconque peuvent étre définies une infinité de droites frontales
qui sont toutes paralléles a la trace frontale de ce plan.

a4/

Epure

Vue spatiale

FIGURE 4.20 — Intersection entre un plan vertical et un plan quelconque (LT:ﬂ}{ = W? =F ,;f ).
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4.5.2 Droites de bout et verticales

Une droite de bout est un cas particulier de droite horizontale qui est, non seulement paralléele
a H, mais encore perpendiculaire a F. De méme, une droite verticale est un cas particulier de
droite frontale qui est, non seulement parallele & F, mais encore perpendiculaire & H (figure
4.21).

Droites horizontales Droites frontales

FIGURE 4.21 — Ensemble de droites particuliéres [1].

De maniére générale, on ne peut pas définir dans un plan quelconque une droite verticale ou
de bout. En effet, si nous considérons le cas de la droite de bout et que nous supposons qu’elle
puisse étre incluse dans un plan m, cela implique nécessairement que le plan 7 est un plan de
bout. En effet, si une droite est perpendiculaire & un plan, tout plan passant par cette droite
est perpendiculaire au plan donné, donc tout plan passant par la droite de bout ne peut qu’étre
perpendiculaire a F, c¢’est-a-dire étre lui-méme un plan de bout. La méme constatation peut étre
faite pour une droite verticale : si un plan contient une droite verticale, il est nécessairement
lui-méme vertical.

Références

[1] Y. Durand. Géométries et communication graphique, Tome I partie 1 : La géométrie
descriptive de Monge, Fascicule III : La représentation des plans et des droites particulieres
d’un plan. Mutuelle d’édition FPMs, 2006-2007.
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Chapitre 5

Application de la méthode de Monge au
dessin technique

Le dessin est la base de tout.

- A. Giacometti, Citations

5.1 Introduction

Dans un grand nombre de domaines de I'ingénierie, la réalisation finale des concepts imaginés
aboutit a la fabrication de piéces ou d’assemblages. La démarche de conception, de l'idée a
la réalisation, doit faire appel a des supports visuels qui simplifient la communication entre
les différents intervenants (au sein de l'entreprise, entre l'entreprise et ses sous-traitants,
entre l'entreprise et ses clients). Partant de schémas de principe et d’esquisse, le processus de
conception évolue vers une définition compléte des formes et des exigences sur les machines et
leurs composants élémentaires, formalisées sous la forme d’un plan.

FIGURE 5.2 — Représentation de la piéce
FIGURE 5.1 — Piéce mécanique en alliage de la figure 5.1 par le logiciel de CAO 3D
d’aluminium. Solidworks.
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Les programmes de conception assistée par ordinateur volumique, c’est-a-dire qui se basent
sur une représentation tridimensionnelle des piéces congues (figure 5.2), rencontrent un succés
grandissant. Les possibilités de rendus réalistes permettent une amélioration de mises en
situation, avant méme la fabrication des premiéres piéces (figure 5.3). Malgré ces avancées
technologiques, dans la grande majorité des domaines, ’élément de description finale (et qui
fait office de contrat) est un plan imprimé sur un support papier (donc 2D comme sur la figure
5.4).

kaos|

.

JO—
D175
= ji
951001

o ¢

Edition étudiante de SolidWorks.
—Utilisation académique uniquement:

vourmec [
@ Nons

"JUMONS

FIGURE 5.4 — Plan de définition de la piéce de la figure 5.1, diverses projections de Monge
servent a la définition compléte des exigences dimensionnelles.
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Le dessin technique permet la représentation sous forme de plans en deux dimensions du modéle
géométrique associé a une piéce ou a un ensemble mécanique. Pour faciliter une compréhension
sans équivoque des plans par le plus grand nombre, une normalisation a été mise en place au
niveau international et répercutée vers les normes nationales (normes NBN pour la Belgique).
La méthode de projection la plus couramment employée est la projection orthogonale de Monge.
Ce type de projection permet de représenter les exigences dimensionnelles et de montage de
maniére fiable sur le plan.

5.2 Représentation d’une machine

La représentation graphique traditionnelle sous forme de plans respectant les normes du dessin
technique est évidemment plus abstraite que la visualisation tridimensionnelle d’une piéce. La
lecture de plan nécessite la reconstruction mentale d’'un volume & partir de vues, coupes et
sections, choisies de maniére & définir le plus grand nombre d’éléments sur la surface la plus
restreinte possible. La représentation de certains éléments standardisés obéit en outre a des
conventions qu’il faut connaitre. Aux différentes étapes de définition d’un projet, plusieurs
types de représentations sont rencontrées.

5.2.1 Croquis

Le croquis (figure 5.5) est un dessin établi le plus souvent sans 'aide d’instruments de guidage
ou de mesure. Il est plus ou moins exact en formes et en positions. Il peut étre partiellement
ou totalement coté. Ce mode de communication est trés utile dans les offres, les premiéres
phases d’avant-projet : il permet d’aller a I’essentiel et de communiquer par la prise sur le vif
d’informations techniques.

FIGURE 5.5 — Croquis d’un touret & meuler.
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5.2.2 Dessin d’ensemble

Le dessin d’ensemble (figure 5.6) permet de représenter une machine assemblée pour en définir
les éléments constitutifs. Ce dessin d’ensemble présente une nomenclature qui énumeére les
organes d'une machine en rapport avec le plan permettant d’identifier les éléments en présence.

La nomenclature présente généralement :

— un index associé a ’élément (ou au groupe d’éléments semblables) ;

— la description de I’élément ;
— le nombre d’éléments semblables dans un groupe;
— le matériau dans lequel est fabriqué 1’élément ;

— une identification du plan de définition (pour les éléments fabriqués) ou une référence

d’un numéro de série (pour les éléments standards achetés tels quels).

Touret & meuler

14 Couvercle
13 Meule
12 Flasgue gauche
11 Arbre
| 10 Ecrou HmB
0 Rondelle
08 Flasgque droit
07 Bague
[ 06 | Chapeau
f 05 | Roulement 20BC0ZE
: ‘\‘;L 04 Entreprise
f\\ { 03 | Roulement 20BC10E
| | 1 0z Moyeu
o L'I | |4 |05 |06 |07 01 | Corps

FIGURE 5.6 — Plan d’ensemble d’un touret a meuler.
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5.2.3 Schéma cinématique

Appréhender le fonctionnement d’une machine & partir d’une lecture de plan n’est pas un

exercice simple. Il est nécessaire de :

— déterminer la fonction globale du systéme mécanique ;

— déterminer quels sont les éléments d’entrée (bout d’arbre, levier,
(rechercher les axes des mouvements, identifier les organes fixes) ;

...) et de sortie

— rechercher des liaisons élémentaires (distinguer les piéces mobiles, les éléments solidaires).
Le schéma cinématique simplifié (figure 5.7) permet de détailler chaque mécanisme particulier.
Il respecte certaines conventions; les figures 5.9 et 5.8 reprennent les représentations usuelles
des liaisons classiques. La représentation schématique d’appareillages électriques, hydrauliques

et pneumatiques répond également a une normalisation stricte (voir par exemple [1]).

IJZi

[MOTEUR —[l

FIGURE 5.7 — Schéma cinématique d’un touret a meuler.

MEULE

Dé=signation

Représentation

Bati

?i.ﬂilfﬁ.-r

FIGURE 5.8 — Symboles schématiques divers [2].
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Mom de la Mouvements |Degrés del Projection = acti
liaison relatifs liberta orthogonale SrEpETivE

Encastrement | 0 rotation

0 translation D _‘i _.i ““1:_-
Rotoide 1 rotation 1| ==
(pivot) 0 translation N d ﬁ

o
.y

FPrismatique 0 rotation
(glissiére) 1 translation 1 T /g‘fﬁl"
Hélicoidale 1 rotation 1 —Fﬁ.l;m . tﬁ\

1 translation 1 gt} /é F)s_é;\\’

conjuguées _é_
Ejglindn'que 1 rotation 2 ~
(pivot glissant)| 1 translation = ,Jf‘af}'
Sphérique 2 rotations 9 & F%?
a doigt 0 translation / a
Spherique 3 rotations 3
(Rotule) D translation -
Flane 1 rotation d
{(Appui plan) 2 translations 3 —— éj—f—’r'
Lin&aire 3 rotations
annulaire 1 translation 4 o c@-
Lin&aire 2 rotations 4
rectiligne 2 translations # Ji‘-
FPonctuelle 9 rotations

2 translaticns 5 _l_ ,_FF

FIGURE 5.9 — Symboles des liaisons cinématiques [2].

Géométries et communication graphique

57



CHAPITRE 5. DESSIN TECHNIQUE

5.3 Plans de piéces mécaniques

Le plan permet de représenter en deux dimensions les détails de pieces tridimensionnelles. Il
précise les formes et les dimensions en vue de la réalisation de la piéce. Les régles de base
présentées ici sont issues des normes internationales extraites d’un fascicule édité par l'institut
belge de normalisation [1].

5.3.1 Eléments de base

Les formats standards des plans vont du A0 (1189 x 841 mm soit 1 m?) au A4 (297 x 210
mm). Le plan porte toujours dans le coin inférieur droit un cartouche qui permet au minimum
d’identifier 'entreprise, 'auteur du plan, le nom de la piéce, I’échelle du dessin (a choisir dans les
échelles normalisées 5:1, 2:1, 1:1, 1:2, 1:5, ou tout multiple ou sous multiple par une puissance
de 10) le type de projection et d’unités employées et la date de production du plan. Chaque
entreprise posséde son modéle standardisé de cartouche reprenant plus ou moins d’informations
complémentaires (la figure 5.10 représente par exemple le cartouche employé a la Faculté pour
les projets des étudiants mécaniciens).

Tolérances générales Matériau Echelle | Unité | Format
%@PROJECTION Auteur Année d'étude
EUROPEENNE|
Titre du cours/projet | Titre du plan Remplace
Remplacé par
POLYTECH |Numéro de plan
MONS 2
— MONS

FIGURE 5.10 — Exemple de cartouche employé par le service de Génie Mécanique de la FPMs.

5.3.2 Meéthode de projection

L’observation d'une piéce a des fins de représentation graphique peut étre conduite selon
différentes directions. Les six directions usuelles d’observation forment entre elles des angles
de 90°. Lune des directions est choisie de maniére a montrer la piéce dans sa position naturelle
d’utilisation et selon sa face la plus représentative (appelée « vue de face »).

FIGURE 5.11 — Symbole pour la projection FIGURE 5.12 — Symbole pour la projection
européenne. américaine.

La disposition standard des vues en Europe (dite « projection européenne ») est la méthode du
premier diédre (figure 5.13). Elle consiste a projeter la piéce de maniére orthogonale selon les
six directions principales (vue de face : plan frontal, vue de dessus : plan horizontal,...) puis &
rabattre les différentes projections orthogonales de la piéce comme présenté a la figure 5.14. La
vue de droite de la piéce est située a gauche de la vue de face, la vue de dessous de la piéce est
située au-dessus de la vue de face. L'indication normalisée présentée a la figure 5.11 doit étre
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mentionnée dans le cartouche. La disposition des vues selon la méthode américaine emploie la
convention inverse (vue de droite a droite,...).

DESSOUS

DROITE FACE GAUCHE ARRIERE
.
FIGURE 5.13 — Méthode de projection du FIGURE 5.14 — Disposition des vues pour la
premier diédre. méthode de projection du premier diédre.

Il est clair que suivant la complexité de la piéce, les six vues ne sont pas toujours nécessaires. La
norme préconise de représenter le nombre de vues minimum nécessaire a la compréhension du
plan. Cette recommandation n’est toutefois pas une obligation absolue et laisse au dessinateur
la liberté du choix des vues qui lui permet une clarté maximale du plan.

La disposition relative des vues est imposée par la norme (alignement et position relative), mais
I’espacement entre les vues est lui aussi libre. De maniére générale, on recherche la disposition
qui utilise au mieux l’espace de la feuille de dessin, en fonction du format de papier et de
I'échelle sélectionnée (figures 5.15 et 5.16).

]
L)
|

\ MONS @i [ -~ LMONS P Numero g par

FIGURE 5.15 — Mauvaise exploitation de FIGURE 5.16 — Exploitation correcte de
I’espace de dessin. I’espace de dessin.

Lors du dessin manuel d’un plan, il est donc recommandé de commencer par le dessin du
parallélépipéde capable (« boite » parallélépipédique qui englobe la piéce) pour tester la bonne
disposition des vues sur le dessin (figures 5.17 et 5.18).

Comme le montrent les exemples précédents, le plan technique ne fait pas mention des éléments
présents sur les épures de Monge, a savoir la désignation des points et la présence des lignes de
rappel (cf figure 5.19).
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Tolérances générales Matériau Echelle | Unité | Format
rrrrrrrrrrrrrrrr = orosecTion | Auteur Année d'étude
%@ EUROPEENNE
Titre du cours/projet | Titre du pan e e
nnnnnnnnnnn

Date

U M O N ‘ p,\c/)lgrﬁ;g Numéro de plan

FIGURE 5.18 — Dessin du parallélépipede capable pour tester la disposition des vues.

Ces différences permettent d’obtenir un plan plus lisible, au détriment de l'aspect exhaustif
obtenu par la mention des projections de points. Ceci justifie la nécessité d’avoir recours a plus
de deux projections sur un plan technique. La lecture de plan implique donc de reconstruire

mentalement les différents éléments pour une meilleure compréhension du plan (figures 5.20 et
5.21).
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Isométrie Monge

FIGURE 5.19 — Exemple de piéce et de son plan employant trois projections.

FIGURE 5.20 — Reconstruction des lignes de rappel sur le plan (figure vierge en page 285).
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FIGURE 5.21 — Identification des points sur I’épure (figure vierge en page 285).
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5.3.3 Traitement des arétes cachées

Les polyédres, comme d’ailleurs tous les solides figurés par des plans techniques, sont représentés
par leurs arétes, ¢’est-a-dire les segments qui sont les intersections de leurs faces planes (inclinées
I'une sur l'autre), en considérant que la matiére les constituant est opaque. Cette opacité de la
matiére impose qu’on distingue les arétes réellement vues des arétes cachées, mais qui existent
cependant et dont la représentation est optionnelle. La convention est de représenter les arétes
vues par des traits pleins forts, tandis que les arétes cachées sont représentées par des traits
interrompus fins (figure 5.25). La distinction entre les arétes vues et les arétes cachées permet
une interprétation plus claire du plan.

Il faut noter que de maniére générale, ’emploi des traits cachés est optionnel sur un plan. Le
choix de la représentation de ces traits est effectué pour ’ensemble du plan (si les arétes cachées
sont représentées dans une vue, elles doivent I’étre dans I’ensemble des vues).

[

FIGURE 5.22 — Piéce présentant une aréte partiellement cachée.

Pour des piéces de géométrie simple, une aréte reliant deux points vus est vue, une aréte reliant
un point caché a un autre point est cachée. Pour les piéces de géométrie plus complexe, il est
nécessaire de tester le caractére vu ou caché non seulement des sommets de la piéce, mais aussi
des points a l'intersection des projection des arétes de la piéce (certaines arétes peuvent étre
partiellement vues et partiellement cachées, figure 5.22).

La détermination automatique du statut d’une aréte peut étre obtenue par 'intermédiaire de
la géométrie synthétique. Par exemple, pour déterminer si un point de la projection horizontale
est vu ou caché, il faut rechercher 'intersection de la verticale issue de ce point avec le plan
définissant la face de la piece pouvant potentiellement cacher ce point. S’il existe une intersection
au-dessus du point, cela signifie que ce point est caché, donc que toutes les arétes aboutissant
a ce point seront elles aussi cachées .
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of

FIGURE 5.23 — Recherche du caractére vu ou caché d’'un point (épure vierge en page 286).

La figure 5.23 détaille la procédure :
— le point D est potentiellement caché par la face ABFE dans la projection horizontale ;
— tracer la verticale v issue de D ;
— rechercher son point de percée dans le plan ABFE (emploi d’une génératrice intermédiaire
9);
— la projection frontale du point de percée P étant située au-dessus de celle du point D,
D est caché par le plan ABE, les arétes issues de D sont donc cachées.
On peut reprendre le dessin de la figure 5.19 pour déterminer le vu et caché, aussi bien en
isométrie que sur le plans (figure 5.24)
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[

Monge

Isométrie

FIGURE 5.24 — Recherche des arétes cachées (épure vierge page 287).

5.3.4 Types de traits

Comme indiqué précédemment, le contour des pieces et les arétes vues sont représentés en trait
continu fort. Les axes de symétrie ou de révolution sont représentés en trait mixte fin. Les arétes
cachées peuvent étre représentées en trait interrompu fin. Le trait continu fin est employé pour
hachurer les parties coupées de la piéce (figure 5.25). Pour faciliter la distinction entre trait fort
et trait fin, le rapport entre les deux largeurs de trait doit étre d’au moins 2 (0,7 mm et 0,35
mm par exemple).

Dénomination Exemple d' emploi

Trait continu fort

Contours et arétes vues

Trait continu fin

Hachures, lignes de cote

Trait interrompu fin

Arétes cachées

trait continu fin

Limite de vues partielles

a main levée

Trait mizte fin Azes de symétrie ou de rotation

FIGURE 5.25 — Principaux styles de traits.

FIGURE 5.26 — Exemple de représentation d’un arbre.

On peut également utiliser un trait continu fin & main levée pour interrompre la représentation
d’une partie longue d’une piéce (figure 5.26).
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5.3.5 Coupes et sections

Une coupe (figure 5.27) est la représentation des parties d’un objet situées dans une surface
sécante et en arriére de celle-ci. La coupe permet de représenter les détails internes de la
piéce. Le plan de coupe est indiqué par un trait interrompu renforcé a ses extrémités. La
disposition de la vue en coupe (sur laquelle est indiquée la mention « coupe ») doit respecter la
régle de projection employée sur le plan. La zone située dans le plan de coupe est hachurée
(traits fins) et les éléments présents derriére le plan de coupe sont représentés. Lorsqu’on
désire représenter exclusivement la partie de 'objet située dans le plan de coupe, on emploie
une section (figure 5.28). De maniére conventionnelle, lors de la représentation en coupe
longitudinale d’un assemblage, on ne coupe pas un certain nombre d’éléments (arbres pleins
selon leur axe, vis selon leur axe, écrous, nervures dans leur plan moyen,...).

AL A
COUPE A-A SECTION A-A

FIGURE 5.27 — Coupe dans un arbre. FIGURE 5.28 — Section dans un arbre.

On peut également avoir recours a des coupes partielles (figure 5.29) pour ne représenter qu’'une
partie d’une vue en coupe.

FI1GURE 5.29 — Coupe partielle pour préciser la géométrie interne d’une piéce non coupée.
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5.4 Les corps ronds

Les divers exemples ayant été traités dans le cadre de ce cours ont jusqu’ici exclusivement
été constitués de corps dont l'ensemble des faces sont planes (polyédres). Or, la quasi totalité
des objets d’utilisation industrielle présentent au moins pour partie des faces présentant des
courbures. Les différents types de corps ronds seront étudiés en détail dans la seconde partie
de ce syllabus. Une premiére introduction des principaux concepts utiles a leur représentation
sur un plan technique ser présentée dans ce chapitre.

5.4.1 Notion de contour apparent & un volume

Dans les plans techniques la représentation des corps ronds nécessite, en plus de la représentation
de l'ensemble des arétes ’vues’, le tracé du contour de la piéce vu par 'observateur (son
contour apparent). De maniére formelle, le contour apparent est défini comme la courbe
d’intersection entre le cylindre! circonscrit a cette surface et dont la direction des génératrices
est perpendiculaire au plan de projection avec ce mém plan de projection. Par exemple, dans
le cas d’une sphére de rayon R, son contour apparent sur les plans H et F sont des cercles de
rayon R (figure 5.30).

FIGURE 5.30 — Contour apparent d’une sphére.

1. dans le sens surface cylindrique
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lorsque leurs axes sont paralleles aux axes du systéme de coordonnées employé, les
représentations des corps ronds simples (sphére, cylindre, cone et tore) est évidente (figure
5.31) :
— les deux projections d'une sphére de rayon r sont des cercles de rayon 7 ;
— une des projections d'un cylindre circulaire de rayon de bas r et de hauteur h est un
cercle de rayon r, 'autre projection est un rectangle (de base 2r et de hauteur h);
— une des projections d'un cone circulaire de rayon de base r et de hauteur A est un cercle
de rayon r, Pautre projection est un triangle isocéle dont (base 2r, hauteur h;
— une des projections d’un tore de rayon majeur R et de rayon mineur r est constituée de
deux cercles concentriques (rayons R — r et R + r), 'autre projection est un rectangle
(base 2R, hauteur 2r) complété par deux demis-cercles (rayon r).

OLIA
OOC

FIGURE 5.31 — Contour apparent des quatre corps ronds.

La piéce décrite en figure 5.32 regroupe les quatre types de surfaces coniques de base ; son plan
est présenté en figure 5.33.

FIGURE 5.33 — Plan de la piéce (surface
sphérique en bleu, cylindrique en rouge,
FIGURE 5.32 — Exemple de piéce. conique en orange et torique en vert.
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5.5 Cotation

L’utilisation des projections orthogonales de Monge pour la représentation des vues de la piéce
implique une représentation en vraie grandeur des segments paralléles aux plans de projection.
Cette propriété permet la mesure des distances de maniére directe sur le plan lorsque les vues
utilisées sont choisies de maniére judicieuse.

@5 8

JJEAN

A
Y

‘\300 LDV A\

18 1

\
A

FIGURE 5.34 — Exemples de cotations.

Les dimensions des piéces en millimétres sont indiquées sur le dessin a 'aide de lignes de cote.
Les lignes de cotation doivent nécessairement repérer des éléments vus en vraie grandeur. Il
faut noter que la cotation d’éléments cachés est interdite par la norme.

5.6 Tolérances

5.6.1 Tolérances dimensionnelles

En raison des imperfections de la fabrication, aussi limitées soient-elles, les dimensions
réelles d’un élément difféerent des dimensions nominales, qui sont celles indiquées sur le plan
d’exécution.

Compte tenu de cette incertitude, pour garantir que 1’élément puisse remplir sa fonction, on
s’assure, par un controle de qualité, que chaque dimension soit comprise entre deux limites fixées
par le concepteur dont la différence constitue la tolérance. Cette tolérance peut étre indiquée
de maniére explicite derriére la cote visée par la tolérance (par exemple 50 £ 0,01 indique que
la cote mesurée sur la piéce doit étre comprise dans 'intervalle de 49,99 mm a 50,01 mm). I
faut noter que le prix de revient est lié a la qualité des tolérances (de maniére générale, une
tolérance serrée sera plus difficile & obtenir et donc plus cotteuse).

Notons enfin que, de maniére générale, on peut se rapporter & des tolérances générales définies
par des normes pour des procédés de fabrication particuliers. Une indication dans le cartouche
tolérances générales selon morme ... permet de ne tolérancer de maniére explicite que les
éléments pour lesquels une tolérance plus serrée que la norme générale est applicable (ces
cotes sont appelées cotes fonctionnelles).
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5.6.2 Tolérances géométriques

En plus de s’écarter des dimensions nominales prescrites sur le plan, les différentes parties
d’une piéce voient leur forme géométrique différer de la forme géométrique exacte. Pour des
raisons fonctionnelles, il peut étre utile de limiter cet écart, ce qui est le but des tolérances
géometriques. Le lecteur est invité a se référer aux cours spécialisés ([3|) ou directement a la
norme ISO1101 ([4], [5]) pour plus de précisions.

5.6.3 Etats de surface

En plus des dimensions nominales et des tolérances associées, il est nécessaire de spécifier la
qualité de la surface qui sera générée. L’état de surface d’une piéce a une large incidence sur
un grand nombre de ses aptitudes, en particulier :

— ses aptitudes tribologiques (mouvement relatif entre des surfaces qui interagissent :

frottement, lubrification, usure,... );

— ses aptitudes a 'adhésion (par collage, par emmanchement,...) ;

— ses aptitudes a recevoir un revétement (peinture par exemple) ;

— ses aptitudes a résister a la corrosion, a la fatigue,...
A partir de la mesure du profil de rugosité (Z(x)), on peut extraire par différentes opérations
mathématiques des indicateurs permettant de chiffrer la rugosité. L’indication de rugosité
arithmétique (définie par la formule 5.1) est obligatoirement indiquée et choisie dans une série
normalisée (figure 5.35).

I
R, = —/0 |Z (x)| dz (5.1)

Ra(mm) Ra(mm)
>0 1,6 Guidage,
Ral,6 25 Surface brute 0,8 centrage
12,5 04 —
\/ 63 | Contact |02 Hute précision,
3,2 fixe 0,1 trajectore
8:825 précise

FIGURE 5.35 — Indication de rugosité et classes normalisées.
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Chapitre 6

Intersection d’éléments entre eux par la
méthode de Monge

The geometry of the things around us creates coincidences, intersections

- E. De Luca, Three horses

6.1 Intersection de deux plans

6.1.1 Introduction

L’intersection de deux plans non paralléles est une droite. Pour déterminer cette droite, il est
nécessaire d’en connaitre deux points.

Vue spatiale

FIGURE 6.1 — Intersection entre deux plans quelconques (LT = W? = 71'}{

vierge page 288.
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L’examen de la figure 6.1 permet de constater qu’il existe deux points d’intersection évidents :
I'intersection des traces frontales des plans et I'intersection des traces horizontales des plans. La
recherche de l'intersection de deux plans dans une épure de Monge est donc assez immédiate a
obtenir si le plan est défini par ses traces.

En effet dans ce cas, la droite d’intersection est définie par les deux points & l'intersection des
traces « de méme nom » (c’est-a-dire les deux traces horizontales et les deux traces verticales).

6.1.2 Cas particuliers de problémes d’intersection entre plans

Il existe un grand nombre de cas particuliers nécessitant d’adapter la démarche présentées ci-
dessus (plans dont les traces sont paralléles, dont les traces se coupent hors de 1'épure, dont le
point commun des traces est confondu,...). L’ensemble de ces cas particuliers est présenté a la
référence [1]. Dans le cadre de ce cours, nous nous contenterons de résoudre deux problémes
qui seront utiles pour les développements futurs : intersection avec un plan vertical ou de bout
utile pour l'intersection droite-plan et intersection avec un plan horizontal ou frontal utile pour
la mise en vraie grandeur.

6.1.2.1 Intersection avec un plan vertical ou de bout

L’intersection d’un plan quelconque avec un plan vertical peut se traiter par la méthode générale
d’intersection de plans définis par leurs traces. Il faut toutefois noter que comme la droite
d’intersection est contenue dans un plan vertical, sa projection horizontale est nécessairement
confondue avec la trace horizontale du plan vertical (figure 6.2).

Epure

Vue spatiale

FIGURE 6.2 — Intersection d'un plan avec un plan vertical.
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De méme, lors de la recherche de I'intersection d’un plan avec un plan de bout, la trace frontale
de la droite d’intersection est confondue avec la trace frontale du plan de bout.

6.1.2.2 Intersection avec un plan horizontal ou frontal

Ce cas de figure est un cas particulier du point précédent. Prenons le cas d'un plan frontal;
dans ce cas, la droite d’intersection (en plus de présenter sa projection horizontale confondue
avec la trace horizontale du plan frontal) est une droite frontale (sa projection horizontale est
donc paralléle a la ligne de terre, figure 6.3).

Epure

Vue spatiale

FIGURE 6.3 — Intersection d’un plan avec un plan frontal.

Dans le cas de l'intersection avec un plan horizontal, la droite d’intersection est une droite
horizontale. dont la projection frontale est confondue avec la trace frontale du plan.
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6.2 Intersection d’une droite avec un plan

6.2.1 Intersection d’une droite quelconque avec un plan quelconque

La résolution de ce probléme passe par l'utilisation d’un plan auxiliaire contenant la droite.
L’intersection de ce plan auxiliaire avec le plan de départ donne une droite commune aux deux
plans. L’intersection de cette droite avec la droite de départ donne le point de percée de la
droite dans le plan original (figure 6.4). En effet, on a :

— un plan 7 et une droite d dont on cherche le point de percée dans 7 ;

— le plan auxiliaire p qui contient d;

— la droite d’intersection w = 7w N p dont tous les points appartiennent & 7 et & p;

— le point P = d N w dont les points appartiennent a 7 et a d, il s’agit donc du point

recherché.

Le plan auxiliaire peut étre choisi quelconque, toutefois, il est plus simple de le choisir vertical
ou de bout. Dans le cas d’un plan vertical, sa trace horizontale est confondue avec la projection
horizontale de la droite et sa trace frontale est perpendiculaire a la ligne de terre. La figure 6.5
présente un exemple de résolution du probléme.

Vue spatiale Epure

FIGURE 6.4 — Point de percée d’une droite dans un plan : probléme de départ (LT = W’J} = 7T}]: ,

épure vierge page 289).
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E|
Vue spatiale pure

FIGURE 6.5 — Point de percée d'une droite dans un plan : construction d’un plan vertical, de
la droite d’intersection et du point de percée (LT:ﬂ}{:W?:pi).

La procédure a suivre est la suivante :

— construction des traces du plan vertical contenant la droite (la trace horizontale
est confondue avec la projection horizontale de la droite d, la trace frontale est
perpendiculaire a la ligne de terre et passe par l'intersection de la trace horizontale
avec la ligne de terre) ;

— construire la droite d’intersection w par la méthode classique d’intersection de deux
plans définis par leurs traces (sa projection horizontale est confondue avec celle de d) ;

— le point de percée est a lintersection de d et de w, sa projection frontale est a
I'intersection des projections frontales de d et de w, sa projection horizontale lui
correspond par une ligne de rappel.
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6.2.2 Intersection d’une droite quelconque avec un plan projetant

L’intersection d’une droite avec un plan projetant (c’est-a-dire perpendiculaire & H ou a F)
ne nécessite pas l'utilisation d’un plan auxiliaire. En effet, 'une des projections du point est
déterminée de maniére immédiate sur ’épure :

— lors de lintersection d’une droite avec un plan frontal ou vertical, la projection
horizontale du point d’intersection est a 'intersection entre la trace horizontale du plan
et la projection horizontale de la droite (figure 6.6), la projection frontale du point est
obtenue grace a une ligne de rappel ;

— lors de l'intersection d’une droite avec un plan horizontal ou de bout, la projection
frontale du point d’intersection est a l'intersection entre la trace frontale du plan et la
projection frontale de la droite, la projection horizontale du point est obtenue grace a
une ligne de rappel.

— lors de lintersection d’une droite avec un plan de profil, les projections du point
d’intersection sont & I'intersection des projections de la droite et des traces (confondues)
du plan de profil.

Vue spatiale Epure

FIGURE 6.6 — Intersection d’une droite avec un plan frontal.
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6.2.3 Intersection d’une droite projetante avec un plan quelconque

L’intersection d’une droite projetante (c’est-a-dire perpendiculaire & H ou a F') avec un
plan ne nécessite pas l'utilisation d’un plan auxiliaire. Cette construction est similaire & la
problématique consistant a placer un point dans un plan (§4.4). Prenons l'exemple d’une
droite verticale : la projection horizontale du point d’intersection est nécessairement la trace
horizontale de la droite. La projection frontale du point d’intersection est ensuite obtenue a
I’aide d’une génératrice.

ar

Epure

Vue spatiale

FIGURE 6.7 — Intersection d'une droite verticale avec un plan (LT = ﬂ? = 71',{)

Le choix de la génératrice est entiérement libre; pour améliorer la clarté de I’épure, il est par
exemple possible de la choisir horizontale ou frontale (figure 6.8).
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FIGURE 6.8 — Intersection d’une droite verticale avec un plan, emploi de génératrices
particuliéres.
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Chapitre 7

Mise en vraile grandeur d’éléments

Your eyes can deceive you. Don’t trust them

- O. Kenobi, A new hope

7.1 Introduction

Comme annoncé dans les objectifs de ce cours, la représentation par la méthode de Monge vise
a une représentation qui permette I’exploitation directe du plan pour la description des piéces.
Une figure est dite ’en vraie grandeur’ si la longueur de ses segments projetés est égale a celle
du segment de I'espace et si les angles projetés sont égaux aux angles dans l’espace.

F
Al
Bf
FIGURE 7.1 — Un triangle d’un plan FIGURE 7.2 — Un polygone contenu dans
frontal se projette en vraie grandeur sur un plan frontal se projette en vraie

le plan frontal. grandeur sur le plan frontal.
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On constate aisément que lorsqu’un segment est contenu dans un plan paralléle & un plan
projetant (frontal par exemple), sa projection dans ce plan est vue en vraie grandeur. En
considérant la figure 7.1, on démontre aisément que le triangle ABC se projette en vraie grandeur
sur le plan frontal :
— les segments AB, BC et C'A se projettent en vraie grandeur dans le plan frontal ;
— le triangle A7 B/C7 a ses trois cotés égaux a ceux de ABC, les deux triangles sont donc
isométriques ;
— les triangles étant isométriques, I'angle entre les cotés est donc identique entre les deux
figures.
Cette propriété est également vraie pour un polygone quelconque (figure 7.2). En effet, il est
toujours possible de décomposer ce polygone en un ensemble de triangles. Chacun des triangles
étant isométrique par rapport a sa projection, le polygone est isométrique par rapport a sa
projection. En poussant ce raisonnement & la limite (dimension des cotés tendant vers zéro),
on en déduit également que toute courbe plane contenue dans un plan paralléle a un plan de
projection se projette en vraie grandeur dans ce plan.

FIGURE 7.3 — Une courbe appartenant & un plan frontal se projette en vraie grandeur sur le
plan frontal.

Il faut également noter qu'un angle qui n’est pas droit ne se projette en vraie grandeur que si
ses deux cotés sont paralléles & un plan projetant. Par contre, pour qu’'un angle droit se projette
en vraie grandeur, il suffit q’un seul de ses cotés soit paralleéle & un plan de projection.
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7.2 Meéthode du triangle rectangle

Dans le cas ot seul un nombre réduit de mesures doivent étre obtenues sur la plan, il est possible
d’appliquer la régle du triangle rectangle pour obtenir de maniére simple la vraie grandeur d’un
segment. La démarche est présentée en figure 7.4.

Vue spatiale

FIGURE 7.4 — Mise en vraie grandeur d’un segment par la méthode du triangle rectangle (épure
vierge en page 290).

Elle consiste a :
— tracer la paralléle & d" passant par B. Cette droite coupe la projetante de A au point
M:
— le triangle ABM est rectangle en M ; la connaissance de la longueur de deux cotés
permet de déduire la longueur du troisiéme;
— BM étant paralléle a H, on a [BM| = |B"M"|;
— AM étant paralléle & F' (A et M appartiennent a la projetante de A, donc a une
droite verticale), on a [AM| = |ATM7|;
— il suffit donc de reporter la distance |[AM| = |Af M/ } = Ac perpendiculairement au
segment B"M" pour reformer une image en vraie grandeur du triangle ABM.
Il faut noter que cette démarche permet également d’obtenir I'angle que forme la droite qui
porte le segment AB avec le plan H (’angle entre une droite et un plan est 'angle que forme

cette droite avec sa projection dans ce plan).
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La méme démarche serait applicable en passant par la projection frontale. Dans ce cas, c¢’est
I'angle formé par la droite avec le plan frontal F' qui est obtenue (figure 7.5).

Vue spatiale

FIGURE 7.5 — Mise en vraie grandeur d’un segment par la méthode du triangle rectangle (2e
possibilité).

On peut également noter que dans le cas particulier o le segment de départ appartient a un
plan paralléle & un plan de projection (frontal ou horizontal donc), la projection de ce segment
dans ce plan de projection est directement la vue en vraie grandeur du segment (la différence
de cote Ac ou Ae suivant le cas est nulle).
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7.3 Mise en vraie grandeur d’une figure compléte

Les projections d'un solide sur un plan technique se réalisent sur des plans orthogonaux
entre eux. Toutefois, si le volume présente des faces orientées de maniére non adéquate, il
est impossible de les représenter dans leur intégralité en vraie grandeur. La norme prévoit la
possibilité d’ajouter sur le plan une représentation en vraie grandeur d’une face inclinée annotée
d’une fleche indiquant la direction d’observation (figure 7.6).

FIGURE 7.6 — Mise en vraie grandeur d’'une face d’une piéce [1].

D’un point de vue pratique, cette mise en vraie grandeur peut étre réalisée selon trois techniques
distinctes :

— la méthode de rabattement qui fait tourner I’ensemble des points d’un plan autour d’une
droite (appelée charniére) horizontale ou frontale;

— la méthode de rotation qui fait tourner ’ensemble des points d’un plan vertical ou de
bout autour d’'un axe (lui-méme vertical ou de bout); une premiére rotation préalable
permet de rendre un plan quelconque vertical ou de bout ;

— la méthode de changement de plan qui modifie le plan horizontal ou frontal de projection
pour I'amener paralléle & un plan vertical ou de bout (un premier changement de plan
permet de rendre un plan quelconque vertical ou de bout).

FIGURE 7.9 — Mise en vraie
FIGURE 7.7 — Mise en vraie FIGURE 7.8 — Mise en vraie grandeur par changement de
grandeur par rabettement. grandeur par rotation. plan.

Dans le cadre de ce cours, nous nous contenterons d’étudier la méthode de rotation.
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7.4 Mise en vraie grandeur par rotation

7.4.1 Introduction

[’axe de rotation de la méthode de mise en vraie grandeur par rotation est choisi soit vertical,
soit de bout. Dans ces deux cas de figure, le plan dans lequel s’inscrit I’arc de circonférence
décrit par le point en mouvement devient paralléle, respectivement a H ou a F', il sera donc vu
« en vraie grandeur ». Ceci permettra de mesurer directement, sur cette projection, I’angle au
centre interceptant un arc de cette circonférence. Cette mesure sera essentielle quand il s’agira
de déterminer la rotation de ’ensemble des points d’une figure plane.

7.4.2 Rotation d’un point
7.4.2.1 Rotation autour d’un axe vertical

La figure 7.10 présente la technique de rotation. Par convention, ’axe vertical de rotation
est appelé Z (on déroge donc a la convention de représentation d’une droite par une lettre
minuscule). Dans I’épure, 'amplitude angulaire a@ du mouvement circulaire du point W est
mesurable en vraie grandeur sur la projection horizontale.
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vue spatiale

FIGURE 7.10 — Rotation autour d’un axe vertical.
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7.4.2.2 Rotation autour d’un axe de bout

La rotation autour d’un axe de bout se présente de la méme facon qu’une rotation autour d’un
axe vertical, en inversant les projections frontales et horizontales entre les deux examples (figure
7.11).

Xh
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i I
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F\ |
I 1/
| -1
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| |
| |
| |
| |
| |
| |
| |
¥ — <4 —F-—®
P! P!
FEpure

vue spatiale

FIGURE 7.11 — Rotation autour d’un axe de bout.

7.4.3 Mise en vraie grandeur de figures
7.4.3.1 Figures contenues dans un plan vertical ou de bout

Lorsqu’une figure est contenue dans un plan vertical, il est aisé d’obtenir une figure en vraie
grandeur. En effet, il suffit de faire tourner le plan autour d’une droite verticale pour le rendre
frontal (figure 7.12). Dans ce cas de figure, toutes les figures tracées dans ce plans sont vues
en vraie grandeur dans la projection frontale. Le méme raisonnement peut étre tenu pour une
figure tracée dans un plan de bout (une rotation autour d’un axe de bout le rend horizontal,
figure 7.13).
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FiGURE 7.12 — Rotation d'un plan FIGURE 7.13 — Rotation d’un plan de
vertical autour d’'un axe vertical pour le bout autour d’un axe de bout pour le
rendre frontal. rendre horizontal.

A titre d’exemple, on peut rechercher la vraie grandeur du quadrilatére ABCD de la figure
7.14 :

FIGURE 7.14 — Rotation autour d’un axe de vertical (figure vierge page 291).
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7.4.3.2 Plan quelconque

Le cheminement employé pour rendre un plan quelconque paralléle aux plans de projection
par la méthode de rotation va étre présenté. Il se base sur le classement des plans selon leurs
particularités (figure 7.15).

Plans de bout Plans verticaux

Plans
frontauz

Plans
de profil

Plans
horizontaux

FIGURE 7.15 — Classement des plans particuliers [2].

Pour passer d'un plan quelconque & un plan horizontal, il faut, d’abord appliquer une premiére
rotation pour que le plan quelconque devienne de bout. Pour transformer ensuite ce plan de
bout en horizontal, il faudrait appliquer au plan déja rendu de bout une seconde rotation pour
le rendre horizontal. La question se pose immédiatement de savoir quel type de rotation il faut
imposer au plan quelconque pour parvenir a le rendre de bout. La réponse & cette question fait
appel au théoréme suivant :

Théoréme 7.1. Si une droite est perpendiculaire a un plan, tout autre plan passant par cette
droite sera perpendiculaire au premier plan cité (Théoréme classique de Géométrie Synthétique

D).

Ainsi, si un plan contient une droite de bout (c’est-a-dire perpendiculaire au plan frontal F'), ce
plan sera lui-méme perpendiculaire a F' (c¢’est-a-dire de bout). Donc, si ’'on parvient a trouver,
dans le plan quelconque, une droite qui soit susceptible de devenir de bout par une rotation
appropriée, il sera possible de rendre ce plan de bout par cette rotation. En effet, comme la
droite en question appartient au plan, tous les points (aussi bien ceux de la droite que ceux
du plan) vont subir une rotation de méme amplitude angulaire et autour du méme axe lors de
I'opération de rotation, initiée au départ pour rendre la droite de bout.

Si on se rappelle du classement des droites (figure 4.21 page 51), on peut constater quune droite
de bout est un cas particulier de droite horizontale (elle a en plus sa projection horizontale
perpendiculaire & la ligne de terre). Autrement dit, pour obtenir un plan de bout, il suffit de
rendre de bout par rotation autour d’un axe vertical une droite horizontale du plan.

Ensuite, dés que le plan est ainsi rendu de bout, il suffit ensuite de le faire tourner autour d’un
axe de bout X, pour le rendre horizontal (figure 7.17).

En synthése, pour amener un plan quelconque en position horizontale, il faut :
— d’abord faire choix d’une horizontale de ce plan;
— la faire ensuite tourner autour d'un axe vertical pour I’amener en position de bout en
faisant tourner simultanément le plan lui-méme afin qu’il devienne un plan de bout ;
— enfin faire tourner ce plan devenu un plan de bout autour de I'horizontale devenue de
bout afin de 'amener en position horizontale.
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FIGURE 7.16 — Rotation d’un plan FIGURE 7.17 — Rotation d'un plan de
autour d’'un axe vertical pour le rendre bout autour d’un axe horizontal pour le
de bout. rendre horizontal.

De méme, pour amener un plan quelconque en position frontale, il faut :
— d’abord faire choix d’une frontale de ce plan;
— la faire ensuite tourner autour d’'un axe de bout pour ’amener en position verticale en
faisant tourner simultanément le plan lui-méme afin qu’il devienne un plan vertical ;
— enfin faire tourner ce plan devenu un plan vertical autour de la frontale devenue verticale
afin de I’amener en position frontale.

7.5 Rotations inverses

La mise en vraie grandeur d’éléments permet de réaliser des constructions géométriques dans
la figure de maniére directe. Il est souvent nécessaire de procéder a 'opération inverse pour
obtenir 'original d’un point avant ’application de la rotation.
Le probléme est posé de la maniére suivante : un point P, est défini sur I'image de la droite
d par une rotation autour d’'un axe vertical. Comment retrouver le point original sur d? Ce
probléme est résolu en suivant le cheminement qui méne a la rotation de maniére inverse (figure
7.18) :

— Pf appartient a d et est situé a la méme cote que Pr/ ;

— Ph appartient a d" et est situé sur un arc de cercle centré en K" passant par Pr”.
La construction peut étre vérifiée en s’assurant que P" et P/ se correspondent via une ligne de
rappel perpendiculaire a la ligne de terre.
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FIGURE 7.18 — Opération de rotation inverse pour retrouver le point P (figure vierge page 292).
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7.6 Application aux droites de profil

Dés le début du cours, nous avons vu comment résoudre les problémes relatifs aux droites et
aux plans de profil en faisant usage de leurs projections sur le plan de profil. L’inconvénient de
cette méthode est qu’elle exige de doubler la largeur de I’épure pour que les projections de profil
puissent étre dessinées dans la moitié gauche de I’épure. La méthode des rotations apporte une
autre réponse a ces problémes de droites et plans de profil, mais sans 'inconvénient associé a
la largeur de I’épure. Nous examinerons, au titre d’exemple-type, le probléme suivant [2| : Un
segment de profil AB est donné par ses projections. Déterminer, en faisant usage de la méthode
des rotations, les projections des sommets du carré ABC D appartenant au plan de profil passant
par AB et tel que les sommets C et D présentent des cotes supérieures a celles de A et B.
La résolution consiste dans un premier temps a rendre le segment AB vu en vraie grandeur
(par exemple frontal, figure 7.19) pour pouvoir dessiner le carré de maniére directe. Ensuite,
les positions originales des points C' et D sont obtenues par une rotation inverse d’amplitude
égale a celle qui a servi a rendre AB frontal.

B/

B)L

FIGURE 7.19 — Résolution d'un probléme impliquant une figure dans un plan de profil.
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CHAPITRE 8. ANALYSE DES COURBES PLANES

Chapitre 8

Analyse des courbes planes

Math tells us three of the saddest love stories : tangent lines which had one
chance to meet and then parted forever, parallel lines which were never meant to
meet and asymptotes lines which can get close but will never be together

- Unknown, Popular quotes

8.1 Introduction

Une courbe plane est une courbe entiérement contenue dans un plan. L’étude de ces courbes
planes est fréquemment employée pour les études de fonctions ou pour le suivi de trajectoires de
mobiles par exemple. Ce chapitre décrit les formes principales de représentation de ces courbes,
I’étude différentielle de ces courbes et de leurs éventuels points singuliers.

8
6 64
4

4
24

2.
0

6 10 12 1 16 18 20 22 24 . . . .

FIGURE 8.1 — Exemple de courbe simple : FIGURE 8.2 — Exemple de courbe plane
fonction f(z) =8 cosb. complexe : courbe de Lissajous.
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8.2 Différentes méthodes de représentation d’une courbe
plane
De maniére générale, ’expression d'une courbe plane est une relation qui permet de relier les

coordonnées (x,y) des points appartenant a cette courbe. On peut trouver suivant l'usage divers
types de représentation qui sont rappelés dans les paragraphes suivants.

8.2.1 Formes implicites

La forme implicite d’une courbe plane est une relation de la forme F'(x,y) telle que 'ensemble
des points de la courbe vérifient 'expression F'(z,y) = 0. Il s’agit de la forme la plus générale
de description d’une courbe plane.
Il faut noter quune fonction F'(x,y) = 0 ne représente pas nécessairement une courbe plane,
comme par exemple :

— F(z,y) = 2% + 3* = 0 qui représente le point (0,0);

— F(z,y) = 2* + y* + 1 = 0 qui ne représente aucun point du plan réel.
Le cercle de rayon r et de centre (z¢,yc) est représenté par 1’équation :

Flr,y)=(x—zc)’ +(y—2c)’ =12 =0 (8.1)

Ce qui signifie que I’ensemble des points du cercle vérifient cette équation.

8.2.1.1 Coniques
Les fonctions quadratiques implicites de la forme
F(z,y) =ar* +bry +cy’ +dr+ey+ f=0 (8.2)

définissent des courbes planes appelées coniques.

X 0

FIGURE 8.3 — Coniques propres : ellipse, parabole, hyperbole.
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Il existe deux méthodes différentes pour les définir de maniére physique :
— soit par I'intersection entre un céne de révolution et un plan (figure 8.4);
— Soit comme un lieu géométrique de points présentant des rapports de distances fixes
entre une droite (directrice) et un point (foyer) ; ce rapport étant appelé excentricité de
la conique (figure 8.5).

.
I . .

j directrice
I

|

|

|

|

|

|

[ Fi,

| X

i

|

i

|

i

i

i

i

i

|
FIGURE 8.4 — Définition des
coniques par intersection d’un FIGURE 8.5 — Définition des coniques sous forme de
plan et d’un cone. lieux géométriques.

Il existe trois formes dites propres (parabole, hyperbole et ellipse) et plusieurs formes dite
dégénérées (point, droite ou droites sécantes) suivant la position et 'orientation relative entre
le plan et le coéne. On peut déterminer le type de conique via I’étude du signe du discriminant
b%* — 4ac de I'équation 8.2 :

— 'l est négatif, il s’agit d'une ellipse ;

— ¢’il est nul, il s’agit d’une parabole;

— ¢’il est positif, il s’agit d’une hyperbole;
Cette distinction s’observe également au niveau de 'excentricité de la conique :

— si e<1, il s’agit d’une ellipse;

— e=1, il s’agit d'une parabole;

— e>1 est positif, il s’agit d’une hyperbole;
Au dela de cette information, il est difficile de tirer de la forme de I’équation 8.2 des informations
sur la morphologie générale des coniques.
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8.2.1.1.1 Reéduction de coniques Les propriétés des coniques s’étudient de maniére plus
simple lorsque le terme en xy de 1’équation est nul (on parle de forme réduite de la conique).
Pour ce faire, on procéde a la réduction de la conique, c’est & dire un changement de repére via
une rotation d’un angle € (figure 8.6). Dans le nouveau systéme d’axes, on peut substituer a x
et y de nouvelles coordonnées x’ et 3 telles que :

{ x' =z cosf + ysinb { x =x2'cosf —y' sinf

Yy = —xsinf + ycos y = a'sinf + y' cosf (8.3)

FIGURE 8.6 — Changement de repére pour obtenir une conique sous forme réduite.

L’équation de la conique devient alors :
a (2’ cos —y'sin )’ + b (z' cos O — o/ sin0) (z' sin 6 + 3 cos 0) (8.4)
+c (' sinf +y cos0)” + d (2’ cosf — ' sin ) + e (2'sinf + ¢ cosO) + f = 0
le terme en z'y’ vaut alors :
—2a cos 0 sinf + bcos? 6 — bsin® @ + 2ccos fsinf = (¢ — a) sin26 + b cos 20 (8.5)

En choisissant judicieusement l’angle 6, il est possible d’annuler ce terme en 'y’ :
— sia#ec, 920,5arctana%c;
—sia=c¢, 0 =m/4.

On obtient par la suite une équation de la forme

aliL‘IQ +b/y/2 +C/£L‘/ +d/y,+6/ —0 (86)
avec
a = acos?f+bcoshsinh + csin? 6
V¥ = asin?0 — bcoshsin + ccos?h
d = dcosf+esinb (8.7)
d = —dsinf +ecosf
¢ = f

En regroupant les termes en 2’ et ¢’ sous forme de doubles produits, on peut obtenir la forme
réduite des coniques (Il s’agit en fait de la forme rencontrée a 'examen d’admission rappelée a
I'annexe 16). Un changement de repére inverse permet ensuite de revenir dans le repére initial
pour décrire les différents éléments :

;o .
{ a:/—a_:<3039+ysm«9 (8.8)

y = —xsinf + ycosl
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8.2.2 Formes explicites

La forme explicite d’une courbe est une représentation sous la forme d’une fonction y = f(z)
(& une valeur de x correspond au plus une valeur de y). La forme explicite la plus simple est la
relation :

y=mx+p (8.9)

qui représente une droite d’ordonnée a 'origine p et de coefficient directeur m (figure 8.7).

« = arctanm

(O,p)

g 3

FIGURE 8.7 — Droite d’équation y = mxz+p. FIGURE 8.8 — Parabole de tir.

La forme explicite n’est que peu rencontrée en-dehors de l'analyse fonctionnelle car dans
de nombreux cas, il n’est soit pas possible d’obtenir une forme explicite d’une courbe, soit
cela conduit & une expression complexe et difficile & manipuler. Dans de nombreux cas, il
est également nécessaire d’employer plusieurs fonctions explicites pour définir une courbe par
morceaux. Par exemple, le cercle serait représenté sous la forme :

Y=yt \/R2 — (x — z)* (8.10)

Il y a donc deux branches (une pour le signe + et un pour le signe -) nécessaires pour sa
représentation explicite.

8.2.3 Forme vectorielle (paramétrique)

La forme vectorielle d’'une courbe plane un vecteur variable 7(t) joignant 'origine a tous les
points de la courbe. Elle fait intervenir un parameétre unique. En projetant ce vecteur sur les
axes du repére, on obtient les équations paramétriques de la courbe. Par exemple, I’équation
vectorielle d'un cercle de rayon R et de centre (z¢,yc) est :

V() = (¢o + Reost) - @, + (yo + Rsing) - 1@, (8.11)

Ses équations paramétriques sont :

{ r=x.+ Rcosf

Y=Yy, + Rsind (8.12)

0 est le paramétre qui a ici un sens physique (l’angle entre la droite joignant le centre et le
point courant avec I’horizontale), mais ce n’est pas nécessairement toujours le cas.
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La forme paramétrique est fréquemment rencontrée en physique par l'intermédiaire d’un
parameétre temporel. Par exemple, le projectile balistique lancé avec une vitesse initiale Vj
orientée selon un angle # par rapport a l'horizontale (figure 8.8) aura, dans une approche
simplifiée, un mouvement décrit par les équations paramétriques suivantes :

x = VycosO -t
g-t? (8.13)
2

y=Vysinf -t —

8.2.4 Forme polaire
L’équation polaire d'une courbe est l'expression qui lie le rayon polaire & l'angle polaire. Le
rayon polaire la longueur du segment joignant ’origine du systéme d’axes au point courant sur

la courbe. L’angle polaire est I'angle fait par ce rayon polaire avec 1'axe des = positifs (figure
8.9).

y

e

\q

FIGURE 8.9 — Définition polaire d’une courbe

Par exemple, la forme r = acos (kf + ¢) définit une rosace a k branches si k est impair et a
2k branches si k est pair. A titre d’exemple, la rosace & quatre branches d’équation polaire
r = a - sin 20 est représentée en figure 8.10.

8.2.5 Passage d’une forme a une autre

De maniére générale, il n’existe pas qu'une seule forme de représentation valide pour une
courbe déterminée. Un cercle unitaire centré en l'origine peut par exemple étre représenté
par l'intermédiaire des cinq formes suivantes (figure 8.11) :

Le passage d’une forme a une autre peut s’effectuer de maniére plus ou moins aisée suivant les
cas.

8.2.5.1 Passage de la forme polaire a la forme paramétrique

Si une courbe est donnée par son équation polaire r = f(6), il est possible de se ramener a ses
équations paramétriques de la maniére suivante :

x = f(0)cosd
{ y = f(0)sind (8.14)
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FIGURE 8.10 — Rosace a quatre branches.

Flo,y)=2>4+35>-1=0 y(z) = £/1 — 22

y =sinf p(0) =1
P
0
Q/

T(0) = cos0- W, +sinb-w,

{ x = cost A

y

FIGURE 8.11 — Différentes formes pour représenter le cercle unité centré en l’origine.

8.2.5.2 Passage de la forme paramétrique a la forme cartésienne implicite

Le passage de la forme paramétrique a la forme cartésienne implicite consiste & éliminer le
paramétre entre les deux équations. Notons que de maniére générale, cette transformation n’est
pas toujours réalisable.
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r=t
y=f(t)
Flry)=y— flz)=0
—_—
Forme
paramétrique
(vectorielle)
- - -
Isolery Eliminer x = p(f) - cosf
le parametre y=p(0)- sing

*on tente de faire disparaitre racines et dénominateurs

FIGURE 8.12 — Passage d’une forme de représentation & une autre.

8.2.5.3 Passage de la forme cartésienne implicite la forme cartésienne explicite

Cette transformation consiste a (quand cela est possible) isoler y dans la forme implicite.

8.2.5.4 Passage de la forme cartésienne explicite a4 la forme cartésienne implicite

Ce passage est toujours possible en posant simplement F(z,y) = y — f(x) = 0. Toutefois, si
cela est possible, on préférera faire disparaitre les racines et dénominateurs dans 1’expression
pour obtenir une forme algébrique (un polynome).

8.2.5.5 Passage de la forme cartésienne a la forme paramétrique

Une courbe donnée sous la forme y=f(x) peut étre représentée sous une forme paramétrique de

maniére évidente :
{ v=1 (8.15)
y = f(t) '

8.3 Recherche de la tangente et de la normale & une courbe

La recherche des tangentes et normales & une courbe en un point donné permet d’en déduire
différentes caractéristiques. Par exemple, si un mobile parcours une courbes donnée, le vecteur
vitesse est orienté selon la tangente a la courbe. Ce chapitre présentera la généralisation du
calcul de la tangente pour les différents types de représentation. Pour certaines formes des
équations, une ambiguité peut apparaitre pour la tangente en certains points des courbes. La
recherche de ces points, appelés points singuliers, sera également abordée.
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8.3.1 Courbe donnée par son équation cartésienne explicite

Soit une courbe quelconque définie par son équation explicite y=f(x). Soit les points My et
M sur cette courbe et MyM; la sécante a la courbe. La pente de cette sécante est définie par
(figure 8.13) :

A
tan = A_i (8.16)

FIGURE 8.13 — Recherche de la tangente a une courbe.

Si on fait tendre M; vers M, (ou de maniére équivalente si on fait tendre Ax vers 0), la sécante
tend vers la tangente a la courbe en M, :

: Ay
tan ¢o = lim tan ¢ = lim Ay y' (My) (8.17)

La tangente en M, aura donc pour équation :

y = yu, + Y (Mo) (z = x1,) (8.18)

Par convention, la normale a la courbe en M, est la droite passant par M, qui est perpendiculaire
a sa tangente. Son équation sera donc :

—1

y/(MO) ($ - xMo) (819)

?/:?JM0+
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8.3.2 Courbe donnée par son équation cartésienne implicite

La recherche de la tangente & une courbe définie par son équation implicite en un point donné
peut se calculer sans nécessiter la recherche de la forme explicite en employant le résultat
classique d’analyse mathématique :

Théoréme 8.1. Soit une fonction continue définie par l'équation implicite F(z,y) = 0 ou
F(z,y) et ses dérivées partielles selon x et y sont continues en un point P. La dérivée de la
fonction implicite en P est obtenue par l'opposé du quotient entre la dérivée partielle selon x
et la dériée partielle selon y calculées en P.

Autrement dit, la dérivée en P se calcule comme :

OF (z,y)

(%(;c))MO _ _% (8.20)

dy Mo

Pour rappel, la dérivée partielle de F'(z,y) par rapport a x se calcule en considérant la dérivée
de 'expression F'(z,y) par rapport & x en considérant y comme une constante. L’équation de la
tangente et de la normale est donc identique aux équations 8.18 et 8.19 en remplagant y' (M)
par le résultat de I’équation 8.20.

8.3.3 Courbe donnée par son équation vectorielle

Par définition, la fonction vectorielle d'une variable scalaire réelle ¢ (définie dans un domaine D
de R) est une application de D dans R" (n=2 dans le cas des courbes planes) qui associe a tout

—
réel t de D un vecteur 7(75) (ou un point-image M tel que OM = 7(15)) L’ensemble des point-
image M définit le graphe (ou indicatrice) de la fonction vectorielle. La fonction vectorielle
définissant une courbe plane est a rapprocher de sa définition paramétrique. En effet, on peut

définir :
V(t) = alt) - @+ y(t) - (8.21)

Cette définition permettra de maniére aisée de définir que :

— V (t) est continue sur D sur z(t) et y(¢) le sont aussi;

— V(t) est dé_r>ivable sur D sur z(t) et y(t) le sont aussi;

— la dérivée V'(t) = 2/(t) - uz + 4/ (t) - Uy ;

— de méme pour n entier>1 V" (t) = z™(t) - uy + y"(t) - Uy.
Si la fonction vectorielle 7(1&) est dérivable d’ordre n au voisinage de ty, on peut 'approcher
par son développement de Taylor :

V) = Vite) + (t ! ) Vi(to) + <M> Vi) -+ L0 ) (s.22)

1! 2! n!

(t o to)nJrl y

N T VHtg) + €]
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M,

Moo M

(]

FIGURE 8.14 — Recherche de la tangente en un point d'une courbe exprimée par sa fonction
vectorielle.

La différence 7(15) - 7(150) permet de définir un vecteur définissant une sécante a la courbe.
L’expression 8.23 peut étre réorganisée sous la forme :

7(2 - Y(to) _ ‘7,(150) N t;!to‘ﬁ(to) I #W(to) (8.23)
A ] e

A la limite, si on fait tendre t vers ty, on peut déduire qu’'un vecteur tangent peut étre obtenu
par la dérivée premiére de la fonction vectorielle :

i V() = V(t0)

t—to t— to

N
= V'(ty) (8.25)

%
Ceci est valable si V'(t5) # 0, on parle dans ce cas de point régulier de la courbe. La pente de

la tangente est équivalente a la pente du vecteur V'(ty), c’est-a-dire :

dy

dy _ at

/ —_ — = =
y(e)=—-"= s (8.26)

dt
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8.3.4 Courbe donnée sous forme paramétrique

Le but est d’obtenir le coefficient directeur de la tangente a une courbe définie par ses équations
paramétriques sans repasser par la forme implicite. Soient les équations paramétriques

{ 5; - ;C((:)) (8.27)

avec t le paramétre. Si on suppose que la fonction inverse ¢ = t(x) existe et est dérivable, la
forme explicite serait obtenue simplement par

y(z) =y(t(z)) (8.28)
et sa dérivée par rapport a x serait la simple dérivée de fonction composée :

_dy_dyat

y'(z) = 9 = dtde (8.29)

Or, l'analyse mathématique démontre que la dérivée d’une fonction inverse est l'inverse de la
dérivée de la fonction, dés lors

dy

dy dydt gt

/ = —= —— = =
e T
dt

(8.30)

ce qui correspond logiquement a I’équation 8.26. Il suffit donc simplement de prendre le rapport
des dérivées de = et y par rapport a ¢ pour obtenir la pente de la tangente a la courbe.

8.3.5 Courbe donnée par sa forme polaire

Dans ce cas de figure, il suffit de repasser sous forme paramétrique comme expliqué au § 8.2.5.1,
puis de calculer la dérivée comme expliqué au § précédent. En développant le calcul d’une courbe
donnée sous sa forme polaire r = (), on obtient la forme paramétrique :

(=i o

Le coefficient directeur de la tangente peut donc étre obtenu par :
dy
d0  r'(0)sinf + () cosb

yie) = dx ~ 1(0) cos O — r(0) sin 0
do

(8.32)
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8.4 Points singuliers de courbes planes

8.4.1 Introduction

les calculs de tangente menés au paragraphe précédent peuvent dans certains cas conduire a des
cas d'indétermination. L’ensemble des points pour lesquels le calcul de la pente de la tangente
meéne & une indétermination sont appelés points singuliers de la courbe. On peut en distinguer
plusieurs types :

— les points singuliers dits de premiére espéce identifiés a 1'aide de la fonction vectorielle ;

— les points multiples ou isolés identifiés a 1’aide de la forme implicite ;

— les points anguleux pour lesquels la dérivée a gauche différe de la dérivée a droite.
Nous allons briévement évoquer les deux premiers cas de figure.

8.4.2 Points singuliers de premiére espéce

La relation _8).25 donne l'orientation de la tangente en un point de la courbe, a condition que
le vecteur V'(tg) soit différent du vecteur nul. Si au contraire la dérivée premiére s’annule,
le point est dit singulier car un vecteur nul ne définit pas d’orientation. Ceci ne signifie pas
rf)cessairei?ent u’il ne 21‘5 pas possible de définir une tangente en ce point. Par exemple, si
V'(tg) = 0 et V”(ty) # 0, on peut reprendre le développement limité de la fonction vectorielle
et écrire :

9. w V() - 12 %W(to) (8.33)
_ ¢ \(n=1)
et donc :
lim 2. 7@)‘—‘_}2“0) — V(1) (8.35)
t—to (t — to)

Cette procédure peut étre répétée jusqu’a obtenir un vecteur dérivé d’ordre k£ non nul. Si k est
I'ordre de la premiére dérivée non-nulle de la fonction, il suffit de placer au dénominateur de

k
I’expression 8.24 le terme % pour que le passage a la limite donne un vecteur tangent non

nul défini par 7k(t0). On en déduit donc :

Théoréme 8.2. Le vecteur directeur de la tangente au graphique de la fonction vectorielle

(t) en un point d’une courbe est le premier vecteur dérivé d’ordre k non nul de la fonction
vectorielle ; si l'ordre de dérivation vaut 1, le point est dit régulier, dans tout autre cas, ce point
est dit singulier.

Ces points pour lesquels la dérivée premiére de la fonction vectorielle s’annule sont appelés
points singuliers de premiére espéce. Il est possible de les classer en quatre catégories :

— point méplat ;

— point d’inflexion ;

— point de rebroussement de premiére espéce ;

— point de rebroussement de deuxiéme espéce.
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Le classement s’effectue en fonction de l'ordre de dérivation nécessaire pour obtenir les deux
premiers vecteurs dérivés non-nuls et non-colinéaires (figure 8.15, plus de détail dans [1]) :

point d'in flexion

rebroussement de 1° espece rebroussement de 2° espéce

FIGURE 8.15 — Points singuliers de premiére espéce.

8.4.3 Recherche des points singuliers d’une courbe donnée par sa
forme cartésienne implicite

La méthode qui vient d’étre décrite a partir de la fonction vectorielle (ou des équations
paramétriques, ou de I’équation polaire) ne permet d’identifier que les points singuliers de
premiére espéece. Les points multiples ne sont pas considérés comme singuliers car méme s’ils
occupent une place identique dans le plan, ils résultent de valeurs différentes de paramétre ce
qui ne conduit pas & une ambiguité sur la détermination de la tangente.

La recherche des points singuliers a partir de ’équation implicite d'une courbe permettra de
mettre ces points multiples en évidence. Elle implique la recherche des points pour lesquelles la
détermination de la tangente conduit a une indétermination. Pour rappel, le calcul de la pente
de la tangente a une courbe définie par son équation implicite est obtenue par :

OF

dy B O

i~ OF (8.36)
dy

cette expression est indéterminée si on a simultanément g—f et %—5 qui s’annulent en un point
particulier de la courbe. Pour lever I'indétermination, on peut employer la régle de 1’'Hospital
qui conduit a

) () ()

_ dy\ . dr \ oz B 0x? ) , 0xdy ), \dz /),

i (%)JKEJ d (OF\ = (PE\ _(PF dy (8:37)
dx \ Oy 0x0y ) » 0y* ), \dzv/p

dy
dx

r—Tp

si on pose p comme le coefficient directeur de la tangente en P (p = (
relation précédente comme :

2 62_F +9 O°F + aQ_F
P 0y? ) » p 0x0y ) p 022 )

) p), on peut réécrire la

0 (8.38)
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Il faut donc résoudre une équation du deuxiéme degré pour laquelle le nombre de racines dépend

du signe du déterminant
2 2 2 2
Ao (EEN (2PN (O°F (8.39)
020y ) p 0z ) o\ 0y? ) p

— si A>0, on a deux solutions réelles distinctes, il s’agit donc d’un point double (figure
8.16) ;

— si A=0, on a deux solutions réelles confondues, il existera une seule tangente, on a donc
un point singulier de premiére espéce (figure 8.15) ;

— s1 A<0, on n’a pas de solution réelle, il s’agit d’un point isolé (figure 8.17).

FIGURE 8.16 — Point double. FIGURE 8.17 — Point isolé.

Si I'expression 8.37 conduit a une indétermination (0/0), il faut augmenter I'ordre de dérivation
jusqu’a obtenir une expression levant cette indétermination. Suivant l'ordre de dérivation
nécessaire, on est en présence d'une équation du troisiéme, quatriéme,... degré qui conduit
a l'existence d’un point triple, quadruple,...
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Chapitre 9
Infographie

To infinity and beyond.

- Buzz, Toy story

9.1 Introduction

La représentation et la manipulation d’objets tridimensionnels par voie informatique sont
utilisées de maniére intensive, que ce soit pour des applications industrielles (dessin assisté
par ordinateur, infographie,...) ou ludiques (jeux vidéos, films d’animation,...). L’ensemble
de ces disciplines utilise directement des notions de géométrie analytique pour décrire
mathématiquement les différentes opérations effectuées.

FIGURE 9.1 — Logiciel de conception assistée par ordinateur (Soliworks).

Dans le cadre de ce chapitre, nous étudierons successivement les opérations de changement de
repére, la réalisation de projections, les transformations d’objets et les bases des algorithmes
de rendu. Ce chapitre a pour but de présenter les conventions et les algorithmes employés dans
les logiciels de dessin assisté par ordinateur.

9.2 Changement de repére

L’opération de changement de repére consiste a décrire dans un repére O'x'y’z’ un objet
qui est connu dans un repére Oxyz. Il s’agit d’'une des opérations de base des logiciels de
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FIGURE 9.2 — Personnages de films d’animation ((C)Pixar).

dessin assisté par ordinateur (orientation d’un objet pour son observation ou sa projection
par exemple). Ce type d’approche est également trés utile pour simplifier la description de
problémes complexes. La mécanique rationnelle [1] fait fréquemment appel a ce type de notion
(les équations d’équilibre d’un systéme complexe peuvent étre écrites dans des repéres locaux
lies aux différents corps puis retranscrites dans un repére global par la suite).

FIGURE 9.3 — Changement de repére.

La description d’'un changement de repére aboutit & une formulation matricielle qui est
généralement décomposée en deux étapes : la mise en commun des origines des deux repéres
puis leur orientation.
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9.2.1 Changement de repére entre deux repéres d’origines identiques

On souhaite obtenir les coordonnées de I’ensemble des points d’'un objet connu dans un repére
orthonormé Ox’y’z’ connaissant leurs coordonnées dans un repére orthonormé Oxyz (figure
9.4). Ce type de transformation est I’analogue de la variance tensorielle abordée dans le cadre
du cours de mécanique rationnelle.

FIGURE 9.4 — Changement de repére par rotation.

Pour rappel, si un point P a pour coordonnées (F,, P,, P,) dans un repére Ozyz, cela signifie
que le vecteur joignant 1’origine au point P peut étre décrit par :

OD = P, + Py, + Pt (9.1)

La méthode la plus simple pour effectuer le changement de repére est de rechercher les cosinus
directeurs (cf § 17.10) des nouveaux vecteurs de base dans le systéme Oxyz. Ils permettent
directement d’écrire (avec (A;, i, v;) les cosinus directeurs du vecteur i de la nouvelle base) :

Uy = A1ty ‘|'M117> + vl
U—y? = )\2’(7; + L2 U + VQE; (92)
U = Agtty + M3y + T

Le passage des coordonnées xyz aux coordonnées x'y'z" s’effectue en repartant de la définition
des coordonnées d'un point dans un repére :

07 = 2ul+ yu_>y + 2ul (9.
OP = i)+ Yty + 2 (9.
O? = 72 (/\1?735> + /~0117y> + V1U_>z) +y' (/\217z> + ,M27~7y> + VQU—Z') + 2 ()\3@> + Msu_; + V3U_z>) (9.
(T}% = (M + 9y X+ 2'\3) u + (' py + o o + 2 13) u_z, + (2’1 + y've + 2'v3) u (9.

Le lien entre coordonnées s’établit donc par multiplication matricielle :

xZ )\1 /\2 )\3 l’l
y o= 1|t p2 pz |- Y (9.7)
z v, Vs U3 Z
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Le passage des coordonnées dans le deuxiéme repére (2,1/,2') s’effectue en inversant ce
systéme :

-1

J]l )\1 /\2 )\3 Xz
Yy o= p2 ps y Y (9.8)
r4 vV, Vs U3 z

La matrice a inverser présente la particularité d’étre une matrice « orthogonale » caractérisée
par le fait d’avoir :
— la somme des carrés de ses colonnes unitaire (A\?+p2 42 représente la norme des vecteurs
de base unitaires) ;
— le produit des éléments de deux colonnes nul (A\;A; + ;05 + v;v; représente le produit
scalaire de vecteurs de base, donc orthogonaux) ;
Les matrices orthogonales présentent la particularité que leur inverse soit simplement leur
transposée, ce qui permet un calcul facile de I'opération réciproque :

T A1 T
Y op= X p2 2 |-Q Yy (9.9)
Z A3 3 U3 z

Cette forme matricielle permettant de générer des changements de repére sera classiquement
rencontrée dans les manipulations en infographie.

9.2.2 Changement de repére entre deux repéres d’origines différentes

Pour modéliser un changement de repére par translation selon un vecteur connu ? (figure 9.5),
on peut faire appel & la relation vectorielle simple :

OP-—0P-T (9.10)

FIGURE 9.5 — Changement de repére par translation.

Ce qui se traduit au niveau des coordonnées par :

¥ = z-1T,
y = y—T, (9.11)
7 = z-T,
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Avec (T}, T,,T.) les composantes du vecteur de translation exprimées dans le repére Ozyz. On
constate directement que ce type de relation ne permet pas de passer a une forme matricielle
comme c’est le cas pour le changement de repére par rotation.

Or, I'établissement d’une forme matricielle qui est particuliérement adaptée a la programmation
informatique de ce type d’opération sera recherchée pour ’ensemble des opérations.

Pour lever cet obstacle, la description d’un point se fait alors par I'intermédiaire d’un vecteur a
quatre composantes, a savoir les trois composantes classiques x, y et z auxquelles un quatrieme
terme scalaire est ajouté. Dans ce cas, la translation peut se représenter sous la forme d’un

produit matriciel :
/

T 1 0 0 -1, T
vy L _ |01 0 —T, Y
(|00 1 T, z (9-12)
1 0001 1

L’utilisation de cette quatriéme coordonnée est devenue la régle dans le domaine du graphisme
3D. Elle correspond au souci de travailler avec des transformations qui suivent le concept général
d’applications linéaires qui modélisent le passage d'une base a une autre en exprimant des
combinaisons linéaires des vecteurs de base, excluant tout terme indépendant. Cette condition
n’est remplie que grace a I'ajout de la quatriéme coordonnée dans le cas de la translation.
Mathématiquement, ce type de représentation d’un point par l'intermédiaire de quatre
coordonnées est appelé coordonnées homogénes. De maniére générale, le quatriéme parameétre
peut prendre n’importe quelle valeur non nulle. Le quadruplet de coordonnées (X,Y, Z, W) est
interprété comme les coordonnées d’un point de I’espace calculées comme suit :

(9.13)

Il
= NS <=~

)

Avec ce type de convention, la matrice de changement de repére associée a une rotation devient :

)\1 Hm1 0
Ao pp v 0

9.14
A3 pz vz 0 ( )
0 0 0 1
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9.2.3 Conventions particuliéres
9.2.3.1 Orientation du repére

Comme nous venons de le voir, la représentation des opérations de transformation peuvent
se réduire & des opérations matricielles. Il faut noter que la convention de base employée par
les librairies graphiques considére ’emploi de repéres respectant la regle de la main gauche a
I'opposé de ce qui est généralement pratiqué.

FIGURE 9.6 — Repére ’écran’ orienté FIGURE 9.7 — Repére ’écran’ orienté
positivement. négativement.

L’explication est que de maniére générale, les axes x et y sont choisis de sorte a avoir x horizontal
(orienté vers la droite) et y vertical (orienté vers le haut), ce qui implique que l'axe z serait
orienté vers l'observateur (sortant de ’écran) pour respecter la régle de la main droite (figure
9.6). Ceci reviendrait a systématiquement travailler avec des coordonnées z de points négatives
(’dans’ 'écran). Il a donc été décidé d’orienter l'axe z ’écran’ de 'observateur vers 1’écran
(figure 9.7), ce qui conduit & un repére orienté selon la régle de la main gauche. Les librairies
graphiques employées en infographie sont donc souvent programmeées selon ce standard !. Etant
donné que la transposition d’un type de raisonnement a ’autre est immédiate, la suite du cours
sera présentée avec les repéres orientés selon la régle de la main droite par soucis de continuité.

1. Certaines d’entre elles intégrent deux variantes des opérations, mais la version ’a gauche’ est &
recommander
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9.2.3.2 Représentation des vecteurs

Une autre convention employée dans les librairies graphiques est la représentation de points
sous la forme de vecteurs « lignes » alors que ’habitude est plutoét d’employer des vecteurs
« colonnes ». Pour comprendre cette convention, examinons la réalisation successive de
deux changements de repére successifs imposés a un point P. De maniére générale, les
nouvelles coordonnées du point aprés transformation sont obtenues en multipliant le vecteur de
coordonnées (x,y, z) par une matrice 4x4 . Dans une convention 'vecteur colonne’, on obtient
successivement les opérations suivantes :

) XN o v O T
Y o A2 e e O Yy
2 | A3 pz vz 0 z (9-15)
I |0 0 0 1] 1
M1
z" ) ISRz x
7 * * * /
y” _ )‘3 #z V?k 0 y/ (9.16)
< 3tz vz 0 <
I 00 0 1 1
M2
L’opération résultante combinant les deux transformations s’écrirait donc :
x x
!
Yot =2y LY (9.17)
1 1

La matrice résultante serait donc obtenue en multipliant les matrices élémentaires des deux
transformations dans l'ordre inverse de leur application (rappelons que la multiplication
matricielle n’est en général pas commutative). Si nous prenons la transposée de I’équation
9.17, nous obtenons la présentation en vecteur ligne qui correspond a :

{ao" v 2" 1}={2z y = 1}-[M1]T-[M2]T (9.18)

Comme le passage de I'une a ’autre des formes est évidente via la transposée, nous continuerons
d’employer la notation classique sous forme de vecteur colonne dans la suite de ce cours.
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9.2.4 Changement de repére entre deux repéres quelconques

Lorsque les deux repéres considérés sont disposés de maniére quelconque I'un par rapport a
I’autre, il est plus simple de décomposer le changement de repére en deux étapes successives
(figure 9.8) :

— passage a un repére O'x;y;z; via une translation selon un vecteur ?;

— passage au repére final 0'x’y’z’ via un changement de base.

F1GURE 9.8 — Changement de repére entre deux repéres quelconques.

La mise sous forme matricielle de ces deux opérations donne :

x; 10 0 T, x
v L0 1 0 =T, Y
z [ |00 1 T, z (9-19)
1 0001 1
M1
x Avopr vy O T
vyl | A2 pe . O Yi
2 | A3 ops ovs 0 2 (9:20)
1 0 0 0 1 1
M2
L’opération résultante combinant les deux transformations s’écrirait donc :
x x
v\ _ , ]y
(= [M2] - [M1] . (9.21)
1 1

La matrice de transformation globale est donc :

Moo v =MD+ -Ty+vy-T)
po v — Ao Ty +pg-Ty+1n-T2)
M| = 9.22
M) A3 pz U3 (N3 Ty +p3- Ty +vs-TY) (9:22)

0 0 0 1
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9.3 Meéthodes de projection

La visualisation sur un écran d’ordinateur d’objets tridimensionnels doit nécessairement passer
par 'intermédiaire de projection plane. On emploie classiquement les deux types de projections
qui ont été présentées dans la premiére partie de ce cours a savoir la projection orthogonale
(méthode de Monge et axonométrie, figure 9.9) et la projection centrale (figure 9.10).

plan
de projection —

plan de
projection

FIGURE 9.9 - Projection orthogonale
(axonomeétrie). FIGURE 9.10 — Projection centrale.

9.3.1 Orientation du repére

La premiére étape va consister a orienter le repére de maniére correcte par rapport au plan de
projection. Si on se fixe par exemple 'orientation du plan de projection par I'intermédiaire de
son vecteur normal /N, on va chercher & déterminer la matrice de changement de repére pour
réaliser la projection :
— l'axe 2’ sera orienté selon le vecteur normal au plan (le plan aura pour équation ax +
by + cz + d = 0 si le vecteur normal est de coordonnées (a, b, c)?);
— laxe 2’ choisi arbitrairement dans le plan (par convention, il définira la direction
horizontale dans le plan de projection);
— l'axe 1/ sera orienté comme le vecteur u_;} A u_gf :

2. Il faut noter que la projection orthogonale sur des plans paralléles donnera des résultats identiques, ce qui
signifie que le choix de la constante d est indifférent

116



CHAPITRE 9. INFOGRAPHIE

La matrice de transformation permettant de réaliser la projection plane est obtenue en reprenant
les coordonnées des vecteurs unitaires du nouveau repére projetés dans le repére initial (u—ﬁ =

(Alu)‘Qu)‘?))a U—Z; = (Mlaﬂ27ﬂ3)v ’lT; = (V17V27V3>) :

)\1 H“1 0
Ao pz vy 0

M = 9.23
A3 pz vz 0 (9:23)
0O 0 0 1

On peut également combiner plusieurs changements de repéres successifs. Soit 6 1’ angle entre
le plan vertical contenant le vecteur et le plan Oxz et ¢ I’angle entre le vecteur et le plan Ozy.
On peut décomposer la transformation orientant ce vecteur sur 'axe Oz en trois étapes (figure
9.11) :

— une rotation d’un angle 6 autour de z pour obtenir le systéme Oxyy;2z; (figure 9.12);

— une rotation autour de l'axe y; d’un angle 7/2 — ¢ pour obtenir le systéme Ozayszo

(figure 9.13);
— une rotation de 7/2 radians autour de I'axe z2.

FIGURE 9.11 — Situation  FIGURE 9.12 — Rotation de FIGURE 9.13 — Rotation de
initiale. 6 autour de z. 7T/ 2 — ¢ autour de y;.

La troisiéme opération ne sert qu’a se placer dans une configuration classique avec 'axe x
horizontal et ’axe y vertical.

Une fois les objets géométriques orientés de maniére adéquate, il reste une derniére opération
a effectuer pour leur représentation sur un support bidimensionnel, & savoir une opération
de projection. Deux types de projections sont couramment rencontrés : la projection
axonomeétrique et la projection centrale.
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9.3.2 Projections classiquement employées en infographie
9.3.2.1 Projection axonométrique

La projection axonométrique est obtenue de maniére naturelle en ne retenant que les
coordonnées x et y pour une représentation bidimensionnelle de la scéne, la coordonnée z
peut par contre servir a la gestion du vu et caché car elle régle la profondeur. Ce type de
méthode peut étre employé pour réaliser automatiquement une représentation dune scéne en
axonométrie (figure 9.14).

3 observateur
a l'infini

Plan de
projection

FIGURE 9.14 — Rappel du principe de 'axonométrie orthogonale.
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FIGURE 9.15 - Exemple de projection FIGURE 9.16 — Exemple de projection
axonométrique d’un cube unitaire sur un axonométrique d'un cube unitaire sur un
plan de vecteur directeur (1,1,1) : isométrie. plan de vecteur directeur (1,2,3).

9.3.2.2 Projection centrale

La projection centrale consiste en une représentation plane de scénes spatiales qui vise a
reproduire ’observation naturelle de ’oeil humain. L’ensemble des points de la scéne est projeté
sur un plan (tableau) suivant un rayon passant par un point fixe (position de I'observateur).
Contrairement a ’axonométrie, les rayons de projection ne sont pas paralléles, mais convergent
en un point unique. La projection centrale ne respecte pas le parallélisme des droites (sauf
celles paralleles au plan du tableau). L’opérateur projection centrale (figure 9.17) peut étre
établi suivant la démarche suivante :

FIGURE 9.17 — Rappel du principe de la projection centrale.
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Soit (Xp,Yp, Zp) les coordonnées de P dans le systéme d’axes initial. Le point P,, projection
centrale du point P est a 'intersection du plan de projection et de la droite reliant P au pole V.
Dans le systéme écran, les coordonnées de P, peuvent se trouver via la similitude des triangles
VEP, et VFP :

— X.=EP,=FP(VE/VF)=XP(d/ZP);

— Y. =P,Py =PP(VP,/VP)=PP(VE/VF)=YP(d/ZP),

— Z.=/ZP —d.
FIGURE 9.18 — Exemple de projection FIGURE 9.19 — Exemple de projection
centrale d’un cube unitaire avec un plan de centrale d’un cube unitaire orienté de
projection paralléle & une de ses faces. maniére quelconque.

120



CHAPITRE 9. INFOGRAPHIE

9.4 Matrices de transformation

La manipulation d’objets géométriques par matrice de transformation consiste & modifier
des figures décrites analytiquement dans une repére fixe. On peut distinguer différents types
d’opération :

— les opérations visant a déplacer 'objet (translation, rotation);

— les opérations visant a obtenir le symétrique de 1'objet par rapport & un plan;

— les opérations modifiant 1’échelle ou la forme de I'objet.
La manipulation des objets fera appel a la notion de coordonnées homogénes définie
précédemment.

9.4.1 Opérations élémentaires
9.4.1.1 Translation

Si on fait subir & un point P une translation selon un vecteur ?, on obtient un nouveau point

P’ qui vérifie : N
OP =0P+ T (9.24)

Les coordonnées de P’ seront calculées par :

P/

Nl

o

FIGURE 9.20 — Translation d’un point.

rp = xp+T;
zp = zp+ T,

La matrice de transformation associée a une translation sera donc :

0 0 T,
T,
Tz
1

<

1
0 1
0 0 (9.26)
00

o = O
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9.4.1.2 Rotation autour d’un axe de coordonnées

La rotation autour d’un axe de coordonnées est un cas particulier de matrice de transformation.
Par exemple, dans le cas d’une rotation d’un point P d’un angle # autour d'un axe Oz, 'image
des vecteurs de base donne (figure 9.21) :

Uy = cosf-u, +sinf-u, (9.27)
Uy = —sinf-u,+cosf-u, (9.28)
w o= (9.29)

FIGURE 9.21 — Rotation autour de
Oz des vecteurs de base. FIGURE 9.22 — Rotation autour de 1'axe z.

Dans le cas de la rotation d’un point de coordonnées quelconque (figure 9.22), on peut écrire :

—
OP = xp - (cos -y +sinf-w) +yp - (—sinb - up +cosb - u,) + z, - us (9.30)
ou encore :
T pr cosf@ —sinf 0 Tp
ypr ¢ = | sinf cosf® O |- yp (9.31)
zZp! 0 0 1 Zp

La matrice de transformation homogéne associée a une rotation autour de Oz s’écrit donc :

cosf —sinf 0 0
sinf cosf 0 O
0 0 10
0 0 01

R(z,0) = (9.32)

On démontre facilement que I'opération inverse correspond a R (z, —0) = R (z,0) ' = R(z,0)"

Via un raisonnement similaire, on peut montrer que les matrices de transformation pour des
rotations autour de Ox et Oy s’établissent selon :

1 0 0 0 cos@ 0 sinf 0
0 cosf) —sinf O 0 1 0 0

R(z,0) = 0 sinf cosf O Ry, 0) = —sinf 0 cosf O (9.33)
0 0 0 1 0 0 0 1
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9.4.2 Composition d’opérations

Les matrices de transformation élémentaires sont données dans des configurations particuliéres ;
une combinaison de plusieurs opérations est généralement nécessaire pour décrire une opération
de transformation. Par exemple, si on souhaite faire décrire & un ensemble de points une rotation
autour d'un axe paralléle & 'axe Oz passant par un point de coordonnées (z¢, yc, z¢), il faudra
combiner de trois opérations (figure 9.23) :

— une translation pour amener un point du repére sur 'origine ;

— une rotation autour de ’axe du repére;

— une translation inverse de la premiére opération.

o

FIGURE 9.23 — Rotation autour d’un axe parallele & Oz (vue de dessus).

L’avantage de I’écriture sous forme de matrice de transformation est la possibilité de synthétiser
ces trois opérations en une seule opération matricielle. En effet, on pourra écrire :

X pr ]_ O O —Xc rp
ypr L _ |0 1 0 —ye yp
zp (|0 0 1 —z2¢ Zp (9-34)
1 0 0 01 1
M1
Tpr cosf) —sinf 0 O Tpr
ypr sinf cosf 0 0O ypr
Zp 0 0 1 0 zZpr (935)
1 0 0 01 1
M2
X pm 1 00 Tc X pn
ypm . 0 1 0 yC yP//
Zpin o 0 0 1 zZC Zp (936)
1 00 01 1
M3
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Ce qui donne au final

IP/// ,CL'P

ger b (M3] - (M2 - [M1] -] Y (9.37)
zpm zZp

1 1

A nouveau, la convention « vecteur colonne » conduit a la multiplication & gauche des matrices
décrivant les opérations élémentaires successives. Au final, on donc :

T pm cosf) —sinf 0 z¢-cosl —ye-sinf — xeo Tp

Ypm _ sinf cos@ 0 x¢-sinf + yc - cost — yo ) oyp (9.38)
Zpm 0 0 10 zZp '

1 0 0 0 1 1

Cet exemple permet de mettre en évidence une forme générale aux matrices de transformation
ne modifiant pas la forme du corps subissant 'opération :

i

La matrice 3x3 supérieure gauche concerne les rotations, le vecteur & 3 composantes qui y est
accolé concerne les translations et la derniére ligne est toujours constituée de trois 0 et un 1.

La multiplication matricielle n’étant pas commutative, l'ordre des opérations doit bien
évidemment étre respecté pour obtenir le résultat attendu. Par exemple, si on combine une
rotation d’'un quart de tour autour de 'axe Oz dans le sens positif suivie d’'une rotation d’un
quart de tour autour de I’axe Oz dans le sens positif (figure 9.24).

FIGURE 9.24 — Rotation autour de Oz puis FIGURE 9.25 — Rotation autour de Ox puis
de Ozx. de Oz.

La matrice de transformation associée sera :

R.. = R(x,m/2)-R(z,7/2) (9.40)
1 0 0 0 cosm/2 —sinw/2 0 0
_ 0 cosw/2 —sin7w/2 0| | sinw/2 cosw/2 0 0 (9.41)
0 sinm/2 cosw/2 0 0 0 10 '
0 0 0 1 0 0 01
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qui au final sera condensé dans la matrice :

0 -1 0 O
00 —-10
R = | 0 0 o0 (9.42)
00 0 1
En inversant 'ordre (figure 9.25), on obtient la matrice :
0010
10 00
R, = 0100 (9.43)
0 0 01

9.4.3 Lien entre changement de repére et matrices de transformation

Les matrices de transformation homogénes sont trés semblables aux matrices de changement de
repére dans leur forme. En effet, il s’agit simplement de deux méthodes pour obtenir un méme

résultat. Prenons un exemple simple de la translation d’un point selon un vecteur ? (figure
9.26).

Trans formation Changement de repere

FIGURE 9.26 — Deux approches pour la translation d’'un point.

L’approche par matrice de transformation donne directement :

X p/ 1 00 T rp
yp \ _ [0 0 wr | ) yp
zZp! o 0 0 1 zT zZp (944)
1 0 001 1
M1

En examinant la figure 9.26, on constate que cette translation est I’équivalent d’un changement
de repére en placant la nouvelle origine en un point O’ tel que OO’ = —?. L’approche par
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matrice de changement de repére donne :

T 1 0 0 a7 T
vy L_ 1010 yr y
(|00 1 2 z (9.45)
1 0001 1
M1

qui donne bien évidemment un résultat similaire. On constate donc que la matrice de
transformation pour une translation d’un vecteur ? est équivalente & la matrice de changement
de repére d’une translation —? ou mieux de l'inverse de la matrice de changement de repére
d’une translation 7 Ce lien matrice de transformation valant l'inverse de la matrice de
changement de repére se retrouve également pour les opérations de rotation.

9.4.4 Orientation d’un volume dans une direction particuliére

Un probléme fréquemment rencontré est d’orienter une droite particuliére d’un volume selon une
direction donnée (figure 9.27). Cette opération sert par exemple & d’aligner 'axe de révolution
d’une figure sur un des axes du repére ou orienter la normale & un plan dans une direction
privilégiée. Cette opération peut s’effectuer de trois maniéres différentes.

FIGURE 9.27 — Orientation de figures.
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9.4.4.1 Deécomposition en opérations élémentaires

Pour aligner un vecteur sur une direction particuliére il est possible de combiner plusieurs
matrices de transformation. Une opération fréquente consiste a aligner un vecteur quelconque
avec un des vecteurs de base (par exemple Oz). Soit 6, 1" angle entre le plan vertical contenant
le vecteur et le plan Oyz et ¢ le complément de I’angle entre le vecteur et le plan Oxy. On peut
décomposer la transformation en deux étapes (figure 9.28) :
— une rotation autour de 'axe Oz d’un angle € pour obtenir une vecteur contenu dans le
plan Oyz (matrice [M1]);
— une rotation d’un angle ¢ autour de Ox pour pour obtenir vecteur aligné avec Oz (matrice
[M2]). .
Pour la premiére étape, il faut aligner la projection de ﬁ sur le plan horizontal (Ny avec Oy
(figure 9.28).

FIGURE 9.28 — Alignement d’axes : premiére étape.

Le sinus et le cosinus de 1’angle valent respectivement 3

. Ve
— 8inf = ———;
\/V‘f—l—Vy?
— cosf = Vy

/V;EQ + ‘/'y2
La matrices de transformation associée est :

cosf —sinf 0 0
sinf cos@ 00

[M1] = R(Z,0) = 0 0 10 (9.46)
0 0 01

3. Cette méthode permet d’éviter le calcul de 'angle ce qui permet d’éviter de traiter les différents cas de
figure suivant le quadrant occupé par le vecteur
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Pour la deuxiéme étape, il faut aligner ce vecteur transformé avec 'axe Oz (figure 9.28).

FIGURE 9.29 — Alignement d’axes : deuxiéme étape.

Le sinus et le cosinus de 1’angle valent respectivement :
V22
— sing = Tm |
IV

— cos ¢ = V.
v

La matrices de transformation associée est :

0 0
cos¢p —sing
sing  cos¢

0 0

[M2] = R(X,¢) = (9.47)

S O O
— o O O

La matrice résultante est bien évidemment obtenue en multipliant (dans le bon ordre) les deux
matrices :

(M] = [M2] - [M1] (9.48)

9.4.4.2 Angles d’Euler

Un solide dans l'espace présente six degrés de liberté sous la forme de trois translations et
de trois rotations. La présentation de la matrice 3x3 prenant en compte la rotation dans les
matrices de transformation homogeénes (équation 9.39 ) ne fait pas apparaitre clairement les trois
degrés de libertés associés a la rotation d’un corps. Les neuf coefficients sont liés entre eux par
six relations liées a I'orthogonalité de la matrice. Ces relations (déja présentées précédemment)
peuvent étre synthétisées par (d;; représente le symbole de Kronecker ; §;;=1 si i=j et 0 sinon) :

Ai)\j + pipy + vy = (Sij (949)
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Une autre approche pour la représentation de I'orientation d’un corps dans ’espace est ’emploi
de trois angles caractéristiques pour définir son orientation. Les angles les plus fréquemment
rencontrés dans la littérature sont les angles d’Euler qui définissent trois rotations (figure 9.30)
selon :

— l’angle de précession ¢ autour de I'axe Oz;

— l’angle de nutation 0 autour de I’axe u (image de 'axe Ox aprés la premiére rotation);

— l’angle de rotation propre ¢ autour de I’axe Oz’ (image de Oz par la seconde rotation).

FIGURE 9.30 — Angles d’Euler.

Si # = 0 ou 7, la transformation se réduit a une rotation autour de 'axe Oz. L’emploi des
angles d’Euler est néanmoins moins intuitif que 'approche par les cosinus directeurs, mais il
est possible de relier les deux approches. On peut démontrer que la matrice de changement de
repére associée aux angles d’Euler peut se construire selon :

cos ¢ cos —singcosfsiny —cos@siny —singcosfcosyy singsinf 0
sin ¢ cos Y + cos ¢ cosfsiny —sin@siny + cospcosfcosyy —cosgsinfd 0
sin 6 sin ¢ sin 0 cos ¥ cos 6 0

0 0 0 1

(9.50)

Il est donc possible de retrouver les angles d’Euler a partir de la matrice de transformation, par
exemple (r; ; représente I’élément de la ligne i et de la colonne j de la matrice R) :

Y = arctan =%

r3,2

,/7’2 —i—r?
0 = arctan% (9.51)
¢ = arctan —--2

r2,3

Dans la pratique, la fonction arctangente donne deux valeurs possibles & 1'angle, le choix doit
se faire en fonction du quadrant occupé par le point (ceci est réglé automatiquement par la
fonction atan2 dans la plupart des langages de programmation).
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9.4.4.3 Opération globale

On peut également rechercher la matrice de transformation globale par l'intermédiaire
d’opérations vectorielles [2]. Considérons dans un premier temps un plan contenant 1’origine du
repére O et défini par un vecteur normal ﬁ et un vecteur Zde ce plan. le produit vectoriel de ce
vecteur par la vecteur normal unitaire 70 donne un vecteur appartenant au plan et orthogonal
a 7” (figure 9.31).

=)

FIGURE 9.31 — Produit vectoriel par le vecteur normal au plan.

Le produit vectoriel est calculé selon :

e

. Uy Uy UL NyVa —nVey
n A 7” =|ln, ny n, [=<¢ nVi,—n,Vo, (9.52)
Vw,x Vﬂ',y V7r,z nrvw,y - nyvmm

Cette formulation est équivalente a :

0 —nN, Ny |
TAV.=|n. 0  —n|-d Vi, (9.53)
y Mz 0 Vs

)

Cette relation permet de définir la matrice [J,] permettant le calcul du produit vectoriel par
rapport au vecteur .
0 —Ny Ny
[Jo]=1|n. O —My (9.54)

—ny ngy 0

Si on applique une deuxiéme fois le produit vectoriel, on retrouve un vecteur opposé au vecteur
de départ (deux rotations de 7/2 donnent une inversion).

A (7 ﬁ) -V (9.55)

Ces éléments permettent de démontrer que la matrice de rotation d’un angle € autour d’un axe
passant par 'origine est :

R(ﬁ,@) — T 4sinf-J, + (1 — cosd) - J? (9.56)
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Cette relation permet d’obtenir la matrice (3x3) occupant la portion supérieure de la matrice
de transformation homogéne, il faut ajouter la quatriéme ligne et la quatriéme colonne comme

suit :
R (ﬁﬁ)m {0}3. ] (9.57)

{0} 125 1

Pour vérifier la propriété, prenons un point quelconque P. le vecteur O? peur se décomposer

en une composante normale au plan (OP,) et une composante appartenant au plan (OP,). La
composante normale au plan n’est pas modifiée par la rotation :

R(N.0)OP, = OP, +sinf- W AOP. + (1 —cost) - A (7 AOP,) = OP,  (9.58
(

car le produit vectoriel de deux vecteurs paralléles est le vecteur nul. Pour la composante du
plan, on a

R(N},Q)O—P; = Tﬂ+sin9-ﬁ/\@+(l—cos@)-ﬁ/\(W/\O—P_ﬂ)) (9.59)

= O—]D7T>—|-S.in¢9-ﬁ/\O—Pﬂ}—(1—(:089)-0—13,r> (9.60)
= sin@-ﬁ>/\0—>1[’7r4—c:09,0-O—Rr> (9.61)

qui donne bien le vecteur tourné d’un angle 6 dans le plan.

9.4.5 Autres opérations de transformation 3D

Il est trés fréquent de devoir réaliser dans les logiciels de dessin assisté par ordinateur un
ensemble d’opérations de transformation de figures élémentaires (on parle de primitives).
Comme ces objets sont constitués d'un ensemble de point, on peut synthétiser les
transformations sous forme de l'application d’une matrice de transformation 4x4 comme
déja évoqué précédemment. Diverses opérations de transformation vont étre présentées, en
complément des rotations et translations déja évoquées précédemment dans ce chapitre.

9.4.5.1 Reéflexion

Le terme 'réflexion’ est utilisé en infographie pour décrire une symétrie orthogonaled’un objet
par rapport a un plan existant.

La matrice de transformation associée a une réflexion par rapport a I'un des plans coordonnés
(figure 9.32). est établie de maniére évidente :
— une réflexion par rapport au plan Ozy consiste a changer le signe de la composante z
des points de la figure;
— une réflexion par rapport au plan Ozz consiste a changer le signe de la composante y
des points de la figure;
— une réflexion par rapport au plan Oyz consiste a changer le signe de la composante x
des points de la figure;
Les matrices de transformation associées sont donc :

100 O 10 00 100 0
010 0 0 -1 00 0 100
Row=\(g o 1 g Bo==|g ¢ 10| Bo=|¢g ¢ 10| ©6
000 1 00 01 0 001

Si le plan n’est pas un plan coordonné, on utilise au préalable des transformations homogéne
ou un changement de repére (voir un exemple au §15.2.3 en page 206).
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FIGURE 9.32 — Opérations de réflexion par FIGURE 9.33 — Exemple de scaling d’un
rapport aux plans coordonnés. cube (rapports 3;2;1,5).

9.4.5.2 Scaling

Jusqu’ici, nous avons uniquement considéré des opérations réalisant une modification de la
position des objets, sans entrainer de modification de leur forme. Le scaling est une opération
courante qui modifie la forme de 1’objet subissant 'opération.

Dans le vocabulaire de I'infographie, un scaling est une opération de mise & 1’échelle dont le
rapport peut étre différent selon les axes (figure 9.33). La matrice de transformation associée a
un scaling centré sur l'origine est :

(9.63)

oo o >
oo >0
<
o>o o

IS
—_ o oo

Pour obtenir une homothétie au sens classique du terme, il faut bien évidemment avoir un
rapport égal selon les trois directions de 1’espace.
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9.5 Rendu réaliste

La représentation de surfaces dans des logiciels de CAO consiste nécessairement en une
représentation bidimensionnelle d’objets volumiques. Pour faire ressentir & 1’observateur la
notion de profondeur, il est nécessaire de faire appel a un rendu de la surface qui favorise la
compréhension de la scéne. Historiquement la premiére méthode qui a été employée consistait en
la représentation de différentes lignes sur les surfaces résultant de I'intersection de la surface avec
un ensemble de plans (pouvant étre paralléles aux plans de références ou formant un faisceau
convergeant en un axe de symétrie de la surface). Ce type de représentation des surfaces sous
forme de squelettes (ou rendu fil de fer, figure 9.34 ) faisait appel & une reconstruction mentale
de l'objet pas toujours évidente pour 1'observateur.

FIGURE 9.35 - Rendu réaliste d'une
piéce mécanique.

FIGURE 9.34 — Rendu « fil de fer » [2].

L’augmentation des performances des ordinateurs et de leurs cartes graphiques a permis la
possibilité de traitements algorithmiques visant & reproduire l'aspect de surfaces réelles en
prenant en compte un grand nombre de phénomeénes physiques (réflexions, transparence,
réfraction, textures de surfaces,...) pour permettre un rendu proche de la réalité de modéles
CAO de piéces (figure 9.35).

Le rendu réaliste présente des applications bien au-dela des logiciels de CAO (un exemple
spectaculaire est la réalisation de films d’animation entiérement réalisés a partir de ce type de
techniques, les plus connus édités par les studios Pixar et Dreamworks). Dans le cadre de ce
cours, nous allons étudier les éléments de base permettant de réaliser le rendu d’une surface.

4. Cette figure, ainsi que 'ensemble des figures tirées de la méme références est accompagnées de la mention
'Reproduced with the permission of the publisher from Computer Graphics : Principles and Practice, Third
Edition, by John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K.
Feiner, and Kurt Akeley. Copyright 2014 by Pearson Education, Inc’
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9.5.1 Eléments de base

Les éléments de base permettant le rendu des scénes sont :
— des objets modélisés par I'intermédiaire de la description analytique de leurs surfaces
(surfaces complexes ou décomposition de celles-ci sous forme de facettes triangulaires) ;
— des sources lumineuses éclairant la scéne ;
— un algorithme calculant la couleur des différents points de la scéne en fonction de
I’éclairement et de la configuration de la scéne.
La premiére étape est de faire le tri entre 'information qui sera traitée et celle qui ne participera
pas au calcul (on parle de « clipping »). L’utilisateur défini deux plans entres lesquels le rendu
sera effectué : le plan proche (near plane) et la ligne d’horizon (far plane). Les éléments non
compris entre ces plans sont écartés du rendu (figure 9.36).

Far clipping

Near clipping plane

plane

“H-H-"‘“L
Discarded Rendered Clipped Discarded

FIGURE 9.36 — Sélection de 'information |2].

Il existe deux grandes familles d’algorithmes de rendu :

— les algorithmes dits de rasterization qui consistent a réaliser la projection des points sur
I’écran et de réaliser la recherche du vu et du caché, la prise en compte de l'illumination
est réalisée par la suite ;

— les algorithmes dits de raytracing (figure 9.37) qui consistent & suivre a rebours le trajet
de la lumieére en considérant les rayons issus de 1’oeil qui sont « lancés » sur la scene et
dont le trajet est suivi pour déterminer la couleur et I'illumination de chaque pixels.

Les algorithmes de rasterization sont réputé plus performants et donc plus adaptés pour les
approches en temps réel [3]. Ils sont toutefois moins performants pour la représentation de
certains phénoménes (réflexions proches par exemple), ¢’est pourquoi ils sont parfois complétés
par des algorithmes de raytracing [4].
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FIGURE 9.37 — Exemple de rendu employant I’algorithme de raytracing [2].

9.5.2 Rendu de la couleur

Une scéne est divisée en un ensemble de points de couleur (pixels) organisés selon un tableau
de n lignes et de m colonnes. La couleur de chacun de ces pixels est déterminée par un mélange
additif de trois couleurs de base, typiquement RGB (Red Green Blue). Chacune de ces nuances
est mélangée suivant différentes proportions pour obtenir un ensemble de couleurs dérivées. Une
couleur est donc représentée comme un triplet [R G B| avec chacune des composantes allant de

0 a1 (figure 9.38).

Rouge [100] Vert [010] Bleu [001]

Cyan [011] Magenta [101)] Jaune [110]

Y N

FIGURE 9.38 — Quelques exemples de couleurs en RGB.

135



CHAPITRE 9. INFOGRAPHIE

9.5.3 Exemple de rendu de surface

Ce paragraphe décrit les méthodes de rendu accessibles dans Matlab [5]. Il faut noter que
Matlab ne gére que le calcul d’illumination directe et ne prend pas en compte les réflexions
intermédiaires entre différents corps, ce qui simplifie fortement les calculs.
La position des différentes sources de lumiéres doit étre connue dans la scéne modélisée (par
I'intermédiaire de ses coordonnées polaires ou cartésiennes). L’énergie des rayons lumineux issus
des sources se divise en trois contributions au contact d’objets :

— une fraction %, est réfléchie par la surface;

— une fraction %; est transmise a travers la surface (réfraction);

— une fraction %, est absorbée par la surface.
La conservation de ’énergie indique que %, + %; + %, = 0. La réfraction peut étre modélisée
par la loi de Snell-Descartes pour tenir compte de la déviation d’un rayon lumineux passant
d’un milieu & un autre. La réflexion sur une surface est un mécanisme plus complexe. Nous
présenterons ici un exemple de modélisation par Iintermédiaire du modéle de Phong (figure
9.39).

=l

Source Rayon réfléchi
théorique

0 0 ; ;
o
0 Observateur

%

FIGURE 9.39 — Modéle Phong.

Ce modele considére que I'intensité lumineuse observée dépend de trois facteurs :

— une luminosité « de fond » n’ayant pas d’orientation particuliére qui est la luminosité
ambiante ;

— une luminosité provenant d’une réflexion diffuse (réflexion isotrope dans toutes les
directions, proportionnelle au cosinus de l'angle entre la source et la normale a la
surface) ;

— une luminosité provenant d’une réflexion spéculaire (réflexion de maniére prépondérante
lorsqu’on observe sous un angle égal & l’angle incident, dépendante d’un exposant
spéculaire es d’autant plus élevé que la surface est réfléchissante (figure 9.40).

En présence de n spots lumineux, ’observation d’une surface produit une intensité lumineuse
donnée par

I =Ikoe+ Y L (kgcost; + kcos™ ¢;) (9.64)
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Intensité relative

Poli

~ _ — — - Rugueux

\j

Angle (rad)

FIGURE 9.40 — Exemple de I’évolution de I'énergie pour une surface rugueuse (es=1) et polie

(es=100) dans le modeéle de Phong.

Les facteurs k,, k, et ky sont les coefficients de réflexion ambiants, diffus et spéculaires; ils
sont spécifiés sous forme d’un triplet comme les couleurs RGB pour tenir compte de réflexions
différentes suivant les couleurs (figure 9.41).

SpecularPovver: 5.0

SpecularPower: 25.0

SpecularPower: 125.0

FIGURE 9.41 — Influence de l'exposant sépculaire sur le rendu de surface (tiré de

http ://udn.epicgames.com/).
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Pour ne pas effectuer ce type de calcul pour chacun des pixels de 'image, on discrétise les
surfaces sous forme de facettes au centre desquelles un calcul de couleur et d’intensité est
réalisé. La méthode de base appelée flat shading conserve cette couleur pour I'ensemble de la
facette (figure 9.42). Cette méthode est la plus rapide puisqu’elle ne nécessite pas de calculs
supplémentaires.

FIGURE 9.42 — Cone et surface complexe dont le rendu est opéré avec flat et Gouraud Shading

2].

La deuxiéme méthode d’interpolation par ordre de complexité est la méthode dite Gouraud
shading. Elle calcule I'intensité aux sommets des facettes puis réalise une interpolation bilinéaire
pour obtenir la couleur en tout point de la facette (figure 9.43).

£

Yellow curve shows
the actual surface.

. Va Vv
Black lines and green 3
vertex dots demonsirate v
the approximation mesh. 4
Per-vertex o o ® "

computed lighting

Copying __
(fat shading)

Interpolation
o — [
(Gouraud shading)

FIGURE 9.43 — Algorithme du Gouraud shading comparé au flat shading [2].
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La troisiéme méthode est dite Phong shading. Elle consiste a réaliser une interpolation sur les
normales & la surface puis & calculer en tout point 'intensité de chaque composante RGB . La
figure 9.44 compare a titre d’exemple le rendu d’une sphére par les trois méthodes précédemment
citées.

FIGURE 9.44 — Comparaison des trois méthodes de shading : flat, phong et Gouraud (tiré de
http ://udn.epicgames.com/).
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CHAPITRE 10. REPRESENTATION CARTESIENNE DE SURFACES

Chapitre 10

Représentation cartésienne de surfaces

Je pense donc je suis

- R. Descartes, Discours de la méthode

10.1 Introduction

La représentation cartésienne d’une surface fait appel & des expressions qui sont des
généralisations de la représentation cartésienne de courbes planes. On distingue les formes
de représentation explicites (z = f(x,y)) et implicites (F(z,y, z) = 0).

FIGURE 10.1 — Paraboloide hyperbolique FIGURE 10.2 — Spheére (équation implicite
(équation explicite z = z? — y?). 2+t +22—r?=0).

La forme explicite z = f(z,y) associe a tout point du plan horizontal de coordonnées (z,y)
au plus un point de la surface. La forme implicite F(z,y,z) = 0 peut elle présenter plusieurs
points de la surface sur une verticale donnée. Comme dans le cas de courbes planes, une fonction
F(z,y,z) = 0 ne représente pas forcément une surface :

— 2% + 9% + 22 = 0 représente le point a l'origine;

— 2% + 9?4+ 2% = —1 ne représente aucun point de I'espace réel.
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On peut faire la distinction entre une surface dite algébrique et une surface dite transcendante.

Une surface est dite algébrique si son équation implicite peut étre ramenée a une forme d’un
polynéme a coeflicients rationnels égalé a zéro (figure 10.3).

4000
3000
2000

1000

\
N
N

N
A\
\

-1000

XX
"
X
W
\
N
W

X

R
N
N

=
S
SEEESSNSNINsseitst
e
N SOCTSO
R
SIS
Reessestess
SIS

N
\

X

-2000

X
X
R

RN

-3000 ¢ -~
10

10

FIGURE 10.3 — Exemple de surface algébrique (z = 2% + 3zy?).

Le degré du polynéme définit I'ordre de la surface. On parle de :

— surface plane (ordre 1);

— surface quadrique (ordre 2);

— surface cubique (ordre 3);

— surface quartique (ordre 4);
Cet ordre représente le nombre maximum de points d’intersection entre cette surface et une
droite quelconque.
Par opposition, une surface non algébrique est dite transcendante (figure 10.4). Elle peut faire
intervenir des fonctions non rationnelles (fonctions trigonométriques, logarithmes,...) et présente
éventuellement un nombre infini de points d’intersection avec une droite quelconque.
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FIGURE 10.4 — Exemple de surface transcendante ( z = sinx + cosy).
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10.2 Interprétation d’équations particuliéres

Si I'équation F'(x,y, z) = 0 se réduit a une expression du type F(z) = 0 dans R3, Pinterprétation
physique qu’on peut en faire est que les points de cette entité géométrique ont des coordonnées
x et y totalement libres alors que les valeurs de z admises sont celles qui vérifient ’équation
F(z) = 0. On se trouve donc en présence de la définition de plans paralléles au plan Ozy. 11y
aura autant de plans que de racines de I’équation F(z) = 0 (par exemple, F(z,y,2) = 22—4 =0
définit deux plans d’équation z=2 et z=-2, figure 10.5).

T D
<

. FIGURE 10.6 — Surface cylindrique
FIGURE 10.5 —~ Plans définis par d’équation F(z,y,2) = (x—2)2+ (y—2)? —
F(z,y,z) =2>—4=0. 4= 0.

Les équations du type F(z,y,2) = 0 dans R? ne présentant pas la coordonnée z peuvent étre
interprétées comme définissant des surfaces pour lesquelles la relation entre x et y est vérifiée
quelle que soit la coordonnée z. Il s’agit donc de I'expression de surfaces pour lesquelles une
courbe définie dans Oxy par F(z,y) = 0 est extrudée parallélement a 'axe z, on parle de
surface cylindrique (ou surface extrudée en CAO) dont la directrice est la courbe plane définie
par F(z,y) = 0). Par exemple, I'équation implicite F(z,y,2) = (z —2)> + (y —2)* =4 =0
définit un cylindre circulaire de rayon 2 et d’axe paralléle a l'axe z (figure 10.6).

10.3 Quadriques

Les quadriques peuvent étre vues comme la généralisation des coniques dans R3. Il s’agit de
surfaces définies par l'intermédiaire d'une équation quadratique qui a la forme générale :

F(z,y,2) = Ax®> + By? + C2* + 2Dxy +2Ex2 + 2Fyz + G + Hy + 12+ J =0  (10.1)

On peut également exprimer cette équation sous la forme suivante :

T T A D FE T G T T
Y -\ D B F|-{ vy +< H Ry »+J=0 (10.2)
z E F C z I z
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Comme dans le cas des coniques, les termes contenant des produits croisés (xy, zz et yz)
peuvent étre éliminés par un changement de repére pour se retrouver sous une forme qui ne
fait plus apparaitre que des termes en z, y, z et leurs carrés. La recherche de ce changement de
repére qui permet de diagonaliser la matrice sort du cadre de ce cours. Nous nous contenterons
d’étudier la forme des différentes quadriques a partir de leur équation réduite. Cette équation
est de la forme

F(z,y,2) = A2’ + By’ + C'? + Do+ Ely + F'2+ G' =0 (10.3)

A ce stade, trois cas de figure sont possibles :
— La fonction implicite ne fait apparaitre que des termes en z (ou en y ou en z), I’équation
décrit alors un ensemble de plans comme expliqué au § 10.2;
— la fonction implicite ne fait pas apparaitre de terme en z (ou en z ou en y), ’équation
décrit alors une surface cylindrique dont la base est une conique (figures 10.7 & 10.9) ;
— la fonction implicite contient des termes en x, y et z, il s’agit d’'une quadrique au sens
propre du terme (décrites au § 10.3.1).

FIGURE 10.8 — Surface 2CyliI12dr1<Jllle a base FIGURE 10.9 — Surface cylindrique & base
elliptique (F(z,y,2) =5 +% —1=0). parabolique (F(x,y,2) =y — 2? = 0).
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10.3.1 Formes propres de quadriques

Suivant le méme principe utilisé pour l'identification des coniques, I’équation 10.3 peut étre
réorganisée pour regrouper les termes en x, y et z sous forme de produits remarquables. Sous
cette forme, on peut distinguer les six familles de quadriques propres :

(z — ZIUC)2 (y — yc)2 (z — 20)2

— Uellipsoide F(z,y,z) = " + 7 + 3 —1=0;
(z—zc)  (W—yo) (z2—2)
— P’hyperboloide a une nappe F(z,y,z2) = > + 72 — > —1=0;
(x—zc)®  (w—yo) (2—z)°
— T’hyperboloide a deux nappes F(x,y, z) = 5 - B — 5 +1=0;
a c
2 2
— le paraboloide hyperbolique F(z,y,z) = (z ZCC) _ W bzyc) —(z—2¢) =0;
a
2 2
— le paraboloide elliptique F(z,y, z) = (& azxs) + (y b2y5) — (2 — 25) = 0;
(x—zs) | (W—ys) (z2—29)°
— le cone a base elliptique F(z,y, 2) = 5 + 5 — = =0;

Nous allons briévement décrire ces six types de surfaces dans les paragraphes suivants.

10.3.1.1 Ellipsoide
L’ellipsoide (figure 10.10) est une surface dont ’équation cartésienne a la forme suivante :

_ (z — xc)Q (y — yc)2 (z — 20)2 _
Fla,y2) = ——F5—+~F —+—F3 ——1=0 (10.4)

La surface est centrée au point de coordonnées (¢, yc, z¢). L'intersection de cette surface avec
un plan paralléle aux plans coordonnés donne une ellipse. En particulier, I'intersection avec un
plan paralléle aux axes passant par le centre de ’ellipsoide donne une ellipse dont les axes sont
définis par a,b ou c.

Sia, b et ¢ sont égaux, on retrouve 1’équation d’une sphére.

10.3.1.2 Hyperboloide a une nappe

L’hyperboloide & une nappe (figure 10.11) est une surface dont I’équation cartésienne a la forme
suivante : ) ) )
(r—zc)” | W—yc)  (2—zc)
F(z,y,2) = o -+ 72 — 2 —1=0 (10.5)
Son intersection avec des plans perpendiculaires & Oz donne des ellipses ; son intersection avec
des plans perpendiculaires & Oz ou Oy donne des hyperboles.

10.3.1.3 Hyperboloide & deux nappes

L’hyperboloide & deux nappe (figure 10.12) est une surface dont ’équation cartésienne a la
forme suivante :

_ (z — $0)2 (y — yc)2 (z — 20)2 _
F(‘xa Y, Z) - a2 + b2 o 2 +1=0 (106)

Son intersection avec des plans perpendiculaires & Oz donne des ellipses ; son intersection avec
des plans perpendiculaires & Oz ou Oy donne des hyperboles.
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F1GURE 10.10 — Ellipsoide. FIGURE 10.11 — hyperboloide & une nappe.

10.3.1.4 Paraboloide hyperbolique

Le paraboloide hyperbolique (figure 10.13) est une surface dont I’équation cartésienne a la

forme suivante : ) )

Son intersection avec des plans perpendiculaires & Oz donne des hyperboles; son intersection

avec des plans perpendiculaires a Ox ou Oy donne des paraboles.
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FIGURE 10.12 - hyperboloide & deux
FIGURE 10.13 — Paraboloide hyperbolique.

nappes.

10.3.1.5 Paraboloide elliptique
Le paraboloide elliptique (figure 10.14) est une surface dont I’équation cartésienne a la forme

suivante : ) )
(z —xs) (y — ys)

F(z,y,2) = ot (z—25)=0 (10.8)

Son intersection avec des plans perpendiculaire & Oz donne des ellipses ; son intersection avec

des plans perpendiculaires & Oz ou Oy donne des paraboles.

10.3.1.6 Cone a base elliptique
Le paraboloide elliptique (figure 10.15) est une surface dont I’équation cartésienne a la forme
2 2 2

suivante :
(
F(l’,y, Z) = a2 + b2 - 2
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Son intersection avec des plans perpendiculaire & Oz donne des ellipses ; son intersection avec
des plans perpendiculaires & Ox ou Oy donne des paraboles.

[ /7
SO 72
AT 7775405
RSS2
RS A5
N

N1

FIGURE 10.14 — Paraboloide elliptique. FIGURE 10.15 — Cone elliptique.

10.4 Méthode d’obtention de I’équation cartésienne de

surfaces

Dans le cadre de ce cours, nous verrons diverses méthodes permettant de générer les équations
d’une surface quelconque. De maniére générale, on peut citer :

— L’utilisation d’une condition géométrique (exemple au §15.3.1 page 208);

— la génération d’une surface par extrusion d’une courbe le long d’une direction ;

— la génération d’une surface par rotation d’une courbe autour d’un axe;

)
— la génération d’une surface par ligne (la surface est obtenue par un ensemble de courbes
définies par des conditions particuliéres)

— la génération d’une surface par points.
Nous verrons différents exemples pour chacun des types de surfaces précédemment mentionnés.
11 faut noter que ces catégories ne sont pas exclusives entre elles. Un cylindre circulaire droit peut
par exemple étre généré par l'extrusion d’un cercle perpendiculairement au plan le contenant

ou par la révolution d’une droite autour d’un axe.
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10.4.1 Extrusion d’une courbe le long d’un axe

Comme vu au § 10.2, 'obtention des équations d’une surface cylindrique dont ’axe est paralléle
aux axes du repére s’obtient de maniére simple. Lorsque la figure est orientée de maniére
quelconque (figure 10.16), il est possible de passer par 'intermédiaire d'un changement de
repére ou via une combinaison de matrices de transformation pour obtenir I’équation finale de
la surface. Un exemple de résolution est proposé au §15.3.3 page 210.

57

FIGURE 10.16 — Obtention des équations cartésiennes d’une surface extrudée par changement
de repére.

10.4.2 Surface de révolution
10.4.2.1 Reévolution autour d’un axe du repére

Soit une surface engendrée par la révolution d’une courbe plane définie dans le plan Oyz autour
de laxe Oz. La courbe décrivant le profil de la surface est une courbe de R? dans le plan Oyz
qui peut étre décrite par son équation cartésienne de la forme F(y, z) = 0.

Si on considére cette courbe ayant subi une rotation d’angle 6 autour de l'axe Oz, sa forme
n’a pas été modifiée par la rotation, I’ensemble de ses points vérifie donc encore 1'équation
cartésienne de la courbe, si on considére non plus la coordonnée y mais la distance entre
I’axe de rotation et le point de la courbe considéré. Ce rayon peut se calculer aisément par
r = y/2? + y?. On peut donc en déduire qu’une surface de révolution autour de I'axe Oz peut
étre exprimeée sous forme d’une fonction implicite en reprenant 1’équation implicite décrivant la
courbe de base et en remplagant dans cette expression la coordonnée y par la racine carrée de
la somme des carrés des coordonnées x et y :

F(/a2+42,2) =0 (10.10)

Par permutation circulaire, on peut établir que :
— une surface de révolution autour de 'axe Ox est décrite par une équation implicite de

la forme f(y/y?+ 22,2) =0;

— une surface de révolution autour de 'axe Oy est décrite par une équation implicite de

la forme f(va?+ 22,y) =0;

L’exemple d’un tore est présenté au §15.3.4 (page 215).
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FIGURE 10.17 — Figure de révolution.

10.4.2.2 Reévolution autour d’un axe quelconque

Si 'axe de révolution n’est pas confondu avec un des axes du repére, on procede alors par
transformation ou changement de repére comme illustré au § 10.4.1.

10.5 Surfaces réglées

Une surface réglée est par définition une surface engendrée par une droite (appelée génératrice)
qui évolue selon une loi déterminée (figure 10.18). Ce type de surfaces rencontre un grand
succeés dans la réalisation d’objets physiques car elles peuvent étre matérialisées de maniére
relativement simples (figure 10.19).

Considérons une droite quelconque comme l'intersection de deux plans perpendiculaires aux
plans coordonnés :

r—az— =0
{ y_vz_fzo (10.11)

Il s’agit d’un systéme de deux équations a trois inconnues et quatre parameétres. Il est donc
nécessaire d’imposer trois relations complémentaires pour obtenir une surface unique. Ces
relations seront la traduction de considérations géométriques :

— la génératrice s’appuie sur trois directrices (ou courbes guide) ;

— la génératrice s’appuie sur deux directrices et reste paralléle & un plan (plan directeur) ;
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FiGure 10.19 -~ Tour de
refroidissement de la centrale
FIGURE 10.18 — Hyperboloide comme surface réglée. électrique de Drogenbos.

— la génératrice s’appuie sur une directrice et reste paralléle & deux plans directeurs;
— la génératrice reste paralléle & deux plans directeurs et reste tangente a une surface
(noyau) ;

— la génératrice s’appuie sur une directrice et reste tangente a deux noyaux;

— la génératrice reste tangente a trois noyaux;
L’expression mathématique de ces relations permet d’écrire trois relations liant les paramétres
entre eux pour permettre d’obtenir un systéme de cing équations contenant quatre parameétres,
ce qui permet au final d’obtenir les équations de la surface réglée

10.5.1 Recherche des équations exprimant les contraintes sur les
génératrices d’une surface réglée

10.5.1.1 Condition d’appui des génératrices sur une ligne

Si une génératrice s’appuie sur une directrice, il existe un point d’intersection entre cette ligne
et la génératrice. Le systéme formé des équations des génératrices (systéme d’équation 10.11) et
des équations de la courbe doit admettre une solution. Un tel systéme est de la forme suivante
(dans le cas de 'emploi des équations cartésiennes de la ligne) :

r—az—0F=0
y—vz—0=0
Fl(a.p.7) = 0 (10.12)
F2(z,y,2) =0

C’est-a-dire un systéme de quatre équations a trois inconnues (z,y et z). Le systéme
sera compatible si une équation est combinaison linéaire des trois autres. Pour obtenir
cette condition, il faut exprimer une relation dans laquelle z, y et z ont été éliminés a
partir du systéme. Cette relation (dépendant uniquement des paramétres) est la condition
de compatibilité du systéme, c’est-a-dire 'expression mathématique de l’existence d’une
intersection entre la courbe et les génératrices.
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10.5.1.2 Condition de parallélisme & un plan

Les conditions de parallélisme entre une droite et un plan ont été rappelés au § 17.7; il faut
noter que si une droite est paralléle a deux plans, son vecteur directeur est donné de maniére
immédiate par un vecteur directeur de 'intersection entre les deux plans (figure 10.20).

FIGURE 10.20 — Droite paralléle a deux plans donnés.

10.5.1.3 Condition de tangence a une surface

La condition de tangence a une surface s’exprime en vérifiant les conditions qui conduisent
a l'existence d’une solution unique pour l'intersection entre la surface et les génératrices. Le
systéme est de la forme :

r—az—pF=0
y—yz2—06=0 (10.13)
F(z,y,2) =0
Les deux premiéres expressions donnent directement :
r=az+f
10.14
{ y="vz+9 ( )

qui peuvent étre réinjectées dans la derniére relation pour obtenir une équation a une seule
inconnue (z). Il suffit ensuite d’établir la relation entre les paramétres pour obtenir une solution
unique a cette équation qui donne I'expression analytique de la condition de tangence entre la
surface et les génératrices.

10.6 Surfaces coniques

Par définition, une surface conique est une surface engendrée par une droite variable
(génératrice) passant par un point fixe (sommet) et se déplagant selon une loi géométrique
donnée (figure 10.21), il s’agit d’un cas particulier de surface réglée.

Le sommet d’une surface conique peut étre considéré comme étant I'intersection de trois plans
distincts 7y, m et 3 (définis par des relations F1(z,y, z) = 0, F2(x,y,z) = 0 et F3(x,y,2) = 0).
Comme les génératrices d'un cone passent nécessairement par son sommet, les deux plans 7y
et 75 passant respectivement par l'intersection i de 7 et de my et j de m; et de 73. Or, 71 et 7o
forment un faisceau, ce qui signifie que 7, peut étre exprimé comme une combinaison linéaire
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FIGURE 10.21 — Exemple de surface conique.

des équations de 7 et my. Le méme raisonnement peut étre suivi pour les équations de 5. Toute
génératrice passant par le sommet S peut donc s’exprimer par le systéme formé des équations :

F4=F2—AF1 = 0 (10.15)
F5=F3—uFl = 0 (10.16)

Il suffit d’imposer une relation entre les deux parameétres pour définir une surface unique. Cette
relation est de la forme ¢(\, 1) ou encore :

F2 F3
é <ﬂ’ ﬁ) —0 (10.17)

Cette relation définit une fonction homogéne par rapport aux fractions % et % (ce qui signifie
que la fonction est toujours vérifiée méme si on multiplie les fonctions par une constante. On peut

donc considérer cette relation comme une fonction homogéne de la forme ¢(F'1, F2, F3) = 0.
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Chapitre 11

Représentation vectorielle et
paramétrique de surfaces

No. There is another.

- Yoda, The empire strikes back

11.1 Introduction

La représe_nt)ation vectorielle d’une surface de R? consiste a rechercher une relation vectorielle
de type OM = V (u,v) qui détermine le vecteur liant l'origine a ’ensemble des points de la
surface par 'intermédiaire de deux parameétres. Au sens mathématique du terme, il s’agit d’une
application qui, & tout point d’un domaine de R? défini par (u,v), associe un point image dans
'espace R? (figure 11.1).

FIGURE 11.1 — Représentation vectorielle de surface.
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La projection de la fonction vectorielle sur les axes du repére donne accés aux équations
paramétriques de la surface qui sont de la forme :

(11.1)
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11.2 Formes classiques de paramétrisation de surfaces

Comme dans le cas de la représentation des courbes planes, le choix de la paramétrisation est
laissé libre. Il existe toutefois certaines formes rencontrées fréquemment en pratique comme les
coordonnées sphériques et cylindriques.

11.2.1 Emploi des coordonnées sphériques

Un des modes de paramétrisation classiquement rencontrés est 'utilisation des coordonnées
sphériques (0, ¢) avec 6 représentant I’angle entre le plan vertical contenant le vecteur 57\7
et un plan coordonné (par exemple Oxz) et ¢ représentant l’angle entre ce vecteur et le plan
Ozy (figure 11.2). Ce type de coordonnées permet de représenter les surfaces dont la topologie
s’approche de celle d’une sphére.

FIGURE 11.2 — Coordonnées sphériques. F1GURE 11.3 — Coordonnées cylindriques.

La recherche des équations paramétriques d’une sphére centrée en l'origine en employant ce
type de paramétrisation consiste a considérer que pour toute valeur de ¢ (variant de —7/2 a
7/2), on décrit un cercle sur la sphére par une variation de 6 entre 0 et 27. Les cercles considérés
(paralléles) sont situés dans un plan a une altitude valant R sin ¢ et ont un rayon valant R cos ¢.
Les équations paramétriques de la sphére peuvent donc s’écrire :

x = Rcos¢cost
y = Rcos¢sind (11.2)
z = Rsin ¢
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En éliminant les deux parameétres entre ces trois relations, on obtient de maniére immédiate
I’équation cartésienne de la sphére :

2® +y* = R?cos® ¢ (cos® 0 + sin® ) = R* cos® ¢ (11.3)
32 — R2 sjn2 ¢ (114)
AR (115)

11.2.2 Coordonnée cylindriques

Pour la représentation de surfaces cylindriques (ou extrudées) dont I'axe est paralléle a 1’axe
Oz, nous avons vu précédemment que la représentation cartésienne de la surface se réduisait
a une fonction du type F(x,y,z) = 0 ne faisant pas intervenir le paramétre z. Cela signifie
pratiquement qu’il existe une relation entre = et y indépendamment de la coordonnée z. Dans
R?, cette relation F(z,y) = 0 représente la forme cartésienne de la courbe servant de base
a la forme cylindrique. Les coordonnées cylindriques considérent donc deux parameétres (6, k)
tels que 6 soit le parameétre utilisé pour établir les équations paramétriques de la surface de
base (angle entre le plan vertical contenant le vecteur OM et le plan Oxz pour le cercle) et
k représentant la coordonnée z du point de la surface (figure 11.3). En employant ce type de
paramétrisation, les équations paramétriques d'un cylindre a base circulaire de rayon R centré
cur I'axe Oz peuvent s’écrire :

z = Rcost
y = Rsinf (11.6)
Z=K

On vérifie qu’en éliminant les parameétres dans le systéme d’équations, on retrouve bien
I’équation cartésienne de la surface :

2* +y* = R? (cos® 0 + sin®§) = R (11.7)

Qui correspond a la forme classique d’une surface cylindrique dont I'axe est paralléle a ’axe
Oz (I’équation cartésienne ne comporte pas de terme en z).

11.3 Représentation paramétrique des quadriques

Ce chapitre présente les paramétrisations permettant de définir les quadriques dont les équations
cartésiennes ont été établies au § 10.3.1. Il y a une correspondance directe entre les termes
présentes dans ces équations et la forme utilisée pour représenter leurs équations cartésiennes
(a dans les équations paramétriques de la surface ellipsoide a la méme signification que a dans
I'équation cartésienne présentée précédemment).

Ellipsoide Hyperboloide & une nappe
Tr=2Zc+a-cosu-cosv r=2xc+a-coshu-cosv
Yy=1vyc+0b-cosu-sinv Yy =19yc +b-coshu-sinv
z=zc+c-sinu z=2zc+c-sinhu
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FIGURE 11.4 — Ellipsoide. FIGURE 11.5 — Hyperboloide a une nappe.

Hyperboloide a deux nappes Paraboloide hyperbolique

T =xc+a-sinhu-cosv r=zc+a-u
y=yc+0b-sinhu-sinv y=yc+b-v
z = z¢ + *c- coshu 2= z0+ (U2 —v?)
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FIGURE 11.6 — hyperboloide a deux nappes. FIGURE 11.7 — Paraboloide hyperbolique.

Paraboloide elliptique ~ Cone a base elliptique

x:xg—i—a-\/ﬂcosv T =g+ aucosv
y=1ys+b-\/usinv Yy =1ys + businv
Z=2zg+tu z=2z5+cu
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FIGURE 11.8 — Paraboloide elliptique. FIGURE 11.9 — Cone elliptique.
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11.4 Représentation vectorielle et paramétrique des
surfaces de révolution

Soit une courbe plane dessinée dans le plan frontal donnée par ses équations paramétriques.
Pour obtenir les équations paramétriques de la surface de révolution autour de ’axez Oz, un
choix naturel des paramétres (figure 11.10) serait :
— 0 qui représente ’angle entre le plan contenant une section de la surface et le plan dans
lequel est dessiné la courbe de base;
— le paramétre ¢ employé pour décrire la courbe plane dans le plan frontal.

FIGURE 11.10 — Paramétrisation pour une forme de révolution.

La forme générale des équations paramétriques d’une surface de révolution autour de l'axe Oz

est donc :
x = f1(¢)sinf
y = f1(¢) cosb (11.8)
z = f2(¢)

Si on souhaite obtenir la surface de révolution autour de I'axe Oy, les équations deviennent :

x = fo(p) cosd
y = f1(®) (11.9)
z = fo(p)sind

Par permutation circulaire, on trouve la forme générale des équations paramétriques d’une
surface de révolution autour de I'axe Ox
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11.5 Représentation vectorielle et paramétrique de
surfaces réglées

Comme présenté sous la forme cartésienne, une surface réglée est constituée d'une infinité
de droites (génératrices) auxquelles on impose trois contraintes géométriques pour qu’elles
forment une surface unique. Dans le cadre de ce cours, nous ne considérerons que trois types
de contraintes qui peuvent se combiner :

— toutes les génératrices sont sécantes avec une courbe (courbe guide ou directrice) ;

— toutes les génératrices sont paralléles a un plan (plan directeur) ;

— toutes les génératrices sont tangentes a une surface (noyau).
Pour obtenir les équations paramétriques d’'une surface réglée, on commence par écrire les
équations paramétriques générales d’une droite :

r=xp+ AV,
y=yp+ AV, (11.10)
z=zp+ AV,

Avec P(zp,yp,zp) un point et V(Vx,Vy,Vz) un vecteur directeur. Pour conserver le sens
physique, on va maintenir le paramétre A et essayer d’exprimer les coordonnées du point et
du vecteur directeur en fonction d’'un paramétre unique u :

z=xp(p) + AVa(p)
y =yp(n) + AV, (1) (11.11)
z=zp(p) + AVz(p)

Les lignes coordonnées a p = cste sont donc l'ensemble des génératrices de la surface

réglée (figure 11.11). Généralement, la résolution est plus simple en appliquant dans l'ordre
les condition de passage par une directrice, puis de parallélisme a un plan directeur, puis
de tangence & un noyau. Ces contraintes sont prises en compte mathématiquement comme
mentionné par la suite. De maniére générale, il est plus simple de traiter dans 'ordre suivant
les contraintes géométriques : d’abord les contraintes de passage par la ou les courbes guides,
puis le parallélisme au(x) plan(s) directeur(s) et finalement la tangence au(x) noyau(x)

FIGURE 11.11 — Lignes coordonnées sur une surface réglée.
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11.5.1 Prise en compte de la condition de passage par une directrice

S’il n’y a qu’une seule directrice, il suffit de remplacer les coordonnées du point P par les
équations paramétriques de la courbe directrice. Les équations 11.10 deviennent donc :

r=uxp(p)+ AV,
y =yp(p) + AV, (11.12)
z=zp(p) +AV;

S’il y a deux directrices, il faut en plus exprimer le vecteur 7 comme un vacteur joignant
un point de la premiére courbe (exprimé selon ses équations paramétriques) et un point de
la seconde courbe (lui aussi exprimé sous forme paramétrique. Les équations 11.10 deviennent
donc :

xp(p) + AVa(p, v)
yp(p) + AVy(p, v) (11.13)
zp(p) + AVa(p, v)

x
Y
z

S’il y a trois génératrices, il faut exprimier le fait qu’il y nécessairement a un point d’intersection
entre la surface et cette troisiéme génératrice. Mathématiquement parlant, cela signifie que le
systéme forme des équations 11.13 et des équations de la troisiéme génératrice est compatible :

(v =ap(p) + A\Va(p,v)

v — f1(w) (11.14)
y = f2(w)
| 2= f3(w)

11.5.2 Prise en compte de la présence d’un plan directeur

Exeprimer que toutes les génératrices sont paralléles a un plan directeur revient a exprimer
que le produit scalaire entre le vecteur directeur des génératrices et le vecteur normal au plan

s’annule :
V.N=0 (11.15)

Cette relation donne une équation algébrique permettant d’éliminer un parameétre dans le
systéme 11.10.

11.5.3 Prise en compte de la présence d’un noyau

Exprimer due toutes les génératrices sont tangentes & un noyau défini par une équation
cartésienne F'(x,y,z) = 0 revient a exprimer que le systéme regroupant les équations de la
surface réglée et I’équation du noyau présente une racine multiple :

x=xp(p) + AVa(p,v)

) (119
F(z,y,2) =0

En pratique, on résoud le systéme d’équation pour faire apparaitre une équation ayant A comme
variable et on recherche les conditions d’apparition de racines multiples. Dans le cas de ce cours,
nous nous limiterons au cas d’'un noyau qui est une quadrique, I’équation sera donc du deuxiéme
degré et possédera une racine double si son déterminant est nul.
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11.6 Représentation vectorielle et paramétrique de
surfaces coniques

Pour rappel, une surface conique est une surface réglée particuliere puisque toutes ses
génératrices passent par un point unique appelé sommet. Sa fonction vectorielle est

A

FIGURE 11.12 — Exemple de surface conique.

nécessairement de la forme :

V =08 + ASP(u) (11.17)

II suffit donc de déterminer les coordonnées d'un vecteur directeur (fonction d’un seul
parameétres) pour reconstituer les équations paramétriques d'une surface. Cela passe par
I’application des conditions de passage par une courbe directrice ou de tangence a un noyau
décrites précédemment. La condition de parallélisme a un plan directeur n’a pas de sens
puisqu’elle conduit & la définition d’un plan (ensemble de droites passant par un point et
paralléles a un plan.

Références

[1] Y. Durand. Géométries et Communication Graphique : Tome IV : Géométrie Analytique et
Vectorielle, Partie 4, section 2 : Méthodes Vectorielles et Paramétriques de Représentation
d’une Surface. Mutuelle d’édition FPMs, 2008-2009.
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CHAPITRE 12. ANALYSE DES COURBES SPATIALES

Chapitre 12

Analyse des courbes spatiales

Roads ? Where we’re going we don’t need roads

- E. Brown, Back to the future

12.1 Représentation cartésienne de courbes spatiales

La représentation cartésienne de courbes spatiales se fait en considérant qu’une courbe spatiale
est l'intersection de deux surfaces. La réunion des équations cartésiennes des deux surfaces
permet la définition de la courbe sous la forme :

Fl(z,y,2) =0
{ F2(:c,zgj,z) =0 (12.1)

FIGURE 12.1 — Equations cartésiennes d’une courbe.
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De maniére générale, deux surfaces peuvent se couper selon une ou plusieurs courbes; prenons
I’exemple suivant :

{ Fl(z,y,z)=2*+y*+22—4=0

F2(z,y,2) = (x4 2.)" +1>—1=0

(12.2)
On reconnait les équations d’une sphére centrée en 'origine de rayon 2 et d’un cylindre a base
circulaire d’axe paralléle & Oz de rayon 1. Suivant la valeur de ., on peut avoir :
— deux courbes d’intersection si |z.| < 3;

— une seule courbe d’intersection si |z.| = 1
— aucun point commun si |x.| > 3

-1

-2

FIGURE 12.2

Intersection entre un
cylindre et une sphére

FIGURE 12.3
. cas 2.=0 (deux
cercles d’intersection).

Intersection entre un
cylindre et une sphére : cas z.=1 (Courbe
de Viviani).

N
T

FIGURE 12.4 — Intersection entre une sphére et un cylindre : cas x.=4 (pas d’intersection).

Lorsque z. vaut zéro, le cylindre coupe la sphére selon deux cercles, ce qui prouve qu’il est
possible d’obtenir une courbe d’intersection plane entre deux corps ronds.
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Pour étudier la morphologie de surfaces, deux possibilités classiques existent : étudier leur
intersections avec un ensemble de plans pour faire apparaitre un réseau de courbes sur la
surface ou les projeter sur les plans coordonnés afin d’en faire les plans techniques.

12.1.1 Intersection d’une surface avec un plan

L’intersection d’une surface avec un plan donne logiquement une courbe plane. Si le plan est
paralléle & un plan coordonné, on parlera de courbes de niveaux de la surface. Dans le cas
contraire, des opérations de transformation homogéne (ou de changement de repeére) seront
nécessaires. La représentation d’'un ensemble de telles courbes permet de visualiser le "squelette’
de la surface et donc de s’en représenter l'allure générale.

12.1.1.1 Courbes de niveaux

Dans le cas particulier de I'intersection d’une surface avec un plan paralléle au plan Ozy, la

courbe a pour équations :
F(z,y,2) =0
{ L (12.3)

ou k est une constante. Par combinaison linéaire, on peut transformer simplement le systéme

en sa variante : ( "
F(z,y,k)=0
{ L (12.4)

qui représente l'intersection d’une surface cylindrique d’axe Oz (donné par une équation
cartésienne dans laquelle la coordonnée z n’intervient pas) par un plan qui est perpendiculaire
a son axe. Comme présenté au §10.2, si ces deux conditions sont remplies, ’équation cartésienne
de la surface cylindrique a la méme expression que I’équation cartésienne de la courbe de base
dans le plan z = k. On peut donc par cette méthode retrouver une équation cartésienne 2D
(F(x,y) = 0) de la courbe plane pour ensuite I’étudier avec les méthodes classiques d’analyse
2D.

La figure 12.5 présente le cas simple de 'intersection entre un cone et un plan horizontal. La
courbe d’intersection a pour équations :
2 2 2
{ ix_—Ql) +(y—-27"-%=0 (12.5)

Ce systéme peut également s’écrire

{ ix:—21)2 +(y—2°-0,5=0 (12.6)

Qui représente l'intersection d’un cylindre d’axe Oz dont la base est un cercle de rayon /0,5
avec un plan horizontal. On a les deux conditions remplies (cylindre d’axe paralléle & un axe du
systéme de coordonnées et plan perpendiculaire a cet axe), on peut donc dire que ce systéme
est équivalent & une courbe dessinée dans le plan z = 2 dont 1’équation cartésienne est :

fley)=@@-1>4+@y—-2%-0,5=0 (12.7)
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FIGURE 12.5 — Exemple de 'intersection entre un cone et un plan. 163
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L’emploi de courbes d’intersection avec des plans perpendiculaires & Oz est d’emploi fréquent
pour 'analyse des variations de fonctions de deux variables (optimisation) ou pour I’étude du
relief sur des cartes (on parle alors de courbes de niveaux).
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FIGURE 12.7 — Courbes de niveau sur un
paraboloide hyperbolique projetées sur le
plan Oxy.

FIGURE 12.6 — Courbes de niveau sur un
paraboloide hyperbolique.

La décomposition en lignes tracées dans des plans paralléles n’est pas nécessairement le meilleur
choix dans le cas de surfaces de révolution (figure 12.8). Dans ce cas, il est préférable d’établir
les intersections entre la surface et un faisceau de plans convergeant a l'axe de rotation de la
surface (figure 12.9).

-1

FIGURE 12.8 — Lignes coordonnées d’une
sphére (coordonnées cartésiennes).

-1

2

FIGURE 12.9 — Lignes coordonnées d’une
sphére (coordonnées sphériques).

12.1.1.2 Etude de courbe plane résultant de l’intersection d’une surface avec un
plan quelconque

Dans le cas ou le plan n’est pas perpendiculaire & un des axes, les équations cartésiennes de la
courbe plane sont de la forme :

F(z,y,2) =0
{ax+by+cz—l—d:0 (12.8)

Cette forme n’est pas directement exploitable pour revenir & l’expression d’une courbe 2D. Il
faut au préalable opérer un changement de repére (ou utiliser des transformations homogénes)

164



CHAPITRE 12. ANALYSE DES COURBES SPATIALES

pour appliquer la procédure d’analyse des courbes de niveau. L’objectif du changement de
repére est de se mettre dans une nouvelle configuration pour laquelle I'un des axes du nouveau
systéme de coordonnées (par exemple z’) est aligné avec la normale au plan.

FIGURE 12.10 — Exemple de I'intersection entre une sphére et un plan quelconque.

Dans cette configuration, le systéme d’équations devient :

'y, 2)=0
{ Z,<: ky ) (12.9)

La procédure vue a la section précédente peut alors étre suivie.

12.1.2 Projection sur les plans coordonnés

Pour déterminer les projections orthogonales d'une courbe sur les plans coordonnés, on utilise la
notion de contour apparent. La courbe est considérée étre la directrice d'une surface cylindrique
dont les génératrices sont perpendiculaires au plan coordonné (figure 12.11).

Les équations cartésiennes de ces cylindres sont obtenues en éliminant les termes en = (ou en y
ou en z) entre les équations cartésiennes de deux surfaces pour obtenir la surface cylindrique
perpendiculaire & Oyz (ou a Ozz ou & Oxy). Par exemple, pour trouver la projection frontale
du cercle suivant :

2 2 2 _ 1 _
{:c+y +22-1=0 (12.10)

r+y+2—-—1=0
Il faut, par combinaisons linéaires, obtenir les équations d’un cylindre d’axe perpendiculaire a

Oz. Cela peut se faire en tirant = 1 — y — 2 de la seconde équation et de substituer x par
cette expression dans la premiére équation :

{ (1—y—z)2+y2—i—z2—1:O—>z2+y2—yz—y—z:O

12.11
r+y+z—1=0 ( )
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FIGURE 12.11 — Cylindres projetants d’une sphére.

La premiére équation du systéme représente le cylindre projetant de la courbe sur le plan
frontal. La projection frontale de la courbe est donc donnée par 'intersection de ce cylindre
projetant avec le plan frontal, c’est a dire :

Ay —yz—y—2=0
{sz (12.12)

Ou encore selon f(y,2) =22 +y? —yz —y— 2= 0.

Si on souhaite obtenir une construction points par points d’une courbe donnée sous forme
cartésiennes, on peut procéder comme suit :
— Rechercher les cylindres projetant de la courbe perpendiculairement a deux des axes
coordonnés (Oy et Oz par exemple) ;
— procéder un tracé points par points (c’est a dire fixer une des coordonnées, = pour cet
exemple, et rechercher les racines des fonctions f(y) et f(z)) des deux courbes;
— reporter les coordonnées z, y et z des points obtenus.
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12.1.3 Contréle du caractére plan d’une courbe donnée par ses
équations cartésiennes

Comme nous avons pu le présenter dans l'introduction de ce chapitre, une courbe plane peut
étre obtenue par l'intersection des deux surfaces qui ne sont pas elles-mémes planes. Il est
intéressant de pouvoir déterminer si une courbe est plane a partir de ses équations cartésiennes
ce qui permet, si ¢’est le cas, d’étudier cette courbe plane comme une fonction & deux variables
comme expliqué au § précédent.

Considérons la courbe définie par ses équations cartésiennes :

(Pl 1219

Pour opérer la vérification du caractére plan de la courbe, il suffit de vérifier qu’il est possible
d’obtenir I’équation d’un plan par combinaison linéaire des équations des deux surfaces décrivant
la courbe, c’est-a-dire d’obtenir une équation linéaire en x, y et z. Dans ce cas, le systéme
d’équation 12.13 est équivalent a :

F3(z,y,2) = aF1(z,y,2) + 8F2(z,y,2) =ar + by +cz+d =0 ’

Ce systéme peut s’interpréter comme l'intersection de la surface 1 avec un plan, on a donc
effectivement une courbe plane.
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12.2 Fonction vectorielle et paramétrique d’une courbe
spatiale

Une deuxiéme méthode de définition d’une courbe de 'espace est de décrire la position d’un
point P variable sur la courbe sous la forme d’une fonction vectorielle & un paramétre :

0P =V (p) (12.15)

qui est la fonction vectorielle de la courbe. Le paramétre p peut étre choisi de maniére
quelconque. Une paramétrisation classique pour le suivi de trajectoires spatiales est 'emploi
d’un paramétre temporel.

FIGURE 12.12 — Equation vectorielle de courbe spatiale.

La projection de I’équation vectorielle d’une courbe sur les axes du repére donne acces a ses
équations paramétriques :

x = x(t)
y=y(t) (12.16)
z = z(t)

Cette méthode est fréquemment rencontrée pour décrire le mouvement d’un mobile soumis a
un champ de force ou ayant un mouvement composé. On peut par exemple citer le mouvement
hélicoidal qui est la superposition de deux mouvements élémentaires : une rotation a vitesse
constante autour d'un axe (Oz par exemple) et une translation le long de cet axe.

Ce mouyement est décrit par un rayon R et un pas p (distance parcourue le long de 'axe pour
chaque tour effectué)(figure 12.13).
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FIGURE 12.13 — Hélice cylindrique.

Les équations cartésiennes de cette courbe sont obtenues associant les équations du mouvement
circulaire (pour z et y) et du mouvement de translation (pour z), ce qui donne :

xr = Rsinf
y = Rcosf (12.17)
z=£0

La fonction vectorielle de la courbe est simplement exprimée par :

7(6’) — Rsin0, + Rcos 0, + 23872 (12.18)
7r
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12.2.1 Notion de lignes coordonnées

Comme nous venons de le voir, la représentation de surfaces de R? sous forme paramétrique
implique 'utilisation de deux parameétres. En fixant la valeur de I'un d’entre eux et en faisant
varier l'autre, on décrit une ligne qui appartient & la surface appelée ligne coordonnée de la
surface. Ces lignes coordonnées peuvent étre utilisées comme moyen de représentation de la
surface sous forme « fil de fer ». Elles peuvent prendre un sens physique si le choix de la
paramétrisation a été opéré de maniére judicieuse. Par exemple, les lignes coordonnées sur une
sphére décrite classiquement par ses coordonnées sphériques (cf § 11.2.1) présente des lignes
coordonnées qui représentent les méridiens et les paralléles tracés sur cette sphére (figure 12.14).
Le meéridien de longitude 60° (cercle situé dans un plan vertical) a pour expression

Parallele

Méridien

FIGURE 12.14 — Lignes coordonnées sur une spheére.

x = Rcos¢cosm/3 =0,5Rcos ¢
y = Rcos ¢sinm/3 = v/3/2cos ¢ (12.19)
z = Rsin¢

Le paralléle de latitude 45° (cercle situé dans un plan horizontal) a pour expression

xr = \/5/2Rcosﬁ
y =V/2/2Rsin 6 (12.20)
z = \/E/QR
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12.2.2 Obtention des équations paramétriques d’une courbe & partir
des équations des surfaces dont l’intersection donne la courbe

Si une courbe est définie par 'intersection de deux surfaces, ont peut formellement la décrire
par le systéme d’équations suivantes :

(2= f1(a, )
B
z = f3(a,

y =92\ p)

[ 2= 93(\ 1)

Il s’agit d’'un systéme de six équations a trois inconnues et a quatre paramétres (a, 3, A, pv).
Pour le transformer en une expression classique (trois équations a trois inconnues a un seul
paramétre), il est nécessaire d’éliminer du systéme trois des quatre paramétres. Pour ce faire,
on commence par exprimer que pour tout point de la courbe a des coordonnées x, y et z qui
vérifient a la fois les équations de la premiére surface et celles de la deuxiéme. On peut donc
extraire trois équations de la forme :

(e, B) = g1(A, )
f2(a, B) = g2(A, 1) (12.22)
f3(a, B) = g3(A\, )

On dispose donc de trois relations entre quatre parameétres. En exprimant un paramétre en
fonction des trois autres, puis en substituant cette valeur dans les équations paramétriques de
I'une des surfaces, on obtient les équations paramétriques de la courbe recherchée. Un exemple
est traité en §15.5.6 (page 228).

12.2.3 Controle du caractére plan d’une courbe donnée par ses
équations paramétriques

Le controle du caractére plan d’une courbe donnée par ses équations paramétriques peut
s’effectuer de deux maniéres différentes [1] :

— on vérifie que 'ensemble des points de la courbe vérifier ’équation d’un plan, ce qui
implique de trouver des valeurs de a, b, ¢ et d non tous nuls tels que a- fi(u) +b- fo(u)+
¢ f3(u) +d = 0 soit vérifié pour toute valeur du parameétre u;

— on transforme les équations paramétriques en équations cartésiennes (comme présenté
au § 12.2.4) et on vérifie s’il est possible d’obtenir une combinaison linéaire des équations
du systéme qui donne 1’équation d’un plan.

Un exemple résolu est présenté au §15.5.5 (page 227).
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12.2.4 Recherche des équations cartésiennes d’une courbe a partir de
ses équations paramétriques

Si les équations paramétriques d’une courbe sont données, il est possible de retrouver les
équations de deux surfaces dont l'intersection donne la courbe. Il suffit pour ce faire d’éliminer
le parameétre entre les équations paramétriques de la courbe. Les relations ainsi obtenues sont
des fonctions de z, y et z, c’est-a-dire I'expression cartésiennes de surface. L’ensemble des points
de la courbe sont inclus dans ces surfaces. Notons que si I’élimination des parameétres se fait
en considérant les équations paramétriques de la courbe deux a deux, on obtient des relations
qui ne contiennent que deux des variables parmi z, y et z. La courbe se présente alors comme
I'intersection de deux de ses cylindres projetant.

Prenons I'exemple de I'ellipse suivante :

xr =4+ 2cosb
y=3+2cos 6el02n] (12.23)
z=—H—2cosl

En éliminant le paramétre 6 entre les deux premiéres équations puis entre la premiére et la
troisiéme, on trouve les équations cartésiennes suivantes :

{ 5[,’x+_z4z 61@0_ D=0 e joon (12.24)

L’ellipse est donc l'intersection d’un cylindre circulaire d’axe paralléle & Oz et d’un plan de
profil (figure 12.15).

FIGURE 12.15 — ellipse inclinée.
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Chapitre 13

Géométrie différentielle des courbes
spatiales et des surfaces

La tangente a plus de puissance que la sécante

- V. Hugo, Tas de pierres

13.1 Tangente & une courbe spatiale

13.1.1 Tangente en un point régulier d’'une courbe spatiale

La détermination de la tangente & une courbe spatiale peut étre réalisée en étendant le concept
de tangentes a une courbe plane (cf § 8.3). En partant de la fonction vectorielle définissant une
courbe :

Viy=c)m+y®)a+z2()a (13.1)

FIGURE 13.1 — Sécante a une courbe 3D.
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Le développement de Taylor de cette fonction vectorielle autour du point t, s’écrit :

V(1) =V (ty) = @7 (to) + “‘2—,“)2‘7 (to) + - + (t_n—foylxﬁ (to) + Ry, (1, t0) (13.2)

avec
—>
. Rn (ta tO) -
lim =

Jim e = (13.3)

—
Le vecteur V. (t) — i (to) = MoM est aligné sur la sécante a la courbe passant par le point M
(figure 13.1).

Comme dans le cas 2D, la tangente est obtenue par le passage a la limite (t — to) de la sécante,
en divisant les deux membres de 'équation 13.2 par (¢ — to) :

}E?mii? o (‘7’<t0>+(t}—f0)1‘7<t0>+“'
n—1 =7
. . W<t0>+—Rgf’f’f“>> (13.4)

%
Tous les termes autres que V' (ty) s’annulent quand ¢ tend vers tg :

lim v (ti — z () _ 3 (to) (13.5)

ce qui signifie qu’un vecteur tangent a la courbe définie par sa fonction vectorielle en ¢y est
la dérivée premiére de cette fonction vectorielle calculée en ¢, si cette dérivée n’est pas le
vecteur nul. On parle dans ce cas de point régulier de la courbe. Comme dans le cas 2D, si la
dérivée premiére de la fonction vectorielle s’annule, on parlera de point singulier.

13.1.2 Notion de point singulier d’une courbe spatiale

Comme dans le cas de courbes 3D, si la dérivée premiére de la fonction vectorielle d'une courbe
s’annule en un point, on parle de point singulier. Un vecteur tangent a la courbe peut étre
obtenu en augmentant ['ordre de dérivation jusqu’a obtenir une dérivée d’ordre p de la fonction
vectorielle non nulle. Dans le cas de courbe spatiale, on peut faire la distinction entre deux types
de points singulier : les points dits de branchement (cf figure 13.2) et les points de rebroussement
(figure 13.3). La détermination du type de point singulier de courbe spatiale sort du cadre de
ce cours; elle est détaillée dans la référence[l].
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25
20
15

« 10

y 0 -10 M

FIGURE 13.2 — La courbe de fonction vectorielle 7(25) = 3., +t*-w, + (3 + t*) - u présente

un point singulier de branchement en 1’origine.

FIGURE 13.3 — La courbe de fonction vectorielle V(t) =12l 10 u_; + t® - Ul présente un
point singulier de rebroussement en 1’origine.

13.1.3 Equations de la tangente & une courbe

Comme démontré précédemment, la direction du vecteur tangent en t; est donnée par la
premiére dérivée non nulle de la fonction vectorielle de la courbe calculée en ty. On trouve
donc immédiatement que la fonction vectorielle décrivant le tangente a la courbe est :

T (\) = V (o) + AVP (t) (13.6)

Les équations paramétriques de la tangente sont obtenues en projetant la fonction vectorielle
sur les axes du repére :
x =V, (to) + X VP (to)
y =V, (o) + A V2 (t0) (13.7)
z=V.(to) + A VP ()
La forme canonique des équations cartésiennes de cette tangente s’exprime selon :

r—=Vulto) y—=Vy(to) 2-V:(t)
VE(te)  Vi(to) VP (t)

Un exemple est présenté au §15.6.1 (page 230).

(13.8)
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13.2 Plan tangent a une surface

Un plan tangente a une surface en un point est le plan contenant simultanément I’ensemble des
tangentes a toutes les courbes de la surface passant par le point donné (figure 13.4). Un plan
tangent ne peut étre défini que pour des points dits réguliers de la surface (cette notion sera
précisée plus loin dans cette section).

FIGURE 13.4 — Plan tangent a une surface.

13.2.1 Surface décrite par son équation implicite

Soit une surface définie par son équation implicite F'(z,y,2) = 0 (F et ses dérivées partielles
premiéres sont considérée comme continues). On considére qu'un point P de coordonnées
(xp,yp,zp) est régulier si les dérivées premiéres de F calculées en ce point ne sont pas
simultanément toutes nulles, c’est-a-dire si :

0z ) p

o)1 1(&),

Considérons une ligne appartenant a la surface, ses équations paramétriques sont de la forme :

£0 (13.9)

r = fi(t)
y=fa(t) (13.10)

Comme la ligne appartient a la surface, I’ensemble de ses points vérifie I’équation de la surface,
ce qui implique que :

F(i(6), f(t), fs(£) =0 (13.11)
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FIGURE 13.5 — Plan tangent & une surface définie par son équation implicite.

En dérivant cette expression par rapport au paramétre t et en particularisant au point P, on
obtient :

diry - (OFN (dh OFN  (dfs OF\  (dfs\ _
<%>P—<afl)]3 (dt)P+(8f2)P (dt>P+<af3)P (dt)P_O (13.12)

Nous avons vu au chapitre précédent que les équations paramétriques de la tangente en P a la
courbe s’écrivaient (pour autant que le point P soit un point régulier) :

d
(®),

_ df
§ Y=yr+A <W)p (13.13)

d
\ Z:ZP+)\(£)P

(xr,yr, z7) représentent les coordonnées de points de la tangente a la courbe. En combinant
ces deux derniéres expressions, on obtient :

oF — OF — oF —
(B, 55 (), 5 (), e o
ofi) p A 0fa) p A 0fs ) p A
On peut noter que dériver F'(x,y, z) selon x, y ou z est équivalent a dériver F (f1, fo, f3) selon
f1, fo et f3, ce qui implique que les points de la tangente a la courbe vérifient 1’équation :
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Le méme raisonnement aboutit a cette méme conclusion pour n’importe quelle courbe prise
sur la surface (figure 13.5), ce qui signifie que I’équation 13.15 décrit I’équation cartésienne du
plan tangent & la surface en P. La condition de non singularité du point P (équation 13.9)
assure que 1’équation ne dégénére pas en une équation 0 = 0. Il faut noter qu’'un point singulier
d’une surface, il n’est pas possible de définir un plan tangent, mais bien un céne tangent a la
surface[2].

13.2.2 Surface décrite par son équation explicite

Pour rappel, la forme explicite de représentation d’une surface est du type :

z = f(x,y) (13.16)

Cette expression est équivalente a la formulation implicite suivante :

On peut donc appliquer directement ’équation 13.15, en notant que dans le cas présent :

oF of OF af OF
- - _=2 == __ZL = _1 13.1
ox or 0Oy Oy 0z (13.18)

Ce qui donne :

~(3) e (3) e =0 (13.19

Cette formulation est équivalente a celle décrite dans [3]

13.2.3 Surface donnée par sa fonction vectorielle

Soit une surface définie par sa fonction vectorielle 7 (A, ). On peut mener le méme type de
raisonnement que celui employé au § 13.2.1, c¢’est-a-dire de déterminer le plan tangent en un
point comme le plan contenant les tangentes a ’ensemble des courbes de la surface passant par
un point donné.

Un choix naturel est de prendre les deux lignes coordonnées passant par le point déterminé
(figure 13.6). Pour rappel, les lignes coordonnées sont les lignes de la surface obtenues en
considérant que I'un des paramétres de la fonction vectorielle est constant. Les deux vecteurs
tangents aux lignes coordonnées passant par le point P donnent les deux vecteur de base
définissant le plan tangent. Si le point P est défini par les valeurs des paramétres Ap et up, les
deux lignes coordonnées passant par P ont pour fonction vectorielle respectivement V' (Ap, 1)
(fonction de p uniquement) et V' (A, up) (fonction de A uniquement). Les vecteurs tangents
a ces courbes ont pour fonction vectorielle :

dV (A, i) vV (\p, 1)
() o (Fbmst) e

qui correspondent simplement aux dérivées partielles de la fonction vectorielle selon A ou p
calculées au point P.
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FIGURE 13.6 — Plan tangent & une surface définie par son équation vectorielle.

La fonction vectorielle du plan tangent s’établit donc selon :

T (o, B) = i (Ap, pip) + - (87) +3- <i> (13.21)

ON ol

Pour que cette équation détermine effectivement un plan, il faut que les deux vecteurs (%—K) Apopip

et (g_v) soient linéairement indépendants, ce qui est une autre fagon d’exprimer que le
Ap,pup

point P ne soit pas singulier.

13.3 Normale & une surface en un point

A partir du moment ot les équations du plan tangent sont obtenues, il est aisé de retrouver
les équations de la normale a une surface en un point. En effet, la normale & une surface est
orthogonale au plan tangent et passe par le point considéré (figure 13.7).

La fonction vectorielle décrivant cette normale est donc :

ON (\) = OP + AN (13.22)

ﬁ est le vecteur normal au plan tangent & la surface au point P. Si la surface est décrite par
sa fonction implicite F'(z,y, z) = 0, ce vecteur peut étre obtenu selon :

(@), (5),(5),) 1329

Si la surface est décrite par sa fonction vectorielle 7 (A, ), un vecteur normal est obtenu en
faisant le produit vectoriel des deux vecteurs définissant le plan tangent :

oV oV
N = <5>A # A (W)A u (13.24)
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CHAPITRE 14. EXEMPLE D’EXERCICES CLASSIQUES AVEC RESOLU POUR LA
PREMIERE PARTIE DU COURS (PLANS TECHNIQUES ET EPURES DE MONGE)

Chapitre 14

Exemple d’exercices classiques avec résolu
pour la premiére partie du cours (Plans
techniques et épures de Monge)

Vingt fois sur le métier remettez votre ouvrage, Polissez-le sans cesse, et le
repolissez, Ajoutez quelquefois, et souvent effacez.

- Boileau, L’Art poétique

14.1 intersection polyédre - plan en axonomeétrie

On souhaite obtenir la section de la pyramide SABCD par le plan passant par les points F,
F et G (figure 14.1). La construction consiste a utiliser la propriété que deux droites sécantes
sur la vue en isométrie sont sécantes dans l’espace pour autant qu’elles soient coplanaires. On
peut donc successivement réaliser les constructions suivantes (figure 14.2)
— prolonger F'G (qui appartient & la face ABS) jusqu’a trouver une intersection avec AB.
Ce point H appartient a AB, donc a la base ABC'D du tétraedre ;
— prolonger F'E (qui appartient a la face AD.S) jusqu’a trouver une intersection avec AD.
Ce point I appartient & AD, donc a la base ABC'D du tétraédre;
— la droite HI appartient donc au plan de base ABCD et est donc sécante avec toute
droite appartenant a cette base. En particulier avec BC' en J et C'D en K ;
— le polygone FGJKE détermine la section de la pyramide par le plan.
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FIGURE 14.1 — Recherche de la section de la pyramide ABCDS par le plan FFG. 184
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FIGURE 14.2 — Section de pyramide. 185
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14.2 Vue de profil

14.2.1 Mise en vraie grandeur

Prenons l'exemple du tracé de la figure 14.3. Le simple examen de la figure rend difficile
d’analyser le type de quadrilatére représenté par les points ABCD. En recherchant les
projections de profil des quatre points, on peut constater que le quadrilatére ABC'D est un
trapéze (construction en figure 14.4).

14.2.2 intersection de droites de profil

Si deux droites sont contenues dans un méme plan de profil, on peut trouver leur intersection
via I’emploi de la projection de profil. Par exemple sur la figure 14.5 :
— les points A, B, C et D sont situés dans un méme plan de profil r;
— si la ligne de terre secondaire n’est pas imposées, la placer arbitrairement et rechercher
les projection de profil des quatre points;
— Le point d’intersection en projection de profil est a U'intersection des droites AB et C'D
en projection de profil ;
— les projections horizontale et frontale du point d’intersection se retrouvent en utilisant
les deux propriétés de base :

1. la distance entre WP et le ligne de terre donne la cote de W ;

2. la distance entre WP et la ligne de terre secondaire donne 1’éloignement de W.
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FIGURE 14.3 — Quadrilatére situé dans un plan de profil.
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FIGURE 14.4 — Recherche des projections de profil d'un quadrilatére.
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14.3 Traces d’un plan

Pour trouver les traces d’un plan, il faut de maniére générale trouver les traces horizontales et
frontales de deux droites contenues dans le plan. S’il n’est pas possible de trouver ces quatre
points, il est possible d’employer une voie alternative.

14.3.1 1l n’y a que trois traces de droites dans I’épure

Dans ce cas de figure, on relie les deux traces Dans le méme plan de projection et on recherche
I'intersection de cette droite avec la ligne de terre pour obtenir un second point de la seconde
trace du plan. Par exemple sur la figure 14.6, on va successivement :
— trouver les traces I, de la droite a et I, et J, de la droite b;
— relier I, et I, pour obtenir la trace horizontale du plan dont 'intersection avec la ligne
de terre donne le point K ;
— relier le point K a J, pour obtenir la trace frontale du plan.

14.3.2 Le plan contient une droite paralléle & un plan de projection

Dans ce cas de figure, il suffit d’utiliser la propriété de parallélisme entre la trace horizontale
du plan et toute horizontale de ce plan (ou entre la trace frontale du plan et toute frontale de
ce plan). Par exemple sur la figure 14.7, on va successivement :
— rechercher les traces I et J de la droite d;
— obtenir la trace horizontale du plan en tracant la paralléle a h passant par I, son
intersection avec la ligne de terre donne le point K ;
— relier K et J pour trouver le trace frontale du plan.

14.3.3 Il n’y a que deux traces de droites dans 1’épure

Dans ce cas de figure, il est nécessaire d’ajouter une droite supplémentaire, sécante aux deux
droites initialement fournies. Par exemple sur la figure 14.8, on va successivement :

— rechercher les traces accessibles sur le plan (celle de la droite b) ;

— créer une droite d reliant un point A de a et un point B de b;

— utiliser les traces de d pour trouver les traces du plan.
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FIGURE 14.6 — Recherche des traces d'un plan via le point K. 191
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FIGURE 14.7 — Recherche des traces d'un plan via une de ses horizontales. 192
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FIGURE 14.8 — Recherche des traces d’un plan via I’ajout d’une droite du plan. 193
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14.4 Exercice récapitulatif sur les plans techniques

Cet exemple traite un exemple complet de résolution de probléme associé a la lecture de plan
technique & savoir la représentation en isométrie, I’ajout d’une vue supplémentaire et la mise
en vraie grandeur de surface. Le probléme a pour données les projections de face et de profil
droit d’une piéce dessinée sur un plan (figure 14.9).

14.4.1 Isométrie

La premiére étape consiste a reconstituer la vue en isométrie de la piéce. Une méthode
systématique pour y parvenir consiste a décomposer en étapes élémentaires :

— dessiner le parallélépipede englobant la forme en reportant les dimensions maximales de
la piéce selon les trois axes (figure 14.10);

— réaliser I'enlévement de matiére représentant la rainure inférieure (figure 14.11);

— procéder de méme pour obtenir la rainure trapézoidale supérieure (figure 14.12) ; enlever
le dernier morceau de matiére pour obtenir les sommets de toutes les arétes du volume
(figure 14.13);

— repasser les arétes visibles et effacer I'information devenue inutile (figure 14.14) ;

— on peut éventuellement ajouter les arétes cachées (figure 14.15).

14.4.2 Vue de dessus

La vue de face et de profil droit correspondent aux projections frontales et de profil manipulées
en début de cours. Pour reconstituer la vue de dessus, il faut se fixer arbitrairement une ligne
de terre et une ligne de terre secondaire. Ceci permet de limiter le contour de la piéce en vue
de dessus (figure 14.16). Une fois ce choix effectué, il ne reste plus qu’a projeter ’ensemble des
autres points (figure 14.16).
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FIGURE 14.9 — Figure de travail pour 'exemple. 195
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FIGURE 14.10 — Paralléhplpéde englObant. FIGURE 14.11 — Rainure inférieure.

FIGURE 14.12 — Rainure supérieure. FIGURE 14.13 — Enlévement de matiére.
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Ead

FIGURE 14.14 — Dessin des arétes visibles. FIGURE 14.15 — Ajout des arétes cachées.
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FIGURE 14.17 — Projection de l’ensemble
FIGURE 1416 — DeSSin deS lignes de terre des autres points (ﬁgure aggrandie en page
et projection du contour externe. 198.
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14.4.2.1 Vraie grandeur de la face inclinée

LA face inclinée est située dans un plan de bout, il suffit donc de faire le choix d’un axe de
rotation de bout pour rendre ce plan horizontal. On peut par exemple choisir ’aréte inférieure
de cette face (figure 14.19). Ensuite, les propriétés de la rotation sont appliquées pour obtenir la
position des points aprés rotation (projection frontale suivant un cercle, projection horizontale
se déplagant parallélement a la ligne de terre, figure 14.20)
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FIGURE 14.19 — Choix d’un axe de bout. FIGURE 14.20 — Rotation des points.

Une fois la position des points obtenus, il ne reste plus qu’a dessiner les arétes correspondantes
(figure 14.21).
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FI1GURE 14.21 — Figure finale. 200
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Chapitre 15

Exemple d’exercices classiques avec résolu
pour la deuxiéme partie du cours
(Géométrie analytique)

Example isn’t another way to teach, it is the only way to teach.

- A. Einstein,
15.1 analyse de conique sous forme générale
Dans 'espace Euclidien R?, on considére la courbe définie par 1'équation
F(z,y) =32% — 10zy +3y*> — 4o — 4y —12=0 (15.1)

Quelles sont les caractéristiques de cette courbe ?

Le déterminant caractéristique vaut ici A = b? —4ac = 102 —4-3 -3 = 64 > 0, la conique est
donc une hyperbole.

Pour définir ses caractéristiques, on va commencer par en obtenir la forme réduite en procédant
a un changement de repére. Comme les parameétres a et ¢ de la conique sont égaux, ’angle de
rotation est de 7/4, les paramétres de la forme réduite de ’hyperbole sont donc :

a = 3cos’T —10cos Zsin T + 3sin® I = —2
Vo= 3sin2§+10(:os§sin%+30082§:8
d = —4dcosT —4sinT =42 (15.2)
d = 4sin§ —4cos§ =0
e = —12
L’équation de ’hyperbole dans le nouveau repére devient donc :
F(z'y) = —22"7 + 8y — 422/ —12=0 (15.3)
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Cette équation peut ensuite étre mise sous forme canonique en commencant par regrouper es
termes sous forme de produits remarquables :

—22"% + 8% — 422 — 12 =0 (15.4)
2 (;c’2 +2V22 + 2) L8y —12+44=0 (15.5)
2
2 (x' n \/§> 1 8y2—8=0 (15.6)
2
¥+ 2
% —y?+1=0 (15.7)

On est donc en présence d’une hyperbole dont le centre est situé en (—\/§, 0) (dans Oz'y') et
dont les asymptotes ont pour équation :

=y =1+ V)
{ dy=y = —1 (2 +/2) (15.8)

Le retour dans le repére initial passe par le changement de base inverse :

— ol eoe ™ o in T — T_0.9in%T — —
{x—xcos4 Y sin \/50054 Osm4 1

; a : - 15.9
y=—a'sinf +y'cosf =—v2sinf +0-cos§ = —1 (15.9)
Ce qui donne pour coordonnées dans Oxy (-1,-1).

Le méme changement de repére est appliqué aux équations des asymptotes pour obtenir leur
équation dans Oxy :

dlz—xsin§+ycos§:%(SECOS§+ySin§+\/§) (15.10)
dy=—rsin % +ycos s = —4 (vcos T +ysin T +/2) |
c’est-a-dire :
di=y—3r—2=0
{dQEBy—I—FQ—U 1oAY

15.2 Matrices de transformation

15.2.1 Changement de repére

Soit un repére orthonormé Ozyz dans lequel on place un point O’ de coordonnées (-2,4,6). Le
repére O'z'y'z" est tel que O’z est orienté selon un vecteur ? de composantes (2,1, 3) tandis
que O’y est orienté selon un vecteur 7 de composantes (1,—2,0). Quelle est la matrice de
changement de repére pour passer de Oxyz a O'x'y'z'?

La matrice de translation est obtenue de maniére triviale a partir des coordonnées du point O’ :

100 2
[My] = 8 é (1) :é (15.12)
000 1
Pour la rotation, on peut vérifier que ? et ? sont bien orthogonaux :
X.Y=214+1-(-2)4+3-0=0 (15.13)
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La direction de 'axe O’z est donnée par un vecteur 7 obtenu selon :

L
Uy Uy UL

Z=XAX=|2 1 3 |=6-uw+3-u-5u (15.14)
1 2 0

La matrice de rotation s’obtient par 'intermédiaire des cosinus directeurs (composantes de
vecteurs unitaires définissant la nouvelle base). Elle vaut donc :

2 L 3
I I
= —= 0
o= | % 5 00 (15.15)
V0 V0 V70
0 0 0 1
La matrice de changement de repére globale est donc :
2z L 3 _ 18
Ve Via V14 V14
S IS T 10
[M] = [MQ] ) [Ml] = ﬁ f 5 _\/:'?_0 (15-16)
V70 V70 V70 /70
0 0 0 1

Si on choisit d’effectuer les opérations dans 'autre ordre (rotation puis translation), la matrice
[Ms] est inchangée. Par contre il ne faut pas oublier que le vecteur utilisé dans la matrice

de translation est exprimé dans le repére courant. Les coordonnées de O’ dans le repére
intermédiaire :

2 1 3 18
O vi va vo —2 Vi1
o, L -2 0 0 4 —40
o (=% s 6 () % (15.17)
2 V70 /70 V70 /70
1 0 0 0 1 1 1
La matrice de translation sera donc :
18
1 00 v
010 L
[Ms] = 00 1 e (15.18)
V70
0 00 1
La matrice résultante se calcule dans ce cas comme :
2 1 3 _ 18
i 2 0 10
[M] = [Ms] - [Ms] = ﬁ i\/E 5 _\/??_0 (15.19)
V70 /70 V70 V70
0 0 0 1

Ce qui donne bien évidemment le méme résultat que précédemment.

15.2.2 Rotation autour d’un axe quelconque

Construire la matrice de transformation homogéne qui permet de faire tourner de 7 /3 radians
les points de 'espace autour de la droite d définie par les équations :

d={ 20 +3y+62—1=0

T+y+2z-2=0 (15.20)
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On va tout d’abord rechercher les équations paramétriques de la droite. Son vecteur directeur
est obtenu en prenant le produit vectoriel des vecteurs normaux des deux plans définissant les
équations cartésiennes de la droite :

—

Ug
N —
d=NAN,=|2 S V7, QRO B (15.21)
1

gal]
~ o8

pour trouver un point particulier, on fixe arbitrairement une coordonnée (exemple : z = 0) et
on recherche la solution du systéme formé par les équations cartésiennes de la droite et cette
relation. On obtient le point A(5, —3,0) appartenant a la droite.

15.2.2.1 Combinaison de matrices élémentaires

La matrice de transformation globale est obtenue en combinant différentes opérations. La
premiére une translation pour amener le point A en 'origine. La matrice de translation s’écrit

1 00 =5
010 3

M, = 001 0 (15.22)
000 1

On calcule ensuite le sinus et le cosinus de ’angle § entre la projection du vecteur directeur et

le plan Oxz :
3

4
— COSHZWZ4/5.

La deuxiéme opération est donc définie par :

4/5 3/5 0 0
| —3/5 4/5 0 0
M2 = 0 0 10 (15.23)
0 0 0 1
On peut procéder de la méme facon pour le cosinus et le sinus de ¢ :
— sin¢g = _—;
¢ 56 {3
— COsp = ——.
¢ 26
La troisiéme opération est une rotation autour de 'axe Ox d’un angle ¢ :
1 0 0 0
M3 — 0 —1/v/26 —5/v/26 0 (15.24)

0 5/v26 —1/v26 0
0 0 0 1

la droite est maintenant rendue confondue avec 'axe Oz. On peut donc appliquer la rotation
autour de cet axe d’angle /3 :

0,5 —+v3/2 00

| Vv3/2 0,5 00
M4 = 0 1o (15.25)

0 0 01
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on revient ensuite a la configuration d’origine en inversant les opérations 3 puis 2 puis 1. La
matrice résultante est donc calculée par :

M = (Ms-My- M) " My-Ms-My- My = M7 - M M- My - Ms- My - M, (15.26)
Au final, on obtient :

0,6731 —0,0609 0,7371 1,4518
—0,4006 0,8077 0,4326 1,4216
—0,6217 —0,5864 0,5192 1,3490

0 0 0 1

M = (15.27)

15.2.2.2 Opération globale
La premiére opération est similaire puisque le plan doit passer par l'origine. La matrice M1

définie par I’équation 15.22 reste la méme. Par la suite, il suffit d’appliquer la relation 9.56 avec
0 = m/3. Le vecteur normal unitaire est obtenu par :

O A e AL
w = =< 4/v/26 15.28
IN —/1/\/% o

La matrice associée au produit vectoriel est donc :

0 1/V26  4/v26
[J.)= | —1/v/26 0 3//26 (15.29)
—4/4/26 —3/3/26 0

La matrice décrivant la rotation est donc :

100 0 1/v/26  4//26
Mp = |01 0| +sin7/3-| —1/v/26 0 3/1/26 (15.30)
00 1 —4/4/26 —3/4/26 0

0 1/v26  4/v26 ]
+ (1—cosm/3)- | —1/v/26 0 3/v/26 (15.31)
—4/3/26 —3/v/26 0

Ce qui permet d’établir la matrice M2 :

0,6731 —0,0609 0,7371
—0,4006 0,8077 0,4326

— o O O

M2 = —0,6217 —0,5864 0,5192 (15.32)
0 0 0
La matrice résultante est calculée par la relation suivante :
M=M1""" M2 M1 (15.33)
Tous calculs faits, on obtient :
0,6731 —0,0609 0,7371 1,4518
—0,4006 0,8077 0,4326 1,4216 (15.34)

—0,6217 —0,5864 0,5192 1,3490
0 0 0 1

Qui est comme attendu le méme résultat qu’avec I'approche précédente.
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15.2.3 Symeétrie centrale par rapport & un plan quelconque
15.2.3.1 Combinaison de matrices élémentaires

Si le plan est quelconque et caractérisé par un vecteur normal ﬁ et un point Fy, la construction
de 'opérateur de symétrie par rapport a ce point peut s’établir par transformation homogéne
en combinant sept opérations élémentaires :

— une translation pour amener F, a l’origine;

— deux rotations pour amener la normale au plan alignée sur un des axes (Oz par exemple) ;

— la réflexion de points par rapport au plan perpendiculaire a 1’axe choisi (ici Oxy) ;

— linversion des trois premiéres étapes pour revenir dans la configuration initiale (deux

rotations et une translation).

A titre d’exemple, considérons le plan d’équation 3x + 4y — 22 — 9 = 0. Si on fixe y = 0 et
z =0, on déduit que le point (3,0,0) appartient au plan. La premiére matrice est donc :

100 —3
010 0

Mi=10 01 o (15.35)
000 1

On calcule ensuite le sinus et le cosinus de 'angle 6 entre la projection du vecteur directeur et

le plan Oxz :
-3
— sinf) = ——= =3/5;
V3 + 42 /
4/5.

4
V2

La deuxiéme opération est donc définie par :

— cosf =

4/5 =3/5 0 0
1 3/54/5 00
M2 = 0 0 1 0 (15.36)
0 0 0 1
On peut procéder de la méme fagon pour le cosinus et le sinus de ¢ :
— sing = ——;
¢ V29
— oS = ——.
¢ 29
La troisiéme opération est une rotation autour de ’axe Ox dun angle ¢ :
1 0 0 0
M3 — 0 —2/v/29 —5/v29 0 (15.37)

0 5/v29 —2/v29 0
0 0 0 1

la normale est maintenant rendue paralléle & 'axe Oz, la quatriéme opération est donc
simplement M4 = Ro,,. La matrice résultante est obtenue par la composition des opérations

élémentaires selon :
M= (M3-M2-M1)""-M4-M3-M2- M1 (15.38)

Ce qui donne au final

0,3793 —0,8276 0,4138 1,8621
—0,8276 —0,1034 0,5517 2,4828
M= 0,4138  0,5517 10,7241 —1,2414 (15.39)

0 0 0 1
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15.2.3.2 Approche générale

Il est également possible de condenser la recherche de la relation matricielle en une étape par
I'intermédiaire de 1’algeébre vectorielle.

FIGURE 15.1 — Réflexion par rapport & un plan quelconque.

Si la plan passe par l'origine, on peut calculer la position de I'image d’un point P (figure 15.1)

par : N
OP’:O_}>’—2-(O_}§-W>-%> (15.40)
La deuxiéme partie de la formule se calcule selon :

Ny

<ﬁ-ﬁ>-ﬁ):(ﬂc-nx—i—y-ny—i—z-nz)- ny (15.41)
ng
Sous forme matricielle, cette relation est équivalente &
Ng Mg Ny "Ny Ng * Ny x
(O?ﬁ)ﬁz Ny Mg Ny Ny Ny Ny |- Y (15.42)
Ny Ny Ny-Ny Ny z

La matrice intervenant dans cette relation est équivalente au produit 7 - 7T, La matrice

supérieure (3x3) est donc établie par :

Ro=I1-2-7-71" (15.43)
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Si on reprend le méme exemple que celui traité au paragraphe précédent, 'opération 1
reste similaire. Une fois le plan passant par l'origine, on peut appliquer directement la
formule précédente pour établir la deuxiéme partie de ’expression. Le vecteur unitaire a pour
coordonnées {3/v/29;4/v/29; —2/1/29}. La partie supérieure (3x3) de la matrice s’établit selon :

0 3/v29
0] -2 {3/@; 4/+/29; —2/\/2_9} - 4/v29 (15.44)
1

1
My =1 0
0 —2/4/29

o = O

La matrice compléete est donc :

0,3793 —0,8276 0,4138

—0,8276 —0,1034 0,5517

0,4138  0,5517 0,7241
0 0 0

M2 = (15.45)

_— o O O

La matrice résultante obtenue par M = M171. M2 - M1 donne au final

0,3793 —0,8276 0,4138 1,8621

—0,8276 —0,1034 0,5517 2,4828

0,4138  0,5517 10,7241 —1,2414
0 0 0 1

M= (15.46)

qui est comme attendu similaire au résultat obtenu précédemment.

15.3 Surface cartésienne

15.3.1 Lieu géométrique

Soient deux points A et B, quel est le lieu des points équidistants de A et de B?
La condition géométrique s’exprime selon :

Va—aa?+ G-y’ + -2 =@+ —ys) + (: - 25)°  (15.47)
En élevant au carré les deux membres et en développant les produits remarquables, on obtient :

¥ = 2xax + 2% Y = 2yay Fys 20— 2zaz 25 =

xt = 2w+ P = 2upy +yh + 22— 22pz + 2% (15.48)
F(z,y,2) = (24 — 2zp)x + (2ya — 2yp) Yy + (224 — 22p) 2. ..
(@A A s —yh—2h) =0 (15.49)

Qui est I'équation d'un plan (il s’agit en fait de I’équation du plan bissecteur du segment AB,
figure 15.2).

15.3.2 Quadriques

Déterminer la nature de la quadrique définie par 1’équation suivante et donnez ses équations
paramétriques :
42 — 162 — 36y + 92° + 182 — 83 =0 (15.50)
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FIGURE 15.2 — Plan bissecteur.

On va regrouper les termes sous forme de produits remarquables :

4 (2® —4z) — 36y 49 (2° +22) — 83 0 (15.51)
4(x* —dw+4) =36y +9(z*+22+1)—83—-4-4-9-1 = 0 (15.52)
4(x—2)7 =36y —108+9(z+1)°> = 0 (15.53)
4(x—2°=36(y+3)+9(z+1)> = 0 (15.54)
(15.55)
On trouve la forme canonique suivante :
x—2) 24+ 1)
( 32> —(y+3)+( 22> =0 (15.56)

Cette expression est celle d'un paraboloide elliptique dont les axes sont orientés différemment
de ce qui est donné dans le formulaire. En effet, si on effectue la permutation circulaire X=z,
Y=x, Z=y, on trouve :
(X+1)°* (Y -2)7
22 + 32
On peut établir les équations paramétriques par substitution :

—(Z+3)=0 (15.57)

X =—1+2/ucosv
Y =2+ 3y/usinv (15.58)
Z=-3+u

En revenant au systéme d’axe de départ, on trouve donc :

r =2+ 3y/usinv
y=—3+u (15.59)
z=—1+4 2y/ucosv
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15.3.3 Cylindrique inclinée

Quelle est I’équation cartésienne d’un cylindre circulaire de rayon 2 dont ’axe est défini par la
droite d’équation :

=342
y=—-2+4+u (15.60)
z=445u

15.3.3.1 Approche par changement de repére

On établit tout d’abord les équations de la surface dans un repére lié au cylindre :

2?4+ y"? —4=0 (15.61)
Pour passer du repére global Oxyz au repére local O'z"y”z", on effectue simultanément (cf
figure 15.3) :
— un changement de repére par translation pour avoir l'origine en O’;
— un changement de repére par rotation pour aligner les axes.

FIGURE 15.3 — Exemple de figure dont I’axe est orienté de maniére quelconque, approche par
changement de repére.

La matrice de changement de repére pour passer de Oxg;z a O'z'y'Z est la matrice de

changement de repére par translation de vecteur ? = 00" = (3,-2,4). Cette matrice est
donc :

100 -3
010 2

Tl=10 01 4 (15.62)
000 1
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Pour obtenir la matrice de changement de base, il est nécessaire de rechercher les cosinus
directeurs des vecteurs unitaires du nouveau repére O’z"y"” 2" exprimées dans la base de ’ancien
repére O'z'y'z’ (parallele & Oxyz). Un vecteur aligné sur O’z” est le vecteur directeur de la
droite :

7" — 2wt 4 Lty + 5t (15.63)
Comme le cylindre est une figure de révolution, le choix des deux autres vecteurs directeurs
est libre (pour autant que les trois vecteurs directeurs forment une base orthonormée). On
peut donc choisir de maniére arbitraire deux des coordonnées du vecteur X" (par exemple

)7 = (1,9,0)) et de chercher la troisiéme en exprimant la nullité du produit scalaire entre X"
et 2" :

"
X' Z =24 y=0= X" = (1,-2,0) (15.64)
Le troisiéme vecteur est obtenu par le produit vectoriel :
ol w
Y'=Z"ANX"=] 2 1 5 |=(10,5-5) (15.65)
1 -2 0
Les vecteurs unitaires sont obtenus en divisant ces vecteurs par leur norme :
~h
X 1 =2
7 _ - _=
W 2 1 -1

1" = = =, T =, T = 15.67
U,y ‘ W ( 6’ 67 \/6) ( )
)

ﬁ
% = 2 = (o 7 o (15.68
|27 \va0' Va0 Va0
La matrice de changement de repére est donc :
- 9 -
— — 0 0
5 5
775
[R] = \éé Vlé ¢56 (15.69)
0
V30 V30 /30
| 0 0 0 1]

On a donc les relations suivantes entre les coordonnées de points du cylindre exprimées dans
les différents repére :

~
~
<
~

x x x x
Y Y Y Y
bor=me Y Y =1RS Y (15.70)
1 1 1 1
On a donc la relation synthétique suivante
x” x
!
Vg =R Y (15.71)
1 1
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La matrice résultante est donc obtenue par :

o |
Sl

(15.72)

=8-Sl
=gl=SlL =
g

=

=

I
=gslsi-

Cette relation permet d’exprimer les coordonnées (z”,y”,z") en fonction des coordonnées
(x,y, z) selon :

1 2 7
2 = \/5 \/gy 7 (15.73)
2 1 1
" 15.74
Y Y A& (15.74)
2 1 5) 24
" (15.75)

Y Y LAY RV,

L’équation de la surface s’établit donc en remplacant ces relations dans I’équation 15.61 :

1 2 7)2 (2 1 1 )2

—r - =y — — —y——=2] —4=0 (15.76)
<\/S ') T\ETT R T

1 1
g(x—2y—7)2—|—6(2:l:+y—z) —4=0 (15.77)
6 (2% + 4y” + 49 — 14z + 28y — 4zy) ... (15.78)
..+5(4:1:2+y2+z2—4xz—2yz+4xy)—120:0
2622 4+ 29y* + 52 — 4oy — 102z — 10yz + 842 + 168y + 174 = 0 (15.79)

Ce qui donne I'équation d’une quadrique comme attendu.

15.3.3.2 Approche par matrice de transformation

Dans I'approche par matrice de transformation (cf figure 15.4), on va transformer une figure
simple pour l'orienter de maniére quelconque dans le repére Oxyz.

On partira de 'expression d’un cylindre d’axe Oz :
Flr,y,2) =2 +3y*—4=0 (15.80)

Appelons (zp,yp, zp) L’ensemble des points de ce cylindre. On va successivement appliquer a
ces points :

— deux rotations pour aligner Oz avec ’axe du cylindre final ;

— une translation pour placer correctement l’axe.
Pour aligner sur le vecteur directeur de la droite I'axe Oz, on peut employer deux rotations (cf
§ 9.4.4.1) : une rotation d’un angle —¢ autour de Ox pour se placer dans le plan Oyz, puis une
rotation d’angle —0 autour de Oz pour s’aligner sur le vecteur directeur de l'axe (figure 15.5).

On peut calculer

— sinf = (donc cosf = %)

%I

— cos ¢ = —= (donc cos$ = %)

ih+
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FIGURE 15.4 — Exemple de figure dont ’axe est orienté de maniére quelconque, approche par
matrices de transformation.

FIGURE 15.5 — Définition des angles 6 et ¢.

Les rotations sont exprimées par :
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X pr Trp 1 0 0 0 rp
ypr yp 0 \/L?TO \/Lg 0 yp
A S UARE R I K o (15.81)
6 30
1 1 L0 0 0 1 1
X pr X pr [ \_/Lg %g O O X pr
gero N (2 Y s v V0 yr (15.82)
zZpr Zp 0O 0 1 0 Zpr
1 1 | 0 0 0 1 1

La derniére transformation est une translation amenant l'origine sur un des points de
I'axe (par exemple (3,-2,4)). On transforme les points (zpr,ypr, zpr) du cylindre en points
(xpm, ypm, zpr). Sous forme matricielle, on a :

X pr Ip 1 0 0 =3 X pr

Yypm _ X yp . O ]. O 2 Ypr

Zpm o [Ml] Zp o 0 01 —4 Zpn <1583)
1 1 000 1 1

La relation finale permettant de passer de la figure initiale a la figure alignée sur 'axe Oz est
donc :

X pr Tp

v b () - (M) - (3] { Y (15.8)
p ZP

1 1

Pour obtenir I'équation de la figure finale, il faut appliquer la transformation résultante a
I'équation 15.80. Tous les points de la figure initiale (zp,yp, zp) vérifient cette équation, on
peut donc écrire :

oh+ys —4=0 (15.85)

Pour obtenir ’équation de la figure finale, il suffit d’employer la relation 15.84 pour tirer les

expressions de (zp,yp, zp) en fonction de (zpm, ypm, zpm), ce qui revient simplement & inverser
la relation matricielle :

Ip X pm

‘zP = ([Ms] - [Mo)] - [My]) ™ zP (15.86)
P P///

1 1

On peut calculer aisément que :

o3l

([Ms] - [Mo] - [M]) ™ = (15.87)

o glslsl-
|
N

o g6l
o §|Cﬂ§|‘~ o
-4

(=)

Apreés substitution, on retrouve L’équation cartésienne du cylindre :

261’2 m+ 29y2 m+ 522 1 4$P/Nyp/// — 10?[7]3/// Zpt — 10yp///ZP/H +84[L‘pm -+ 168yp/// + 174 =0 (15.88
P P P

Qui est similaire & celle obtenue par la méthode précédente.
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15.3.4 Equation cartésienne du tore

Un exemple de surface de révolution est le tore (figure 15.6) engendré par la rotation d’un cercle
décrit dans un plan Ozz autour de 'axe Oz.

\
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\
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“““
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\
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FIGURE 15.6 — Tore.

L’équation de la circonférence de base est :
F(z,z)=(x—R’+22—r*=0 (15.89)
L’équation cartésienne de la surface de révolution s’exprime donc par :

F(z,y,2) = (m - 3)2 b2t =0 (15.90)

Cette expression peut étre mise sous forme polynomiale :
(W—R)Z—FZQ—TQ:O ( )
<x2 Ly — 2R+ g2+ R2) 222 =0 (15.92)
PP+ 22+ R —r? = 2R\/22 + 2 (15.93)
(B2 + 2+ 22+ R — 1) —4R? (2 +¢%) = 0 (15.94)

Il s’agit d’une quartique (courbe du quatriéme ordre).

A titre de vérification, recherchons l'intersection du tore avec le plan z = 0, on obtient une
courbe de la forme :

(12 + y2 + RQ _ T2)2 _ 4R2 (1.2 + y2) (1595)
(Iz Tyt R 7‘2) = +2R\/22 + 12 (15.96)

Seul le signe plus doit étre retenu car le membre de droite est toujours positif et le membre de
gauche est également positif. Le développement peut se poursuivre par :

x2—|—y2—2R /x2+y2+R2:7=2 (1597)
2

< /22 142 — R) _ 2 (15.98)

Va2 +y?—R=+r (15.99)

22+ = (R+r) (15.100)
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On obtient donc bien I’équation de deux cercles de rayon R+ r et R — r (figure 15.7).

—T -§
D s —

Y === s SSAN
W7 S SSSNY
s A AR
&7 s

<3 %:o"?/

\

FIGURE 15.7 — Intersection d’un tore avec le plan z=0.

15.4 Surface paramétrique

15.4.1 Cylindrique inclinée

Quelle est I’équation cartésienne d’un cylindre circulaire de rayon 2 dont ’axe est défini par la
droite d’équation :

=342
y=—24pu (15.101)
z=44+5u

15.4.1.1 Approche par changement de repére

On établit tout d’abord les équations paramétriques de la surface dans un repére lié au cylindre :

= 2cosf
y =2sind (15.102)
Z=K

Pour passer du repére global Oxyz au repére local O'z"y”z", on effectue simultanément (cf
figure 15.3) :

— un changement de repére par translation pour avoir 'origine en O’ ;

— un changement de repére par rotation pour aligner les axes.
On a vu au §15.3.3 la relation résultante qui est :

1 2 7
Ry e YR 15.103
NV AR (15.103)

2 1 1
" Z gy 2 15.104
y ; =Y ; ( )
2= 2 T+ ! + > z 24 (15.105)

V30 \/30y V30 /30 '
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Les équations paramétriques de la surface s’établit donc en remplagant z, y et z par leur
expression en fonction des paramétres :

= \%20089 — \%2sin0 — \/ig

y' = Jz2co80 + 7:2sinf — Zok (15.106)
_ 2 1 oo 5 24

2= \/—3—020089—}- ﬁ251n9+ 5T T

15.4.1.2 Approche par matrice de transformation

On va transformer une figure simple pour 'orienter de maniére quelconque dans le repére Oxyz
(cf figure 15.4). On partira de I'expression d’un cylindre d’axe Oz :

x = cosf
y =sinf (15.107)
2=k

Appelons (zp,yp, zp) L’ensemble des points de ce cylindre. On va successivement appliquer &
ces points :

— deux rotations pour aligner Oz avec ’axe du cylindre final ;

— une translation pour placer correctement 'axe.
Pour aligner sur le vecteur directeur de la droite I’axe Oz, on peut employer deux rotations (cf
§ 9.4.4.1) : une rotation d’un angle —¢ autour de Ox pour se placer dans le plan Oyz, puis une
rotation d’angle —f autour de Oz pour s’aligner sur le vecteur directeur de l'axe (figure 15.5).
On a démontré au §15.3.3 que la relation finale permettant de passer de la figure initiale a la
figure alignée sur 'axe Oz est :

X pr Tp

i S AR TR TR S (15.108)
pr Zp

1 1

Pour obtenir ’équation de la figure finale, il suffit de remplacer zp, yp et zp par leurs expressions
en fonction des paramétres :

T pm 2 _2 7 cos 6

Ypm _ \/ig l\/g 1 0 \/5 Sin9 (15 109)
zpr Y T LYY K

1 V30 V30 /30 V30 1

Ce qui donne un résultat similaire & celui obtenu par la méthode précédente.

15.4.2 Equations d’un tore

Les coordonnées d’un point courant sur la surface d’un tore sont obtenues a partir du parameétre
f donnant la rotation autour de l'axes Oz et d’un parameétre ¢ permettant de décrire le cercle
mineur (figure 15.8).

Les équations paramétriques peuvent donc s’écrire :

x = (R +rcos¢)cosl
y = (R +1rcos¢)sinf (15.110)
z=rsing
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FIGURE 15.8 — Paramétrisation pour un tore.

L’élimination des deux paramétres dans cette équation permet de retrouver 1'équation
cartésienne de la surface :

2 +9? = (R+7cos )’ (cos®# +sin®§) = (R—I—rcosqb ) (15.111)

<5> —sin2¢ = cosp = +4/1 —sin? ¢ = i,/1— (15.112)
”

2?4yt = (R SINY /- 22) (15.113)

2>+ =1 £ 2RVr2 — 22 42 — 22 (15.114)

[ +y*+ 27— (R*+ 7’2)]2 —4R* (r*=2%) =0 (15.115)

Qui est identique a la forme obtenue au § 15.3.4.

15.4.3 Surfaces réglées
15.4.3.1 Deux génératrices, un plan directeur

soit une surface réglée admettant Cy et Cy comme courbes directrices et le plan frontal (Oyz)
comme plan directeur.

Tz = 2cosf
Ci=¢ y=2sinfd (15.116)
z2=3
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x = 3cos¢
Ci =< y=2sin¢ (15.117)
z2=0

On peut obtenir un vecteur directeur de la surface en reliant un point de C & un point de Cs :
i (0,0) = (3cos¢p — 2cosb;2sin ¢ — 2sin ;0 — 3) (15.118)

La condition de parallélisme a 7 est obtenue en égalant le produit scalaire entre 7 et le vecteur
normal au plan a zéro :
7-(1,0,0):3COS¢—2C089:O (15.119)

On peut donc déduire ¢ = arccos (@) Les équations paramétriques de la surface sont donc :

x = 2cost
y = 2sinf + A (2sin (arccos (22¢)) — 2sin §) (15.120)
z=3—-3A

La surface est représentée en figure 15.9).

SO
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FIGURE 15.9 — Surface réglée.

Il faut noter que I'équation 15.119 a une deuxiéme solution qui est ¢ = — arccos (2‘33&9) qui
donne une deuxiéme branche de solution :
x = 2cost
y = 2sinf — X (2sin (arccos (22)) — 2sin 6) (15.121)
z2=23—3\

15.4.3.2 Cone de révolution

Prenons un cone dont le sommet est situé en (0,0, 0) et passant par un cercle (dessiné dans un
plan parallele & Ozy a une hauteur ¢) de rayon a. Le vecteur directeur d’une génératrice joint
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le sommet & un point P dont les coordonnées sont :

xr = acost (15.122)
y =asind (15.123)
z=c (15.124)

La fonction vectorielle de la surface conique s’établit donc selon :
V = \0P (15.125)

La projection de cette équation sur les axes du repére donne :

x = aAcosl (15.126)
y = aAsinf (15.127)
z=cA (15.128)

qui sont les équations paramétriques de la surface.

15.4.3.3 Surface conique d’axe incliné

Déterminons les équations d’un céne dont le sommet S a pour coordonnées (0, b, b) et dont les
génératrices passent par une ellipse dessinée dans Ozy de demi grand axe a et de demi petit
axe b (le grand axe est paralléle & Oz). On peut déterminer :

0% = (0,b,) (15.129)
OP = (acos, bsin6,0) (15.130)
~ SP= (acos®,bsinf — b, —b) (15.131)

Les équations paramétriques de cette surface conique sont donc :

r = alcosf (15.132)
y=0b+ Ab(sinf — 1) (15.133)
s=b(\—1) (15.134)

15.4.3.4 Conique 1 noyau

Déterminons les équations d’une surface conique dont le sommet est en (1,2,3) et dont toutes
les génératrices sont tangentes au paraboloide hyperbolique donné par 1’équation suivante :

(e -1° (y—2)°

TR z2=0 (15.135)
Les génératrices du cone ont pour équations :
r=1+X-a
y=2+X-0b (15.136)
z=3+A-c
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FIGURE 15.10 — Surface conique d’axe incliné.

Les intersections entre ces génératrices et le paraboloides sont obtenues en résolvant le systeme
suivant :

r=14+X-a
y=2+X-b
S =34 )¢ (15.137)
(33;21) . (9522) — =0
Par substitution, on trouve I’équation suivante :
(1+X-a—17° (2+X1-b—2)
5 — 5 —B3+X-0=0 (15.138)
On trouve successivement :
IN’a? — 4X%b? — 108 — 36 ¢ = 0 (15.139)
A (9a® — 4b%) + X (—36c) — 108 = 0 (15.140)

Il y a tangence entre le cone et I’hyperboloide si cette équation du deuxiéme degré en \ présente
une racine double, c¢’est-a-dire si :

A =36°c —4-(9a® —4b%) - =108 = 0 (15.141)
1296¢ + 3888a* — 8748b* = 0 (15.142)
3¢ +9a® —4b* = 0 (15.143)

Le vecteur directeur des génératrices peut étre normalisé de maniére arbitraire. si on le considére
unitaire, on a la relation additionnelle a® + b? + ¢ = 1, ce qui permet d’obtenir :
6a® + 3
7

3(1—a®—b°) +9a° — 46> =0 — b’ (15.144)

En combinant cette relation avec le condition de normalisation, on trouve finalement :

4 — 13a?

2
I RN S (15.145)

+c
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On trouve donc les équations paramétriques de la surface conique :

r=14+MX-a

y=24 N 0t (15.146)
c=3a ). e

avec A € Ret |a|] < 4/ %. La figure 15.11 présente une visualisation des deux surfaces.

FIGURE 15.11 — Surface conique avec noyau.

15.5 Courbe 3D

15.5.1 Cylindre projetant d’une courbe

On cherche a déterminer les cylindres projetant d’une courbe définie par I'intersection d’une
sphére centrée en 'origine de rayon R et un plan d’équation cartésienne z +y + 2 — R = 0.
La courbe d’intersection est nécessairement un cercle qui est situé dans un plan incliné par
rapport aux plans coordonnés. Le cylindre projetant doit donc dans ce cas étre un cylindre a
base elliptique. Ses équations s’établissent en éliminant une des inconnues z, y ou z dans le
systéme formé des équations de la sphére et du plan. Prenons par exemple le cylindre projetant
paralléle & Oz :

Fl(z,y,2) = 2°+9y*+2°—R*=0 (15.147)
F2(x,y,2) = 2+y+2—R=0 (15.148)

De 15.148, on peut tirer :
z=R—(z+vy) (15.149)

qui, introduit dans 15.147, donne :

F3(z,y,2) =2+ 9>+ (R— (x+9))* — R = 227 + 22y + 24> — 2Rz — 2Ry =0 (15.150)

222



CHAPITRE 15. EXEMPLE D’EXERCICES CLASSIQUES AVEC RESOLU POUR LA
DEUXIEME PARTIE DU COURS (GEOMETRIE ANALYTIQUE)

Il s’agit bien de I'équation d'un cylindre d’axe z dont la base est une conique. Etudions cette
conique comme une courbe plane de Oxy :

F(x,y) = 22> + 2zy + 2y* — 2Rxr — 2Ry = 0 (15.151)

pour éliminer le terme en xy, il faut opérer une rotation de repére dont ’angle vaut ici 7/4 car
le coefficient du terme en z? est égal & celui du terme en y2. Suite & ce changement de repére,
I’équation de la conique devient :

32 +y? —2RV22' = 0 (15.152)

La forme canonique de cette ellipse s’obtient par :

2V2R 2 2
32 +y* —2RV22' = 3 (:;;’2 - %x' + §R2> + 9% — gR2 =0 (15.153)
qui peut étre factorisée en :
(o —22)"
3 Y B

57— T 5 —1=0 (15.154)

V2R V2R

(51 (&)
ul est I’équation d’'une ellipse centrée en (5=, ont le petit axe est orienté selon 2" et vaut
i est I'équation d’une elli e en (Y22,0) dont le peti ienté selon '

@ tandis que le grand axe vaut %.

15.5.2 Caractére plan d’une courbe cartésienne

Considérons deux sphéres de rayon R; et Ry centrées en des points Ci(a, b, c) et Cy(d, e, f) en
imposant que la distance entre les centres soit inférieure a la somme des rayons.

(x—a)’+(y—b)°+(z—c)’—RI=0 (15.155)
(r—d’+@y—e’+(z—f)>—R:=0 (15.156)

Pour essayer d’éliminer les termes non-linéaires dans le systéme, prenons la différence entre
I’équation 15.155 et 15.156 :

(r—a)’ —(x—d)’+y—-0>—@y—e’+(2—0c)°—(2— ) = R} + R2 =0 (15.157)
(2r—a—-d)(d—a)+Q2y—b—e)(e—b)+ (22 —c— f)(f —¢) — (R} — R3) &0158)
2(d—a)z+2(e—=by+2(f—c)z... (15.159)
—[la+d)y(d—a)+ (b+e)(e=b)+ (c+ f)(f—c)+ (BRI —R3)] =0 (15.160)

Cette équation est bien I’équation d’un plan, ce qui confirme le caractére plan de la courbe (il
s’agit en fait d’un cercle dans ce cas). On peut également remarquer que le vecteur normal au
plan est colinéaire avec le vecteur joignant les centres des sphéres. En effet :

N=2(d-a@+2(e-ba +2(f-@ (15.161)
C1C2=(d—a)us + (e —b)u, + (f — ¢) ul (15.162)
(15.163)
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FIGURE 15.13 — Intersection de deux
FIGURE 15.12 — Intersection de deux sphéres : vue dans un plan contenant la
spheéres. droite joignant les centres.

15.5.3 Caractére plan d’une courbe cartésienne, 2e exemple

Considérons l'intersection d’un cylindre circulaire dont 1’axe est confondu avec 'axe Oz de
rayon R; et une sphére centrée en l'origine de rayon Ry (Ry>R;). Les équations de ces surfaces
sont :
2+ 9y — R =0 (15.164)
Py -R=0 (15.165)

en soustrayant la premiére relation de la seconde, on obtient 1’équation suivante :
2 -~ R2Z+RI’=0 (15.166)

Cette relation ne faisant apparaitre qu’une seule variable (z en l'occurrence) représente un
ensemble de plans perpendiculaires a ’axe Oz. Dans ce cas précis, elle représente 1’équation de
deux plans d’équations :

z =V R2? — R1? (15.167)

z = —VR22 — R1? (15.168)

(15.169)

L’intersection de la sphére et du cylindre donne donc deux courbes planes qui sont l'intersection

entre ces plans et le cylindre (ou entre ces plans et la sphére). Il s’agit donc de cercles de rayon
Ry situés dans des plans perpendiculaires & ’axe Oz et dont les centres sont situés en des points

de coordonnées <(), 0, \/m) et <0,0,—\/m).

15.5.4 Analyse de courbe plane dans un plan non paralléle & un plan
coordonné

Reprenons 'exemple présenté en § 15.5.1, c’est-a-dire I'intersection entre une sphére de rayon
R centrée en l'origine et un plan incliné de maniére équivalente sur les trois axes du repére.
Pour rappel, les équations de la courbe d’intersection sont :

Fl(z,y,2) = 2°+9y*+2°—R*=0 (15.170)
F2(z,y,2) = z24+y+2—R=0 (15.171)
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_2 _2

FIGURE 15.14 — Intersection d'une sphére et d'un cylindre.

Pour pouvoir étudier la courbe d’intersection entre la sphére et le plan, il faut définir un nouveau
systéme d’axes Ox'y’z’ pour lequel 'axe Oz’ est orienté perpendiculairement au plan. La
recherche de la matrice de changement de repére et obtenue par I'intermédiaire de la recherche
des cosinus directeurs des vecteurs de la nouvelle base. L’axe Oz’ est orienté selon la normale
au plan, ce qui implique d’avoir : .

Z'=(1,1,1) (15.172)

L’axe Oz’ doit étre perpendiculaire a 0z’ ; au-dela de cette constatation, son orientation peut
étre choisie de maniére arbitraire. Par exemple, il peut étre choisi de maniére a étre horizontal,
ce qui implique que ses coordonnées soient égales a :

%
X' =(1,-1,0) (15.173)

gommi> précédemment, 'axe Oy’ est obtenu en réalisant le produit vectoriel entre les vecteurs
Z' et X'.

=
- = o= | Y Uy Us
Y=ZAX'=[1 1 1 |=(1,1,-2) (15.174)
1 -1 0
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Les vecteurs unitaires sont obtenus en divisant ces vecteurs par leur norme :

X 1 -1
S (—, _—,0> (15.175)

vl

~ Y 1 1 -1

N 1 1 1
_ (Lt 15.177
“T7 (\/5 Ve ﬁ) (15.177)

La matrice de changement de repére pour
coordonnées (2,4, ') s’établit donc selon :

le passage des coordonnées (z,y,z) vers les

11 1
B f P
R = 7 \_/—g ?3 (15.178)
0 %
Ce qui permet d’exprimer les relations entre les deux systémes de coordonnées :
L, 1, 1,
rT=—T+—=y +—==2 15.179
VANV 1T
Ly Lo (15.180)
= — e —Z .
RVC RV A
—2 / 1 /
z2=—==Y +—== 15.181
NV ( )
(15.182)

La substitution de ces valeurs dans 1’équation de la sphére permet d’obtenir son équation

cartésienne dans Ox’y’z’ :

?+y+2 - R=0 (15.183)
1 / 1 / /)2 <_1 / 1 / 1 /)2
—T + —=Y + —==z + | —= + —=y + —==2 15.184
(v ) (e oS
—2 1\
L+ —’+—z’) —R*=0 15.185
(@y V3 s
1 2 1 2
G (\/gx' +9 + \/52’) + G (—\/gx’ +y + \/5;:') e (15.186)
1 2
_— (—23/ + \/Ez'> CR2=0 (15.187)
1
6 <3x’2 + " + 227 4 2V32"y 4+ 2V62 2 + 2V2y 2 + 32 4+ 2 + 227 (15.188)
= 2V3ay — 2V62 Y+ 2V 2 Y+ Ay + 22 — 4\/53/2’) —R*=0  (15.189)
2?4+ y?+ 27— R*=0 (15.190)
(15.191)
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Ce résultat était attendu car la sphére est invariante par rotation.
L’équation du plan dans le nouveau systéme de coordonnées est :

r+y+z2—R=0 (15.192)
1 (RS SV SV BV 2, 1
—a + —=y + =+ —a'+ —y —y' +—=2—R=0 (15.193)
N AV SV R i ¢§ BRVGIARYE
S R=0 (15.194)

V3

Qui représente bien un plan perpendiculaire a Oz'. La courbe d’intersection s’obtient en
éliminant 2’ entre ces deux équations, ce qui donne :

? +yf +<‘[R> ~-R*=0 (15.195)

6 R?
2?4y — 5 =0 (15.196)

En analysant cette équation comme 1’équation d’une courbe plane (F(2’,y") = 0), on reconnait

I’équation d’un cercle centré en l'origine et de rayon \(fR

15.5.5 Caractére plan d’une courbe donnée par ses équations
paramétriques

Soit la courbe définie par les équations paramétriques suivantes :

Rcos6
~ RcosO+ Rsinf + k (15.197)
Rsinf
- 15.1
Y= RcosO+ Rsinf + k (15.198)
k
B 15.1
Rcosf + Rsinf + k (15.199)
(15.200)

Cette courbe est-elle une courbe plane? Pour le vérifier, on peut controler s’il existe un
quadruplet (a,b,c,d) non identiquement nul tel que I’équation cartésienne d'un plan (az +
by + cz — d = 0) se vérifie pour I’ensemble des points de la courbe. Ceci revient a vérifier qu’il
existe (a, b, ¢, d) non identiquement nul tel que :

Rcos@ b Rsin6 n k
aRcos¢9+Rsin9+k Rcosf + Rsinf + k cRcos@+Rsin9+k

—d=0 (15.201)
pour toute valeur de 6. Cette expression, une fois réduite au méme dénominateur devient :
(a—d)Rcosf+ (b—d)Rsinf+ (c—d)k=0 (15.202)

Pour que cette identité soit satisfaite pour tout 6, il faut vérifier simultanément :

a—d=0 (15.203)
b—d=0 (15.204)
c—d=0 (15.205)

(15.206)
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0.5

-0.5 \/ os

y -1 -1

FIGURE 15.15 — Représentation de la courbe pour R=4 et k=9.

Ce qui est possible si on a les quatre coefficients égaux. La courbe est donc bien une courbe
plane inscrite dans un plan d’équation :

sHy+z—1=0 (15.207)

La vérification du caractére plan de la courbe pouvait également s’effectuer en vérifiant que la
somme des équations 15.197, 15.198 et 15.199 donnait la relation :
o Rcosf + Rsinf + k
x z = =
4 Rcosf+ Rsinf + k

ce qui signifie que la courbe peut étre définie par l'intersection d’une surface avec un plan, ce
qui démontre le caractére plan de la courbe.

1 (15.208)

15.5.6 Intersection de surfaces paramétriques

On recherche les équations paramétriques de la courbe définie par 'intersection d’une sphére
centrée en l'origine de rayon R et d'un cylindre droit d’axe Oz de diameétre R tangent a la
spheére. Les équations paramétriques de la sphére sont :

xr = Rcos¢cost
y = Rcos¢sinf (15.209)
z = Rsin¢

Les équations de la surface cylindrique sont :

k COs &

52? + ¥sina (15.210)

A

x
Y
z

Les relations entre les différents paramétres sont obtenues en égalant les coordonnées x, y et z
des points d’intersection des deux surfaces, ce qui donne :

Rcosgcost = gcosoz (15.211)
Rcos¢sinf = g (1 +sina) (15.212)
Rsing = A (15.213)
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_2 _2

FIGURE 15.16 — Intersection d’une spheére et d'un cylindre tangents.

On va chercher a éliminer trois des parameétres de ces relations pour obtenir les coordonnées z, y
et z des points de la courbe comme des fonctions d’un seul paramétre (le choix de ce paramétre
parmi les quatre est bien évidemment libre), et donc d’exprimer soit ¢ en fonction de ; soit
a en fonction de A. En élevant les deux premiéres expressions au carré et en les sommant, on
obtient :

R2 2
R? cos® ¢ cos® § + R? cos® psin® ) = T cos® a + Ve (1 +sina)’ (15.214)
ce qui donne aprés simplification :
1+«
cos? ¢ = w (15.215)
La relation 15.213 permet de tirer :
)\2
sin ¢ = F (15.216)
En sommant ces deux derniére relations, on obtient :
1+ si A2
y + =1 (15.217)
Qui, une fois réarrangé donne :
)\2
sina=1— 2§ (15.218)
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on peut donc immédiatement obtenir I’expression du cosinus de « en fonction de \ :

A2\ ?
cosa = +V1 —sin®a = i\/l - (1 - 2ﬁ) (15.219)

Apreés simplification, on obtient :

A2 M A A2
cosozz:l:\/l—l—i-llﬁ—i—llﬁ:jﬂﬁ L= 2 (15.220)

En remplacant ces expressions dans le systéme 15.210, on obtient les équations paramétriques
de la courbe, & savoir :

)\2
It (15.221)
YR
z=A

15.6 Géométrie différentielle

15.6.1 Vecteur tangent & une courbe spatiale

Reprenons l'exemple de la courbe de Viviani étudiée au § 15.5.6 dont les équations

paramétriques sont :
)\2

A2 15.222
S_m (15.222)

R
2=\
Le signe + indique qu’a une altitude déterminée, on a deux points distincts sur la courbe. Si

on cherche 'expression du vecteur dérivé a mi-hauteur (A = R/2), il suffit de déterminer les
dérivées premiéres de la fonction vectorielle par rapport au paramétre A :

( 2\
dx [\ R 1
— =4 l—- =4+ \——| =t——
d\ R2 + 22 2
=% =% (15.223)
dy _ 52
A R
z
— =1
d\
Les deux tangentes en A\ = R/2 ont donc pour direction respectivement (%,—1,1) et

(%3, —1, 1>. Les figures 15.17 et 15.18 représentent ces tangentes sur la courbe.

On peut également noter que la courbe de Viviani présente un point double en A = 0 (la courbe
passe deux fois par le méme point de 'espace) ; la dérivée premiére de la fonction vectorielle ne
s’y annule toutefois pas et on peut y calculer deux tangentes distinctes (1,-2,1) et (-1,-2,1).
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W 0
)
-0.5
-1 -1
P -15
-2
2
1 ' 05 0
0
-0.5 1
-1
2
¥ y
FIGURE 15.17 — Tangentes en A = R/2 ala FIGURE 15.18 — Tangentes en A = R/2 a la
courbe de Viviani. courbe de Viviani..

15.6.2 Plan tangent
15.6.2.1 Cartésien
Soit une surface définie par la fonction implicite F(z,y,z) = zyz — k* = 0 (figure 15.19).

Démontrer que le tétraédre formé par les plans Oxy, Oxz, Oyz et n’importe quel plan tangent
a la courbe a un volume constant.

10 10 X

FIGURE 15.19 — Surface définie par 'équation F(z,y,2) = zyz — k3 =0 .
L’équation cartésienne du plan tangent au point P s’écrit :

yp-zp(xr—xp)+xp-zp(y—yp)+axp-yp(z—2p) =0 (15.224)
yp-zp-r+xp-zp-y+axp-yp-z2—3-xp-yp-z2p =0 (15.225)
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L’ntersection de ce plan avec les axes du repére ont pour coordonnées A (3xp,0,0), B (0,3yp,0)

et C'(0,0,3zp). Le tétraedre OABC a pour volume :

<
I
|

- base - hauteur

~(%~OA~OB)~OC

1
. (5 '3$p'3yp) '?)Zp

Tp-Yp - zp

N|© W= Wl Wl

(15.226)
(15.227)
(15.228)

(15.229)

Comme P appartient a la surface, xp - yp - zp est une constante qui vaut k3, ce qui signifie que

le volume du tétraédre est constant et vaut :

V =2k

15.6.2.2 Paramétrique

Soit une sphére définie par ses équations paramétriques :

r=4-cos¢-cosb
y=4-cos¢-sinf
z=4-s8in¢

Déterminez les équations du plan tangent au point P défini par 0 = 7/4, ¢ = 7/3.

Les dérivées partielles de la fonction vectorielle s’établissent selon :

( Ox .
%:—ZJwCOS(b'Sin@ a—¢:—4-sm¢-c089
0
g—Z:4-COS¢'COSQ 8—12—4-sin¢-sin9
z 0z
%—0 \ a—¢:4-cos¢

Les équations paramétriques du plan tangent s’établissent donc comme suit :

s s T .7 LT s
r=4-cos—-cos— —a-4-cos—-sin——fF-4-s8in—-cos—

Ao A P # S

y:4-cos—-sin—+a-4-cos§-cosz—ﬁ-él-sing-sinz

z:4-sin§+ﬁ-4-cosg

ce qui donne :
r=2—V2a—-6p
y=2+V2a 63
z=2V3+23

En additionnant les deux premiéres équations, on obtient

T+y=2v2-2/68
2z =23+ 28

(15.230)

(15.231)

(15.232)

(15.233)

(15.234)

(15.235)
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En éliminant § entre ces deux équations, on obtient ’équation cartésienne du plan tangent
(figure 15.20) qui est :

— 923
T4y +2v2 - 2\/6%_ (15.236)

qui petit étre réarrangée en :

T4y —V6z+8/2=0 (15.237)

FIGURE 15.20 — Plan tangent & une spheére.

15.6.3 Vecteur normal & une surface

15.6.3.1 Cartésien

Soit une sphére de centre C' et de rayon R définie par son équation cartésienne :
Flz,y,2)=(x—20)° + (y—ye) 4+ (2 —2¢)> = R* =0 (15.238)

Vérifions que les normales en tout point de la sphére passent bien par son centre.
Les composantes du vecteur normal sont :

( (g—Z)P =2(zp —xc)

@—DP =2(yr — yc) (15.239)

(55) 2=z

Les équations paramétriques des normales sont donc :

r=xp+ - 2(xp—20)
y=yr+A-2(yr—yc) (15.240)
z=zp+A-2(zp—20)
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On remarque donc que si A = —1/2, on obtient
r = TC
Y =Yc (15.241)
zZ = ZC
ce qui démontre la passage de la normale par le centre de la sphére.
15.6.3.2 Paramétrique
Soit une sphére de centre C' et de rayon R définie par ses équations paramétriques :
r=zc+ R-cos¢-cosb
y=1yc+ R-cos¢-sinf (15.242)
z=2z2c+ R-sing
Un premier vecteur directeur du plan tangent est obtenu par :
a7 (a )9p bp = (—Rcos¢-sinb), , = —Rcos¢p-sinfdp
57 (4 y)ep o = (Rcos¢ - cosb), , = Rcospp-coslp (15.243)
oz _
bpibp ( )0P1¢P =0
Un second vecteur directeur du plan tangent est obtenu par :
5 (g—g)elwp = (—Rsin¢ - cos), , = —Rsingp-cosbp
(%) 9 (g_;)QP7¢P — (—Rsing -sinf),, ,, = —Rsingp - sinfp (15.244)
Poor (g—z) = (R-cos¢),, 4, = - cosdp
Op,pp ’
Le vecteur normal a la surface est obtenu par :
oV oV
N = (2L iy e 15.245
Op,pp Op,pp
i, , .
= | —Rcos¢p-sinfp Rcos¢p-coslp 0 (15.246)
—Rsin¢gp - cosfp —Rsingp-sinfp R -cosopp
= (R2 cos® ¢p cos Op; R? cos® pp sin Op; R% cos ¢p sin gbp) (15.247)
= (cos¢pcosbp;cosppsinbp;sinop) (15.248)
(15.249)
La normale a la sphére en un point a donc pour équations paramétriques :
x=1xc+ R-cospp-coslp+ \(cosppcosfp)
y=1yc+ R-cosdp-sinfp+ \(cosdpsinbp) (15.250)
z2=zc+ R-singp+ \(singp)
On voit que si A = —R, on trouve bien que le centre de la sphére appartient & la normale a la

sphére.
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Chapitre 16

Rappels d’éléments de géométrie
analytique plane

Recollect : to recall with additions something not previously known.

- A. Bierce, The Deuvil’s Dictionary

16.1 Equation de droite

La forme générale de représentation d’une droite est ’équation cartésienne implicite suivante :
F(z,y)=Ax+By+C=0 (16.1)

A, B et C sont définies & une constante multiplicative prés. Tous les points du plan dont
les coordonnées (z,y) vérifient cette relation appartiennent a la droite. Si la droite n’est pas
verticale, A # 0 et on peut transformer I’équation en sa forme explicite :

y=mx+p (16.2)

Dans ce cas, on a :
— m qui est le coefficient directeur permettant d’évaluer la pente de la droite (m = A—i =
tan § avec # I’angle entre la droite et ’horizontale ;
— p qui est I'ordonnée a 1'origine, c¢’est-a-dire la coordonnée y du point d’intersection de la
droite avex ’axe Oy.
Deux droites paralléles ont méme coefficient directeur. Des droites sont perpendiculaires si le
produit de leurs coefficients directeurs vaut -1. Une droite verticale a pour équation x = k.
Les équations paramétriques d’une droite sont :

(16.3)

r=2Ip+ al
y=yp+pA

avec (zp,yp) les coordonnées d’un point de la droite et (a, 3) les composantes d'un vecteur
directeur de la droite. On peut relier les composantes de ce vecteur aux autres formes en
remarquant que les vecteurs (a, 3), (1, m) et (B, —A) sont colinéaires.
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16.2 Equations de coniques sous forme réduite

On parle de forme réduite pour les coniques dans le cas ou leur axe focal est paralléle & 'un
des axes du systéme de coordonnées.

16.2.1 Ellipse

La forme réduite d’une ellipse est

r—x,)° N (v — o)’
a? b2

F(x,y) = ( -1=0 (16.4)

avec (., y.) définissant le centre de Dellipse, a et b définissant les mesures des demis axes (figure
16.1). Ses équations paramétriques sont :

{ T =1x,+a-cosb

Y =ye+b-sing (16.5)

2a

A
\J

2b

*
y

FIGURE 16.1 — Ellipse réduite.

Le grand axe de l'ellipse est horizontal si a > b et vertical si a < b. Si a = b = R, on retrouve
I’équation d'un cercle :

(z—2)°+(y—y.)’—R*=0 (16.6)
Les foyers sont situés a une distance ¢ de part et d’autre du centre de I'ellipse sur son grand
axe (c = 4/|a? — b?|). L’excentricité de lellipse € vaut c/a.
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16.2.2 Hyperbole

La forme réduite d’une hyperbole est

Floy) = &= )’ Wow) (16.7)

a? b2

avec (., y.) définissant le centre de ’hyperbole (figure 16.2). Si le signe du terme indépendant
est négatif, 'axe focal est parallele a I’axe Ox. Dans ce cas, ses équations paramétriques sont :

{ r=x.ta-coshf (16.8)

Y =1Yy.+b-sinh6d

Si le signe du terme indépendant est positif, 'axe focal est paralléle & 'axe Oy. Dans ce cas,
ses équations paramétriques sont :

(16.9)

r=22.+a-sinhd
y=19y.Etb-coshd

Les foyers sont situés a une distance c de part et d’autre du centre de ’hyperbole (¢ = Va? + b?)
sur son axe focal. L’hyperbole présente deux asymptotes obliques d’équation

b

y:yc+a(x—mc) (16.10)
b

y:yc—a(x—xc) (16.11)

L’hyperbole est dite équilatére si a=b (ses asymptotes sont perpendiculaires).

FIGURE 16.2 — Hyperbole réduite.
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16.2.3 Parabole
La forme centrée et réduite d’une parabole d’axe Ox est
(y—ys)* —4p(z —x5) =0 (16.12)

avec (zg,ys) définissant le sommet (figure 16.3). Le foyer de la parabole se situe en (zg + p, ys)-

(@]

FIGURE 16.3 — Parabole d’axe paralléle a x.

La forme centrée et réduite d’une parabole d’axe Oy est
(¢ —25)* —4p(y —ys) =0 (16.13)

avec (zg,ys) définissant le sommet (figure 16.3). Le foyer de la parabole se situe en (zg, ys + p).

16.3 Analyse de courbes planes

16.3.1 Recherche des asymptotes d’une courbe plane

Par définition, une droite du plan est appelée asymptote d’une courbe plane si la distance d’un
point variable M de cette courbe & la droite tend vers zéro quand le point M tend vers l'infini.
Il existe trois types d’asymptotes suivant leur orientation :

— une asymptote horizontale est paralléle a I'axe Ox ;

— une asymptote verticale est paralléle a 'axe Oy ;

— une asymptote oblique a une orientation qui n’est paralléle ni & I’axe des x ni a ’axe des

y.

De maniére générale, une courbe peut présenter un nombre indéfini d’asymptotes (voire aucune
asymptote). Nous nous limiterons a I’étude des courbes en formulation explicite.
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16.3.1.1 Asymptote horizontale

La courbe présente une asymptote horizontale si

lim y(z) =a (16.14)

T——+00

avec a fini (dans ce cas, y=a est 1’équation de "asymptote) ou si

lim y(x) =10 (16.15)
r—r—00
avec b fini (dans ce cas, y=b est I’équation de 'asymptote). Une courbe en formulation explicite
présente donc au plus deux asymptotes horizontales (éventuellement confondues).

16.3.1.2 Asymptote verticale

La courbe présente une asymptote verticale si

lim y(z) = £o00 (16.16)
T—a
avec a fini (dans ce cas, * = a est I’équation de 'asymptote). Une courbe en formulation
explicite peut potentiellement présenter une infinité d’asymptotes verticales.

16.3.1.3 Asymptote oblique

Pour qu’une courbe en formulation explicite présente une asymptote oblique, il faut que la
distance entre l'asymptote et la courbe tende vers zéro pour z tendant vers plus ou moins
I'infini. On peut démontrer que ceci est équivalent & rechercher :

m= lim Y2 (16.17)
rx—+o00
Si m est infini, la courbe ne présente pas d’asymptote oblique vers + l'infini; si m est fini, on

peut calculer :
p= lim [y(x)— maz] (16.18)

T——+00

Deux cas de figure sont possibles :
— p est fini, 'asymptote a pour équation y = mx + p;
— p est infini, on dit que la courbe admet une branche parabolique sans asymptote, de
direction asymptotique y = mx (exemple : y(z) = x + /7);
Le méme calcul peut étre mené pour la limite vers - 'infini ; une courbe définie par sa forme
explicite posséde donc au plus deux asymptotes obliques (éventuellement confondues).
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16.4 Exemples d’application

16.4.1 Droite

Déterminer les équations d’une droite reliant les points de coordonnées (1,3) et (—2,5).

16.4.2 Equation explicite

Le coefficient directeur de la droite est calculé selon :

5—3
— — _9/3 16.19
m=——" =2 (16.19)

pour trouver I'ordonnée & l'origine, il suffit de remplacer les coordonnées d’'un point dans
I’équation :
3=-2/3-1+p—>p=11/3 (16.20)
La droite a donc pour équation :
y=—2/3x+11/3 (16.21)

16.4.2.1 Equation implicite

En remplacant les coordonnées des point dans 1’équation générale de la droite, on trouve un
systéeme de deux équations :

A14+4B-3+C = 0 (16.22)
A —24B-54+C = 0 (16.23)

A, B et C étant définis & une constante multiplicative prés, on peut fixer arbitrairement C' = 1
pour résoudre le systéme :

A-14+4B-34+41=0 2A-1+2B-3424+A-—24+B-54+1=0 (16.24)
A-—24+B-5+1=0 A-—24B-54+41=0 ’
11B-43=0— B=-3/11
{A-—2+B-5+1:0—>A:—2/11 (16.25)
La droite a donc pour équation :
—2/11z —=3/1ly+1=0—22+3y—11=0 (16.26)

16.4.2.2 Equations paramétriques

On peut prendre comme vecteur directeur un vecteur joignant le second point et le premier

(V = (-2-1,5-3) = (—3,2). En prenant comme point de départ le premier point, les
équations paramétriques de la droite sont :
r=1-3\
{ =3+ 2) (16.27)

En éliminant le paramétre entre ces deux équations, on retrouve bien I’équation cartésienne de
la droite.
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16.4.3 Conique
16.4.3.1 Ellipse
Déterminer les caractéristiques de la conique définie par I’équation cartésienne suivante :
42? — 162+ 9y* + 18y — 11 =0 (16.28)

On commence par regrouper les termes en x et en y pour former des produits remarquables :

42 —42) +9 (" +2y) — 11 = (16.29)
42 —4e4+4)+9 (P +2y+1) —11-16-9 = (16.30)
4 =22 4+9(2+1)" =36 = 0 (16.31)
(16.32)
On divise ensuite par le terme indépendant pour trouver la forme réduite :
—22 (2 +1)
=2 WD (16.33)

32 22

Il s’agit donc d’une ellipse centrée en (2, —1) dont le demi-axe selon Oz mesure 3 unités de
longueur et le demi-axe selon Oy 2 unités de longueur. La constante ¢ vaut v/32 — 22 = /5, les
foyer de I’ellipse sont donc situés en (2 — /5, —1) et (2 + /5, —1).

16.4.3.2 Hyperbole
Déterminer les caractéristiques de la conique définie par I’équation cartésienne suivante :
42% — 162 — 9y — 18y — 29 =0 (16.34)

On commence par regrouper les termes en x et en y pour former des produits remarquables :

4 (2% —42) =9 (" +2y) —29 = (16.35)
42 —4x4+4) -9 (P +29+1)—29-16+9 = (16.36)
4z =29 +1)" =36 = 0 (16.37)
(16.38)
On divise ensuite par le terme indépendant pour trouver la forme réduite :
—2)%  (y2+1)
x=2) W+ (16.39)

32 22

Il s’agit donc d’une hyperbole d’axe focal horizontal centrée en (2, —1). La constante ¢ vaut
V3% + 22 = /13, les foyer de Pellipse sont donc situés en (2 — /13, —1) et (2 + /13, —1). ses

asymptotes ont pour équation :

y=—1+2/3(z—2) (16.40)
y=—1-2/3(x—2) (16.41)
(16.42)
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16.4.3.3 Parabole
Déterminer les caractéristiques de la conique définie par I’équation cartésienne suivante :
37+ 2y° — 4y +8=0 (16.43)

On commence par regrouper les termes en x et en y pour former des produits remarquables :

2(y*—2y) +32+8 = 0 (16.44)
2( —2y+1)+32+6 = 0 (16.45)
20y —1)°+3(x+2) = 0 (16.46)
(y—1)7%+ g (z+2) = 0 (16.47)
(16.48)

Il s’agit donc d’une parabole d’axe focal horizontal. Le sommet est situé en (—2,1). p vaut 3/8,
le foyer est donc situé en (—2 + 3/8,1).

16.4.4 Asymptotes

Soit la fonction :
a2 — 1+ 22

=2 16.49
f(x) + p— ( )
Son domaine de définition est |—inf —1[N[1 + inf[. Présente-t-elle des asymptotes ?
lim — (16.50)
2ol 0 ‘
x=1 est asymptote verticale de la fonction.
lim f(z) = 2+ lim ( ° ) lim (\/952 1+ ;c) (16.51)
T——00 z—s—oco \ . — 1 z——00
T +oo‘,—oo
= 2+ lim (\/:)52 —1+x) (16.52)
Tr—r—00
2 —1— 22
= 24 lim —/— 16.53
zo—00 /12 — 1 —x ( )
—1
= 24 lim —— =2 16.54
z—00 /g2 — 1 —x ( )
(16.55)

y=2 est asymptote horizontale de la fonction.

lim f(z) = 2+ lim ( i ) lim (\/$2—1+x>:+oo (16.56)
z—++00 z—+oo \ & — 1 ) z—+o0

. s
~~ v

1 +oo

J/
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Recherche d’éventuelle asymptote oblique :

. fx) _ 2 . T . Vit —1+ax
lim —~ = lim (- )+ lim lim ({ —
Tr—400 €T Tr—+0c0 €T Tr—400 T — 1 Tr—400 T
X T +oo72—oo
. (\/ 22 —1+ :1:)
= lm | —m
Tr—+0c0 €T
— lim ( 1—1/x2+1>:2
Tr——+00

(16.57)

(16.58)

(16.59)
(16.60)

On a potentiellement une asymptote oblique de coefficient directeur 2. Son ordonnée a 1’origine

se calcule par :

lim
T—+00

lim (f(z)—2x) = 2+

T—r—+00

(

xva? — 1+ 22 5 )
—2r

r—1

v —1+22 222
xr—1
a2 —1— 22 —1—2:10)
r—1

— 2z
r—1

lim
T—-+00

- 24

4—5/x

1-1/224+(1-2/z

>>:4

(16.61)
(16.62)

(16.63)

(16.64)

(16.65)

(16.66)

(16.67)

(16.68)

La droite y=2x-+4 est donc asymptote oblique quand x tend vers 4+oc0. Le graphe de la fonction

est représenté en figure 16.4
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25
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5

FIGURE 16.4 — Graphe de la fonction prise pour exemple dans la recherche d’asymptotes.

16.4.5 Intersection
16.4.5.1 Cas de base

Rechercher I'intersection entre I'ellipse d’équation

(z=2° (y+3)°

. - 1=0 (16.69)

avec la droite d’équation
y=—x+2 (16.70)

Les éventuels points d’intersection sont obtenus en résolvant le systéme d’équations suivant :

(-2  (y+3)°
w2 +2 5z~ —1=0 (16.71)
y=—+

En combinant les deux équations, on trouve successivement :

@:-2)2+ (—z 42+ 3)°

= - -1 =0 (16.72)
4(z—22+25(—z+5)°—100 = 0 (16.73)
4(2* — 4z +4) + 25 (2* — 10z +25) — 100 = 0 (16.74)
42* — 162 + 16 4 2522 — 250z + 625 — 100 = 0 (16.75)
29x% — 266z + 541 = 0 (16.76)
On peut résoudre cette équation du second degré :

A = (—266)" —4-29-541 = 8000 (16.77)

266 + /8000
o= 20TV ag (16.78)

2-29

266 — /8000
= T — 3,044.. 16.79
2 229 ’ (16.79)
(16.80)
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Il suffit ensuite de remplacer ces valeurs dans l’équation de la droite pour trouver les
coordonnées y des points d’intersection. On trouve au final I; = (6,128...;—4,128...) et
I, =(3,044...; —1,045...)

16.4.5.2 Tangence

En conservant ’'ordonnée a 'origine, quelle devrait étre le coefficient directeur de la droite pour
qu’elle soit tangente a l’ellipse ? Repartons du systéme d’équation déterminant l'intersection
entre la droite et 1'ellipse :

(x-2)° (y+3)
ot g —1=0 (16.81)
Yy =mx+ 2

Les points d’intersection sont toujours obtenus en résolvant ce systéme. On peut donc & nouveau
substituer pour trouver :

(x—2)2+(mx+2+3)2

= 7 -1 =0 (16.82)

4(x —2)* 425 (max + 5)° — 100 0 (16.83)

4 (2* — 4o +4) 4+ 25 (m*2” — 10mz +25) — 100 = 0 (16.84)
42 — 162 + 16 + 25m*2* — 250mzx + 625 — 100 = 0 (16.85)
(4 + 25m?) 2 — (16 4 250m) = + 541 0 (16.86)

La droite est tangente a l'ellipse si cette équation présente une racine double, la condition de
tangece est donc exprimée par :

A= (—(16+250m))> —4- (4+25m?) 541 = 0 (16.87)
256 + 8000m + 62500m? — 54100m* — 8656 = 0 (16.88)
8400m* + 8000m — 8400 = 0 (16.89)

(16.90)

Ce qui conduit a résoudre une nouvelle équation du second degré :

A = 8000% — 4 - 8400 - —8400 = 346240000 (16.91)

~ —8000 + /346240000

N 2 - 8400

iy — —8000 — /346240000
2 - 8400

— —0,631... (16.92)

my

— 1,583... (16.93)

Il y a donc deux droite tangentes a l’ellipse, comme le montre la figure 16.5.
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Chapitre 17

Rappels de géométrie analytique spatiale

Look behind you, a Three-Headed Monkey !

- G. Threepwood, Monkey island

17.1 Introduction

La géométrie analytique spatiale étend les concepts de géométrie plane en considérant une
troisiéme coordonnée z.

17.2 Géométrie vectorielle et repére

Dans l'espace R™, un repére est constitué d’un point origine O et de n vecteurs linéairement
indépendants i, us,...,u,. Ce repére permet de décrire la position de tout point par
I'intermédiaire d'une combinaison linéaire unique des vecteurs de base. La géométrie analytique
associe a tout point P de l'espace une représentation sous la forme de coordonnées
(p1,p2, -+, Pn). Ces coordonnées sont les composantes du vecteur joignant ’origine au point
dans le repére qui a été choisi :

n
oP =Y pil (17.1)
i=1
La pratique recommande toutefois d’employer un repére orthonormé (c’est-a-dire dont les

vecteurs de base sont orthogonaux entre eux et dont les mesures sont égales et équivalentes
a l'unité de mesure employée) qui conduit & de nombreuses simplifications dans les calculs.

17.2.1 Opérations courantes de géométrie vectorielle

Dans le cadre de ce cours, un grand nombre de relations feront appel aux notions de géométrie
vectorielle classiques déja évoquées notamment dans le cours de mécanique rationnelle|[1] ou de
physique [2] dont voici quelques rappels.

La norme d’un vecteur dans un repére orthonormé :

(17.2)
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8l

<l

FIGURE 17.1 — Opérations de base en géométrie vectorielle.

Ce qui permet de définir un vecteur unitaire v (de norme 1) paralléle a a par :

_>

a
ﬁ—iﬁﬂ (17.3)

La combinaison linéaire de deux vecteurs @ et b donne un vecteur ¢ :

C=k-a+l-b=c=k-a+1-b (17.4)

17.2.1.1 Produit scalaire

Le produit scalaire de deux vecteurs d et b formant un angle # entre eux donne un scalaire :

7 b = || H?Hcos@:Zaibi (17.5)

=

Son emploi est pratique pour la calcul d’angle entre éléments.

17.2.1.2 Produit vectoriel

%
Le produit Vectogel de deux vecteurs @ et b donne un vecteur ¢ perpendiculaire au plan
défini par @ et b (orienté positivement selon la régle de la main droite) dont la norme vaut

_>
I’aire du parallélogramme défini par det b

— —
TAD =7 = |7 = Hﬁn” b || sing (17.6)
Le produit vectoriel peut étre calculé comme :
L ww
7 Ab = a; o as = (CLng — agbg) IT;; -+ (a3b1 — a1b3> 17; + (Cblbg — agbl) U—>Z (177)
by by b3
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17.2.1.3 Produit mixte

On appelle produit mixte une expression de la forme :
7 (%aT) ars)

dont le résultat donne un scalaire. Ce scalaire représente le volume d’un parallélépipéde porté
par les trois vecteurs 71, 72 et 73 (figure 17.2).

FIGURE 17.2 — Parallélépipede construit sur trois vecteurs.

17.3 Représentation de plans

La surface spatiale la plus simple, & savoir le plan, va étre utilisée pour introduire les diverses
formes de représentation d’une surface dans I’espace.

17.3.1 Equation vectorielle

L’équation vectorielle d'un plan représente le vecteur 7 variable qui joint I'origine du repére a
tous les points du plan (figure 17.3).

Son expression est établie de la maniére suivante :
V (A ) = Ok + RP = OR + \V, + Vs (17.9)

avec R=(xo, o, 20) un point du plan, 71 = (a,b,c) et 72 = (d, e, f) deux vecteurs linéairement
indépendants du plan. Physiquement, le fait de pouvoir représenter tout point du plan par
I'intermédiaire de deux parameétres A et p revient a laisser deux degrés de liberté en translation
au point parcourant le plan. En termes d’algebre, la représentation d’un plan est donc une
application de R? — R? qui associe a tout point du plan (coordonnées A et y du point dans le
plan) un point de 'espace.
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FIGURE 17.3 — Equation vectorielle du plan.

17.3.1.1 Forme normale

Soit ﬁ un vecteur normal au plan (Nk = 71 A 72 par exemple). On peut exprimer que ﬁ est
orthogonal & tout vecteur du plan par (figure 17.4) :

N- (7—@?) —0 (17.10)

avec 7 un vecteur (variable) reliant 'origine du repére a chaque point du plan. Cette équation

FIGURE 17.4 — Equation vectorielle normale du plan.

peut également s’exprimer par :

N.V=N.Ok=k (17.11)
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Ou k est une constante pour le plan considéré (car O? et ﬁ sont constants). Cette expression
est dénommée forme normale constante du plan, elle exprime que la projection de tout vecteur
joignant l'origine & un point du plan sur la normale au plan est constante.

17.3.2 Equations paramétriques

En projetant la relation 17.9 selon les axes, on obtient le systéme d’équations suivant :

r = xg+ Aa+ ud
Yy = Yo+ Ab+pe (17.12)
z = 2+ e+ puf

Ce systéme d’équation constitue les équations paramétriques du plan (ou forme paramétrique
du plan). En faisant varier A et u de —oo & 0o, on obtient les coordonnées de I’ensemble des
points constituant le plan.

17.3.3 Equation cartésienne

En éliminant les parameétres A et © dans le systéme 17.12; on obtient successivement :

\ = x —xo— pd

v — 2o — pd
y o= ot ———tbtpe (17.13)
z = 2z i c+uf

a
po= (==, —w)) /(=)

. a(y —yo) — bz —x0)
- ea — db p (17.14)

a(y —yo) —b(x — x0)

a(z —2) = c(z—20) + (af —cd) ea — db

(17.15)

ce qui donne en développant :

af —cd cd—af af —cd B
(bae_bd—c)x—i— (ae_bd)y+az+ |:C.CL’0— P (bxo — ayo) —azo| =0  (17.16)

C’est-a-dire une équation linéaire en x,y et z de la forme suivante :
Az +By+Cz—D =0 (17.17)

Cette équation est appelée équation cartésienne du plan (ou forme cartésienne implicite du
plan). L’ensemble des points ayant des coordonnée x,y et z vérifiant I’équation sont des points
appartenant au plan. Il faut noter que les coefficients A,B,C et D de cette équation sont définis
a une constante multiplicative preés.

On peut définir un vecteur normal au plan en prenant un vecteur de coordonnées (A,B,C)

(figure 17.5).
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FIGURE 17.5 — Normale & un plan.

Ceci se démontre de maniére simple en prenant trois points quelconques du plan :

( P D-AIl—Bbyl
x
1 1, Y1, C
P D—AI'Q—B:I./Q
x
2 2, Y2, C
P D—A{L‘g—Byg
x
\ 3 3, Y3, C
Un vecteur normal du plan peut étre défini par :
-y A B
ﬁ:P2P1AP3P1= T1— T2 Y1 — Y2 _5@1_1’2)_?@1_2/2)
A
T —x3 Y1—Ys —5(1'1—903)—6@1—%)

Ce qui donne :

A
Ny =—— [(y1 —y3) - (1 — 22) — (11 — y2) - (21 — 73)]
G

N, = Cc [(y1 —y3) - (x1 — 22) — (Y1 — y2) - (21 — x3)]
N, == —y3) - (1 —22) + (1 — ¥2) - (21 — x3)

(y1 —y3) - (1 — 22) — (11 — y2) - (21 — 73)

En divisant I’ensemble des termes par — c

bien (A,B,C) comme vecteur normal.

(17.18)

(17.19)

(17.20)

, on retrouve

17.3.3.1 Forme implicite d’un plan donné par les points de percée des axes dans

ce plan

Si ax+by+cz-d=0 est ’équation cartésienne d’un plan, les points U=(d/a;0;0), V=(0:;d/b;0)
et W=(0;0;d/c) situés sur les axes appartiennent a ce plan (on parle des coordonnées a l'origine

du plan, figure 17.6).
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FIGURE 17.6 — Coordonnées a 'origine d’un plan.

De maniére réciproque, si un plan passe par les points U=(xy;0;0), V=(0;yy;0) et
W=(0;0;zw), ce plan aura pour équation :

(Yzv)z+ /yv)y+ (1/2w) 2 —=1=0 (17.21)

17.3.4 Passage d’une représentation d’un plan & une autre
17.3.4.1 Passage de la forme normale a la forme implicite

Si la forme normale est donnée par un produit mixte
(7 - (72) : (Vi A Vg) —0 (17.22)
le développement du produit mixte donne immédiatement|1] :

r—IZR Y —YrR < — ZR
Vi Viy Vi, =0 (17.23)
Vou Vay Vo,

Qui permet par développement de retrouver la forme implicite ax-+by+cz-d=0 du plan.
Si I’équation normale est donnée sous la forme :

N (7 - OTE) —0 (17.24)
un simple développement du produit scalaire donne
Nz (z—2p)+Ny(y—yr)+Nz(z—25) =0 (17.25)

Qui donne également accés a la forme implicite du plan.
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17.3.4.2 Passage de la forme normale a la forme vectorielle

Pour établir la forme vectorielle il est nécessaire de déterminer deux vecteurs qui doivent
satisfaire aux conditions suivantes :

— Les deux vecteurs doivent étres orthogonaux a ﬁ ;

— les deux vecteurs doivent étre linéairement indépendants (en particulier, ils ne peuvent

étre nuls).

L’idée de base est de choisir un premier vecteur du plan 71 puis de rechercher un second
vecteur par le produit vectoriel Vo = N AV} qui est a la fois orthogonal & N comme demandé,
mais également orthogonal a V;. L’emploi de vecteurs unitaires pour N, V; et V5 permet une
simplification des calculs en ajoutant des contraintes sur les coordonnées des vecteurs (seules
deux composantes doivent étre déterminées au lieu de trois).

17.3.4.3 Passage de la forme cartésienne a la forme normale

La forme normale nécessite la définition d’'un point du plan et d’'un vecteur normal au plan.
Ce vecteur normal est trouvé de maniére immédiate comme ayant des coordonnées (a,b,c) si le
plan a pour équation ax+by+cz-d=0. La recherche des coordonnées d’un point du plan revient
a se fixer arbitrairement deux coordonnées de ce point et de rechercher la troisiéme coordonnée
qui garantit ’appartenance de ce point au plan.

17.3.4.4 Passage de la forme implicite a la forme paramétrique

Il existe une infinité de paramétrisations possibles pour un plan. Le choix le plus simple consiste
a employer la paramétrisation suivante :

r = «
y = 5 (17.26)
z = 1.0d— (ac+bP)]
La fonction vectorielle du plan s’établira ensuite par :
1
V =i, + 8@+ = - [d — (aa + bB)| @ (17.27)
c
ou encore p ;
V@ ra(@-2)+s (w - 17) (17.28)
c c c
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17.4 Représentation de droites

17.4.1 Equations cartésiennes

La droite est I’exemple le plus simple d’une courbe de I'espace. Sa définition peut étre réalisée
par I'intermédiaire de I'intersection de deux plans 7 et p (figure 17.7). Une droite posséde donc
deux équations cartésiennes de la forme suivante :

{ Ar+By+Cz—D = 0

EFx+Fy+Gz—H = 0 (17.29)

Les deux plans 7 et p ne doivent bien évidemment pas étre paralléles pour présenter une droite

A B C
E F G

d’intersection. Ceci implique que la matrice [ } soit de rang 2 ((A, B, C) linéairement

indépendant de (E, F,G)).

FIGURE 17.7 — Définition de droite par ses équations cartésiennes.

17.4.2 Forme canonique

Si on considére un point P(zp,yp, zp) quelconque de la droite, celui-ci appartient aux deux
plans, on peut donc écrire :

{Aa:p—i-BprrCzP—D =0 (17.30)

Emp—l—pr—i—Gzp—H =0
En soustrayant les relations 17.30 de 17.29, on obtient un systéme équivalent :

A(x—zp)+By—yp)+C(z—2p) = 0 (17.31)
E(@—azp)+ F(y—yp) +G(z—2p) = 0 .
Comme le systéme est de rang 2, il existe oo! de solutions, les solutions sont de la forme :
r—zxzp = k(BG—-FQC)
y—yp = k(EC—-GA) (17.32)
z—zp = k(AF — EB)
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Avec k un paramétre (pouvant varier de — inf a + inf. Ces trois équations peuvent se synthétiser

sous la forme suivante :
r—rp  Yy—Yyp Z—Zp (1733)

BG—-FC EC-GA AF-FEB
Cette forme est appelée forme canonique de la droite.

17.4.2.1 Forme canonique d’une droite orthogonale aux axes de coordonnées

Soit une droite passant par les points Pl(z1,y1,21) et P2(xza,y2,21). Cette droite est bien
évidemment orthogonale a 1'axe Z (sa cote Z reste constante). La forme canonique de cette
droite s’écrirait sous la forme :

T —x — 0
LYo 2 (17.34)
ra—x1  Ya—y1 0
Ce qui n’a pas beaucoup de sens. Dans ce cas particulier, il faut substituer a la forme canonique

le systéme suivant :
=21
T-T1 Y- (17.35)
T2 =21 Ya2—MU

qui revient en fait a la définition d’'une droite sous la forme de l'intersection de deux plans

(figure 17.8).

FIGURE 17.8 — Droite orthogonale a ’axe Z.

17.4.2.2 Forme canonique d’une droite perpendiculaire 4 un des plans de
coordonnées

Soit une droite passant par les points Pl(z1,y1,21) et P2(z1,y1, 22). Cette droite est bien
évidemment paralléle a l'axe Z (figure 17.9). La forme canonique de cette droite s’écrirait

sous la forme : 0 0
zZ— Z1
S 17.36
0 0 29 — 21 ( )
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Qui, comme pour le § précédent n’a pas beaucoup de sens. De nouveau, il faut substituer a la
forme canonique le systéme suivant :

{ TN (17.37)
Yy=1un

qui correspond a nouveau a une définition de la droite sous forme d’équations cartésiennes.

<

FIGURE 17.9 — Droite parallele a I'axe Z.

17.4.3 Equation vectorielle

La définition vectorielle d’'une droite se base sur le vecteur joignant ’origine & un point de la
droite et sur un vecteur directeur de la droite (figure 17.10). Cette équation a la forme suivante :

OP=0A+k-V (17.38)

FIGURE 17.10 — Equation vectorielle de droite.
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Le passage des équations cartésiennes a I’équation vectorielle d’une droite se réalise de maniére
aisée en considérant que le vecteur directeur de 'intersection de deux plans. Un vecteur directeur
est obtenu par le produit vectoriel entre les vecteurs normaux aux deux plans (le vecteur o est
paralléle au vecteur ]Vi A ﬁg)

En considérant que la droite passe par deux points connus P; et P, la fonction vectorielle de
la droite peut également s’écrire sous la forme :

OP = OP, + AP, P, (17.39)

- ; - PP ot P
ou encore O? — OP, = Plp = AP, P,, ce qui implique que les vecteurs PP et PP, sont
colinéaires. Une autre présentation de I’équation vectorielle d'une droite est donc :

(07g - 0—151}> A ((71?2 — 07?1) —0 (17.40)

17.4.4 Equations paramétriques

Comme dans le cas des équations paramétriques d’un plan, les équations paramétriques d’une
droite sont obtenues en projetant I’équation vectorielle d'une droite dans un repére orthonormé :

r = wa+k-l
y = yatk-m (17.41)
z = za+k-n

Ces équations paramétriques permettent également d’interpréter les équations sous forme
canonique d’une droite. En effet, ces équations ont une forme générale :

TTrA _ YT ET A g (17.42)

l m n

Les numérateurs de ces équations correspondent donc aux paramétres directeurs de la droite.

17.5 Mesure de distances

17.5.1 Distance entre points

La notion de distance classiquement employée dans I'espace est la distance euclidienne (figure
17.11) entre deux points définie dans un repére orthonormé par :

dpso = PG| = /(wr = 20)* + (v — va)* + (2 — 20)° (17.43)
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FIGURE 17.11 — Calcul de la distance entre deux points.

17.5.2 Distance point droite

Soit une droite passant par un point P; et de vecteur directeur (1,m,n) et un point Py extérieur
a cette droite (figure 17.12). La distance entre le point et la droite est mesurée selon la
perpendiculaire a la droite, c’est-a-dire dans un plan perpendiculaire & la droite. Le probléme
revient a la détermination du point de percée P de la droite d dans le plan normal a d passant
par Fy. La démarche de résolution est donc la suivante :

— établissement de I’équation cartésienne du plan normal :

— (- (z—z0)+m-(y—yo) +n-(2—2)=0);
— recherche du point de percée P de d dans ce plan;
— calcul de la distance entre P et F.

P

FIGURE 17.12 — Calcul de la distance entre un point et une droite.
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17.5.3 Distance point plan

La distance d’un point & un plan est mesurée parallélement & la normale au plan (figure 17.13).
Soit un point P = (zo; yo; 20) et un plan d’équation cartésienne Ax+By+Cz-D=0.

FIGURE 17.13 — Calcul de la distance entre un point et un plan.

Le point de percée de la normale au plan passant par P est obtenu en combinant les équations
paramétriques de la droite perpendiculaire au plan passant par P :

r = o+ AN
y = yo+ BA (17.44)
zZ = Zy+ CA

Avec I'équation cartésienne du plan. L'intersection se produit pour Aoy = —(Axo+ Byo+ Cz —

D)/(A? 4+ B% + C?). Le point de percée Q' a donc pour coordonnées :

r = xy+ A)\Q/
Yy = Yo+ By (17.45)
Z = zZy+ C)\Q/

La distance entre le point P et le plan 7 est donc calculé comme étant la norme de PQ’, a
savoir

= \/(330 + A)\Q/ — CB())2 + (yo + B)\Q/ — y0)2 + (Zo + C)\Q/ — 20)2 (1746)

= |\g|VAT¥ B2+ C2 (17.47)

Ce qui correspond donc a :

-
P

A B - D
:! zo + Byo + C'z | (17.48)

VEI B C?

|Pa
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17.6 Angle entre plans

17.6.1 Angle diédre

Par définition, la mesure de I'angle diédre (ou le rectiligne du diédre) que forment deux plans

est I’angle mesuré dans un plan perpendiculaire & 'intersection entre les deux plans.

Soit un plan v perpendiculaire a l'intersection de 7 et p, si nous menons dans ce plan
des perpendiculaires aux traces des deux plans, on définit un quadrilatére JMNP. Dans ce
quadrilatére, la somme des angles vaut 27 radians, ’angle entre les perpendiculaires est donc

le supplémentaire de ’angle formé entre les plans.

FIGURE 17.14 — Angle entre deux plans.

En orientant les normales dans la direction inverse, on obtiendrait directement ’angle entre les

plans. En résumé, I’angle entre deux plans d’équation cartésienne

A1$+Bly+ch—D1 =0
AQiL'—FBQy—FCQZ—DQ =0

peut étre calculé par

+
A} + B} + C3\/A3 + B2 + C3

Si les plans sont donnés sous leur forme normale, cette expression se réduit a

( A Ay + BiBy + C,C, )
= arccos

a = arccos (£ (ayaz + biby + ¢1¢2))

(17.49)

(17.50)

(17.51)
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17.6.2 Perpendicularité entre plans

Si deux plans sont perpendiculaires entre eux leurs vecteurs normaux sont orthogonaux entre
cux (figure 17.15).

FIGURE 17.15 — Plans perpendiculaires (vue orientée selon la droite d’intersection).

Donc si deux plans sont définis par leurs équations cartésiennes :

Alx—i_Bly_'_ClZ—Dl = 0
Asx 4+ Boy +Coz — D2 = 0 (17.52)
La condition de perpendicularité s’écrira N7 - Ny = 0 ou encore A; Ay + B1By + C1Cy = 0.

17.6.3 Plans paralléles

Deux plans paralléles entre eux ont nécessairement leurs normales paralléles (figure 17.16). La
condition de parallélisme entre deux plans définis par leurs équations cartésiennes (équation

17.52) s’exprimera donc par :
A B C
A2 BQ 02
Si les vecteurs normaux sont unitaires, la condition de parallélisme peut également s’exprimer

par
ni-ny =1 (17.54)
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FIGURE 17.16 — Plans paralléles.

17.7 Angle droite/plan

17.7.1 Perpendicularité plan/droite

Soient :

— une droite de paramétres directeurs (1,m,n);

— un plan d’équation cartésienne Ax+By+Cz-D=0.
Pour que la droite soit perpendiculaire au plan, il faut que le vecteur directeur de cette droite soit
paralléle au vecteur normal du plan (figure 17.17), ce qui implique d’avoir une proportionnalité
entre les composantes de ces vecteurs :

3 (17.55)

L’expression d'un plan perpendiculaire & une droite passant par un point R(zg,yr, 2r) sera

donc :
l(z—xzr)+m(y—yr)+n(z—2r) =0 (17.56)

L’ensemble des plans perpendiculaires a une droite donnée (famille de plans perpendiculaires a

une droite) s’exprime donc par :
IX +mY +nZ =0 (17.57)

avec le paramétre § valant [ - xgr +m - yg +n - 2g.
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FIGURE 17.17 — Droite perpendiculaire & un plan.

17.7.2 Droite paralléle & un plan donné

Rappelons que pour qu’une droite soit paralleéle & un plan, il suffit qu’elle soit parallele & une
droite de ce plan. Comme la droite est paralléle & une droite du plan, elle est donc orthogonale
au vecteur normal au plan. La condition de parallélisme entre une droite de vecteur directeur
(I,m,n) et un plan d’équation cartésienne AX + BY + CZ — D = 0 s’écrit donc :

IA+mB+nC =0 (17.58)

17.8 Etablissement de I’équation de plans particuliers

17.8.1 Plan passant par une droite et paralléle a une autre droite

Rechercher un plan passant par une droite dl et paralléele a une droite d2 passe par
I’établissement de la fonction vectorielle du plan. Soit R un point quelconque de d1, Vi le
vecteur directeur de d1 et 72 le vecteur directeur de d2. La fonction vectorielle du plan s’établit

simplement par :
V =0B+\V, + uvh (17.59)

265



CHAPITRE 17. RAPPELS DE GEOMETRIE ANALYTIQUE SPATIALE

17.8.2 Plan passant par une droite et par un point extérieur a cette
droite

Soit S le point donné et R un point quelconque de la droite d. Le vecteur }ﬁ peut étre pris
comme deuxiéme vecteur permettant de définir I’équation vectorielle du plan.

FIGURE 17.18 — Plan passant par une droite et un point.

17.8.3 Plan passant par trois points

Soient les trois points R(xg, yr, 2r), S(xs,ys, zs) et T(xr,yr, z7). En considérant les vecteurs

— —
V1= }ﬁ et V2 = S? , 'expression vectorielle peut étre obtenue. Par développement, on obtient
la forme implicite cartésienne qui est équivalente a :

T—TR Y—YrR < —ZR
Ts—Xr Ys—Yr 25— 2r | =0 (17.60)
I —TR Yr —YR 2T — 2R

Il faut noter que cette méthode n’est pas la plus rapide en pratique pour obtenir I’équation
d’un plan.
17.8.4 Plan passant par une droite et perpendiculaire & un plan donné

Pour rappel, deux plans sont perpendiculaires si I'un contient une droite perpendiculaire a
I’autre. Ce probléme se résoud donc en employant le vecteur normal au plan donné comme
deuxiéme vecteur utilisé dans 1’équation vectorielle du plan recherché.

17.8.5 Plan perpendiculaire & deux plans donnés et passant par un
point donné

- =
Les vecteurs normaux N; et Ny des deux plans donnés peuvent étre employés pour obtenir
I’expression vectorielle du plan :

V = OR + AN, + N, (17.61)
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Comme le plan recherché est perpendiculaire a la fois aux deux plans donnés, ce plan est donc

_>
perpendiculaire a leur intersection. Le vecteur Ny A Ny peut donc étre employé comme vecteur
normal au plan, permettant de retrouver directement 1’équation implicite du plan.

17.9 Traitement de 'intersection d’objets

De maniére générale, pour obtenir 'intersection de deux éléments décrits par leurs équations,
il suffit de résoudre le systéme formé en rassemblant les équations des deux figures. Une courbe
de l'espace sera donc définie par l'intersection de deux surfaces (par exemple d'un plan avec
une surface pour définir une courbe plane).

Un exemple simple consiste a rechercher l'intersection de trois plans définis par leurs équations
cartésiennes. Le systéme résultant est constitué de trois équations linéaires a trois inconnues :

Ar+By+Cz—D = 0
Ex+Fy+Gz—H = 0 (17.62)
e+ Jy+ Kz—L = 0

Ce systéme peut également se mettre sous forme matricielle :

A B C T D
E F G |-y =< H (17.63)
I J K z L

Suivant les positions relatives des plans, le systéme peut étre inversible (un seul point
d’intersection) sous-déterminé (intersection donnant une droite ou un plan) ou impossible
(intersections paralléles entre elles par exemple). Les différents cas sont résumés sur la figure
17.19.
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A =07
m

Compatible

T Ny
m Oy

i PLAN

DROITE

AUCUNE INTERSECTION

FIGURE 17.19 — Différents cas de figure pour l'intersection de trois plans.

17.9.1 Application
Soient trois plans déterminés par leur équation cartésienne :

T=3r+2y+22+1=0
p=-2r+y—2—-2=0 (17.64)
c=12x+y+72+8=0

L’intersection des trois plans est obtenue résolvant le systéme formé des équations des trois
plans, a savoir :
3r+2y+22+1=0
—2r4+y—2—-2=0 (17.65)
120 4+y+724+8=0

La résolution de ce systéme par la méthode de Gauss [3| donne successivement :

32 2:-1|IL1
9 1 —1: 2|12 (17.66)
12 1 7:-8|1L3

3 2 2i-1
0 7 1 4|2L1+3L2 (17.67)
0 —7 —1:—4|L3—4L1
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32 211
07 1: 4 (17.68)
00 0 0|L3—L2

21 0 12:—15|7L1 —3L2

07 1 4 (17.69)
00 0: 0
10 3:-2|L17
01 2: 2|L2/7 (17.70)
00 0: 0

L’intersection des trois plans forme donc une droite dont ’équation paramétrique est :

Il
>N |

I
A (17.71)

5
7

[SEINSIE
I
<= |

17.9.2 Projection d’une droite sur les plans de coordonnées

Soit une droite donnée par ses équations cartésiennes :

{Am+By+C’Z—D = 0 (17.72)

EFx+Fy+Gz—H = 0

FIGURE 17.20 — Projection d’une droite sur le plan horizontal.

La recherche de sa projection dans le plan Oxy s’obtient en réalisant l'intersection du plan
vertical contenant la droite avec le plan d’équation z = 0. N’importe quel point du plan vertical
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contenant la droite est caractérisé par le fait que les coordonnées = et y sont liées par une
relation indépendante de z. L’équation de ce plan est donc obtenue en éliminant z entre les
deux équations cartésiennes :

(AG — CE)x + (BG — CF)y+ (CH — DG) =0 (17.73)

Cette relation correspond a 1’équation cartésienne du plan vertical contenant la droite.

Le méme type de raisonnement peut étre suivi pour la recherche de la projection dans les autres
plans de coordonnées.

17.10 Vecteur directeur et cosinus directeurs

Un vecteur permet de définir une direction dans 'espace (sauf le vecteur nul bien entendu).
Toute vecteur colinéaire définit la méme direction, il est donc possible de normaliser le vecteur
de maniére libre. Une méthode classique de normalisation consiste a rendre ce vecteur unitaire,
dans ce cas, ses composantes (I, m,n) sont telles que I2+m?+n? = 1. On les appelle parametres
directeurs absolus de la droite.

Projetons orthogonalement ce vecteur 7 sur les axes de coordonnées (figure 17.21) et appelons
a, [ et v les angles formés par le vecteur avec Oz, Oy et Oz.

FIGURE 17.21 — Cosinus directeurs d’une droite.

Dans les triangles rectangles OAD, OBD et OCD, on obtient de maniére directe que cos o = I,
cosf = m et cosy = n (car on a HO?H = H7H = 1). Les paramétres directeurs absolus

d’une droite sont donc les cosinus directeurs de la droite. On vérifie de maniére évidente que
cos? o + cos? B + cos?y = 1.
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17.11 Forme implicite normalisée d’un plan

Une méthode de normalisation de I’équation cartésienne d’'un plan consiste a rendre unitaire
son vecteur normal en divisant les coefficients A, B et C par le facteur v A2 + B2 + (C? :

( A
VR Ce
B

ey o
J D

dans ce cas, le vecteur normal au plan rendu unitaire est noté 7. Nous avons défini
précédemment que le cosinus des angles formés par la normale & un plan avec les axes sont
donnés par les coefficients de z, y et z dans la forme normalisée. Cette normale peut étre
orientée du plan vers l'origine ou inversement suivant les cas (si le coefficient d dans la forme
normalisée est positif, le vecteur normal est orienté de l'origine vers le plan; les conclusions
sont inverses dans le cas contraire).

Si on recherche les coordonnées du point de percée O’ de la normale au plan passant par
lorigine, il faut résoudre le systéme formé des équations paramétriques de la droite combinées
avec ’équation cartésienne du plan :

ar + by 4+ cz — d = 0 avec

T = a\
= bA
g: o (17.75)

ar +by+cz—d=0

Le point de percée est donc défini pour A = d/(a? + b* + ¢?), il a donc pour coordonnées :

?)
)

(
r = ad/(a®>+b*+c

y = bd/(a®+b*+c?) (17.76)
z = cdf(a®+ b + 32)
la distance |OO’| vaut donc :
2 72 2,72 2 72
00| = VX2 4+Y?2+ 72 = \/<a2 +ab2d+ 27 + @ +b62d+ 2)? + @ +Cb2d+ e =d (17.77)
Une nouvelle interprétation de I’équation sous forme normalisée est donc la suivante :
cos a + cos 8 + cosy — |00'| =0 (17.78)

Cette forme est également appelée forme polaire du plan ; le vecteur O—>O’ est appelé vecteur
polaire du plan. Sur ce canevas, les formes polaires des différentes équations peuvent étre
établies. On déduit par exemple que les points de percée des axes dans le plan sont les
points A, B et C tels que A = ((|JOO'| /cosa);0;0), B = (0;(|00'|/cosB);0) et C =
(0;0; (JOO'| / cos)). Une fonction vectorielle du plan peut donc étre établie par

—
Vp =00 + A\OA + uCB (17.79)
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FIGURE 17.22 — Forme polaire d’un plan.

Un systéme d’équations paramétriques peut donc étre immédiatement déduit :

r = |00'|(cosa+ A/ cosa)
y = |00'|(cos B+ p/ cosf) (17.80)
z = |00 (cosy — (A4 u) /cos7)

L’équation vectorielle polaire se détermine en exprimant le vecteur O'P constamment

perpendiculaire a OO’ :

00 - (ﬁ% - @) —0 (17.81)
ou . s
00 - 0P = )OO’ (17.82)

17.12 Exemples d’application

17.12.1 Plan

Déterminer les équations d'un plan passant par les points A(1,2,3), B(4,—1,5) et
C(-1,-1,-1).

La méthode la plus directe est de rechercher les équations paramétriques du plan en employant
par exemple A comme point particulier et AB et AC' comme vecteurs directeurs. On trouve

immeédiatement :
r=14+3\—-2u

y=2-—3\—3u (17.83)
2=3+2\—4pu
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Pour trouver l'’équation cartésienne, il suffit d’éliminer les paramétres dans le systéme
d’équation :

3(1) —2(2) 2 3x—2y =3+9A —6p — 4+ 6\ +6p=—1+ 15\ (17.84)
21)—(3) 5 2x —2=246A—4p—3 =2 A +4pu=—1+4X\ '
4(1) = 15(2) — 122 — 8y — 30x + 152 = —4 + 60\ + 15 — 60\ = 11 (17.85)
Le plan a donc pour équation :
—18z — 8y + 152 —11 =0 (17.86)

On peut vérifier que si on remplace les coordonnées de 1'un des points dans cette équation,
I’égalité est bien vérifiée.

17.12.2 Droite

Déterminer les équations de la droite reliant les points P (:4_&_5’ 1) et P»(1,7,6).

En considérant 1’équation vectorielle de la droite V () = OP; + a P, P, on trouve de maniére
immeédiate les équations paramétriques de la droite :

T =—4+ b
y=—-5+12c (17.87)
z=1+4 b«

17.12.3 Intersection

Rechercher I'intersection entre le plan et la droite recherchés précédemment.
L’intersection est obtenue en résolvant le systéme reprenant les équations du plan et de la

droite, par exemple :
—18z -8y +15—-11=0

r=—4+ ba
y= -5+ 12« (17.88)
z =14 b«

En remplacant x, y et z dans la premiére équation, on trouve la relation linéaire en « suivante :

_18(—4+5a) —8(—5+12a) +15(1 +5a) — 11 = 0 (17.89)
72— 900+ 40 — 960 + 15+ Tha — 11 = =0 (17.90)
“1lla+116 = 0 (17.91)

116
- 17.92
“ T m (17.92)

En utilisant cette valeur dans les équations paramétriques de la droite, on trouve les coordonnées
du point d’intersection I (1,226...;7,541...;6,225).
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Annexe A

Figures vierges de certains problémes

Tout le succeés d’une opération réside dans sa préparation.

- S. Tzu, L’art de la guerre

A.1 Introduction

Cette annexe rassemble un ensemble de figures vierges qui seront utilisées durant le cours oral.

A.2 Figures
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Lr

FIGURE A.1 — Traces d’un plan défini par deux droites sécantes (cf page 42).
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FIGURE A.2 — Traces d’un plan défini par deux droites paralléles (cf page 43).
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Af
X
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X Crh
Bh

FIGURE A.3 — Traces d’un plan défini par trois points (cf page 43).
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FIGURE A.4 — Trace d’un plan défini par une droite et un point (cf page 43).
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xC!

Al :
Bf
' x '
| | |
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| | |
| | I
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I @ '
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X B i
Al pt !
X |

"
X

FIGURE A.5 — Point dans un plan défini par trois points (cf page 47).
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FIGURE A.6 — Point dans un plan défini par deux droites sécantes (cf page 48).
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FIGURE A.7 — Point dans un plan défini par deux droites paralléles (cf page 48).
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FIGURE A.8 — Point dans un plan défini par une droite et un point (cf page 49).
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FIGURE A.9 — Reconstruction de I’épure de Monge a partir du plan (cf page 61).
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FIGURE A.10 — Recherche du vu et du caché (cf page 64).
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Monge

Isométrie

FIGURE A.11 — Recherche du vu et du caché sur plan (cf page 65).
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FIGURE A.12 — Intersection entre deux plans quelconques (LT = 7'(']]} =7
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FIGURE A.13 — Point de percée.dune drgite.dansupplan (LT = W}l = 775), cf page 75.289
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FIGURE A.15 — Rotation autour d’un axe vertical (cf page 87).
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FIGURE A.16 — Opération de rotation inverse pour retrouver le point P (cf page 90).
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Annexe B

Formulaire

Géomeétrie vectorielle

n
Norme d’'un vecteur dans un repére orthonormé : || @|| = \/ E a?
i=1

Vecteur unitaire o paralléle a d U=+

)

| |l

Combinaison linéaire de deux vecteurs : = k G+1-b= c=k-a;+1-b;
Produit scalaire : @ - b = || H b H cosf = Zal ’
Produit vectoriel :@ A b = @ = 17| = H_>|| H b ‘ sin 0

L |mEw

7 AN b = a, Qo as | = (agbg — ang) ?T; + (Clgbl — albg) ?7; + (Cllbg — agbl) ?7;
by by b3

Coniques

Forme implicite F(z,y) = az? + bry + cy? + dz + ey + f = 0. Déterminant caractéristique

A =1%—4ac (A <0 :ellipse; A =0 : parabole; A > 0 : hyperbole).

Pour la réduction :
— sia #c, 020,5arctana%c;
—sia=c¢, 0 =17/4
Forme réduite F(2'y') = d'2? + 0y? + 2’ +d'y +¢ =0

a = acos’f +bcosfsinh + csin®f
¥ = asin?6 — bcosfsinb + ccos® b
d = dcosf + esinf

d = —dsinf+ecosf

¢ = f

Géométries et communication graphique
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tangente et normale & une courbe

d
Tangente : y = ya, + <_y) (x — 2pp)
dz Mo

Normale :y = yny, — ? (x — )
(),

dx
OF (z,y)
d —_—
— Forme implicite : é = _% :
o
dy
s dy % .
— Forme paramétrique : = dr
dp

Forme polaire : -2 () sin 6 + r(6) cos 6
o 1 L— = .
’ dr  7'(0)cos — () sing’

Points singuliers

Tangente a une courbe sous forme vectorielle :

T (to) # [if
? (A = ? (to) + )\ﬁ (to) avec{ pe N*

p est minimum

si p=1 on parle de point régulier, dans le cas contraire, le point est singulier.

Asymptotes

Asymptote horizontale lirin y(x) = a. Asymptote verticale lim y(x) = +o0.
z—+00 T—a

Asymptote oblique y = mz +p : m = lim @ ;p= lim [y(x) —mxz].

T—r—+00 T—r+00

Longueur

s = [, ds avec ds® = da? + dy?. Forme explicite : 1+ 5 dt
to

Forme polaire : s = /; \/(Wd—f))Z +(f(0))*-db;
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Courbure

4y
d

P As—0

Ay
As

- ‘(le_f)s <1+(§—§)2)3/2

OF\'OF | 0°F OFOF O (OF\’
dy | Ox? 0x0y Ox Oy  Oy?

ox
OF\* (0F\*?
() (7).
1_ 0t ot2 0ot 8252
P oY\ [(0n\’ :
(&) (@) |
‘r +2(dr) —rﬂ‘
) do do?

En équation polaire : 5=
dr\” L2
— r
do

En équation implicite : 1 =

En équation paramétrique :

3
2

Géométrie spatiale

A B Czy— D
Distance entre un point (xg, yo, 20) et un plan Az +By+Cz—D =0 |[Azo + Byo + C |
VA?+ B? + C?

Matrice de transformation homogéne

Rotation autour des axes de coordonnées

10 0 0 COSQ O sm@ 0
0 cosf —sinf O 0
R(X,0) = 0 sinf cosf® 0 R(Y,0) = —sm9 O COSQ 0 (B-2)
00 0 1 1
cos@ —sinf 0 0
sinf cosf 00
R(Z,0) = 0 0 10 (B.3)
0 0 01
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Rotation autour d’un axe quelconque

Jp=1|n, 0 —Ny R(ﬁ,e):]+Sin9-Jn+(1—COSQ)-J2

Translation

OO O =
O O = O
o = O O
—_

S5

Symétrie orthogonale par rapport aux plans coordonnés

100 0 10 00 10 0
010 0 0 -1 0 0 0 10
Roxy=| g g _1 | floxz=1¢ ¢ 1 | fovz=|4 ¢ 1
000 1 00 01 0 0 0

Symeétrie orthogonale par rapport a un plan quelconque

Re=1-2-7-7u"

Scaling

o O o=
o O > O
<
o o O

I
_— o O O

Géométries et communication graphique
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Quadriques

Forme générale

F(z,y,2) = Av* + By* + C2* + 2Dxy + 2Bz + 2Fyz + G + Hy + Iz +J =0
Forme réduite

(B.9)
F(z,y,2) =A2* + By + 022+ Do+ Ey+Fz:+G =0 (B.10)
Formes propres :
(z — $C)2 (v — Z/c)2 (= — Zc>2
— Uellipsoide F(x,y,z) = 5 + + —1=0;
a b? c?
(z — ZL“C)2 (y — yc)2 (z — 20)
— P’hyperboloide & une nappe F(x,y, z) = 5 + 7 — 5 —1=0;
a c
(x — $0)2 (y — yc)2 (z — 20)
— P’hyperboloide a deux nappes F(x,y, z) = 2 + P2 2 +1=0;
2 2
— le paraboloide hyperbolique F(x,y, z) = (x ;l'c) y beC) —(2—=2¢0)=0;
a
2 2
— le paraboloide elliptique F(z,y,z) = (@ afS) + g bes) —(z—25)=0;
(z — xs)g (y — ys)2 (2 — 25)2
— le cone a base elliptique F'(z,y,2) = 5 -+ B =0;
a

FIGURE B.2
FiGURE B.1 — Ellipsoide. a une nappe.

FIGURE B.3 —

a deux nappes.

iy
7
7504
A,
ik ‘ﬂ““ 2
S AT 1S
NN, SRS iy 777
SSSEEEKKS % NQE AT T 77 N 72
SRR NS W=
SRS N S===r
SRS NS
S N——FF
sy

FIGURE B.4 — Paraboloide

FIGURE B.5 — Paraboloide FIGURE B.6 - Cone
hyperbolique. elliptique. elliptique.
Surface de révolution autour de 'axe z
F(Va2+y%,2)=0 (B.11)
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Paramétrisations classiques

F1GURE B.7 — Coordonnées sphériques. F1GURE B.8 — Coordonnées cylindriques.

Equation paramétrique des quadriques

Ellipsoide Hyperboloide a une nappe Hyperboloide a deux nappes
T=2c+a-Ccosu-Ccosv r=2xc+a-coshu-cosv r=2xc+a-sinhu-cosv
y=19yc+0b-cosu-sinv y=1yc+b-coshu-sinv Yy =1vyc+0b-sinhu-sinv
z2=2zc+c-sinu z = zc + c¢-sinhu z=zcxc-coshu

Paraboloide hyperbolique  Paraboloide elliptique Cone a base elliptique

r=xc+a-u T =I5+ a-\/ucosv T =2Tg+a-ucosv
y=yc+b-v y=ys+b-y/usinv y=1ys+b-usinv
z=zc+ (u? —v?) z=2zg+u z=zg+c-u

Géomeétrie différentielle de surfaces
Forme cartésienne

point singulier surface :

=0

o)) |(&),

N oF
0z ) p
Plan tangent a une surface en un point régulier :

En forme explicite :
0 0
- (_aDP (x —zp) — (—8‘£>P Y —yp)+(z—2p) =

Forme vectorielle

Plan tangent :

o7 ov
?(a,ﬁ)z7(>\p,up)+ow<a>A . +/B'<3_M>A p

Géométries et communication graphique
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Annexe C

Longueur, rectification et courbure de
courbes planes

Le chemin le plus court d’un point a un autre c’est de ne pas y aller

- P. Geluck, L’Ezcellent du chat

C.1 Longueur d’un arc de courbe

Soit une courbe donnée par ses équations paramétriques employant un parameétre ¢. On peut
approcher I'arc joignant les points A et B (définis par les valeurs t, et ¢, du paramétre) par
la ligne brisée joignant les points définis par les paramétres tg, t1, ..., t, (avec tog<<t;< ...< t,,
figure C.1). Si on fait tendre le nombre de points vers l'infini, la longueur des segments tend
vers zéro et le périmétre de la ligne brisée tend vers la longueur de I'arc entre A et B.

FiGURE C.1 — Discrétisation d'une portion de courbe.

La longueur d'une corde est exprimée par :

lis1 = \/(fciﬂ — )"+ (Y1 — 0i)° (C.1)

La longueur de la ligne brisée vaudra donc :

[ = Zlm = Z \/(l’i+1 — @)+ (Yir1 — u) (C.2)
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n—1 n—1 2 2
SN - i —2i\" (Y=
B S ) (e 3

On peut démontrer ([1],[2]) qu’a la limite, cette expression tend vers la longueur de I’arc (notée
s) qui peut étre calculée par :

o= [ () (B0 c4

On peut également démontrer que la différentielle de cette fonction s’établit selon :

ds* = dx® + dy? (C.5)

C.1.1 Abscisse curviligne d’un point sur un arc

Pour un arc donné, on a I'expression générale :

u
s = / ds (C.6)
uo
On peut définir de maniére arbitraire :
— une origine a ’arc pour la valeur uy du parameétre ;
— un sens positif de parcours du point défini par ug vers celui défini par u.
La valeur définie par la relation est alors appelée abscisse curviligne d’un point sur I’arc orienté.

C.2 Rectification d’une courbe

Le calcul de la longueur d'un arc est dénommé rectification de I'arc. Ce calcul va étre présenté
sur base d’exemples pour différentes formulations de courbes.

C.2.1 Courbe donnée par ses équations paramétriques

Soit par exemple une cycloide, courbe décrite par un point d’un cercle qui roule sans glisser sur
I'axe OX (figure C.2). Ses équations paramétriques sont :

x =R (0 —sinf)
{ y=R(1—cosb) (C.7)
L’abscisse curviligne sur cette courbe se calcule comme suit :
dz

o = R (1 —cos?) (C.8)

dy _
= Rsin6 (C.9)

0
s = / \/(R (1 —cos))®+ (Rsinf)” - db (C.10)

0o
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Les développements successifs donnent :

0
s = vV R? — 2R? cos 0 + R2 cos? § + R?sin2 6 - df (C.11)
0
0
= V2R? — 2R2 cos @ - df) (C.12)
0
0
= / V2R2 (1 — cos @) - df (C.13)
0o

0
= / \/2R22 sin’ g - df (C.14)
0

0

0
—/2R
o

Si on se limite & une variation d’angle de 0 a 27, le sinus reste positif, on peut donc lever la
valeur absolue (si on considére des valeurs faisant changer de signe le sinus, il faut intégrer par
morceaux). En imposant 6,=0, I'expression de I’abscisse curviligne est donc :

= anlen(®)] e

sing’ - df (C.15)
(C.16)

= —4Rcos g +4R (C.18)

= 4R (1 — cos g) (C.19)
o0

= 8Rsin 1 (C.20)

Pour un seul cycle de roulement (§ = 27), la longueur de I'arc est donc de 8 R.

lo 5 10 15 20 25 30 35 40 45 50 55 60 6

F1GURE C.2 — Représentation de la cycloide pour R=5.

C.2.2 Courbe donnée par son équation explicite
Une courbe donnée sous la forme y = f(x) peut étre représentée sous une forme paramétrique

de maniére évidente :
r=1t
C.21
{ y = f(t) (C21)

dx
La formule de I’abscisse curviligne s’établit donc dans ce cas (on a bien str i 1):

/t:" 1+ (d’zl—y))zdt (C.22)
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C.2.3 Courbe donnée par son équation polaire

Comme vu précédemment, si une courbe est donnée par son équation polaire r = f(6), il est
possible de se ramener a ses équations paramétriques de la maniére suivante :

x = f(0)cosb
{ y = f(0)sind (C.23)
Les dérivées partielles selon 6 s’établissent comme :
dx , .
7 f(0)cosl — f(0)sinb (C.24)
% = f(0)sin€ + f(0)cosb (C.25)

La longueur d’arc s’obtient deés lors comme :

5:/9 V((0)cos — £(8)sin6)? + (f/(8) sin0 + f(8) cos 0)* - b (C.26)

o= [y( \/ (F0)? - ds )

Par exemple, si on considére la spirale (figure C. 3 donnée par I’équation polaire » = , on peut
calculer :

Ou encore :

0
s:i/ vur+1-du (C.28)
0o

FiGURE C.3 — Spirale d’équation polaire r = 6.

En prenant pour origine § = 0 et en considérant le sens positif dans le sens des # croissants, on
peut calculer (La primitive se trouve dans les tables d’intégrales) :

s= (0.5 (w14t (ut m))]z (C.29)

ce qui donne :

s=0,5 (WWJr In (9 + m)) (C.30)

Pour un tour complet, la longueur de spirale vaudra approximativement 2,08.
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C.3 Notion de courbure

La notion de courbure est un concept lié a la morphologie d'une courbe; elle traduit
physiquement 1’accélération plus ou moins brusque d’un mobile parcourant la courbe a vitesse
constante.

C.3.1 Définition

Soit une courbe C dans un repére Ozy sur laquelle on choisit arbitrairement un sens de parcours.
Soit ¢ I'angle que fait la tangente a la courbe au point d’abscisse curviligne s et ¢ + Ay I'angle
que fait la tangente a la courbe au point d’abscisse curviligne s+As (figure C.4).

Par définition, la courbure de C au point d’abscisse curviligne s se définit comme :

(2]

La courbure est donc une valeur essentiellement positive homogéne a I'inverse d’une distance.
On nomme rayon de courbure p I'inverse de la courbure.

Ay
As

— = lim
p As—0

FIGURE C.4 — Définition de la courbure.

Le centre de courbure en un point d’'une courbe est le point situé sur la normale a la courbe
a une distance équivalente au rayon de courbure dans la direction de la concavité. Le lieu des
centres de courbure a une courbe est appelée développée de la courbe. Inversement, la courbe
originale est appelée développante de la courbe développée.
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C.3.1.1 Cas particulier du cercle

Soient M; et My deux points particuliers d’un cercle de centre C et de rayon R. On sait que
si Ay est 'angle au centre interceptant l'arc M;Ms, alors |As| = +=RAg. Soit K le point
d’intersection des deux tangentes aux cercle en M; et M, (figure C.5).

\j

FI1GURE C.5 — Calcul de la courbure d’un cercle.

Dans le quadrilatére C'M; K Ms, les angles m et m sont droits. L’angle « est donc le
supplémentaire de I’angle au centre. o+ /3 est un angle plat, ce qui implique donc que 5 = Agp.
Le calcul de la courbure en un point du cercle donne donc :

— = lim =
P As—0

Ay 1
— im |——|=|= (C.32)
As As—0 | RAp R

Une circonférence est donc une courbe dont la courbure est constante et vaut l'inverse de son
rayon. Par extension, une droite peut étre vue comme un cercle de rayon infini, sa courbure est

donc nulle.
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C.3.2 Calcul de la courbure

C.3.2.1 Courbe donnée par son équation explicite

Il est clair que ¥ et s sont des fonctions de x. Dans 1’équation C.31, le calcul de la dérivée
partielle peut donc étre réalisé par :

dp
dp  dx
dx

Dans le cas de la formulation explicite, ’angle ¢ que fait une courbe avec 'axe des x peut étre
calculé par :

d d
tan g = % ou ¢ = arctan (d_y> (C.34)

X

la dérivation par rapport a x de cette expression donne :

d2
dy (#>

=7 C.35
(&)
On a également démontré (relation C.5) que
ds_ iy (@Y (C.36)
do dx '
La courbure se calcule donc par :
- (C.37)

C.3.2.2 Courbe donnée par ses équations paramétriques

Soit les équations paramétriques d’une courbe :
z = ()
C.38
L (©3)

Pour calculer la courbure selon C.37, il faut pouvoir déterminer les dérivées premiére et seconde
de y par rapport a z. Il a été démontré au §8.3.4 que la dérivée premiére peut s’exprimer sous
la forme :

dn
dy  gr
== g—i (C.39)
dt
La seconde dérivation de cette expression donne :
dn dn
Py d | d | a 1
e e e e o
dt dt / dt
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Le développement de I’expression précédente donne :

Py G dE a e 1)
dz2 dip 3 :
()

En intégrant dans C.37 les résultats de C.39 et C.41, on obtient :

dt d? _dt di? (C.42)

C.3.2.2.1 Exemple d’application Déterminer la courbure d’une ellipse donnée par ses
équations paramétriques :

x =acosf
{ y = bsind (C.43)
On peut calculer :
@ = —asinf @ = bcosf
dg df (C.44)
Y _ —a cosf dn_ —bsinf
de? dez
La courbure se calcule par C.42 :
1 (—asinf) (—bsin ) — (bcosb) (;acos@) _ ab i (C.45)
P [(—asin 0) + (bcos 9)2] : [a? sin® 0 + b% cos? 6] 2
Pour obtenir la courbure en tout point (x,%) de la courbe, on peut substituer :
a’sin® 0 + b?cos’§ = a*sin?@ + b? cos® @ + a® cos* O + b? sin? 0 (C.46)
— (a2 cos? 0 + b* sin® 9)
= a’+ b — (2% +¢°) (C.A47)
Ce qui donne finalement
1 b
= ¢ (C.48)

P [a2 + b2 — (ZL’Q + y2>]%

On peut vérifier que si a = b = R, on retrouve bien la propriété du cercle d’avoir p = R.

C.3.2.3 Courbe donnée par sa forme implicite

Comme pour le cas précédent, il faut rechercher les dérivées premiére et seconde de y par
rapport & x. Comme présenté au § 8.3.2 on calcule les deux premiéres dérivées de la fonction

explicite par : P oRd OF d
z Y
= — — =0

dr  Ordr | oydr
d’F d [(dF
e i (@) =0 (C.50)

307

(C.49)



ANNEXE C. LONGUEUR ET COURBURE

Cette expression donne :

2 2 2 2 2
%§+’ié3%+%§(%> =0 (©51)
donc , , , , ,
Il suffit de replacer C.49 et C.52 dans C.37 pour obtenir :
(3_F>2 OF _,OF OFOF  &F (a_F)2
1 _ dy ) Ox? 0xQy Ox Oy  Oy? \ Ox (C.53)

3
2

p 8_F2+5’_F2
ox oy

C.3.2.3.1 Exemple Reprenons le cas de lellipse, cette fois-ci donnée par son équation
implicite :

172 y2

ou encore b?z? + a’y? — a?b* = 0. On peut calculer immédiatement :

F F
g_ = 2b2$ ((;— = 2a2y
x
aQF B b2 aZF B 0 aﬁyp B 2 , (055)
ox? oxdy oy? ¢
Ce qui permet de calculer la courbure :
1 4a'y*2b® — 0 + 4b*'2%20° (C.56)
P (4()41:2 + 4a4y2)% '
_ 8(a’?) (y°0? + 2%?) (C57)
8 (b*a2 + a4y2)%
4b4
= - . (C.58)
(b422 + a'y?)?
(C.59)
Le dénominateur peut étre réorganisé selon :
biz? + a'y? = 1? (a2b2 — a2y2) +a? (a262 — b2x2) = a%b? [az + b — (ZE2 + yz)] (C.60)
Ce qui donne au final :
1 ipt
= = ¢ _ (C.61)
P [G2b2 [Cl2 + b2 — (fEQ + y2)]]2
b
_ a (C.62)

Nl

@+~ (@ + )

Ce qui est équivalent au résultat obtenu avec le calcul mené a partir de la forme paramétrique.

308



REFERENCES

C.3.2.4 Courbe donnée par sa forme polaire

La forme polaire d'une courbe r = f(#) peut étre transformée de maniére simple en une forme
paramétrique :
x = f(0)cosb
{ y = f(0)sind (C.63)

Les relations étudiées au § C.3.2.2 peuvent étre employées avec ces expressions. Le
développement complet|3] donne finalement ’expression de la courbure :

L ; (C.64)

C.3.2.5 Cas pratique

Un mobile circulant a vitesse constante sur une trajectoire constituée d’un segment de droite
suivi d'un arc de cercle verra au raccordement entre les deux courbes une discontinuité de
courbure (passage d’une valeur nulle & une valeur fini). Il en résultera une discontinuité
d’accélération du mobile. En effet, ’accélération d’un point parcourant une courbe se calcule

selon|2] : ) )
y o dis_y ds\" u
S - =
d = —zu + <dt> p (C.65)

Cette discontinuité d’accélération provoquera des effets sensibles pour les passagers du mobile
(vibrations) qui entraineront un certain inconfort. C’est pourquoi dans la pratique, les
raccordements & l'entrée et a la sortie des virages devant étre pris & grande vitesse (autoroutes,
chemins de fer,...) sont constitués d'un raccordement intermédiaire a courbure continument
variable appelé clothoide. Cette courbe peut étre décrite par son équation intrinséque :

C2

; (C.66)

S

avec C une constante homogéne a une longueur. Il n’est pas possible d’établir une forme
analytique de cette fonction, sa construction doit se réaliser point par point par intégration
numérique.
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ANNEXE D. GENERATION DE SURFACES PAR LIGNES ET PAR POINTS

Annexe D

(Génération de surfaces par lignes et par
points

La ligne est un point partie en promenade.

- P. Klee,

D.1 Génération par lignes

La génération par lignes d’une surface consiste a considérer la surface & obtenir comme la
réunion d'un ensemble de courbes variables appelées génératrices de la surface. Comme dans
I'espace R? une courbe est constituée de I'intersection de deux surfaces, cette génératrice résulte
elle-méme de l'intersection de deux surfaces variables S; et Ss.

La variabilité des surfaces S; et Sy implique qu’elles dépendent d’un ou plusieurs parameétres
pour définir une famille de surfaces. Par exemple, une famille de plans paralléles entre eux peut
étre définie par une famille & un paramétre de la forme :

F(z,y,z,\) =ax+by+cz—A=0 (D.1)
Avec \ le parameétre.

De maniére générale, on peut rencontrer différents cas de figure :
— deux familles de courbes présentant un seul paramétre (commun aux deux familles) ;
— deux familles de courbes présentant plusieurs paramétres et un ensemble de relations
liant les paramétres entre eux.

D.1.1 Familles & un seul paramétre

Les deux équations des familles de surfaces sont de la forme :
Fl(z,y,z,\) = 0 (D.2)
F2(z,y,2,\) = 0 (D.3)

Cela signifie que pour chaque valeur de A, la réunion des deux équations précédentes donne une
courbe appartenant a la surface; cela signifie que les points de ces courbes vérifient :

Fl(fﬁP,yRZP,)\i) =0 :
F2(zp,yp,zp, Ai) = 0 (D.5)
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De la relation D.5, on peut tirer une relation de la forme
Ai = F2(zp,yp, 2p) (D.6)
En réinjectant cette expression dans D.4, on obtient une relation de la forme

Fl(xp,yp,zp, f2(xp,yp,2p)) =0 (D.7)

Cette expression est simplement ’équation résultante de I’élimination du parameétre entre les
deux expressions des familles de surface. Cette constatation permet de déduire que I’équation
d’une surface qui est le lieu des courbes d’intersection de deux familles de surfaces & un seul
parameétre s’obtient en éliminant le parameétre entre les expressions des deux familles de surfaces.

D.1.1.1 Exemple d’application

Soit une famille de circonférences définies par l'intersection entre un plan paralléle & Oxy et
un cylindre circulaire d’axe Oz dont le rayon vaut la moitié de la coordonnée z du plan (figure
D.1). Les équations de la famille de courbes s’établissent comme :

z=A
Lo o o

FIGURE D.2 — Coéne résultant de la réunion
FIGURE D.1 — Famille de cercles. des cercles de la famille.

L’équation de la surface s’établit en éliminant le paramétre entre les deux équations de la
famille. On obtient finalement :

z
4y - =0 (D.9)
Cette équation est celle d'un cone (cf § 10.3.1.6) a base circulaire (figure D.2).
D.1.2 Familles & plusieurs paramétres présentant plusieurs relations
entre ces parametres
Si les équations de familles de courbes font intervenir n parameétres, leur réunion ne donne plus

une surface unique, mais bien une famille de surfaces a n-1 paramétres. Pour définir une surface
unique, il est nécessaire d’adjoindre aux équations de la famille de courbes n-1 relations liant
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les paramétres entre eux. Par exemple, si on considére les équations de la famille de courbes a
deux parameétres suivantes :

ar+pPy—1 = 0 (D.10)
2ax +382—1 = 0 (D.11)

La premiére équation représente une infinité de plans verticaux (paralléles a Oz), la seconde
représente une infinité de plans paralléles & Oy. En éliminant le paramétre « entre les deux
équations, on obtient la relation suivante :

382 — 28y +1=0 (D.12)

Il s’agit de I’équation d’une famille de plans. Si on ajoute une relation entre « et 3, on obtient
une surface unique ; par exemple :

ar+pPy—1 = 0 (D.13)
2ax+382—1 = 0 (D.14)
a—36=0 (D.15)
permet par éliminations successives :

3pr+Py—1 = 0 (D.16)
60x+36z—1 = 0 (D.17)

6 + 32
—-1=0 D.18
3T +y ( )

Ce qui donne finalement la relation 3z — y 4+ 3z = 0 qui est I’équation cartésienne d’un plan.
Il faut noter que dans la majorité des cas, ce type de définition de surface n’a d’utilité pratique
que lorsque les courbes définissant la surface sont de droites. On parle alors de surfaces réglées
qui sont décrites plus en détail au § 10.5.

D.2 Génération par points

Trois surfaces Sy, S, S3 ont en commun un ou plusieurs points. Si ces surfaces sont variables,
I’ensemble des points formés par les points variables va constituer une surface S. Cette définition
générale permet d’introduire la notion de génération d’une surface par points. Les familles de
surfaces S1, S5 et S3 comportent deux paramétres. Le systéme d’équations peut se mettre sous

la forme :
Fl(z,y,z,\,pp) =0

F2(z,y,z,\,u) =0 (D.19)
F3(x,y,z,\,u) =0
L’élimination des deux parameétres entre les trois relations permet de trouver 1’équation de
la surface. Par analogie avec ce qui a été présenté pour les courbes définies par lignes, il est

possible d’introduire un nombre n de paramétres supérieurs a deux. Dans ce cas, il est nécessaire
d’adjoindre n-2 relations liant ces parameétres entre eux pour définir une surface.
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