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Avant-propos

Ce cours a pour objectif de présenter les principes de représentation de figures géométriques, tant
du point de vue dessin que représentation mathématique. Il se base largement sur sa première
version qui a été compilée durant l’année académique 2012-2013.
Pour partie, ce cours constitue une sélection d’éléments des ouvrages édités par le professeur Yves
Durand, avec certaines adaptations ou compléments.
Les ouvrages rédigés par le professeur Durand présentent l’avantage d’une description exhaustive
et, selon le souhait de son auteur, la possibilité de les parcourir de manière autodidacte. C’est
pourquoi nous avons fait le choix de conserver l’ensemble des conventions (notamment de notation
des éléments) qui sont employées dans ces ouvrages. Ainsi, le lecteur cherchant des renseignements
complémentaires ou des précisions sur le cours pourra aisément consulter (en plus des références
bibliographiques propres aux différents chapitres) ces syllabi de cours qui sont accessibles au format
électronique sur Moodle.
Un ensemble d’exercices d’application résolus a également été compilé par le professeur Durand,
ceux-ci inclus dans les ouvrages précités. Ces exercices permettent, en complément aux séances
d’exercices et de laboratoires, de se préparer de manière optimale aux différentes épreuves associées
à ce cours.
Ces notes de cours sont exclusivement destinées aux étudiants de la Faculté Polytechnique de
Mons. Elles ne peuvent donc être ni reproduites, ni diffusées, sous quelque forme que ce soit, en
dehors de ce cercle restreint.
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Chapitre 1

Géométries et communication graphique :
introduction

It is the essential role of the professor to waken the joy of work and to know.

- A. Einstein, The World As I See It

Les réalisations de l’ingénieur se concrétisent fréquemment sous la forme d’objets ou de machines
conçues dans un but précis. Aux différentes étapes de réflexion, il est nécessaire de communiquer
de manière claire et précise l’information entre les différents intervenants aussi bien à l’intérieur
de l’entreprise (concepteur, bureau d’études, bureau des méthodes, fabrication,...) qu’à l’extérieur
(client, sous-traitant,...). Le support le plus communément employé pour la transmission de cette
information reste majoritairement bidimensionnel (feuille de papier ou écran d’ordinateur).

Figure 1.1 – Représentation CAO d’une presse à briques (projet de MA1, Blaise Mondouji).



CHAPITRE 1. INTRODUCTION

Il existe donc diverses méthodes pour synthétiser sur une représentation 2D un objet 3D.
L’évolution des performances du matériel et des logiciels de conception assistée par ordinateur
(CAO) permet actuellement d’effectuer des rendus photoréalistes d’objets avant leur réalisation
(figure 1.1). Ce type de représentation comprend malheureusement une information lacunaire voire
ambiguë et n’est donc pas suffisante pour une utilisation industrielle.

La communication entre donneurs d’ordre et exécutants pour la réalisation de pièces ou de
bâtiments repose sur des plans d’exécution qui ont valeur de contrat. Ces plans suivent un ensemble
de règles communément admises qui sont issues de normalisation. Dans ce contexte, ce cours aura
pour objectif de permettre la compréhension des méthodes de réalisation et des conventions liées à
ce type de représentation. Ce cours a également pour objectif d’exercer les capacités à manipuler et
à représenter avec aisance cet espace 3D. Trois grands volets seront étudiés de manière commune :

— les techniques de représentation en perspective (axonométrie et en particulier l’isométrie) ;
la plupart des exemples traités dans ce cours seront accompagnés d’un croquis en
perspective qui respecte ces conventions ;

— la représentation sous forme de plans techniques employant la méthode dite « de Monge » ;
— la représentation sous forme analytique.

Ces trois méthodes de représentation ne sont que différentes voies pour représenter la même réalité ;
l’ingénieur est fréquemment appelé à les utiliser de manière complémentaire (figure 1.2).

Figure 1.2 – Trois représentations d’un même point : axonométrie, épure de Monge et
représentation analytique.
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CHAPITRE 1. INTRODUCTION

1.1 Contenu du cours

Ce syllabus est subdivisé en trois parties principales. La première traite de problèmes de géométrie
descriptive en ayant pour but la compréhension des plans techniques. Le chapitre 2 présente les
méthodes classiquement employées pour représenter une figure spatiale sur un plan et décrit le
dessin en perspective. Le chapitre 3 décrit les principales conventions de la méthode « de Monge »
employée dans la production de plans techniques. La représentation de points et de droites y est
abordée, celle des plans est présentée au chapitre 4. Les normes de dessin technique sont ensuite
abordées au chapitre 5, elles mettent en avant la nécessité de disposer d’outils tels que le traitement
de l’intersection d’objets (chapitre 6) ou la mise en vraie grandeur (chapitre 7).
La deuxième partie du cours concerne la représentation analytique de figures et son application
à l’infographie. Le chapitre 8 reprend quelques notions de base de géométrie analytique plane.
Le chapitre 9 traite du calcul de longueur et de courbure sur des courbes planes. Le chapitre 10
étend une partie des notions de géométrie plane à la troisième dimension. Ces éléments servent
de base à la description de l’algorithmique utilisée en infographie (chapitre 11). La description de
surfaces sous forme cartésienne (chapitre 12) et paramétrique (chapitre 13) est ensuite abordée. Les
courbes spatiales sont traitées au chapitre 14. Enfin, la géométrie différentielle spatiale (recherche
de vecteur tangent, normal et de plan tangent) est abordée au chapitre 15.
La troisième partie reprend un ensemble d’annexes utiles au cours : un ensemble de figures vierges
qui seront traitées durant le cours oral (annexe A) ; le traitement complet d’un problème de lecture
de plan pour reconstituer un volume (annexe B) ; des rappels de notion de bases issues de l’examen
d’admission (annexe C) et finalement le formulaire de géométrie analytique utilisé dans ce cours
(annexe D).
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Première partie

Géométrie descriptive et plans techniques
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Chapitre 2

Méthodes de projection

An elegant weapon from a more civilized time

- O. Kenobi, A new hope

2.1 Introduction

Les supports fréquemment employés pour la transmission d’information sont par nature
bidimensionnels (feuille de papier, écran), alors que les objets nous entourant sont par nature
tridimensionnels. Le passage de l’espace réel à sa représentation passe donc nécessairement par une
modification de l’information. Classiquement, les méthodes de représentation d’objets de l’espace
reposent sur la projection de figures spatiales sur un ou plusieurs plans de référence (figure 2.1).

Figure 2.1 – Principaux types de projection employés.



CHAPITRE 2. MÉTHODES DE PROJECTION

On distingue notamment :
— les méthodes de projection dites coniques où l’ensemble des lignes de projection sont issues

d’un même point.
— les méthodes de projection dites cylindriques où la méthode de projection employée

est la projection orthogonale (les points sont projetés sur le plan suivant des droites
perpendiculaires à ce plan, ce qui implique que l’ensemble des lignes de projection sont
parallèles entre elles) ;

2.2 Projection centrale

La projection centrale (figure 2.2) est un exemple de projection conique ([1], [2]).

Figure 2.2 – Projection centrale.

Le centre de projection représente l’oeil de l’observateur, le plan de projection est le plan de l’écran
ou du tableau sur lequel la scène est représentée.
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CHAPITRE 2. MÉTHODES DE PROJECTION

La projection centrale est d’usage intensif dans le domaine artistique pour faire ressortir l’effet de
perspective dans une scène (cf figures 2.3 et 2.4).

Figure 2.3 – Exemple d’utilisation de la perspective centrale en peinture (Annonciation, D.
Veneziano, 1445).

Figure 2.4 – Etude des éléments de perspective dans l’annonciation de Veneziano [3].

Cette méthode permet un rendu naturel de la perspective, mais perd un ensemble d’informations
exploitables (mesure de distances, parallélisme entre éléments,...) ce qui la rend peu utile à
l’ingénieur. Au-delà du rendu réaliste de scène (expliqué au chapitre 11), cette méthode ne sera
pas exploité dans ce cours.
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CHAPITRE 2. MÉTHODES DE PROJECTION

2.3 Axonométrie

L’axonométrie orthogonale (figure 2.5) est une méthode de projection cylindrique sur un plan
incliné par rapport aux plans de références de l’espace [4]. Cette méthode est la plus classiquement
employée pour effectuer des représentations « en perspective » d’objets. Elle répond toutefois à des
règles particulières qui seront partiellement détaillées dans ce cours. Le §2.3.1 présente les bases
théoriques de représentation de figures en isométrie qui est un cas particulier d’axonométrie.

Figure 2.5 – Principe de la projection axonométrique.

L’axonométrie présente l’avantage de représenter des volumes par une seule vue (sans nécessiter
une reconstruction mentale du volume à partir de plusieurs vues comme c’est le cas dans la
méthode de Monge). Elle permet en outre des mesures directes de dimensions si une graduation
est associée aux axes. Cette technique se base sur la projection orthogonale d’une figure sur un
plan incliné par rapport aux axes (figure 2.5). L’observateur est supposé être à l’infini, les lignes
de projection sont perpendiculaires entre elles.

8



CHAPITRE 2. MÉTHODES DE PROJECTION

Les distances mesurées sur une figure sont nécessairement inférieures aux distances mesurées sur
l’objet projeté (la projection orthogonale d’un segment est un segment dont les dimensions sont
multipliées par le cosinus de l’angle formé entre le segment et le plan, valeur nécessairement
inférieure ou égale à 1).

Figure 2.6 – Principe de l’axonométrie.
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Les rapports de réduction entre les dimensions réelles et la projection peuvent être déterminés via
l’inclinaison du plan de projection par rapport aux axes de la figure (u est l’unité de longueur de
la figure spatiale, urx, ury et urz sont les unités de longueur selon les trois axes projetés) :

urx = u · cosα1

ury = u · cosα2

urz = u · cosα3

Figure 2.7 – Rapport de réduction en axonométrie.
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La création d’une figure en axonométrie se base sur la représentation d’un système d’axes Oxyz
associé à une unité de mesure sur chacun des axes. Le report d’un point se fait en reportant ses
coordonnées parallèlement à chacun des axes sur le dessin (figure 2.8).

Figure 2.8 – Construction d’un point de coordonnées (1 ;-2 ;3) en axonométrie.

La matérialisation des lignes de construction permet une représentation plus claire de la position
du point. Elle permet également de lever l’ambiguïté inhérente à l’axonométrie. En effet, tous
les points situés sur une même droite de projection sont représentées par un même point sur
l’axonométrie (figure 2.9). C’est cette ambiguïté qui explique que l’emploi de l’axonométrie soit
limité à une aide à la visualisation de l’aspect tridimensionnel de la pièce plutôt qu’à la réalisation
de plans techniques.

Figure 2.9 – Deux points distincts de l’espace peuvent avoir la même représentation en
axonométrie.
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CHAPITRE 2. MÉTHODES DE PROJECTION

Les croquis en axonométrie permettent également de résoudre des problèmes de construction
spatiale élémentaires sachant que les propriétés suivantes sont rencontrées :

— le parallélisme entre droites est conservé ;
— des droites sécantes sur la projection les sont à conditions qu’elles soient coplanaires.

Un exemple de problème classique pouvant être résolu par cette voie est la section d’un polyèdre
par un plan (figure 2.10)

Figure 2.10 – Recherche de la section de la
pyramide ABCDS par le plan EFG, figure
vierge page 244).

Figure 2.11 – Solution.
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CHAPITRE 2. MÉTHODES DE PROJECTION

2.3.1 Isométrie

L’isométrie est un cas particulier d’axonométrie pour laquelle le plan de projection coupe les axes
selon des points équidistants de l’origine (figure 2.12). Dans une isométrie, les échelles des 3 axes
projetés sont identiques.

Figure 2.12 – Cas particulier de l’isométrie.

2.3.1.1 Calcul du rapport de réduction en isométrie

Le plan de projection a pour équation :

x+ y + z − 1 = 0 (2.1)

La droite OO′ a pour équations paramétriques
x = λ
y = λ
z = λ

(2.2)
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CHAPITRE 2. MÉTHODES DE PROJECTION

Le point O′ est à l’intersection de la droite et du plan, il est donc solution du système suivant :
x = λ
y = λ
z = λ
x+ y + z − 1 = 0

(2.3)

qui donne λ = 1/3. O′ a donc pour coordonnées (1/3; 1/3; 1/3). On peut finalement calculer le
cosinus de α1 en utilisant

−→
AO ·

−−→
AO′ = ‖AO‖ · ‖AO′‖ · cosα1 (2.4)

Ce qui donne, avec les valeurs numériques :

(−1; 0; 0) · (−2/3; 1/3; 1/3) =

√
(−1)2 + 02 + 02 ·

√
(−2/3)2 + (1/3)2 + (1/3)2 · cosα1 (2.5)

cosα1 vaut donc
√

2/3 ≈ 0, 816, ce qui veut dire qu’en toute rigueur il faudrait appliquer ce rapport
à toutes les dimensions sur le dessin en isométrie. Pour éviter cette complication, il est classique de
représenter directement sur le dessin le mesures réelles des objets(cela revient à tracer le croquis
isométrique à l’échelle 1/0, 816 ). C’est cette convention qui sera principalement employée pour
les figures du cours.

2.3.1.2 Réalisation de croquis en isométrie

Deux choix sont généralement possible pour le plan de projection en isométrie : un plan d’équation
x+ y + z + c = 0 ou un plan d’équation x− y + z + c = 0 (figure 2.13).

Figure 2.13 – Représentation des deux plans les plus fréquemment employés en isométrie.

Pour réaliser un croquis isométrique, on commence par disposer les projections isométriques des 3
axes Ox, Oy et Oz, avec Oz généralement vertical et un angle de 120◦ (figure 2.14) ou 60◦ (figure
2.15) entre les axes sur le dessin suivant le plan de projection retenu. Le positionnement d’un
point P de l’objet s’opère en reportant sur les axes projetés les coordonnées x,y et z de ce point
pour déterminer les point intermédiaires repérés par a, b et c sur les figures 2.14 et 2.15.
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CHAPITRE 2. MÉTHODES DE PROJECTION

Ensuite, des parallèles aux axes à partir de ces points sont tracées pour trouver la représentation
du point P dans le croquis spatial. L’opération est répétée autant de fois que nécessaire pour
disposer de l’ensemble des points dans le schéma.

Figure 2.14 – Réalisation d’un croquis en isométrie (120◦
entre les axes).

Figure 2.15 – Réalisation d’un
croquis en isométrie (60◦ entre les
axes).

L’emploi de l’isométrie est parfois inadapté pour la représentation claire de certains éléments.
Ainsi par exemple, la représentation d’un plan incliné à 45◦ par rapport à Oxy (plan bissecteur
du dièdre formé par les plans Oxy et Oxz) serait peu explicite (la vue du plan est dégénérée en
une droite, figure 2.16). Dans ce cas, on emploie un plan de projection présentant une inclinaison
différente de celle employée par l’isométrie pour représenter la vue.

Figure 2.16 – Représentation du premier bissecteur en isométrie et en axonométrie.
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CHAPITRE 2. MÉTHODES DE PROJECTION

2.4 Méthode de Monge

La méthode de Monge est utilisée pour la représentation de plans techniques. Cette méthode repose
sur le principe suivant : l’objet de l’espace 3D est représenté par ses projections sur deux plans
de référence (plan Oyz appelé plan frontal et plan Oxy appelé plan horizontal) perpendiculaires
entre eux (figure 2.17).

Figure 2.17 – Exemple de projection de Monge.

Par cette méthode, tout objet de l’espace 3D est représenté graphiquement sur un plan 2D, dit
plan de l’épure, dans l’objectif de résoudre, par les principes de la Géométrie Synthétique 2D, les
problèmes de Géométrie Synthétique 3D qui sont liés à cet objet ou à cet ensemble d’objets [5].
La représentation des deux projections de points de l’espace sur un plan nécessite au préalable de
rendre les plans H et F coplanaires via une opération de rabattement (dans ce cas, une rotation
de 90◦ autour de leur droite d’intersection appelée ligne de terre, figure 2.18).
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CHAPITRE 2. MÉTHODES DE PROJECTION

Figure 2.18 – Opération de rabattement pour obtenir
l’épure d’un point.

Figure 2.19 – Epure d’un point
par la méthode de Monge.

Sur une épure de Monge, un point de l’espace est nécessairement représenté par au moins deux de
ses projections (voire plus comme nous le verrons par la suite). Sur une épure, les deux projections
sont distinguées par une lettre en exposant (f pour la projection frontale, c’est-à-dire sur le plan
Oyz et h pour la projection horizontale , c’est-à-dire sur le plan Oxy). Le chapitre 5 montrera que
dans le cas de plans techniques, ce mentions sont ignorées ce qui conduit à l’utilisation d’un plus
grand nombre de projections pour des pièces complexes. La correspondance entre épure de Monge
et isométrie est présentée aux figures 2.20 et 2.21.

Figure 2.20 – Réalisation d’un croquis en isométrie (120◦ entre les axes) et correspondance avec
l’épure de Monge.
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Chapitre 3

Conventions de la méthode de Monge

La géométrie descriptive est l’art de représenter sur une feuille de dessin qui n’a
que deux dimensions, les corps de l’ espace qui en ont trois et qui sont susceptibles d’
une définition rigoureuse

- G. Monge, Journal de l’Ecole polytechnique

3.1 Introduction

Le principe général de la géométrie de Monge repose sur la projection orthogonale des points de
l’espace 3D sur deux plans orthogonaux[1]. Elle est à la base de la production des plans techniques.
Par convention, on nomme le plan Oxy H (plan horizontal) et le plan Oyz F (plan de face ou
frontal). La figure 3.1 présente par exemple la représentation d’un triangle par la méthode de
Monge.

Figure 3.1 – Exemple de projection d’un triangle par la méthode de Monge.
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La représentation des deux projections de points de l’espace sur un plan nécessite au préalable de
rendre les plans H et F coplanaires via une opération de rabattement (dans ce cas, une rotation
de 90◦ autour de leur droite d’intersection appelée ligne de terre, figure 3.2).

Figure 3.2 – Opération de rabattement pour obtenir
l’épure d’un point.

Figure 3.3 – Epure d’un point
par la méthode de Monge.

La figure 3.3 permet de fixer les conventions qui seront reprises tout au long de ce chapitre :
— les points de l’espace sont désignés par des lettres majuscules ;
— la droite d’intersection des plans H et F (C’est-à-dire l’axe Oy) est indiquée sur l’épure

par l’abréviation LT ;
— la projection d’un point sur le plan H est désignée par la même lettre que le point suivie

d’un h (minuscule) porté en exposant ;
— la projection d’un point sur le plan F est désignée par la même lettre que le point suivie

d’un f (minuscule) porté en exposant ;
— les deux projections d’un point sont reliées par un trait mixte appelé ligne de rappel ; on

peut démontrer simplement que la ligne de rappel est toujours perpendiculaire à la ligne
de terre ;

— la distance entre la projection frontale d’un point et la ligne de terre (c’est-à-dire la
coordonnée z du point) est appelée cote ;

— la distance entre la projection horizontale d’un point et la ligne de terre (c’est-à-dire la
coordonnée x du point) est appelée éloignement).
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L’exemple simple de la figure 3.4 permet d’illustrer la nécessité de disposer de deux projections
simultanées de points pour une épure univoque.

Figure 3.4 – Nécessité d’employer deux projections.

L’emploi de la seule projection sur le plan horizontal par exemple ne permettrait pas de distinguer
le triangles ABC du triangle A′B′C ′ (ou plus généralement tout triangle obtenu par intersection
d’un plan avec le prisme droit de base AhBhCh) comme indiqué sur la figure 3.4. Ceci est lié
au fait que tout point situé sur une droite perpendiculaire au plan horizontal 1 présente la même
projection horizontale.
Le même raisonnement est applicable à la projection sur le plan F : les triangles ABC et A′′B′′C ′′
sont également indissociables si on mentionne uniquement la projection frontale de leurs sommets.
Ceci est lié au fait que tout point situé sur une droite perpendiculaire au plan frontal 2 présente
la même projection frontale.

1. Nous verrons par la suite qu’une telle droite est appelée droite verticale
2. Nous verrons par la suite qu’une telle droite est appelée droite de bout
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3.2 Position d’un point

3.2.1 Division de l’espace en dièdres

De manière conventionnelle, les plans H et F divisent l’espace en quatre dièdres (figure 3.5) :
— premier dièdre en avant de F et au-dessus de H (coordonnées x et z positives) ;
— deuxième dièdre en arrière de F et au-dessus de H (coordonnée x négative, coordonnée z

positive) ;
— troisième dièdre en arrière de F et en-dessous de H (coordonnées x et z négatives) ;
— quatrième dièdre en avant de F et en-dessous de H (coordonnée x positive, coordonnée z

négative) ;

Figure 3.5 – Définition conventionnelle des dièdres.

De ces définitions découle la position des points sur l’épure de Monge en fonction du dièdre auquel
ils appartiennent. Un point du premier dièdre par exemple a sa projection dans le plan F au-
dessus de la ligne de terre et sa projection dans le plan H en-dessous de la ligne de terre (cf figures
3.6 et 3.7). Comme nous le verrons par la suite, la convention utilisée dans les plans techniques
postule que les éléments représentés sur un plans techniques appartiennent soit au premier dièdre
(méthode « du premier dièdre » ou projection européenne) soit au troisième (méthode « du
troisième dièdre » ou projection américaine).
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Figure 3.6 – Point A du premier dièdre et point B du deuxième dièdre.

Figure 3.7 – Point A du troisième dièdre et point B du quatrième dièdre.
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3.2.2 Point appartenant aux plans de projection

Certains points ont une de leurs projections située sur la ligne de terre (cf figure 3.8) ; c’est le cas :
— d’un point appartenant au plan horizontal (sa projection f est sur la ligne de terre) ;
— d’un point appartenant au plan frontal (sa projection h est sur la ligne de terre) ;
— d’un point appartenant à la ligne de terre (ses deux projections sont confondues sur la ligne

de terre, dans ce cas, on note P f = P h = P hf ).

Figure 3.8 – Point E appartenant au plan frontal, point F appartenant au plan horizontal et point
G appartenant à la ligne de terre.

3.3 Représentation d’une droite

3.3.1 Généralités

De manière générale, une droite de l’espace est définie par deux points non confondus. La
représentation dans une épure de Monge d’une droite peut donc être donnée par la position
de deux points de cette droite.

Cette constatation conduit naturellement au théorème suivant :

Théorème 3.1. Les projections d’une droite sur les deux plans de référence sont deux droites

Ce théorème se démontre [2] en consultant la figure 3.9 :
— la projetante BBh (perpendiculaire au plan H) forme un plan avec la droite d ;
— ce plan (d,B,Bh) est perpendiculaire au plan H (si une droite est perpendiculaire à un plan,

tout plan passant par cette droite est perpendiculaire à ce plan) ;
— donc, toute les projetantes de la droite sont contenues dans le plan (d,Bh) (si deux plans

sont perpendiculaires et si, d’un point de l’un d’entre eux on mène une perpendiculaire à
l’autre, cette perpendiculaire sera entièrement contenue dans ce plan) ;

— donc, toutes les projetantes coupent le plan H selon la droite d’intersection entre le plan
(d,BBh) et le plan H.
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Figure 3.9 – Représentation d’une droite dans une épure de Monge.

Le même raisonnement peut être suivi concernant le plan F . Les plans de type (d,BBh) sont
dénommés plans projetants de la droite sur les plans de référence.
Nous avons démontré qu’un point appartenant à une droite se projette sur ses projections
orthogonales ; la réciproque est-elle vraie, à savoir :

Théorème 3.2. Si les projections d’un point sont sur les projections d’une droite, ce point
appartient à la droite

La démonstration se fait de la manière suivante [2] :
— Comme, dans l’épure, les 2 projections d’un point se correspondent par une ligne de rappel

perpendiculaire à LT, les 2 fractions AhKhf et AfKhf de cette ligne de rappel situées de
part et d’autre de la ligne de terre lui restent perpendiculaires lorsque le plan F est relevé
(opération inverse du rabattement) perpendiculairement au plan H dans l’espace (cf figure
3.9) ;

— ces 2 droites AhKhf et AfKhf forment donc, un plan π perpendiculaire à LT ;
— or, si une droite est perpendiculaire à un plan, tout autre plan passant par cette droite est

perpendiculaire au plan donné ; dès lors, le plan H qui passe par LT est perpendiculaire au
plan π et le plan F qui passe aussi par LT est aussi perpendiculaire au plan π ;

— or, les plans (d,dh) et ( d,df ) étant les plans projetants de la droite d, ils sont respectivement
perpendiculaires à H et à F ;

— or encore, si 2 plans sont perpendiculaires à un même troisième, leur intersection est
perpendiculaire à ce troisième plan (théorème classique de géométrie synthétique 3D) ;

— donc, comme les 2 plans (d,dh) et π sont perpendiculaires à H, leur intersection P hP est
perpendiculaire à H et, de même, comme les 2 plans (d,df ) et π sont perpendiculaires à F ,
leur intersection P fP est perpendiculaire à F ; Donc P hP est perpendiculaire à H et P fP
est perpendiculaire à F ;

— il s’agit donc nécessairement des projetantes du point P de la droite d.
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3.3.2 Traces d’une droite

Par définition, les traces d’une droite sont les intersections de cette droite avec les plans de
projection. Elles sont respectivement désignées par I (trace dans le plan H) et J (trace dans
le plan F ).

Figure 3.10 – Traces d’une droite.

La détermination des traces d’une droite à partir de l’épure de la droite est assez immédiate (figure
3.10) :

— l’intersection de dh avec la ligne de terre donne Jh ; Jf est obtenue par l’intersection de la
perpendiculaire à LT passant par Jh avec df ;

— de même, l’intersection de df avec la ligne de terre donne If ; Ih est obtenue par
l’intersection de la perpendiculaire à LT passant par If avec dh.
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3.3.3 Positions relatives de deux droites

3.3.3.1 Représentation de droites sécantes

Deux droites sécantes ont nécessairement un point commun. Les projections du point d’intersection
sont à l’intersection des projections horizontales et frontales des droites (figure 3.11).

Figure 3.11 – Droites sécantes.

La réciproque est également vraie : si l’intersection des projections horizontales et frontales de
deux droites sont alignées sur une même ligne de rappel, les droites sont sécantes. On peut donc
en déduire le théorème suivant :

Théorème 3.3. Deux droites sont sécantes si et seulement si le point d’intersection de leurs
projections horizontales et le point d’intersection de leurs projections frontales se correspondent
par une même ligne de rappel perpendiculaire à la ligne de terre.
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3.3.3.2 Représentation de droites parallèles

Deux droites parallèles non confondues sont coplanaires et ne présentent pas d’intersection (figure
3.12). Leur représentation sur une épure de Monge vérifie le théorème suivant :

Théorème 3.4. Si 2 droites sont parallèles dans l’espace, leurs projections sur les plans
de référence H, F et P sont aussi respectivement parallèles entre elles (tout en n’étant pas
nécessairement parallèles aux 2 droites parallèles de l’espace).

Figure 3.12 – Droites parallèles.

Ce théorème se démontre comme suit [2] :
— les 2 plans projetants de a et b sur H contiennent respectivement les 2 droites parallèles

entre elles a et b et les 2 droites projetantes AAh et BBh ; ces 2 projetantes étant toutes
deux perpendiculaires à H, sont parallèles entre elles ;

— donc, ces 2 plans projetants contiennent chacun 2 droites sécantes qui sont respectivement
parallèles entre elles ; ils sont donc parallèles entre eux (pour que 2 plans soient parallèles
entre eux, il faut et il suffit que l’un d’eux contienne 2 droites sécantes respectivement
parallèles à 2 droites sécantes de l’autre) ;

— donc, les intersections des 2 plans projetants de a et b sur H sont parallèles entre elles
(les intersections de 2 plans parallèles entre eux avec un troisième plan qui ne leur est pas
parallèle sont parallèles entre elles) ;

— or, ces intersections ne sont rien d’autre que les projections horizontales des 2 droites a et
b ; donc, les projections horizontales des 2 droites a et b, parallèles entre elles dans l’espace,
sont aussi parallèles entre elles (tout en n’étant pas nécessairement parallèles à a et b).

Géométries et communication graphique 28



CHAPITRE 3. CONVENTIONS DE LA MÉTHODE DE MONGE

Un raisonnement tout à fait analogue conduirait à démontrer que les projections frontales des 2
droites a et b, parallèles entre elles dans l’espace, sont aussi parallèles entre elles (tout en n’étant
pas nécessairement parallèles à a et b) et en généralisant, les projections de profil des 2 droites
a et b, parallèles entre elles dans l’espace, sont aussi parallèles entre elles (tout en n’étant pas
nécessairement parallèles à a et b).

3.3.4 Droites occupant une position particulière de l’espace

Par convention, des droites occupant des positions particulières par rapport aux plans de référence
ont une désignation propre.

— une droite est dite horizontale (figure 3.13) si elle est parallèle au plan horizontal ; sa
projection frontale est parallèle à la ligne de terre ; on la note généralement h ;

— une droite est dite frontale si elle est parallèle (figure 3.14) au plan frontal ; sa projection
horizontale est parallèle à la ligne de terre ; on la note généralement f ;

— une droite est dite de profil si elle est orthogonale à la ligne de terre ; ses deux projections
sont confondues et perpendiculaires à la ligne de terre ; on la note généralement p

— une droite est dite verticale (figure 3.16) si elle est perpendiculaire au plan horizontal ;
sa projection frontale est perpendiculaire à la ligne de terre ; sa projection horizontale se
réduit à sa trace I ; on la note généralement v ;

— une droite est dite de bout (figure 3.17) si elle est perpendiculaire au plan frontal ; sa
projection horizontale est perpendiculaire à la ligne de terre ; sa projection frontale se
réduit à sa trace J ; on la note généralement d ;

— une droite parallèle à la ligne de terre (figure 3.18) est à la fois est à la fois frontale et
horizontale ; ses projections sont donc parallèles à la ligne de terre (ce type de droite n’a
pas de trace frontale ni horizontale).

Figure 3.13 – Droite horizontale.
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Figure 3.14 – Droite frontale.

Figure 3.15 – Droite de profil.
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Figure 3.16 – Droite verticale.

Figure 3.17 – Droite de bout.
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Figure 3.18 – Droite parallèle à la ligne de terre.
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Le tableau 3.1 résume les caractéristiques principales des droites particulières, en prenant un
exemple sur un parallélépipède rectangle ABCDEFH dont les faces sont parallèles aux plans
coordonnés (figure 3.19).

Figure 3.19 – Parallélipipède rectangle dont les faces sont parallèles aux plans de référence.

Nom (+symbole) définition projection h projection f trace I trace J
−→
V exemple

Horizontale (h) // H quelconque // LT @ ∃ (α, β, 0) AC
Frontale (f) // F // LT quelconque ∃ @ (0, α, β) AH
de Profil (p) ⊥ LT ⊥ LT ⊥ LT ∃ ∃ (α, 0, β) AF
Verticale (v) ⊥ H trace I ⊥ LT ∃ @ (0, 0, α) AE
De bout (d) ⊥ F ⊥ LT trace J @ ∃ (α, 0, 0) AB
Parallèle LT // LT // LT // LT @ @ (0, α, 0) AD

Table 3.1 – Résumé des positions particulières de droites
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3.4 Représentation d’un point par trois projections

La droite de profil (figure 3.15) met en évidence l’ambiguïté qui peut résulter de la seule utilisation
de deux projections pour un élément. En effet deux droites de profil coplanaires sont impossible à
distinguer (figure 3.20).

Figure 3.20 – Tracé de deux droites de profil coplanaires, elles ne sont pas distinguables.

Une manière de lever l’ambiguïté est de représenter également deux points de chacune des droites
(leurs traces par exemple, figure 3.20).

Figure 3.21 – Lors de la mention de leurs traces, les droites sont définies de manière univoque.
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Cette méthode s’avère toutefois peu satisfaisante en pratique puisqu’elle nécessite une
reconstruction mentale des formes dessinées dans un plan perpendiculaire à la ligne de terre
(on parle de plan de profil). Prenons l’exemple du tracé de la figure 3.22. Le simple examen de la
figure rend difficile d’analyser le type de quadrilatère représenté par les points ABCD.

Figure 3.22 – Quadrilatère situé dans un plan de profil.
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Dans ce type de cas, on doit faire appel à la projection des points sur un troisième plan de référence
orthogonal à H et F : le plan de profil (figure 3.23).

Figure 3.23 – Vue spatiale des trois projections d’un point.

Par analogie avec ce qui a été présenté précédemment, la projection d’un point dans le plan de
profil est désignée par la même lettre que le point suivie d’un p (minuscule) porté en exposant.
La représentation d’un point par ses trois projections passe par deux opérations de rabattement :
dans un premier temps, le plan de profil est rabattu sur le plan frontal (figure 3.24). Ensuite, le
plan frontal est rabattu sur le plan horizontal comme indiqué précédemment (figure 3.25).
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Figure 3.24 – Rabattement du plan de profil sur le plan frontal.

Figure 3.25 – Rabattement sur le plan horizontal.
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L’épure d’un point représenté par ses trois projections se présente comme suit (figures 3.26 et
3.27) :

— les projections frontale et horizontale se correspondent par une ligne de rappel
perpendiculaire à la ligne de terre ;

— les projections frontale et de profil se correspondent par une ligne de rappel parallèle à la
ligne de terre (ou perpendiculaire à la ligne de terre secondaire L′T ′ confondue avec l’axe
z) ;

— la distance entre P h et LT est égale à la distance entre P p et L′T ′ ;

Figure 3.26 – Projection de profil de points du premier et deuxième dièdre.
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Figure 3.27 – Projection de profil de points du troisième et quatrième dièdre.

Par application de cette méthode, on peut constater que le quadrilatère de la figure 3.22 est un
trapèze (construction en figure 3.28).
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Figure 3.28 – Recherche des projections de profil d’un quadrilatère (épure vierge en page 245).

Références
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[2] Y. Durand. Géométries et communication graphique, Tome I partie 1 : La géométrie descriptive
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Chapitre 4

Représentation de plans par la méthode de
Monge

The golden rule is that there are no golden rules.

- G.B. Shaw, Maxims for Revolutionists

4.1 Introduction

Un plan peut être défini de quatre manières différentes [1] :
— par trois points non colinéaires (figure 4.1) ;
— par deux droites sécantes (figure 4.2) ;
— par deux droites parallèles (figure 4.3) ;
— par une droite et un point n’appartenant pas à cette droite (figure 4.4).

Figure 4.1 – Plan
défini par trois points.

Figure 4.2 – Plan
défini par deux droites
sécantes.

Figure 4.3 – Plan
défini par deux droites
parallèles.

Figure 4.4 – Plan
défini par une droite et
un point.
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4.2 Traces d’un plan

4.2.1 Définition

Par analogie avec la définition des traces d’une droite, on définit les traces d’un plan par leur
intersection avec les plans de projection. Les traces sont désignées par la lettre grecque décrivant
le plan portant en indice f ou h (désignant respectivement la trace horizontale ou frontale).

Figure 4.5 – Traces d’un plan (LT = πfh = πhf ).

Cette trace est une droite, qui possède donc deux projections sur l’épure ; πhf désigne donc la
projection horizontale de la trace dans le plan frontal du plan π 1 ; dans la majorité des cas, cette
droite est confondue avec la ligne de terre (elle se réduit à un point de la ligne de terre dans
certains cas particuliers décrits plus loin) 2. On peut également noter que, si les traces d’un plan
ne sont pas parallèles, elles ont nécessairement une intersection sur la ligne de terre.
L’avantage de cette représentation est de permettre de visualiser de manière simple l’inclinaison
du plan sur les deux plans de référence, ce qui n’est pas permis de manière immédiate par les
autres méthodes de définition d’un plan.

1. on peut également rencontrer le notation τhπf
2. La même observation peut être faite pour la projection horizontale de la trace frontale
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4.2.2 Détermination des traces d’un plan

Lorsqu’un plan est défini par deux droites sécantes (figure 4.6), les traces du plan sont les droites
qui joignent les traces respectives de ces deux droites. Cette méthode peut également être utilisée
lorsque le plan est défini par deux droites parallèles (figure 4.7) ou par trois points (utiliser deux
droites s’appuyant sur les trois points, cf figure 4.8).

Figure 4.6 – Traces d’un plan défini par deux droites sécantes (LT=πfh = πhf , épure vierge page
246).

Si le plan est défini par une droite et un point, il suffit de placer un deuxième point sur la droite
(choisir un point sur une des projection de la droite puis trouver son autre projection grâce à une
ligne de rappel). La droite reliant les deux points de l’épure permet ensuite, via la recherche de
ses traces, d’obtenir la trace du plan (figure 4.9).
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Figure 4.7 – Traces d’un plan défini par deux droites parallèles (LT=πfh = πhf , épure vierge page
247).

Figure 4.8 – Traces d’un plan défini par trois
points (LT=πfh = πhf , épure vierge page 248).

Figure 4.9 – Trace d’un plan défini par une
droite et un point (LT=πfh = πhf , épure vierge
page 249).
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4.3 Plans particuliers

Comme au §3.3.4 pour des droites, il est possible de définir des plans occupant des positions
particulières de l’espace (le tableau 4.1 résume les propriétés de ces plans) :

— un plan vertical est perpendiculaire au plan horizontal (figure 4.10) ; sa trace frontale est
une droite verticale 3 (πhf se réduit donc à un point) ; sa trace horizontale est quelconque ;

— un plan de bout est perpendiculaire au plan frontal (figure 4.11) ; sa trace horizontale est
une droite de bout (πfh se réduit donc à un point) ; sa trace frontale est quelconque ;

— un plan frontal est parallèle au plan F (figure 4.12) ; sa trace horizontale est parallèle à la
ligne de terre ; il ne possède pas de trace frontale ;

— un plan horizontal est parallèle au plan H (figure 4.13) ; sa trace frontale est parallèle à la
ligne de terre ; il ne possède pas de trace horizontale ;

— un plan de profil est perpendiculaire à la fois à H et à F (figure 4.14) ; sa trace frontale est
un droite verticale (πhf se réduit donc à un point) ; sa trace horizontale est une droite de
bout (πfh se réduit donc à un point).

Nom définition τh τf τ fh τhf équation
Horizontal // H @ // LT @ ≡ LT z = c
Frontal // F // LT @ ≡ LT @ x = c
Vertical ⊥ H quelconque ⊥ LT ≡ LT = Khf ax+ by = c
De bout ⊥ F ⊥ LT quelconque Khf ≡ LT ay + bz = c
De profil ⊥ LT ⊥ LT ⊥ LT Khf Khf y = c

Table 4.1 – Résumé des positions particulières de plans

Figure 4.10 – Plan vertical.

3. si deux plans sécants sont perpendiculaires à un même troisième, leur intersection est perpendiculaire à ce
plan
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Figure 4.11 – Plan de bout.

Figure 4.12 – Plan frontal.
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Figure 4.13 – Plan horizontal.

Figure 4.14 – Plan de profil.
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4.4 Dessin d’un point appartenant à un plan

Le dessin d’un point P appartenant à un plan défini par une des méthodes exposées au §4.1 peut
être effectué de la manière suivante :

— positionner la projection horizontale du point P à un endroit quelconque, un premier lieu
de sa projection frontale est la ligne de rappel perpendiculaire à LT ;
— si le plan est défini par trois points A,B,C (figure 4.15), dessiner la droite joignant deux

des points du plan (A et C par exemple) ; la génératrice est la droite qui joint le troisième
point (B) à P ;

— si le plan est défini par deux droites sécantes (figure 4.16) ou parallèles (figure 4.17),
la génératrice est la droite qui passe par P et qui coupe les deux droites définissant le
plan ;

— si le plan est défini par une droite et un point (figure 4.18), la méthode est similaire à
celle qui est employée pour un plan défini par trois points ;

— obtenir la projection frontale de la génératrice auxiliaire (on a toujours deux points connus :
une intersection de la génératrice avec une droite et soit une deuxième intersection, soit un
point connu) qui est le deuxième lieu de la projection frontale du point

Figure 4.15 – Point dans un plan défini par trois points (épure vierge page 250.
)
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Figure 4.16 – Point dans un plan défini par deux droites sécantes (épure vierge page 251).

Figure 4.17 – Point dans un plan défini par deux droites parallèles (épure vierge page 252).
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Figure 4.18 – Point dans un plan défini par une droite et un point (épure vierge page 253).

4.5 Droites particulières de plans quelconques

4.5.1 Droites horizontales et frontales

Tout plan quelconque π (sauf un plan horizontal évidemment) peut être coupé par une infinité
de plans horizontaux H ′. Dans ce cas, la droite d’intersection entre ces deux plans est parallèle
à la trace horizontale du plan (les intersections de deux plans parallèles par un même troisième
sont parallèles) ; il s’agit donc d’une droite horizontale (figure 4.19). Sur l’épure, elle peut être
construite selon les étapes suivantes :

— la projection frontale de la droite est confondue avec la trace frontale du plan H ′ ;
— l’intersection de cette projection avec la trace frontale du plan donne la trace frontale de

la droite recherchée ;
— Comme la droite recherchée est parallèle à la trace horizontale du plan π, il suffit de faire

passer une parallèle à πhh passant par Jh pour obtenir la projection horizontale de la droite
recherchée.

On peut déduire le théorème suivant :

Théorème 4.1. Dans un plan quelconque, une infinité de droites horizontales peuvent être
définies, elles sont toutes parallèles à la trace horizontale de ce plan.
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Figure 4.19 – Intersection entre un plan horizontal et un plan quelconque (LT=πfh = πhf = H
′h
f ).

Une démarche tout à fait similaire permettrait l’établissement d’une droite frontale par intersection
d’un plan frontal F’ avec un plan (figure 4.20). Le théorème suivant est également d’application :

Théorème 4.2. Dans un plan quelconque peuvent être définies une infinité de droites frontales
qui sont toutes parallèles à la trace frontale de ce plan.

Figure 4.20 – Intersection entre un plan vertical et un plan quelconque (LT=πfh = πhf = F
′f
h ).
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4.5.2 Droites de bout et verticales

Une droite de bout est un cas particulier de droite horizontale qui est, non seulement parallèle à
H, mais encore perpendiculaire à F. De même, une droite verticale est un cas particulier de droite
frontale qui est, non seulement parallèle à F, mais encore perpendiculaire à H (figure 4.21 ).

Figure 4.21 – Ensemble de droites particulières [1].

On ne peut toutefois pas définir dans un plan quelconque une droite verticale ou de bout. En effet,
si nous considérons le cas de la droite de bout et que nous supposons qu’elle puisse être incluse
dans un plan π, cela implique nécessairement que le plan π est un plan de bout (si une droite est
perpendiculaire à un plan, tout plan passant par cette droite est perpendiculaire au plan donné,
donc tout plan passant par la droite de bout ne peut qu’être perpendiculaire à F, c’est-à-dire être
lui-même un plan de bout. La même constatation peut être faite pour une droite verticale (le plan
doit être vertical).

Références

[1] Y. Durand. Géométries et communication graphique, Tome I partie 1 : La géométrie descriptive
de Monge, Fascicule III : La représentation des plans et des droites particulières d’un plan.
Mutuelle d’édition FPMs, 2006-2007.
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Chapitre 5

Application de la méthode de Monge au
dessin technique

Le dessin est la base de tout.

- A. Giacometti, Citations

5.1 Introduction

Dans un grand nombre de domaines de l’ingénierie, la réalisation finale des concepts imaginés
aboutit à la fabrication de pièces ou d’assemblages. La démarche de conception, de l’idée à
la réalisation, doit faire appel à des supports visuels qui simplifient la communication entre
les différents intervenants (au sein de l’entreprise, entre l’entreprise et ses sous-traitants,
entre l’entreprise et ses clients). Partant de schémas de principe et d’esquisse, le processus de
conception évolue vers une définition complète des formes et des exigences sur les machines et
leurs composants élémentaires, formalisées sous la forme d’un plan.

Figure 5.1 – Pièce mécanique en alliage
d’aluminium.

Figure 5.2 – Représentation de la pièce de
la figure 5.1 par le logiciel de CAO 3D
Solidworks.
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Les programmes de conception assistée par ordinateur volumique, c’est-à-dire qui se basent
sur une représentation tridimensionnelle des pièces conçues (figure 5.2), rencontrent un succès
grandissant. Les possibilités de rendus réalistes permettent une amélioration de mises en
situation, avant même la fabrication des premières pièces (figure 5.3). Malgré ces avancées
technologiques, dans la grande majorité des domaines, l’élément de description finale (et qui
fait office de contrat) est un plan imprimé sur un support papier (donc 2D comme sur la figure 5.4).

Figure 5.3 – Emploi de techniques de rendu pour représenter la pièce de la figure 5.1.

Figure 5.4 – Plan de définition de la pièce de la figure 5.1, diverses projections de Monge servent
à la définition complète des exigences dimensionnelles.

Le dessin technique permet la représentation sous forme de plans en deux dimensions du modèle
géométrique associé à une pièce ou à un ensemble mécanique. Pour faciliter une compréhension
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sans équivoque des plans par le plus grand nombre, une normalisation a été mise en place au
niveau international et répercutée vers les normes nationales (normes NBN pour la Belgique). La
méthode de projection la plus couramment employée est la projection orthogonale de Monge. Ce
type de projection permet de représenter les exigences dimensionnelles et de montage de manière
fiable sur le plan.

5.2 Représentation d’une machine

La représentation graphique traditionnelle sous forme de plans respectant les normes du dessin
technique est évidemment plus abstraite que la visualisation tridimensionnelle d’une pièce. La
lecture de plan nécessite la reconstruction mentale d’un volume à partir de vues, coupes et sections,
choisies de manière à définir le plus grand nombre d’éléments sur la surface la plus restreinte
possible. La représentation de certains éléments standardisés obéit en outre à des conventions qu’il
faut connaître. Aux différentes étapes de définition d’un projet, plusieurs types de représentations
sont rencontrées.

5.2.1 Croquis

Le croquis (figure 5.5) est un dessin établi le plus souvent sans l’aide d’instruments de guidage ou de
mesure. Il est plus ou moins exact en formes et en positions. Il peut être partiellement ou totalement
coté. Ce mode de communication est très utile dans les offres, les premières phases d’avant-projet :
il permet d’aller à l’essentiel et de communiquer par la prise sur le vif d’informations techniques.

Figure 5.5 – Croquis d’un touret à meuler.
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5.2.2 Dessin d’ensemble

Le dessin d’ensemble (figure 5.6) permet de représenter une machine assemblée pour en définir les
éléments constitutifs. Ce dessin d’ensemble présente une nomenclature qui énumère les organes
d’une machine en rapport avec le plan permettant d’identifier les éléments en présence. La
nomenclature présente généralement :

— un index associé à l’élément (ou au groupe d’éléments semblables) ;
— la description de l’élément ;
— le nombre d’éléments semblables dans un groupe ;
— le matériau dans lequel est fabriqué l’élément ;
— une identification du plan de définition (pour les éléments fabriqués) ou une référence d’un

numéro de série (pour les éléments standards achetés tels quels).

Figure 5.6 – Plan d’ensemble d’un touret à meuler.
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5.2.3 Schéma cinématique

Appréhender le fonctionnement d’une machine à partir d’une lecture de plan n’est pas un exercice
simple. Il est nécessaire de :

— déterminer la fonction globale du système mécanique ;
— déterminer quels sont les éléments d’entrée (bout d’arbre, levier, ...) et de sortie (rechercher

les axes des mouvements, identifier les organes fixes) ;
— rechercher des liaisons élémentaires (distinguer les pièces mobiles, les éléments solidaires).

Le schéma cinématique simplifié (figure 5.7) permet de détailler chaque mécanisme particulier.
Il respecte certaines conventions ; les figures 5.9 et 5.8 reprennent les représentations usuelles
des liaisons classiques. La représentation schématique d’appareillages électriques, hydrauliques et
pneumatiques répond également à une normalisation stricte (voir par exemple [1]).

Figure 5.7 – Schéma cinématique d’un touret à meuler.

Figure 5.8 – Symboles schématiques divers [2].
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Figure 5.9 – Symboles des liaisons cinématiques [2].
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5.3 Plans de pièces mécaniques

Le plan permet de représenter en deux dimensions les détails de pièces tridimensionnelles. Il précise
les formes et les dimensions en vue de la réalisation de la pièce. Les règles de base présentées ici sont
issues des normes internationales extraites d’un fascicule édité par l’institut belge de normalisation
[1].

5.3.1 Eléments de base

Les formats standards des plans vont du A0 (1189 x 841 mm soit 1 m2) au A4 (297 x 210 mm). Le
plan porte toujours dans le coin inférieur droit un cartouche qui permet au minimum d’identifier
l’entreprise, l’auteur du plan, le nom de la pièce, l’échelle du dessin (à choisir dans les échelles
normalisées 5:1, 2:1, 1:1, 1:2, 1:5, ou tout multiple ou sous multiple par une puissance de 10) le type
de projection et d’unités employées et la date de production du plan. Chaque entreprise possède
son modèle standardisé de cartouche reprenant plus ou moins d’informations complémentaires (la
figure 5.10 représente par exemple le cartouche employé à la Faculté pour les projets des étudiants
mécaniciens).

Tolérances générales

Titre du plan

Numéro de plan

Auteur

Date 

Matériau

Année d'étude

FormatEchelle Unité

PROJECTION
EUROPEENNE

UMONS POLYTECH
MONS

Titre du cours/projet Remplace

Remplacé par

Figure 5.10 – Exemple de cartouche employé par le service de Génie Mécanique de la FPMs.

5.3.2 Méthode de projection

L’observation d’une pièce à des fins de représentation graphique peut être conduite selon différentes
directions. Les six directions usuelles d’observation forment entre elles des angles de 90◦. L’une
des directions est choisie de manière à montrer la pièce dans sa position naturelle d’utilisation et
selon sa face la plus représentative (appelée « vue de face »).

Figure 5.11 – Symbole pour la projection
européenne.

Figure 5.12 – Symbole pour la projection
américaine.

La disposition standard des vues en Europe (dite « projection européenne ») est la méthode du
premier dièdre (figure 5.13). Elle consiste à projeter la pièce de manière orthogonale selon les six
directions principales (vue de face : plan frontal, vue de dessus : plan horizontal,...) puis à rabattre
les différentes projections orthogonales de la pièce comme présenté à la figure 5.14. La vue de droite
de la pièce est située à gauche de la vue de face, la vue de dessous de la pièce est située au-dessus
de la vue de face. L’indication normalisée présentée à la figure 5.11 doit être mentionnée dans le
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cartouche. La disposition des vues selon la méthode américaine emploie la convention inverse (vue
de droite à droite,...).

Figure 5.13 – Méthode de projection du
premier dièdre.

FACEDROITE GAUCHE ARRIERE

DESSOUS

DESSUS

Figure 5.14 – Disposition des vues pour la
méthode de projection du premier dièdre.

Il est clair que suivant la complexité de la pièce, les six vues ne sont pas toujours nécessaires.
La norme préconise de représenter le nombre de vues minimum nécessaire à la compréhension du
plan. Cette recommandation n’est toutefois pas une obligation absolue et laisse au dessinateur la
liberté du choix des vues qui lui permet une clarté maximale du plan.
La disposition relative des vues est imposée par la norme (alignement et position relative), mais
l’espacement entre les vues est lui aussi libre. De manière générale, on recherche la disposition qui
utilise au mieux l’espace de la feuille de dessin, en fonction du format de papier et de l’échelle
sélectionnée (figures 5.15 et 5.16).

Tolérances générales

Titre du plan

Numéro de plan

Auteur

Date 

Matériau

Année d'étude

FormatEchelle Unité

PROJECTION
EUROPEENNE

UMONS POLYTECH
MONS

Titre du cours/projet Remplace

Remplacé par

Figure 5.15 – Mauvaise exploitation de
l’espace de dessin.

Tolérances générales

Titre du plan

Numéro de plan

Auteur

Date 

Matériau

Année d'étude

FormatEchelle Unité

PROJECTION
EUROPEENNE

UMONS POLYTECH
MONS

Titre du cours/projet Remplace

Remplacé par

Figure 5.16 – Exploitation correcte de
l’espace de dessin.

Lors du dessin manuel d’un plan, il est donc recommandé de commencer par le dessin du
parallélépipède capable (« boîte » parallélépipédique qui englobe la pièce) pour tester la bonne
disposition des vues sur le dessin (figures 5.17 et 5.18).
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Figure 5.17 – Dessin du parallélépipède capable autour de la pièce.

Tolérances générales

Titre du plan

Numéro de plan

Auteur

Date 

Matériau

Année d'étude

FormatEchelle Unité

PROJECTION
EUROPEENNE

UMONS POLYTECH
MONS

Titre du cours/projet Remplace

Remplacé par

Figure 5.18 – Dessin du parallélépipède capable pour tester la disposition des vues.

Comme le montrent les exemples précédents, le plan technique ne fait pas mention des éléments
présents sur les épures de Monge, à savoir la désignation des points et la présence des lignes de
rappel (cf figure 5.19).

Ces différences permettent d’obtenir un plan plus lisible, au détriment de l’aspect exhaustif obtenu
par la mention des projections de points. Ceci justifie la possibilité d’avoir recours à plus de deux
projections sur un plan technique. La lecture de plan implique donc de reconstruire mentalement
les différents éléments pour une meilleure compréhension du plan (figures 5.20 et 5.21).
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Figure 5.19 – Exemple de pièce et de son plan employant trois projections.

Figure 5.20 – Reconstruction des lignes de rappel sur le plan (figure vierge en page 254).
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Figure 5.21 – Identification des points sur l’épure (figure vierge en page 254).
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5.3.3 Traitement des arêtes cachées

Les polyèdres, comme d’ailleurs tous les solides figurés par des plans techniques, sont représentés
par leurs arêtes, c’est-à-dire les segments qui sont les intersections de leurs faces planes (inclinées
l’une sur l’autre), en considérant que la matière les constituant est opaque. Cette opacité de la
matière impose qu’on distingue les arêtes réellement vues des arêtes cachées, mais qui existent
cependant et dont la représentation est optionnelle. La convention est de représenter les arêtes
vues par des traits pleins forts, tandis que les arêtes cachées sont représentées par des traits
interrompus fins (figure 5.25). La distinction entre les arêtes vues et les arêtes cachées permet une
interprétation plus claire du plan.
Il faut noter que de manière générale, l’emploi des traits cachés est optionnel sur un plan. Le choix
de la représentation de ces traits est effectué pour l’ensemble du plan (si les arêtes cachées sont
représentées dans une vue, elles doivent l’être dans l’ensemble des vues).

Figure 5.22 – Pièce présentant une arête partiellement cachée.

Pour des pièces de géométrie simple, une arête reliant deux points vus est vue, une arête reliant un
point caché à un autre point est cachée. Pour les pièces de géométrie plus complexe, il est nécessaire
de tester le caractère vu ou caché non seulement des sommets de la pièce, mais aussi des points
à l’intersection des projection des arêtes de la pièce (certaines arêtes peuvent être partiellement
vues et partiellement cachées, figure 5.22).
La détermination automatique du statut d’une arête peut être obtenue par l’intermédiaire de la
géométrie synthétique. Par exemple, pour déterminer si un point de la projection horizontale est
vu ou caché, il faut rechercher l’intersection de la verticale issue de ce point avec le plan définissant
la face de la pièce pouvant potentiellement cacher ce point. S’il existe une intersection au-dessus
du point, cela signifie que ce point est caché, donc que toutes les arêtes aboutissant à ce point
seront elles aussi cachées .
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Figure 5.23 – Recherche du caractère vu ou caché d’un point (épure vierge en page 255).

La figure 5.23 détaille la procédure :
— le point D est potentiellement caché par la face ABE dans la projection horizontale ;
— tracer la verticale v issue de D ;
— rechercher son point de percée dans le plan ABE (emploi d’une génératrice intermédiaire

g) ;
— la projection frontale du point de percée P étant située au-dessus de celle du point D, D

est caché par le plan ABE, les arêtes issues de D sont donc cachées.
On peut reprendre le dessin de la figure 5.19 pour déterminer le vu et caché, aussi bien en isométrie
que sur le plans (figure 5.24)
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Figure 5.24 – Recherche des arêtes cachées (épure vierge page 256).

5.3.4 Types de traits

Comme indiqué précédemment, le contour des pièces et les arêtes vues sont représentés en trait
continu fort. Les axes de symétrie ou de révolution sont représentés en trait mixte fin. Les arêtes
cachées peuvent être représentées en trait interrompu fin. Le trait continu fin est employé pour
hachurer les parties coupées de la pièce (figure 5.25). Pour faciliter la distinction entre trait fort
et trait fin, le rapport entre les deux largeurs de trait doit être d’au moins 2 (0,7 mm et 0,35 mm
par exemple).

Figure 5.25 – Principaux styles de traits.

Figure 5.26 – Exemple de représentation d’un arbre.

On peut également utiliser un trait continu fin à main levée pour interrompre la représentation
d’une partie longue d’une pièce (figure 5.26).
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5.3.5 Coupes et sections

Une coupe (figure 5.27) est la représentation des parties d’un objet situées dans une surface sécante
et en arrière de celle-ci. La coupe permet de représenter les détails internes de la pièce. Le plan
de coupe est indiqué par un trait interrompu renforcé à ses extrémités. La disposition de la vue
en coupe (sur laquelle est indiquée la mention « coupe ») doit respecter la règle de projection
employée sur le plan. La zone située dans le plan de coupe est hachurée (traits fins) et les éléments
présents derrière le plan de coupe sont représentés. Lorsqu’on désire représenter exclusivement la
partie de l’objet située dans le plan de coupe, on emploie une section (figure 5.28). De manière
conventionnelle, lors de la représentation en coupe longitudinale d’un assemblage, on ne coupe pas
un certain nombre d’éléments (arbres pleins selon leur axe, vis selon leur axe, écrous, nervures
dans leur plan moyen,...).

A

A
COUPE A-A

Figure 5.27 – Coupe dans un arbre.

A

A
SECTION A-A

Figure 5.28 – Section dans un arbre.

On peut également avoir recours à des coupes partielles (figure 5.29) pour ne représenter qu’une
partie d’une vue en coupe.

Figure 5.29 – Coupe partielle pour préciser la géométrie interne d’une pièce non coupée.
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5.4 Les corps ronds

Les divers exemples ayant été traités dans le cadre de ce cours ont jusqu’ici exclusivement été
constitués de corps dont l’ensemble des faces sont planes (polyèdres). Or, la quasi totalité des objets
d’utilisation industrielle présentent au moins pour partie des faces présentant des courbures. Les
différents types de corps ronds seront étudiés en détail dans la seconde partie de ce syllabus. Une
première introduction des principaux concepts utiles à leur représentation sur un plan technique
ser présentée dans ce chapitre.

5.4.1 Notion de contour apparent à un volume

Dans les plans techniques la représentation des corps ronds nécessite, en plus de la représentation
de l’ensemble des arêtes ’vues’, le tracé du contour de la pièce vu par l’observateur (son contour
apparent). De manière formelle, le contour apparent est défini comme la courbe de contact du
cylindre 1 circonscrit à cette surface et dont la direction des génératrices est perpendiculaire au
plan de projection. Par exemple, dans le cas d’une sphère de rayon R, son contour apparent sur
les plans H et F sont des cercles de rayon R (figure 5.30).

Figure 5.30 – Contour apparent d’une sphère.

1. dans le sens surface cylindrique
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lorsque leurs axes sont parallèles aux axes du système de coordonnées employé, les représentations
des corps ronds simples (sphère, cylindre, cône et tore) est évidente (figure 5.31) :

— les deux projections d’une sphère de rayon r sont des cercles de rayon r ;
— une des projections d’un cylindre circulaire de rayon de bas r et de hauteur h est un cercle

de rayon r, l’autre projection est un rectangle (de base 2r et de hauteur h) ;
— une des projections d’un cône circulaire de rayon de base r et de hauteur h est un cercle

de rayon r, l’autre projection est un triangle isocèle dont (base 2r, hauteur h ;
— une des projections d’un tore de rayon majeur R et de rayon mineur r est constituée de

deux cercles concentriques (rayons R−r et R+r), l’autre projection est un rectangle (base
2R, hauteur 2r) complété par deux demis-cercles (rayon r).

Figure 5.31 – Contour apparent des quatre corps ronds.

La pièce décrite en figure 5.32 regroupe les quatre types de surfaces coniques de base ; son plan
est présenté en figure 5.33.

Figure 5.32 – Exemple de pièce.

Figure 5.33 – Plan de la pièce (surface
sphérique en bleu, cylindrique en rouge,
conique en orange et torique en vert.
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5.5 Cotation

L’utilisation des projections orthogonales de Monge pour la représentation des vues de la pièce
implique une représentation en vraie grandeur des segments parallèles aux plans de projection.
Cette propriété permet la mesure des distances de manière directe sur le plan lorsque les vues
utilisées sont choisies de manière judicieuse.

10

18

Ø 5

30° 5

8

1

Figure 5.34 – Exemples de cotations.

Les dimensions des pièces en millimètres sont indiquées sur le dessin à l’aide de lignes de cote.
Les lignes de cotation doivent nécessairement repérer des éléments vus en vraie grandeur. Il faut
noter que la cotation d’éléments cachés est interdite par la norme.

5.6 Tolérances

5.6.1 Tolérances dimensionnelles

En raison des imperfections de la fabrication, aussi limitées soient-elles, les dimensions réelles d’un
élément diffèrent des dimensions nominales, qui sont celles indiquées sur le plan d’exécution.
Compte tenu de cette incertitude, pour garantir que l’élément puisse remplir sa fonction, on
s’assure, par un contrôle de qualité, que chaque dimension soit comprise entre deux limites fixées
par le concepteur dont la différence constitue la tolérance. Cette tolérance peut être indiquée de
manière explicite derrière la cote visée par la tolérance (par exemple 50± 0, 01 indique que la cote
mesurée sur la pièce doit être comprise dans l’intervalle de 49,99 mm à 50,01 mm). Il faut noter
que le prix de revient est lié à la qualité des tolérances (de manière générale, une tolérance serrée
sera plus difficile à obtenir et donc plus coûteuse).
Notons enfin que, de manière générale, on peut se rapporter à des tolérances générales définies
par des normes pour des procédés de fabrication particuliers. Une indication dans le cartouche
tolérances générales selon norme ... permet de ne tolérancer de manière explicite que les éléments
pour lesquels une tolérance plus serrée que la norme générale est applicable (ces cotes sont appelées
cotes fonctionnelles).
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5.6.2 Tolérances géométriques

En plus de s’écarter des dimensions nominales prescrites sur le plan, les différentes parties d’une
pièce voient leur forme géométrique différer de la forme géométrique exacte. Pour des raisons
fonctionnelles, il peut être utile de limiter cet écart, ce qui est le but des tolérances géométriques.
Le lecteur est invité à se référer aux cours spécialisés ([3]) ou directement à la norme ISO1101 ([4],
[5]) pour plus de précisions.

5.6.3 Etats de surface

En plus des dimensions nominales et des tolérances associées, il est nécessaire de spécifier la qualité
de la surface qui sera générée. L’état de surface d’une pièce a une large incidence sur un grand
nombre de ses aptitudes, en particulier :

— ses aptitudes tribologiques (mouvement relatif entre des surfaces qui interagissent :
frottement, lubrification, usure,... ) ;

— ses aptitudes à l’adhésion (par collage, par emmanchement,...) ;
— ses aptitudes à recevoir un revêtement (peinture par exemple) ;
— ses aptitudes à résister à la corrosion, à la fatigue,...

A partir de la mesure du profil de rugosité (Z(x)), on peut extraire par différentes opérations
mathématiques des indicateurs permettant de chiffrer la rugosité. L’indication de rugosité
arithmétique (définie par la formule 5.1) est obligatoirement indiquée et choisie dans une série
normalisée (figure 5.35).

Ra =
1

lr

∫ lr

0

|Z(x)| dx (5.1)

Ra(µm)

50
25
12,5
6,3
3,2

Ra(µm)

1,6
0,8
0,4
0,2
0,1
0,05
0,025

Surface brute

Contact
fixe

Guidage,
centrage
Haute précision,
étanchéité,
trajectoire 
précise

Ra 1,6

Figure 5.35 – Indication de rugosité et classes normalisées.
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Chapitre 6

Intersection d’éléments entre eux par la
méthode de Monge

The geometry of the things around us creates coincidences, intersections

- E. De Luca, Three horses

6.1 Intersection de deux plans

6.1.1 Introduction

L’intersection de deux plans non parallèles est une droite. Pour déterminer cette droite, il est
nécessaire d’en connaître deux points.

Figure 6.1 – Intersection entre deux plans quelconques (LT = πhf = πfh = ρhf = ρfh), épure vierge
page 257.
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L’examen de la figure 6.1 permet de constater qu’il existe deux points d’intersection évidents :
l’intersection des traces frontales des plans et l’intersection des traces horizontales des plans. La
recherche de l’intersection de deux plans dans une épure de Monge est donc assez immédiate à
obtenir si le plan est défini par ses traces.
En effet dans ce cas, la droite d’intersection est définie par les deux points à l’intersection des
traces « de même nom » (c’est-à-dire les deux traces horizontales et les deux traces verticales).

6.1.2 Cas particuliers de problèmes d’intersection entre plans

Il existe un grand nombre de cas particuliers nécessitant d’adapter la démarche présentées ci-
dessus (plans dont les traces sont parallèles, dont les traces se coupent hors de l’épure, dont le
point commun des traces est confondu,...). L’ensemble de ces cas particuliers est présenté à la
référence [1]. Dans le cadre de ce cours, nous nous contenterons de résoudre deux problèmes qui
seront utiles pour les développements futurs (intersection avec un plan vertical ou de bout utile
pour l’intersection droite-plan et avec un plan horizontal ou frontal utile pour la mise en vraie
grandeur).

6.1.2.1 Intersection avec un plan vertical ou de bout

L’intersection d’un plan quelconque avec un plan vertical peut se traiter par la méthode générale
d’intersection de plans définis par leurs traces. Il faut toutefois noter que comme la droite
d’intersection est contenue dans un plan vertical, sa projection horizontale est nécessairement
confondue avec la trace horizontale du plan vertical (figure 6.2).

Figure 6.2 – Intersection d’un plan avec un plan vertical.
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De même, lors de la recherche de l’intersection d’un plan avec un plan de bout, la trace frontale
de la droite d’intersection est confondue avec la trace frontale du plan de bout.

6.1.2.2 Intersection avec un plan horizontal ou frontal

Ce cas de figure est un cas particulier du point précédent. Prenons le cas d’un plan frontal ; dans ce
cas, la droite d’intersection (en plus de présenter sa projection horizontale confondue avec la trace
horizontale du plan frontal) est une droite frontale (sa projection horizontale est donc parallèle à
la ligne de terre, figure 6.3).

Figure 6.3 – Intersection d’un plan avec un plan frontal.

Dans le cas de l’intersection avec un plan horizontal, la droite d’intersection est une droite
horizontale. dont la projection frontale est confondue avec la trace frontale du plan.
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6.2 Intersection d’une droite avec un plan

6.2.1 Intersection d’une droite quelconque avec un plan quelconque

La résolution de ce problème passe par l’utilisation d’un plan auxiliaire contenant la droite.
L’intersection de ce plan auxiliaire avec le plan de départ donne une droite commune aux deux
plans. L’intersection de cette droite avec la droite de départ donne le point de percée de la droite
dans le plan original (figure 6.4). En effet, on a :

— un plan π et une droite d dont on cherche le point de percée dans π ;
— le plan auxiliaire ρ qui contient d ;
— la droite d’intersection w = π ∩ ρ dont tous les points appartiennent à π et à ρ ;
— le point P = d∩w dont les points appartiennent à π et à d, il s’agit donc du point recherché.

Le plan auxiliaire peut être choisi quelconque, toutefois, il est plus simple de le choisir vertical
ou de bout. Dans le cas d’un plan vertical, sa trace horizontale est confondue avec la projection
horizontale de la droite et sa trace frontale est perpendiculaire à la ligne de terre. La figure 6.5
présente un exemple de résolution du problème.

Figure 6.4 – Point de percée d’une droite dans un plan : problème de départ (LT = πhf = πfh ,
épure vierge page 258).
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Figure 6.5 – Point de percée d’une droite dans un plan : construction d’un plan vertical, de la
droite d’intersection et du point de percée (LT=πfh=π

h
f=ρ

f
h).

La procédure à suivre est la suivante :
— construction des traces du plan vertical contenant la droite (la trace horizontale est

confondue avec la projection horizontale de la droite d, la trace frontale est perpendiculaire
à la ligne de terre et passe par l’intersection de la trace horizontale avec la ligne de terre) ;

— construire la droite d’intersection w par la méthode classique d’intersection de deux plans
définis par leurs traces (sa projection horizontale est confondue avec celle de d) ;

— le point de percée est à l’intersection de d et de w, sa projection frontale est à l’intersection
des projections frontales de d et de w, sa projection horizontale lui correspond par une ligne
de rappel.
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6.2.2 Intersection d’une droite quelconque avec un plan projetant

L’intersection d’une droite avec un plan projetant (c’est-à-dire perpendiculaire à H ou à F )
ne nécessite pas l’utilisation d’un plan auxiliaire. En effet, l’une des projections du point est
déterminée de manière immédiate sur l’épure :

— lors de l’intersection d’une droite avec un plan frontal ou vertical, la projection horizontale
du point d’intersection est à l’intersection entre la trace horizontale du plan et la projection
horizontale de la droite (figure 6.6), la projection frontale du point est obtenue grâce à une
ligne de rappel ;

— lors de l’intersection d’une droite avec un plan horizontal ou de bout, la projection frontale
du point d’intersection est à l’intersection entre la trace frontale du plan et la projection
frontale de la droite, la projection horizontale du point est obtenue grâce à une ligne de
rappel.

— lors de l’intersection d’une droite avec un plan de profil, les projections du point
d’intersection sont à l’intersection des projections de la droite et des traces (confondues)
du plan de profil.

Figure 6.6 – Intersection d’une droite avec un plan frontal.
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6.2.3 Intersection d’une droite projetante avec un plan quelconque

L’intersection d’une droite projetante (c’est-à-dire perpendiculaire à H ou à F ) avec un plan
ne nécessite pas l’utilisation d’un plan auxiliaire. Prenons l’exemple d’une droite verticale. La
projection horizontale du point d’intersection est nécessairement la trace horizontale de la droite.
La projection frontale du point d’intersection est ensuite obtenue à l’aide d’une génératrice
auxiliaire.

Figure 6.7 – Intersection d’une droite verticale avec un plan (LT = πhf = πfh .)

Le choix de la génératrice auxiliaire est entièrement libre ; pour améliorer la clarté de l’épure, il
est par exemple possible de la choisir horizontale ou frontale (figure 6.8).
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Chapitre 7

Mise en vraie grandeur d’éléments

Your eyes can deceive you. Don’t trust them

- O. Kenobi, A new hope

7.1 Introduction

Comme annoncé dans les objectifs de ce cours, la représentation par la méthode de Monge vise
à une représentation qui permette l’exploitation directe du plan pour la description des pièces.
Une figure est dite ’en vraie grandeur’ si la longueur de ses segments projetés est égale à celle du
segment de l’espace et si les angles projetés sont égaux aux angles dans l’espace.

Figure 7.1 – Un triangle d’un plan frontal
se projette en vraie grandeur sur le plan
frontal.

Figure 7.2 – Un polygone contenu dans un
plan frontal se projette en vraie grandeur
sur le plan frontal.
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On constate aisément que lorsqu’un segment est contenu dans un plan parallèle à un plan projetant
(frontal par exemple), sa projection dans ce plan est vue en vraie grandeur. En considérant la figure
7.1, on démontre aisément que le triangle ABC se projette en vraie grandeur sur le plan frontal :

— les segments AB, BC et CA se projettent en vraie grandeur dans le plan frontal ;
— le triangle AfBfCf a ses trois côtés égaux à ceux de ABC, les deux triangles sont donc

isométriques ;
— les triangles étant isométriques, l’angle entre les côtés est donc identique entre les deux

figures.
Cette propriété est également vraie pour un polygone quelconque (figure 7.2). En effet, il est
toujours possible de décomposer ce polygone en un ensemble de triangles. Chacun des triangles
étant isométrique par rapport à sa projection, le polygone est isométrique par rapport à sa
projection. En poussant ce raisonnement à la limite (dimension des côtés tendant vers zéro),
on en déduit également que toute courbe plane contenue dans un plan parallèle à un plan de
projection se projette en vraie grandeur dans ce plan.

Figure 7.3 – Une courbe appartenant à un plan frontal se projette en vraie grandeur sur le plan
frontal.

Il faut également noter qu’un angle qui n’est pas droit ne se projette en vraie grandeur que si ses
deux côtés sont parallèles à un plan projetant. Par contre, pour qu’un angle droit se projette en
vraie grandeur, il suffit q’un seul de ses côtés soit parallèle à un plan de projection.
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7.2 Méthode du triangle rectangle

Dans le cas où seul un nombre réduit de mesures doivent être obtenues sur la plan, il est possible
d’appliquer la règle du triangle rectangle pour obtenir de manière simple la vraie grandeur d’un
segment. La démarche est présentée en figure 7.4.

Figure 7.4 – Mise en vraie grandeur d’un segment par la méthode du triangle rectangle (épure
vierge en page 259).

Elle consiste à :
— tracer la parallèle à dh passant par B. Cette droite coupe la projetante de A au point M ;
— le triangle ABM est rectangle en M ; la connaissance de la longueur de deux côtés permet

de déduire la longueur du troisième ;
— BM étant parallèle à H, on a |BM | =

∣∣BhMh
∣∣ ;

— AM étant parallèle à F (A et M appartiennent à la projetante de A, donc à une droite
verticale), on a |AM | =

∣∣AfM f
∣∣ ;

— il suffit donc de reporter la distance |AM | =
∣∣AfM f

∣∣ = ∆c perpendiculairement au segment
BhMh pour reformer une image en vraie grandeur du triangle ABM .

Il faut noter que cette démarche permet également d’obtenir l’angle que forme la droite qui porte
le segment AB avec le plan H (l’angle entre une droite et un plan est l’angle que forme cette
droite avec sa projection dans ce plan).
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La même démarche serait applicable en passant par la projection frontale. Dans ce cas, c’est l’angle
formé par la droite avec le plan frontal F qui est obtenue (figure 7.5).

Figure 7.5 – Mise en vraie grandeur d’un segment par la méthode du triangle rectangle (2e
possibilité).

On peut également noter que dans le cas particulier où le segment de départ appartient à un plan
parallèle à un plan de projection (frontal ou horizontal donc), la projection de ce segment dans ce
plan de projection est directement la vue en vraie grandeur du segment (la différence de cote ∆c
ou ∆e suivant le cas est nulle).
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7.3 Mise en vraie grandeur d’une figure complète

Les projections d’un solide sur un plan technique se réalisent sur des plans orthogonaux entre eux.
Toutefois, si le volume présente des faces orientées de manière non adéquate, il est impossible de
les représenter dans leur intégralité en vraie grandeur. La norme prévoit la possibilité d’ajouter
sur le plan une représentation en vraie grandeur d’une face inclinée annotée d’une flèche indiquant
la direction d’observation (figure 7.6).

Figure 7.6 – Mise en vraie grandeur d’une face d’une pièce [1].

D’un point de vue pratique, cette mise en vraie grandeur peut être réalisée selon trois techniques
distinctes :

— la méthode de rabattement qui fait tourner l’ensemble des points d’un plan autour d’une
droite (appelée charnière) horizontale ou frontale ;

— la méthode de rotation qui fait tourner l’ensemble des points d’un plan vertical ou de bout
autour d’un axe (lui-même vertical ou de bout) ; une première rotation préalable permet
de rendre un plan quelconque vertical ou de bout ;

— la méthode de changement de plan qui modifie le plan horizontal ou frontal de projection
pour l’amener parallèle à un plan vertical ou de bout (un premier changement de plan
permet de rendre un plan quelconque vertical ou de bout).

Figure 7.7 – Mise en vraie
grandeur par rabettement.

Figure 7.8 – Mise en vraie
grandeur par rotation.

Figure 7.9 – Mise en vraie
grandeur par changement de
plan.

Dans le cadre de ce cours, nous nous contenterons d’étudier la méthode de rotation.
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7.4 Mise en vraie grandeur par rotation

7.4.1 Introduction

L’axe de rotation de la méthode de mise en vraie grandeur par rotation est choisi soit vertical,
soit de bout. Dans ces deux cas de figure, le plan dans lequel s’inscrit l’arc de circonférence
décrit par le point en mouvement devient parallèle, respectivement à H ou à F , il sera donc vu
« en vraie grandeur ». Ceci permettra de mesurer directement, sur cette projection, l’angle au
centre interceptant un arc de cette circonférence. Cette mesure sera essentielle quand il s’agira de
déterminer la rotation de l’ensemble des points d’une figure plane.

7.4.2 Rotation d’un point

7.4.2.1 Rotation autour d’un axe vertical

La figure 7.10 présente la technique de rotation. Par convention, l’axe vertical de rotation est
appelé Z (on déroge donc à la convention de représentation d’une droite par une lettre minuscule).
Dans l’épure, l’amplitude angulaire α du mouvement circulaire du point W est mesurable en vraie
grandeur sur la projection horizontale.

Figure 7.10 – Rotation autour d’un axe vertical.
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7.4.2.2 Rotation autour d’un axe de bout

La rotation autour d’un axe de bout se présente de la même façon qu’une rotation autour d’un
axe vertical, en inversant les projections frontales et horizontales entre les deux examples (figure
7.11).

Figure 7.11 – Rotation autour d’un axe de bout.

7.4.3 Mise en vraie grandeur de figures

7.4.3.1 Figures contenues dans un plan vertical ou de bout

Lorsqu’une figure est contenue dans un plan vertical, il est aisé d’obtenir une figure en vraie
grandeur. En effet, il suffit de faire tourner le plan autour d’une droite verticale pour le rendre
frontal (figure 7.12). Dans ce cas de figure, toutes les figures tracées dans ce plans sont vues en
vraie grandeur dans la projection frontale. Le même raisonnement peut être tenu pour une figure
tracée dans un plan de bout (une rotation autour d’un axe de bout le rend horizontal, figure 7.13).
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Figure 7.12 – Rotation d’un plan vertical
autour d’un axe vertical pour le rendre
frontal.

Figure 7.13 – Rotation d’un plan de bout
autour d’un axe de bout pour le rendre
horizontal.

A titre d’exemple, on peut rechercher la vraie grandeur du quadrilatère ABCD de la figure 7.14 :

Figure 7.14 – Rotation autour d’un axe de vertical (figure vierge page 260).
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7.4.3.2 Plan quelconque

Le cheminement employé pour rendre un plan quelconque parallèle aux plans de projection par la
méthode de rotation va être présenté. Il se base sur le classement des plans selon leurs particularités
(figure 7.15).

Figure 7.15 – Classement des plans particuliers [2].

Pour passer d’un plan quelconque à un plan horizontal, il faut, d’abord appliquer une première
rotation pour que le plan quelconque devienne de bout. Pour transformer ensuite ce plan de bout
en horizontal, il faudrait appliquer au plan déjà rendu de bout une seconde rotation pour le rendre
horizontal. La question se pose immédiatement de savoir quel type de rotation il faut imposer au
plan quelconque pour parvenir à le rendre de bout. La réponse à cette question fait appel au
théorème suivant :

Théorème 7.1. Si une droite est perpendiculaire à un plan, tout autre plan passant par cette
droite sera perpendiculaire au premier plan cité (Théorème classique de Géométrie Synthétique
3D).

Ainsi, si un plan contient une droite de bout (c’est-à-dire perpendiculaire au plan frontal F ), ce
plan sera lui-même perpendiculaire à F (c’est-à-dire de bout). Donc, si l’on parvient à trouver,
dans le plan quelconque, une droite qui soit susceptible de devenir de bout par une rotation
appropriée, il sera possible de rendre ce plan de bout par cette rotation. En effet, comme la droite
en question appartient au plan, tous les points (aussi bien ceux de la droite que ceux du plan)
vont subir une rotation de même amplitude angulaire et autour du même axe lors de l’opération
de rotation, initiée au départ pour rendre la droite de bout.
Si on se rappelle du classement des droites (figure 4.21 page 53), on peut constater qu’une droite
de bout est un cas particulier de droite horizontale (elle a en plus sa projection horizontale
perpendiculaire à la ligne de terre). Autrement dit, pour obtenir un plan de bout, il suffit de
rendre de bout par rotation autour d’un axe vertical une droite horizontale du plan.

Ensuite, dès que le plan est ainsi rendu de bout, il suffit ensuite de le faire tourner autour d’un
axe de bout X, pour le rendre horizontal (figure 7.17).

En synthèse, pour amener un plan quelconque en position horizontale, il faut :
— d’abord faire choix d’une horizontale de ce plan ;
— la faire ensuite tourner autour d’un axe vertical pour l’amener en position de bout en faisant

tourner simultanément le plan lui-même afin qu’il devienne un plan de bout ;
— enfin faire tourner ce plan devenu un plan de bout autour de l’horizontale devenue de bout

afin de l’amener en position horizontale.
De même, pour amener un plan quelconque en position frontale, il faut :
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Figure 7.16 – Rotation d’un plan autour
d’un axe vertical pour le rendre de bout.

Figure 7.17 – Rotation d’un plan de bout
autour d’un axe horizontal pour le rendre
horizontal.

— d’abord faire choix d’une frontale de ce plan ;
— la faire ensuite tourner autour d’un axe de bout pour l’amener en position verticale en

faisant tourner simultanément le plan lui-même afin qu’il devienne un plan vertical ;
— enfin faire tourner ce plan devenu un plan vertical autour de la frontale devenue verticale

afin de l’amener en position frontale.

7.5 Rotations inverses

La mise en vraie grandeur d’éléments permet de réaliser des constructions géométriques dans la
figure de manière directe. Il est souvent nécessaire de procéder à l’opération inverse pour obtenir
l’original d’un point avant l’application de la rotation.
Le problème est posé de la manière suivante : un point Pr est défini sur l’image de la droite d par
une rotation autour d’un axe vertical. Comment retrouver le point original sur d ? Ce problème
est résolu en suivant le cheminement qui mène à la rotation de manière inverse (figure 7.18) :

— P f appartient à df et est situé à la même cote que Prf ;
— P h appartient à dh et est situé sur un arc de cercle centré en Kh passant par Prh.

La construction peut être vérifiée en s’assurant que P h et P f se correspondent via une ligne de
rappel perpendiculaire à la ligne de terre.
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Figure 7.18 – Opération de rotation inverse pour retrouver le point P (figure vierge page 261).

Géométries et communication graphique 91



RÉFÉRENCES

7.6 Application aux droites de profil

Dès le début du cours, nous avons vu comment résoudre les problèmes relatifs aux droites et
aux plans de profil en faisant usage de leurs projections sur le plan de profil. L’inconvénient
de cette méthode est qu’elle exige de doubler la largeur de l’épure pour que les projections de
profil puissent être dessinées dans la moitié gauche de l’épure. La méthode des rotations apporte
une autre réponse à ces problèmes de droites et plans de profil, mais sans l’inconvénient associé
à la largeur de l’épure. Nous examinerons, au titre d’exemple-type, le problème suivant [2] : Un
segment de profil AB est donné par ses projections. Déterminer, en faisant usage de la méthode des
rotations, les projections des sommets du carré ABCD appartenant au plan de profil passant par
AB et tel que les sommets C et D présentent des cotes supérieures à celles de A et B. La résolution
consiste dans un premier temps à rendre le segment AB vu en vraie grandeur (par exemple frontal,
figure 7.19) pour pouvoir dessiner le carré de manière directe. Ensuite, les positions originales des
points C et D sont obtenues par une rotation inverse d’amplitude égale à celle qui a servi à rendre
AB frontal.

Figure 7.19 – Résolution d’un problème impliquant une figure dans un plan de profil.
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Chapitre 8

Analyse des courbes planes

Math tells us three of the saddest love stories : tangent lines which had one chance
to meet and then parted forever, parallel lines which were never meant to meet and
asymptotes lines which can get close but will never be together

- Unknown, Popular quotes

8.1 Introduction

Une courbe plane est une courbe entièrement contenue dans un plan. L’étude de ces courbes planes
est fréquemment employée pour les études de fonctions ou pour le suivi de trajectoires de mobiles
par exemple. Ce chapitre décrit les formes principales de représentation de ces courbes, l’étude
différentielle de ces courbes et de leurs éventuels points singuliers.

Figure 8.1 – Exemple de courbe simple :
fonction f(x) = 8 · cos θ.

Figure 8.2 – Exemple de courbe plane
complexe : courbe de Lissajous.
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8.2 Différentes méthodes de représentation d’une courbe
plane

De manière générale, l’expression d’une courbe plane est une relation qui permet de relier les
coordonnées (x,y) des points appartenant à cette courbe. On peut trouver suivant l’usage divers
types de représentation qui sont rappelés dans les paragraphes suivants.

8.2.1 Formes implicites

La forme implicite d’une courbe plane est une relation de la forme F (x, y) telle que l’ensemble
des points de la courbe vérifient l’expression F (x, y) = 0. Il s’agit de la forme la plus générale de
description d’une courbe plane.
Il faut noter qu’une fonction F (x, y) = 0 ne représente pas nécessairement une courbe plane,
comme par exemple :

— F (x, y) ≡ x2 + y2 = 0 qui représente le point (0,0) ;
— F (x, y) ≡ x2 + y2 + 1 = 0 qui ne représente aucun point du plan réel.

Le cercle de rayon r et de centre (xC , yC) est représenté par l’équation :

F (x, y) ≡ (x− xC)2 + (y − xC)2 − r2 = 0 (8.1)

Ce qui signifie que l’ensemble des points du cercle vérifient cette équation.

8.2.1.1 Coniques

Les fonctions quadratiques implicites de la forme

F (x, y) ≡ ax2 + bxy + cy2 + dx+ ey + f = 0 (8.2)

définissent des courbes planes appelées coniques.

Figure 8.3 – Coniques propres : ellipse, parabole, hyperbole.
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Il existe deux méthodes différentes pour les définir de manière physique :
— soit par l’intersection entre un cône de révolution et un plan (figure 8.4) ;
— Soit comme un lieu géométrique de points présentant des rapports de distances fixes entre

une droite (directrice) et un point (foyer) ; ce rapport étant appelé excentricité de la conique
(figure 8.5).

Figure 8.4 – Définition des coniques
par intersection d’un plan et d’un
cône.

Figure 8.5 – Définition des coniques sous forme de lieux
géométriques.

Il existe trois formes dites propres (parabole, hyperbole et ellipse) et plusieurs formes dite
dégénérées (point, droite ou droites sécantes) suivant la position et l’orientation relative entre
le plan et le cône. On peut déterminer le type de conique via l’étude du signe du discriminant
b2 − 4ac de l’équation 8.2 :

— s’il est négatif, il s’agit d’une ellipse ;
— s’il est nul, il s’agit d’une parabole ;
— s’il est positif, il s’agit d’une hyperbole ;

Cette distinction s’observe également au niveau de l’excentricité de la conique :
— si e<1, il s’agit d’une ellipse ;
— e=1, il s’agit d’une parabole ;
— e>1 est positif, il s’agit d’une hyperbole ;

Au delà de cette information, il est difficile de tirer de la forme de l’équation 8.2 des informations
sur la morphologie générale des coniques.
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8.2.1.1.1 Réduction de coniques Les propriétés des coniques s’étudient de manière plus
simple lorsque le terme en xy de l’équation est nul (on parle de forme réduite de la conique. Pour
ce faire, on procède à la réduction de la conique, c’est à dire un changement de repère via une
rotation d’un angle θ (figure 8.6). Dans le nouveau système d’axes, on peut substituer à x et y de
nouvelles coordonnées x′ et y′ telles que :{

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

⇔
{
x = x′ cos θ − y′ sin θ
y = x′ sin θ + y′ cos θ

(8.3)

Figure 8.6 – Changement de repère pour obtenir une conique sous forme réduite.

L’équation de la conique devient alors :

a (x′ cos θ − y′ sin θ)2
+ b (x′ cos θ − y′ sin θ) (x′ sin θ + y′ cos θ) (8.4)

+c (x′ sin θ + y′ cos θ)
2

+ d (x′ cos θ − y′ sin θ) + e (x′ sin θ + y′ cos θ) + f = 0

le terme en x′y′ vaut alors :

−2a cos θ sin θ + b cos2 θ − b sin2 θ + 2c cos θ sin θ = (c− a) sin2θ + b cos 2θ (8.5)

En choisissant judicieusement l’angle θ, il est possible d’annuler ce terme en x′y′ :
— si a 6= c, θ = 0, 5 arctan b

a−c ;
— si a = c, θ = π/4.

On obtient par la suite une équation de la forme

a′x′2 + b′y′2 + c′x′ + d′y′ + e′ = 0 (8.6)

avec 
a′ = a cos2 θ + b cos θ sin θ + c sin2 θ
b′ = a sin2 θ − b cos θ sin θ + c cos2 θ
c′ = d cos θ + e sin θ
d′ = −d sin θ + e cos θ
e′ = f

(8.7)

En regroupant les termes en x′ et y′ sous forme de doubles produits, on peut obtenir la forme
centrée et réduite des coniques (Il s’agit en fait de la forme rencontrée à l’examen d’admission
rappelée à l’annexe C.1.2). Un changement de repère inverse permet ensuite de revenir dans le
repère initial pour décrire les différents éléments :{

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

(8.8)
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8.2.1.1.2 Exemple Dans l’espace Euclidien R3, on considère la courbe définie par l’équation

F (x, y) ≡ 3x2 − 10xy + 3y2 − 4x− 4y − 12 = 0 (8.9)

Quelles sont les caractéristiques de cette courbe ?
Le déterminant caractéristique vaut ici ∆ = b2− 4ac = 102− 4 · 3 · 3 = 64 > 0, la conique est donc
une hyperbole.
Pour définir ses caractéristiques, on va commencer par en obtenir la forme réduite en procédant
à un changement de repère. Comme les paramètres a et c de la conique sont égaux, l’angle de
rotation est de π/4, les paramètres de la forme réduite de l’hyperbole sont donc :

a′ = 3 cos2 π
4
− 10 cos π

4
sin π

4
+ 3 sin2 π

4
= −2

b′ = 3 sin2 π
4

+ 10 cos π
4

sin π
4

+ 3 cos2 π
4

= 8

c′ = −4 cos π
4
− 4 sin π

4
= −4

√
2

d′ = 4 sin π
4
− 4 cos π

4
= 0

e′ = −12

(8.10)

L’équation de l’hyperbole dans le nouveau repère devient donc :

F (x′, y′) ≡ −2x′2 + 8y′2 − 4
√

2x′ − 12 = 0 (8.11)

Cette équation peut ensuite être mise sous forme canonique en commençant par regrouper es
termes sous forme de produits remarquables :

−2x′2 + 8y′2 − 4
√

2x′ − 12 = 0 (8.12)

−2
(
x′2 + 2

√
2x′ + 2

)
+ 8y′2 − 12 + 4 = 0 (8.13)

−2
(
x′ +
√

2
)2

+ 8y′2 − 8 = 0 (8.14)(
x′ +
√

2
)2

22
− y′2 + 1 = 0 (8.15)

On est donc en présence d’une hyperbole dont le centre est situé en
(
−
√

2, 0
)
(dans Ox′y′) et dont

les asymptotes ont pour équation :{
d1 ≡ y′ = 1

2

(
x′ +
√

2
)

d2 ≡ y′ = −1
2

(
x′ +
√

2
) (8.16)

Le retour dans le repère initial passe par le changement de base inverse :{
x = x′ cos π

4
− y′ sin π

4
= −
√

2 cos π
4
− 0 · sin π

4
= −1

y = −x′ sin π
4

+ y′ cos π
4

= −
√

2 sin π
4

+ 0 · cos π
4

= −1
(8.17)

Ce qui donne pour coordonnées dans Oxy (-1,-1).
Le même changement de repère est appliqué aux équations des asymptotes pour obtenir leur
équation dans Oxy :{

d1 ≡ −x sin π
4

+ y cos π
4

= 1
2

(
x cos π

4
+ y sin π

4
+
√

2
)

d2 ≡ −x sin π
4

+ y cos π
4

= −1
2

(
x cos π

4
+ y sin π

4
+
√

2
) (8.18)

c’est-à-dire : {
d1 ≡ y − 3x− 2 = 0
d2 ≡ 3y − x+ 2 = 0

(8.19)
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8.2.2 Formes explicites

La forme explicite d’une courbe est une représentation sous la forme d’une fonction y = f(x)
(à une valeur de x correspond au plus une valeur de y). La forme explicite la plus simple est la
relation :

y = mx+ p (8.20)

qui représente une droite d’ordonnée à l’origine p et de coefficient directeur m (figure 8.7).

Figure 8.7 – Droite d’équation y = mx+ p. Figure 8.8 – Parabole de tir.

La forme explicite n’est que peu rencontrée en-dehors de l’analyse fonctionnelle car dans de
nombreux cas, il n’est soit pas possible, soit pas réalisable d’un point de vue pratique d’obtenir
une forme explicite d’une courbe. Dans de nombreux cas, il est également nécessaire d’employer
plusieurs fonctions explicites pour définir une courbe. Par exemple, le cercle serait représenté sous
la forme :

y = yc ±
√
R2 − (x− xc)2 (8.21)

Il y a donc deux branches nécessaires pour sa représentation explicite.

8.2.3 Forme vectorielle (paramétrique)

La forme vectorielle d’une courbe plane un vecteur variable
−→
V (t) joignant l’origine à tous les

points de la courbe. Elle fait intervenir un paramètre dont dépendent les coordonnées x et y des
points de cette courbe. En projetant ce vecteur sur les axes du repère, on obtient les équations
paramétriques de la courbe. Par exemple, l’équation vectorielle d’un cercle de rayon R et de centre
(xC , yC) est :

−→
V (θ) = (xc +R cos θ) · −→ux + (yc +R sin θ) · −→uy (8.22)

Ses équations paramétriques sont : {
x = xc +R sin θ
y = yc +R cos θ

(8.23)

θ est le paramètre qui a ici un sens physique (l’angle entre la droite joignant le centre et le point
courant avec l’horizontale), mais ce n’est pas nécessairement toujours le cas.
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La forme paramétrique est fréquemment rencontrée en physique par l’intermédiaire d’un paramètre
temporel. Par exemple, le projectile balistique lancé avec une vitesse initiale V0 orientée selon un
angle θ par rapport à l’horizontale (figure 8.8) aura, dans une approche simplifiée, un mouvement
décrit par les équations paramétriques suivantes :{

x = V0 cos θ · t
y = V0 sin θ · t− g·t2

2

(8.24)

8.2.4 Forme polaire

L’équation polaire d’une courbe est l’expression qui lie le rayon polaire à l’angle polaire. Le rayon
polaire est le segment joignant l’origine du système d’axes au point courant sur la courbe. L’angle
polaire est l’angle fait par ce rayon polaire avec l’axe des x positifs (figure 8.9).

P

x

y

θ

r

Figure 8.9 – Définition polaire d’une courbe

Par exemple, la forme r = a cos (kθ + φ) définit une rosace à k branches si k est impair et à 2k
branches si k est pair. A titre d’exemple, la rosace à quatre branches d’équation polaire r = a·sin 2θ
est représentée en figure 8.10.

Figure 8.10 – Rosace à quatre branches.
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8.2.5 Passage d’une forme à une autre

De manière générale, il n’existe pas qu’une seule forme de représentation valide pour une
courbe déterminée. Un cercle unitaire centré en l’origine peut par exemple être représenté par
l’intermédiaire des cinq formes suivantes (figure 8.11) :

Figure 8.11 – Différentes formes pour représenter le cercle unité centré en l’origine.

Le passage d’une forme à une autre peut s’effectuer de manière plus ou moins aisée suivant les
cas.

8.2.5.1 Passage de la forme polaire à la forme paramétrique

Si une courbe est donnée par son équation polaire r = f(θ), il est possible de se ramener à ses
équations paramétriques de la manière suivante :{

x = f(θ) cos θ
y = f(θ) sin θ

(8.25)

8.2.5.2 Passage de la forme paramétrique à la forme cartésienne implicite

Le passage de la forme paramétrique à la forme cartésienne implicite consiste à éliminer le
paramètre entre les deux équations. Notons que de manière générale, cette transformation n’est
pas toujours réalisable.
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Figure 8.12 – Passage d’une forme de représentation à une autre.

8.2.5.3 Passage de la forme cartésienne implicite la forme cartésienne explicite

Cette transformation consiste à (quand cela est possible) isoler y dans la forme implicite.

8.2.5.4 Passage de la forme cartésienne explicite à la forme cartésienne implicite

Ce passage est toujours possible en posant simplement F (x, y) ≡ y − f(x) = 0. Toutefois, si cela
est possible, on préfèrera faire disparaitre les racines et dénominateurs dans l’expression.

8.2.5.5 Passage de la forme cartésienne à la forme paramétrique

Une courbe donnée sous la forme y=f(x) peut être représentée sous une forme paramétrique de
manière évidente : {

x = t
y = f(t)

(8.26)

8.3 Recherche de la tangente et de la normale à une courbe

La recherche des tangentes et normales à une courbe en un point donné permet d’en déduire
différentes caractéristiques. Par exemple, si un mobile parcours une courbes donnée, le vecteur
vitesse est orienté selon la tangente à la courbe. Ce chapitre présentera la généralisation du calcul
de la tangente pour les différents types de représentation. Pour certaines formes des équations,
une ambiguïté peut apparaître pour la tangente en certains points des courbes. La recherche de
ces points, appelés points singuliers, sera également abordée.
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8.3.1 Courbe donnée par son équation cartésienne explicite

Soit une courbe quelconque définie par son équation explicite y=f(x). Soit les points M0 et M1

sur cette courbe et M0M1 la sécante à la courbe. La pente de cette sécante est définie par (figure
8.13) :

tanϕ =
∆y

∆x
(8.27)

Figure 8.13 – Recherche de la tangente à une courbe.

Si on fait tendre M1 vers M0 (ou de manière équivalente si on fait tendre ∆x vers 0), la sécante
tend vers la tangente à la courbe en M0 :

tanφ0 = lim
x→0

tanφ = lim
x→0

∆y

∆x
= y′(M0) (8.28)

La tangente en M0 aura donc pour équation :

y = yM0 + y′(M0) (x− xM0) (8.29)

Par convention, la normale à la courbe en M0 est la droite passant par M0 qui est perpendiculaire
à sa tangente. Son équation sera donc :

y = yM0 +
−1

y′(M0)
(x− xM0) (8.30)
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8.3.2 Courbe donnée par son équation cartésienne implicite

La recherche de la tangente à une courbe définie par son équation implicite en un point donné
peut se calculer sans nécessiter la recherche de la forme explicite en employant le résultat classique
d’analyse mathématique :

Théorème 8.1. Soit une fonction continue définie par l’équation implicite F (x, y) = 0 où F (x, y)
et ses dérivées partielles selon x et y sont continues en un point P . La dérivée de la fonction
implicite en P est obtenue par l’opposé du quotient entre la dérivée partielle selon x et la dérivée
partielle selon y calculées en P .

Autrement dit, la dérivée en P se calcule comme :

(
dy(x)

dx

)
M0

=

−
∂F (x, y)

∂x
∂F (x, y)

∂y


M0

(8.31)

Pour rappel, la dérivée partielle de F (x, y) par rapport à x se calcule en considérant la dérivée
de l’expression F (x, y) par rapport à x en considérant y comme une constante. L’équation de la
tangente et de la normale est donc identique aux équations 8.29 et 8.30 en remplaçant y′(M0) par
le résultat de l’équation 8.31.

8.3.3 Courbe donnée par son équation vectorielle

Par définition, la fonction vectorielle d’une variable scalaire réelle t (définie dans un domaine D de
R) est une application de D dans Rn (n=2 dans le cas des courbes planes) qui associe à tout réel
t de D un vecteur

−→
V (t) (ou un point-image M tel que

−−→
OM =

−→
V (t)). L’ensemble des point-image

M définit le graphe (ou indicatrice) de la fonction vectorielle. La fonction vectorielle définissant
une courbe plane est à rapprocher de sa définition paramétrique. En effet, on peut définir :

−→
V (t) = x(t) · −→ux + y(t) · −→uy (8.32)

Cette définition permettra de manière aisée de définir que :
—
−→
V (t) est continue sur D sur x(t) et y(t) le sont aussi ;

—
−→
V (t) est dérivable sur D sur x(t) et y(t) le sont aussi ;

— la dérivée
−→
V ′(t) = x′(t) · ~ux + y′(t) · ~uy ;

— de même pour n entier>1
−→
V n(t) = xn(t) · ~ux + yn(t) · ~uy.

Si la fonction vectorielle
−→
V (t) est dérivable d’ordre n au voisinage de t0, on peut l’approcher par

son développement de Taylor :

−→
V (t) =

−→
V (t0) +

(
t− t0

1!

)−→
V ′(t0) +

(
(t− t0)2

2!

)
−→
V ′′(t0) + · · ·+ (t− t0)n

n!
~V n(t0) (8.33)

+
(t− t0)n+1

(n+ 1)!

[−−−→
V n+1(t0) + ε

]
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Figure 8.14 – Recherche de la tangente en un point d’une courbe exprimée par sa fonction
vectorielle.

La différence
−→
V (t) −

−→
V (t0) permet de définir un vecteur définissant une sécante à la courbe.

L’expression 8.34 peut être réorganisée sous la forme :

−→
V (t)−

−→
V (t0)

t− t0
=
−→
V ′(t0) +

t− t0
2!

−→
V ′′(t0) + · · ·+ (t− t0)(n−1)

n!

−→
V n(t0) (8.34)

+
(t− t0)n

(n+ 1)!

[−−−→
V n+1(t0) + ε

]
(8.35)

A la limite, si on fait tendre t vers t0, on peut déduire qu’un vecteur tangent peut être obtenu par
la dérivée première de la fonction vectorielle :

lim
t→t0

−→
V (t)−

−→
V (t0)

t− t0
=
−→
V ′(t0) (8.36)

Ceci est valable si
−→
V ′(t0) 6= 0, on parle dans ce cas de point régulier de la courbe. La pente de la

tangente est équivalente à la pente du vecteur
−→
V ′(t0), c’est-à-dire :

y′(x) =
dy

dx
=

dy

dt
dx

dt

(8.37)
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8.3.4 Courbe donnée sous forme paramétrique

Le but est d’obtenir le coefficient directeur de la tangente à une courbe définie par ses équations
paramétriques sans repasser par la forme implicite. Soient les équations paramétriques{

x = x(t)
y = y(t)

(8.38)

avec t le paramètre. Si on suppose que la fonction inverse t = t(x) existe et est dérivable, la forme
explicite serait obtenue simplement par

y (x) = y (t (x)) (8.39)

et sa dérivée par rapport à x serait la simple dérivée de fonction composée :

y′(x) =
dy

dx
=
dy

dt

dt

dx
(8.40)

Or, l’analyse mathématique démontre que la dérivée d’une fonction inverse est l’inverse de la
dérivée de la fonction, dès lors

y′(x) =
dy

dx
=
dy

dt

dt

dx
=

dy

dt
dx

dt

(8.41)

ce qui correspond logiquement à l’équation 8.37. Il suffit donc simplement de prendre le rapport
des dérivées de x et y par rapport à t pour obtenir la pente de la tangente à la courbe.

8.3.5 Courbe donnée par sa forme polaire

Dans ce cas de figure, il suffit de repasser sous forme paramétrique comme expliqué au § 8.2.5.1,
puis de calculer la dérivée comme expliqué au § précédent. En développant le calcul d’une courbe
donnée sous sa forme polaire r = r(θ), on obtient la forme paramétrique :{

x = r(θ) cos θ
y = r(θ) sin θ

(8.42)

Le coefficient directeur de la tangente peut donc être obtenu par :

y′(x) =

dy

dθ
dx

dθ

=
r′(θ) sin θ + r(θ) cos θ

r′(θ) cos θ − r(θ) sin θ
(8.43)
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8.4 Points singuliers de courbes planes

8.4.1 Introduction

les calculs de tangente menés au paragraphe précédent peuvent dans certains cas conduire à des
cas d’indétermination. L’ensemble des points pour lesquels le calcul de la pente de la tangente
mène à une indétermination sont appelés points singuliers de la courbe. On peut en distinguer
plusieurs types :

— les points singuliers dits de première espèce identifiés à l’aide de la fonction vectorielle ;
— les points multiples ou isolés identifiés à l’aide de la forme implicite ;
— les points anguleux pour lesquels la dérivée à gauche diffère de la dérivée à droite.

Nous allons brièvement évoquer les deux premiers cas de figure.

8.4.2 Points singuliers de première espèce

La relation 8.36 donne l’orientation de la tangente en un point de la courbe, à condition que le
vecteur

−→
V ′(t0) soit différent du vecteur nul. Si au contraire la dérivée première s’annule, le point

est dit singulier car un vecteur nul ne définit pas d’orientation. Ceci ne signifie pas nécessairement
qu’il ne soit pas possible de définir une tangente en ce point. Par exemple, si

−→
V ′(t0) =

−→
0 et

−→
V ′′(t0) 6= −→0 , on peut reprendre le développement limité de la fonction vectorielle et écrire :

2 ·
−→
V (t)−

−→
V (t0)

(t− t0)2 =
−→
V ′′(t0) + · · ·+ 2 · (t− t0)(n−2)

n!

−→
V n(t0) (8.44)

+2 · (t− t0)(n−1)

(n+ 1)!

[−−−→
V n+1(t0) + ε

]
(8.45)

et donc :

lim
t→t0

2 ·
−→
V (t)−

−→
V (t0)

(t− t0)2 =
−→
V ′′(t0) (8.46)

Cette procédure peut être répétée jusqu’à obtenir un vecteur dérivé d’ordre k non nul. Si k est
l’ordre de la première dérivée non-nulle de la fonction, il suffit de placer au dénominateur de
l’expression 8.35 le terme (t−t0)k

k!
pour que le passage à la limite donne un vecteur tangent non nul

défini par
−→
V k(t0). On en déduit donc :

Théorème 8.2. Le vecteur directeur de la tangente au graphique de la fonction vectorielle
−→
V (t) en

un point d’une courbe est le premier vecteur dérivé d’ordre k non nul de la fonction vectorielle ; si
l’ordre de dérivation vaut 1, le point est dit régulier, dans tout autre cas, ce point est dit singulier.

Ces points pour lesquels la dérivée première de la fonction vectorielle s’annule sont appelés points
singuliers de première espèce. Il est possible de les classer en quatre catégories :

— point méplat ;
— point d’inflexion ;
— point de rebroussement de première espèce ;
— point de rebroussement de deuxième espèce.
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Le classement s’effectue en fonction de l’ordre de dérivation nécessaire pour obtenir les deux
premiers vecteurs dérivés non-nuls et non-colinéaires (figure 8.15, plus de détail dans [1]) :

Figure 8.15 – Points singuliers de première espèce.

8.4.3 Recherche des points singuliers d’une courbe donnée par sa forme
cartésienne implicite

La méthode qui vient d’être décrite à partir de la fonction vectorielle (ou des équations
paramétriques, ou de l’équation polaire) ne permet d’identifier que les points singuliers de première
espèce. Les points multiples ne sont pas considérés comme singuliers car même s’ils occupent une
place identique dans le plan, ils résultent de valeurs différentes de paramètre ce qui ne conduit pas
à une ambiguïté sur la détermination de la tangente.
La recherche des points singuliers à partir de l’équation implicite d’une courbe permettra de
mettre ces points multiples en évidence. Elle implique la recherche des points pour lesquelles la
détermination de la tangente conduit à une indétermination. Pour rappel, le calcul de la pente de
la tangente à une courbe définie par son équation implicite est obtenue par :

dy

dx
= −

∂F

∂x
∂F

∂y

(8.47)

cette expression est indéterminée si on a simultanément ∂F
∂x

et ∂F
∂y

qui s’annulent en un point
particulier de la courbe. Pour lever l’indétermination, on peut employer la règle de l’Hospital qui
conduit à

lim
x→xP

(
dy

dx

)
= lim

x→xP
−

d

dx

(
∂F

∂x

)
d

dx

(
∂F

∂y

) = −

(
∂2F

∂x2

)
P

+

(
∂2F

∂x∂y

)
P

·
(
dy

dx

)
P(

∂2F

∂x∂y

)
P

+

(
∂2F

∂y2

)
P

·
(
dy

dx

)
P

(8.48)

si on pose p comme le coefficient directeur de la tangente en P (p =
(
dy
dx

)
P
), on peut réécrire la

relation précédente comme :

p2

(
∂2F

∂y2

)
P

+ 2p

(
∂2F

∂x∂y

)
P

+

(
∂2F

∂x2

)
P

= 0 (8.49)
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Il faut donc résoudre une équation du deuxième degré pour laquelle le nombre de racines dépend
du signe du déterminant

∆ =

(
∂2F

∂x∂y

)2

P

−
(
∂2F

∂x2

)
P

(
∂2F

∂y2

)
P

(8.50)

— si ∆>0, on a deux solutions réelles distinctes, il s’agit donc d’un point double (figure 8.16) ;
— si ∆=0, on a deux solutions réelles confondues, il existera une seule tangente, on a donc un

point singulier de première espèce (figure 8.15) ;
— si ∆<0, on n’a pas de solution réelle, il s’agit d’un point isolé (figure 8.17).

Figure 8.16 – Point double. Figure 8.17 – Point isolé.

Si l’expression 8.48 conduit à une indétermination (0/0), il faut augmenter l’ordre de dérivation
jusqu’à obtenir une expression levant cette indétermination. Suivant l’ordre de dérivation
nécessaire, on est en présence d’une équation du troisième, quatrième,... degré qui conduit à
l’existence d’un point triple, quadruple,...
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Chapitre 9

Longueur, rectification et courbure de
courbes planes

Le chemin le plus court d’un point à un autre c’est de ne pas y aller

- P. Geluck, L’Excellent du chat

9.1 Longueur d’un arc de courbe

Soit une courbe donnée par ses équations paramétriques employant un paramètre t. On peut
approcher l’arc joignant les points A et B (définis par les valeurs t0 et tn du paramètre) par la
ligne brisée joignant les points définis par les paramètres t0, t1, ..., tn (avec t0<t1< ...< tn, figure
9.1). Si on fait tendre le nombre de points vers l’infini, la longueur des segments tend vers zéro et
le périmètre de la ligne brisée tend vers la longueur de l’arc entre A et B.

Figure 9.1 – Discrétisation d’une portion de courbe.

La longueur d’une corde est exprimée par :

li+1 =

√
(xi+1 − xi)2 + (yi+1 − yi)2 (9.1)

La longueur de la ligne brisée vaudra donc :

l =
n−1∑
i=0

li+1 =
n−1∑
i=0

√
(xi+1 − xi)2 + (yi+1 − yi)2 (9.2)
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l =
n−1∑
i=0

li+1 =
n−1∑
i=0

√(
xi+1 − xi

∆t

)2

+

(
yi+1 − yi

∆t

)2

∆t (9.3)

On peut démontrer ([1],[2]) qu’à la limite, cette expression tend vers la longueur de l’arc (notée
s) qui peut être calculée par :

s =

∫ tn

t0

√(
dx(t)

dt

)2

+

(
dy(t)

dt

)2

dt (9.4)

On peut également démontrer que la différentielle de cette fonction s’établit selon :

ds2 = dx2 + dy2 (9.5)

9.1.1 Abscisse curviligne d’un point sur un arc

Pour un arc donné, on a l’expression générale :

s =

∫ u

u0

ds (9.6)

On peut définir de manière arbitraire :
— une origine à l’arc pour la valeur u0 du paramètre ;
— un sens positif de parcours du point défini par u0 vers celui défini par u1.

La valeur définie par la relation est alors appelée abscisse curviligne d’un point sur l’arc orienté.

9.2 Rectification d’une courbe

Le calcul de la longueur d’un arc est dénommé rectification de l’arc. Ce calcul va être présenté sur
base d’exemples pour différentes formulations de courbes.

9.2.1 Courbe donnée par ses équations paramétriques

Soit par exemple une cycloïde, courbe décrite par un point d’un cercle qui roule sans glisser sur
l’axe OX (figure 9.2). Ses équations paramétriques sont :{

x = R (θ − sin θ)
y = R (1− cos θ)

(9.7)

L’abscisse curviligne sur cette courbe se calcule comme suit :

dx

dθ
= R (1− cos θ) (9.8)

dy

dθ
= R sin θ (9.9)

s =

∫ θ

θ0

√
(R (1− cos θ))2 + (R sin θ)2 · dθ (9.10)
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Les développements successifs donnent :

s =

∫ θ

θ0

√
R2 − 2R2 cos θ +R2 cos2 θ +R2 sin2 θ · dθ (9.11)

=

∫ θ

θ0

√
2R2 − 2R2 cos θ · dθ (9.12)

=

∫ θ

θ0

√
2R2 (1− cos θ) · dθ (9.13)

=

∫ θ

θ0

√
2R22 sin2 θ

2
· dθ (9.14)

=

∫ θ

θ0

2R

∣∣∣∣sin θ2
∣∣∣∣ · dθ (9.15)

(9.16)

Si on se limite à une variation d’angle de 0 à 2π, le sinus reste positif, on peut donc lever la
valeur absolue (si on considère des valeurs faisant changer de signe le sinus, il faut intégrer par
morceaux). En imposant θ0=0, l’expression de l’abscisse curviligne est donc :

s = 4R

[
− cos

(
θ

2

)]θ
0

(9.17)

= −4R cos
θ

2
+ 4R (9.18)

= 4R

(
1− cos

θ

2

)
(9.19)

= 8R sin2 θ

4
(9.20)

Pour un seul cycle de roulement (θ = 2π), la longueur de l’arc est donc de 8 R.

Figure 9.2 – Représentation de la cycloïde pour R=5.

9.2.2 Courbe donnée par son équation explicite

Une courbe donnée sous la forme y = f(x) peut être représentée sous une forme paramétrique de
manière évidente : {

x = t
y = f(t)

(9.21)

La formule de l’abscisse curviligne s’établit donc dans ce cas (on a bien sûr
dx

dt
= 1) :

∫ tn

t0

√
1 +

(
dy(t)

dt

)2

dt (9.22)
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9.2.3 Courbe donnée par son équation polaire

Comme vu précédemment, si une courbe est donnée par son équation polaire r = f(θ), il est
possible de se ramener à ses équations paramétriques de la manière suivante :{

x = f(θ) cos θ
y = f(θ) sin θ

(9.23)

Les dérivées partielles selon θ s’établissent comme :
dx

dθ
= f ′(θ) cos θ − f(θ) sin θ (9.24)

dy

dθ
= f ′(θ) sin θ + f(θ) cos θ (9.25)

La longueur d’arc s’obtient dès lors comme :

s =

∫ θ

θ0

√
(f ′(θ) cos θ − f(θ) sin θ)2 + (f ′(θ) sin θ + f(θ) cos θ)2 · dθ (9.26)

Ou encore :

s =

∫ θ

θ0

√(
df(θ)

dθ

)2

+ (f(θ))2 · dθ (9.27)

Par exemple, si on considère la spirale (figure 9.3) donnée par l’équation polaire r = θ, on peut
calculer :

s = ±
∫ θ

θ0

√
u2 + 1 · du (9.28)

Figure 9.3 – Spirale d’équation polaire r = θ.

En prenant pour origine θ = 0 et en considérant le sens positif dans le sens des θ croissants, on
peut calculer (La primitive se trouve dans les tables d’intégrales) :

s =
[
0, 5

(
u
√
u2 + 1 + ln

(
u+
√
u2 + 1

))]θ
0

(9.29)

ce qui donne :
s = 0, 5

(
θ
√
θ2 + 1 + ln

(
θ +
√
θ2 + 1

))
(9.30)

Pour un tour complet, la longueur de spirale vaudra approximativement 2,08.
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CHAPITRE 9. LONGUEUR ET COURBURE

9.3 Notion de courbure

La notion de courbure est un concept lié à la morphologie d’une courbe ; elle traduit physiquement
l’accélération plus ou moins brusque d’un mobile parcourant la courbe à vitesse constante.

9.3.1 Définition

Soit une courbe C dans un repère Oxy sur laquelle on choisit arbitrairement un sens de parcours.
Soit ϕ l’angle que fait la tangente à la courbe au point d’abscisse curviligne s et ϕ + ∆ϕ l’angle
que fait la tangente à la courbe au point d’abscisse curviligne s+∆s (figure 9.4).

Par définition, la courbure de C au point d’abscisse curviligne s se définit comme :

1

ρ
= lim

∆s→0

∣∣∣∣∆ϕ∆s

∣∣∣∣ =

∣∣∣∣(dϕds
)
s

∣∣∣∣ (9.31)

La courbure est donc une valeur essentiellement positive homogène à l’inverse d’une distance. On
nomme rayon de courbure ρ l’inverse de la courbure.

Figure 9.4 – Définition de la courbure.

Le centre de courbure en un point d’une courbe est le point situé sur la normale à la courbe à une
distance équivalente au rayon de courbure dans la direction de la concavité. Le lieu des centres de
courbure à une courbe est appelée développée de la courbe. Inversement, la courbe originale est
appelée développante de la courbe développée.
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9.3.1.1 Cas particulier du cercle

Soient M1 et M2 deux points particuliers d’un cercle de centre C et de rayon R. On sait que si ∆ϕ
est l’angle au centre interceptant l’arc M1M2, alors |∆s| = ±R∆ϕ. Soit K le point d’intersection
des deux tangentes aux cercle en M1 et M2 (figure 9.5).

Figure 9.5 – Calcul de la courbure d’un cercle.

Dans le quadrilatère CM1KM2, les angles ĈM1K et ĈM2K sont droits. L’angle α est donc le
supplémentaire de l’angle au centre. α + β est un angle plat, ce qui implique donc que β = ∆ϕ.
Le calcul de la courbure en un point du cercle donne donc :

1

ρ
= lim

∆s→0

∣∣∣∣∆ϕ∆s

∣∣∣∣ = lim
∆s→0

∣∣∣∣ ∆ϕ

R∆ϕ

∣∣∣∣ =

∣∣∣∣ 1

R

∣∣∣∣ (9.32)

Une circonférence est donc une courbe dont la courbure est constante et vaut l’inverse de son
rayon. Par extension, une droite peut être vue comme un cercle de rayon infini, sa courbure est
donc nulle.
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9.3.2 Calcul de la courbure

9.3.2.1 Courbe donnée par son équation explicite

Il est clair que ψ et s sont des fonctions de x. Dans l’équation 9.31, le calcul de la dérivée partielle
peut donc être réalisé par :

dϕ

ds
=

dϕ

dx
ds

dx

(9.33)

Dans le cas de la formulation explicite, l’angle ϕ que fait une courbe avec l’axe des x peut être
calculé par :

tanϕ =
dy

dx
ou ϕ = arctan

(
dy

dx

)
(9.34)

la dérivation par rapport à x de cette expression donne :

dϕ

dx
=

(
d2y
dx2

)
1 +

(
dy

dx

)2 (9.35)

On a également démontré (relation 9.5) que

ds

dx
=

√
1 +

(
dy

dx

)2

(9.36)

La courbure se calcule donc par :

1

ρ
=

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2
) 3

2

(9.37)

9.3.2.2 Courbe donnée par ses équations paramétriques

Soit les équations paramétriques d’une courbe :{
x = ψ(t)
y = η(t)

(9.38)

Pour calculer la courbure selon 9.37, il faut pouvoir déterminer les dérivées première et seconde
de y par rapport à x. Il a été démontré au §8.3.4 que la dérivée première peut s’exprimer sous la
forme :

dy

dx
=

dη

dt
dψ

dt

(9.39)

La seconde dérivation de cette expression donne :

d2y

dx2
=

d

dx

 dη

dt
dψ

dt

 =
d

dt

 dη

dt
dψ

dt

 1

dψ

dt

(9.40)
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Le développement de l’expression précédente donne :

d2y

dx2
=

dψ

dt
· d

2η

dt2
− dη

dt
· d

2ψ

dt2(
dψ

dt

)3 (9.41)

En intégrant dans 9.37 les résultats de 9.39 et 9.41, on obtient :

1

ρ
=

dψ

dt
· d

2η

dt2
− dη

dt
· d

2ψ

dt2[(
dψ

dt

)2

+

(
dη

dt

)2
] 3

2

(9.42)

9.3.2.2.1 Exemple d’application Déterminer la courbure d’une ellipse donnée par ses
équations paramétriques : {

x = a cos θ
y = b sin θ

(9.43)

On peut calculer :
dψ

dθ
= −a sin θ

dη

dθ
= b cos θ

d2ψ

dθ2
= −a cos θ

d2η

dθ2
= −b sin θ

(9.44)

La courbure se calcule par 9.42 :

1

ρ
=

(−a sin θ) (−b sin θ)− (b cos θ) (−a cos θ)[
(−a sin θ)2 + (b cos θ)2] 3

2

=
ab[

a2 sin2 θ + b2 cos2 θ
] 3

2

(9.45)

Pour obtenir la courbure en tout point (x, y) de la courbe, on peut substituer :

a2 sin2 θ + b2 cos2 θ = a2 sin2 θ + b2 cos2 θ + a2 cos2 θ + b2 sin2 θ (9.46)
−
(
a2 cos2 θ + b2 sin2 θ

)
= a2 + b2 −

(
x2 + y2

)
(9.47)

Ce qui donne finalement
1

ρ
=

ab

[a2 + b2 − (x2 + y2)]
3
2

(9.48)

On peut vérifier que si a = b = R, on retrouve bien la propriété du cercle d’avoir ρ = R.

9.3.2.3 Courbe donnée par sa forme implicite

Comme pour le cas précédent, il faut rechercher les dérivées première et seconde de y par rapport
à x. Comme présenté au § 8.3.2 on calcule les deux premières dérivées de la fonction explicite par :

dF

dx
=
∂F

∂x

dx

dx
+
∂F

∂y

dy

dx
= 0 (9.49)

d2F

dx2
=

d

dx

(
dF

dx

)
= 0 (9.50)
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Cette expression donne :

∂2F

∂x2
+ 2

∂2F

∂x∂y

dy

dx
+
∂2F

∂y2

(
dy

dx

)2

+
∂F

∂y

d2y

dx2
= 0 (9.51)

donc
d2y

dx2
= − 1

∂F
∂y

[
∂2F

∂x2
+ 2

∂2F

∂x∂y

dy

dx
+
∂2F

∂y2

(
dy

dx

)2
]

(9.52)

Il suffit de replacer 9.49 et 9.52 dans 9.37 pour obtenir :

1

ρ
=

(
∂F

∂y

)2
∂2F

∂x2
− 2

∂2F

∂x∂y

∂F

∂x

∂F

∂y
+
∂2F

∂y2

(
∂F

∂x

)2

[(
∂F

∂x

)2

+

(
∂F

∂y

)2
] 3

2

(9.53)

9.3.2.3.1 Exemple Reprenons le cas de l’ellipse, cette fois-ci donnée par son équation
implicite :

F (x, y) ≡ x2

a2
+
y2

b2
− 1 = 0 (9.54)

ou encore b2x2 + a2y2 − a2b2 = 0. On peut calculer immédiatement :

∂F

∂x
= 2b2x

∂F

∂y
= 2a2y

∂2F

∂x2
= 2b2 ∂2F

∂x∂y
= 0

∂2F

∂y2
= 2a2

(9.55)

Ce qui permet de calculer la courbure :

1

ρ
=

4a4y22b2 − 0 + 4b4x22a2

(4b4x2 + 4a4y2)
3
2

(9.56)

=
8 (a2b2) (y2b2 + x2y2)

8 (b4x2 + a4y2)
3
2

(9.57)

=
a4b4

(b4x2 + a4y2)
3
2

(9.58)

(9.59)

Le dénominateur peut être réorganisé selon :

b4x2 + a4y2 = b2
(
a2b2 − a2y2

)
+ a2

(
a2b2 − b2x2

)
= a2b2

[
a2 + b2 −

(
x2 + y2

)]
(9.60)

Ce qui donne au final :

1

ρ
=

a4b4

[a2b2 [a2 + b2 − (x2 + y2)]]
3
2

(9.61)

=
ab

[a2 + b2 − (x2 + y2)]
3
2

(9.62)

Ce qui est équivalent au résultat obtenu avec le calcul mené à partir de la forme paramétrique.
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9.3.2.4 Courbe donnée par sa forme polaire

La forme polaire d’une courbe r = f(θ) peut être transformée de manière simple en une forme
paramétrique : {

x = f(θ) cos θ
y = f(θ) sin θ

(9.63)

Les relations étudiées au § 9.3.2.2 peuvent être employées avec ces expressions. Le développement
complet[3] donne finalement l’expression de la courbure :

1

ρ
=

∣∣∣r2 + 2
(
dr
dθ

)2 − r d2r
dθ2

∣∣∣[(
dr
dθ

)2
+ r2

] 3
2

(9.64)

9.3.2.5 Cas pratique

Un mobile circulant à vitesse constante sur une trajectoire constituée d’un segment de droite suivi
d’un arc de cercle verra au raccordement entre les deux courbes une discontinuité de courbure
(passage d’une valeur nulle à une valeur fini). Il en résultera une discontinuité d’accélération du
mobile. En effet, l’accélération d’un point parcourant une courbe se calcule selon[2] :

−→a =
d2s

dt2
−→ut +

(
ds

dt

)2 −→un
ρ

(9.65)

Cette discontinuité d’accélération provoquera des effets sensibles pour les passagers du mobile
(vibrations) qui entraîneront un certain inconfort. C’est pourquoi dans la pratique, les
raccordements à l’entrée et à la sortie des virages devant être pris à grande vitesse (autoroutes,
chemins de fer,...) sont constitués d’un raccordement intermédiaire à courbure continument
variable appelé clothoïde. Cette courbe peut être décrite par son équation intrinsèque :

s =
C2

ρ
(9.66)

avec C une constante homogène à une longueur. Il n’est pas possible d’établir une forme analytique
de cette fonction, sa construction doit se réaliser point par point par intégration numérique.
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Chapitre 10

Introduction à la géométrie analytique
spatiale

Look behind you, a Three-Headed Monkey !

- G. Threepwood, Monkey island

10.1 Introduction

La géométrie analytique spatiale étend les concepts de géométrie plane en considérant une
troisième coordonnée z. Le repère de base Oxyz sera supposé orthonormé et orienté positivement
pour l’ensemble des calculs. Un rappel des éléments de base issus des prérequis de l’examen
d’admission sont rappelés en annexe C

10.2 Géométrie vectorielle et repère

Dans l’espace Rn, un repère est constitué d’un point origine O et de n vecteurs linéairement
indépendants ~u1, ~u2, . . . , ~un. Ce repère permet de décrire la position de tout point par
l’intermédiaire d’une combinaison linéaire unique des vecteurs de base. La géométrie analytique
associe à tout point P de l’espace une représentation sous la forme de coordonnées (p1, p2, . . . , pn).
Ces coordonnées sont les composantes du vecteur joignant l’origine au point dans le repère qui a
été choisi :

−→
OP =

n∑
i=1

pi
−→ui (10.1)

La pratique recommande toutefois d’employer un repère orthonormé (c’est-à-dire dont les vecteurs
de base sont orthogonaux entre eux et dont les mesures sont égales et équivalentes à l’unité de
mesure employée) qui conduit à de nombreuses simplifications dans les calculs.

10.2.1 Opérations courantes de géométrie vectorielle

Dans le cadre de ce cours, un grand nombre de relations feront appel aux notions de géométrie
vectorielle classiques déjà évoquées notamment dans le cours de mécanique rationnelle[1] ou de
physique [2] dont voici quelques rappels.
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Figure 10.1 – Opérations de base en géométrie vectorielle.

La norme d’un vecteur dans un repère orthonormé :

‖−→a ‖ =

√√√√ n∑
i=1

a2
i (10.2)

Ce qui permet de définir un vecteur unitaire −→u (de norme 1) parallèle à −→a par :

−→u = ±
−→a
‖−→a ‖

(10.3)

La combinaison linéaire de deux vecteurs −→a et
−→
b donne un vecteur −→c :

−→c = k · ~a+ l ·~b⇒ ci = k · ai + l · bi (10.4)

10.2.1.1 Produit scalaire

Le produit scalaire de deux vecteurs −→a et
−→
b formant un angle θ entre eux donne un scalaire :

−→a ·
−→
b = ‖−→a ‖

∥∥∥−→b ∥∥∥ cos θ =
n∑
i=1

aibi (10.5)

Son emploi est pratique pour la calcul d’angle entre éléments.

10.2.1.2 Produit vectoriel

Le produit vectoriel de deux vecteurs −→a et
−→
b donne un vecteur −→c perpendiculaire au plan défini

par −→a et
−→
b (orienté positivement selon la règle de la main droite) dont la norme vaut l’aire du

parallélogramme défini par −→a et
−→
b :

−→a ∧
−→
b = −→c ⇒ ‖−→c ‖ = ‖−→a ‖

∥∥∥−→b ∥∥∥ sin θ (10.6)

Le produit vectoriel peut être calculé comme :

−→a ∧
−→
b =

∣∣∣∣∣∣
−→ux −→uy −→uz
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = (a2b3 − a3b2)−→ux + (a3b1 − a1b3)−→uy + (a1b2 − a2b1)−→uz (10.7)
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10.2.1.3 Produit mixte

On appelle produit mixte une expression de la forme :

−→
V1 ·

(−→
V2 ∧

−→
V3

)
(10.8)

dont le résultat donne un scalaire. Ce scalaire représente le volume d’un parallélépipède porté par
les trois vecteurs

−→
V1,
−→
V2 et

−→
V3 (figure 10.2).

Figure 10.2 – Parallélépipède construit sur trois vecteurs.

10.3 Traitement de l’intersection d’objets

De manière générale, pour obtenir l’intersection de deux éléments décrits par leurs équations, il
suffit de résoudre le système formé en rassemblant les équations des deux figures. Une courbe
de l’espace sera donc définie par l’intersection de deux surfaces (par exemple d’un plan avec une
surface pour définir une courbe plane).

Un exemple simple consiste à rechercher l’intersection de trois plans définis par leurs équations
cartésiennes. Le système résultant est constitué de trois équations linéaires à trois inconnues :

Ax+By + Cz −D = 0
Ex+ Fy +Gz −H = 0
Ix+ Jy +Kz − L = 0

(10.9)

Ce système peut également se mettre sous forme matricielle : A B C
E F G
I J K

 ·


x
y
z

 =


D
H
L

 (10.10)

Suivant les positions relatives des plans, le système peut être inversible (un seul point
d’intersection) sous-déterminé (intersection donnant une droite ou un plan) ou impossible
(intersections parallèles entre elles par exemple). Les différents cas sont résumés sur la figure
10.3.
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Figure 10.3 – Différents cas de figure pour l’intersection de trois plans.

10.3.1 Application

Soient trois plans déterminés par leur équation cartésienne :

π ≡ 3x+ 2y + 2z + 1 = 0
ρ ≡ −2x+ y − z − 2 = 0
σ ≡ 12x+ y + 7z + 8 = 0

(10.11)

L’intersection des trois plans est obtenue résolvant le système formé des équations des trois plans,
à savoir : 

3x+ 2y + 2z + 1 = 0
−2x+ y − z − 2 = 0
12x+ y + 7z + 8 = 0

(10.12)

La résolution de ce système par la méthode de Gauss [3] donne successivement :

3 2 2
...−1 L1

−2 1 −1
... 2 L2

12 1 7
...−8 L3

(10.13)

3 2 2
...−1

0 7 1
... 4 2L1 + 3L2

0 −7 −1
...−4 L3− 4L1

(10.14)
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3 2 2
...−1

0 7 1
... 4

0 0 0
... 0 L3− L2

(10.15)

21 0 12
...−15 7L1− 3L2

0 7 1
... 4

0 0 0
... 0

(10.16)

1 0 4
7

...−5
7

L1/7

0 1 1
7

... 4
7

L2/7

0 0 0
... 0

(10.17)

L’intersection des trois plans forme donc une droite dont l’équation paramétrique est :
x = −5

7
− 4

7
λ

y = 4
7
− 1

7
λ

z = λ
(10.18)

10.3.2 Projection d’une droite sur les plans de coordonnées

Soit une droite donnée par ses équations cartésiennes :{
Ax+By + Cz −D = 0
Ex+ Fy +Gz −H = 0

(10.19)

Figure 10.4 – Projection d’une droite sur le plan horizontal.

La recherche de sa projection dans le plan Oxy s’obtient en réalisant l’intersection du plan
vertical contenant la droite avec le plan d’équation z = 0. N’importe quel point du plan vertical
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contenant la droite est caractérisé par le fait que les coordonnées x et y sont liées par une relation
indépendante de z. L’équation de ce plan est donc obtenue en éliminant z entre les deux équations
cartésiennes :

(AG− CE)x+ (BG− CF ) y + (CH −DG) = 0 (10.20)

Cette relation correspond à l’équation cartésienne du plan vertical contenant la droite.

Le même type de raisonnement peut être suivi pour la recherche de la projection dans les autres
plans de coordonnées.

10.4 Vecteur directeur et cosinus directeurs

Un vecteur permet de définir une direction dans l’espace (sauf le vecteur nul bien entendu). Toute
vecteur colinéaire définit la même direction, il est donc possible de normaliser le vecteur de manière
libre. Une méthode classique de normalisation consiste à rendre ce vecteur unitaire, dans ce cas,
ses composantes (l,m, n) sont telles que l2 + m2 + n2 = 1. On les appelle paramètres directeurs
absolus de la droite.
Projetons orthogonalement ce vecteur

−→
V sur les axes de coordonnées (figure 10.5) et appelons α,

β et γ les angles formés par le vecteur avec Ox, Oy et Oz.

Figure 10.5 – Cosinus directeurs d’une droite.

Dans les triangles rectangles OAD, OBD et OCD, on obtient de manière directe que cosα =

l, cos β = m et cos γ = n (car on a
∥∥∥−−→OD∥∥∥ =

∥∥∥−→V ∥∥∥ = 1). Les paramètres directeurs absolus
d’une droite sont donc les cosinus directeurs de la droite. On vérifie de manière évidente que
cos2 α + cos2 β + cos2 γ = 1.
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10.5 Forme implicite normalisée d’un plan

Une méthode de normalisation de l’équation cartésienne d’un plan consiste à rendre unitaire son
vecteur normal en divisant les coefficients A, B et C par le facteur

√
A2 +B2 + C2 :

ax+ by + cz − d = 0 avec



a=
A√

A2 +B2 + C2

b=
B√

A2 +B2 + C2

c=
C√

A2 +B2 + C2

d=
D√

A2 +B2 + C2

(10.21)

dans ce cas, le vecteur normal au plan rendu unitaire est noté −→n . Nous avons défini précédemment
que le cosinus des angles formés par la normale à un plan avec les axes sont donnés par les
coefficients de x, y et z dans la forme normalisée. Cette normale peut être orientée du plan vers
l’origine ou inversement suivant les cas (si le coefficient d dans la forme normalisée est positif,
le vecteur normal est orienté de l’origine vers le plan ; les conclusions sont inverses dans le cas
contraire).
Si on recherche les coordonnées du point de percée O′ de la normale au plan passant par l’origine, il
faut résoudre le système formé des équations paramétriques de la droite combinées avec l’équation
cartésienne du plan : 

x = aλ
y = bλ
z = cλ
ax+ by + cz − d = 0

(10.22)

Le point de percée est donc défini pour λ = d/(a2 + b2 + c2), il a donc pour coordonnées :
x = ad/(a2 + b2 + c2)
y = bd/(a2 + b2 + c2)
z = cd/(a2 + b2 + c2)

(10.23)

la distance |OO′| vaut donc :

|OO′| =
√
X2 + Y 2 + Z2 =

√
a2d2

(a2 + b2 + c2)2 +
b2d2

(a2 + b2 + c2)2 +
c2d2

(a2 + b2 + c2)2 = d (10.24)

Une nouvelle interprétation de l’équation sous forme normalisée est donc la suivante :

cosα + cos β + cos γ − |OO′| = 0 (10.25)

Cette forme est également appelée forme polaire du plan ; le vecteur
−−→
OO′ est appelé vecteur polaire

du plan. Sur ce canevas, les formes polaires des différentes équations peuvent être établies. On
déduit par exemple que les points de percée des axes dans le plan sont les points A, B et C tels que
A = ((|OO′| / cosα); 0; 0), B = (0; (|OO′| / cos β); 0) et C = (0; 0; (|OO′| / cos γ)). Une fonction
vectorielle du plan peut donc être établie par

−→
VP =

−−→
OO′ + λ

−→
CA+ µ

−−→
CB (10.26)
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Figure 10.6 – Forme polaire d’un plan.

Un système d’équations paramétriques peut donc être immédiatement déduit :
x = |OO′| (cosα + λ/ cosα)
y = |OO′| (cos β + µ/ cos β)
z = |OO′| (cos γ − (λ+ µ) / cos γ)

(10.27)

L’équation vectorielle polaire se détermine en exprimant le vecteur
−−→
O′P constamment

perpendiculaire à
−−→
OO′ : −−→

OO′ ·
(−→
OP −

−−→
OO′

)
= 0 (10.28)

ou −−→
OO′ ·

−→
OP =

∣∣∣−−→OO′∣∣∣2 (10.29)

Références

[1] O. Verlinden, S. Boucher, and C. Conti. Mécanique Rationnelle. Mutuelle d’édition FPMs,
2010.

[2] F. Moiny. Physique générale. Mutuelle d’édition FPMs, 2013.
[3] D. Tuytens. Mathématiques pour l’ingénieur : Algèbre. Mutuelle d’édition FPMs, 2008.
[4] Y. Durand. Géométries et Communication Graphique : Tome II : Infographie - Algorithmique,

Les Procédures de Projection et de Transformation. Mutuelle d’édition FPMs, 2006-2007.
[5] Y. Durand. Géométries et Communication Graphique : Tome IV : Géométrie Analytique et

Vectorielle, Partie 1 : Géométrie Analytique et Vectorielle des plans. Mutuelle d’édition FPMs,
2008-2009.

127



RÉFÉRENCES

[6] Y. Durand. Géométries et Communication Graphique : Tome IV : Géométrie Analytique et
Vectorielle, Partie 2 : Représentations algébriques et vectorielles des droites. Mutuelle d’édition
FPMs, 2008-2009.

128
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Chapitre 11

Infographie

To infinity and beyond.

- Buzz, Toy story

11.1 Introduction

La représentation et la manipulation d’objets tridimensionnels par voie informatique sont utilisées
de manière intensive, que ce soit pour des applications industrielles (dessin assisté par ordinateur,
infographie,...) ou ludiques (jeux vidéos, films d’animation,...). L’ensemble de ces disciplines
utilise directement des notions de géométrie analytique pour décrire mathématiquement les
différentes opérations effectuées.

Figure 11.1 – Logiciel de conception assistée par ordinateur (Soliworks).

Dans le cadre de ce chapitre, nous étudierons successivement les opérations de changement de
repère, la réalisation de projections, les transformations d’objets et les bases des algorithmes de
rendu. Ce chapitre a pour but de présenter les conventions et les algorithmes employés dans les
logiciels de dessin assisté par ordinateur.

11.2 Changement de repère

L’opération de changement de repère consiste à décrire dans un repère O′x′y′z′ un objet qui est
connu dans un repère Oxyz. Il s’agit d’une des opérations de base des logiciels de dessin assisté
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Figure 11.2 – Personnages de films d’animation ( c©Pixar).

par ordinateur (orientation d’un objet pour son observation ou sa projection par exemple). Ce
type d’approche est également très utile pour simplifier la description de problèmes complexes.
La mécanique rationnelle [1] fait fréquemment appel à ce type de notion (les équations d’équilibre
d’un système complexe peuvent être écrites dans des repères locaux liés aux différents corps puis
retranscrites dans un repère global par la suite).

Figure 11.3 – Changement de repère.

La description d’un changement de repère aboutit à une formulation matricielle qui est
généralement décomposée en deux étapes : la mise en commun des origines des deux repères
puis leur orientation.
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11.2.1 Changement de repère entre deux repères d’origines identiques

On souhaite obtenir les coordonnées de l’ensemble des points d’un objet connu dans un repère
orthonormé Ox’y’z’ connaissant leurs coordonnées dans un repère orthonormé Oxyz (figure 11.4).
Ce type de transformation est l’analogue de la variance tensorielle abordée dans le cadre du cours
de mécanique rationnelle.

Figure 11.4 – Changement de repère par rotation.

Pour rappel, si un point P a pour coordonnées (Px, Py, Pz) dans un repère Oxyz, cela signifie que
le vecteur joignant l’origine au point P peut être décrit par :

−→
OP = Px

−→ux + Py
−→uy + Pz

−→uz (11.1)

La méthode la plus simple pour effectuer le changement de repère est de rechercher les cosinus
directeurs (cf § 10.4) des nouveaux vecteurs de base dans le système Oxyz. Ils permettent
directement d’écrire (avec (λi, µi, νi) les cosinus directeurs du vecteur i de la nouvelle base) :

−→ux′ = λ1
−→ux + µ1

−→uy + ν1
−→uz−→uy′ = λ2

−→ux + µ2
−→uy + ν2

−→uz−→uz′ = λ3
−→ux + µ3

−→uy + ν3
−→uz

(11.2)

Le passage des coordonnées xyz aux coordonnées x′y′z′ s’effectue en repartant de la définition des
coordonnées d’un point dans un repère :

−→
OP = x−→ux + y−→uy + z−→uz (11.3)
−→
OP = x′−→ux′ + y′−→uy′ + z′−→uz′ (11.4)
−→
OP = x′ (λ1

−→ux + µ1
−→uy + ν1

−→uz) + y′ (λ2
−→ux + µ2

−→uy + ν2
−→uz) + z′ (λ3

−→ux + µ3
−→uy + ν3

−→uz) (11.5)
−→
OP = (x′λ1 + y′λ2 + z′λ3)−→ux + (x′µ1 + y′µ2 + z′µ3)−→uy + (x′ν1 + y′ν2 + z′ν3)−→uz (11.6)

Le lien entre coordonnées s’établit donc par multiplication matricielle :
x
y
z

 =

 λ1 λ2 λ3

µ1 µ2 µ3

ν1 ν2 ν3

 ·


x′

y′

z′

 (11.7)
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Le passage des coordonnées dans le deuxième repère (x′, y′, z′) s’effectue en inversant ce système :


x′

y′

z′

 =

 λ1 λ2 λ3

µ1 µ2 µ3

ν1 ν2 ν3

−1

·


x
y
z

 (11.8)

La matrice à inverser présente la particularité d’être une matrice « orthogonale » caractérisée par
le fait d’avoir :

— la somme des carrés de ses colonnes unitaire (λ2
i +µ2

i + ν2
i représente la norme des vecteurs

de base unitaires) ;
— le produit des éléments de deux colonnes nul (λiλj+µiµj+νiνj représente le produit scalaire

de vecteurs de base, donc orthogonaux) ;
Les matrices orthogonales présentent la particularité que leur inverse soit simplement leur
transposée, ce qui permet un calcul facile de l’opération réciproque :

x′

y′

z′

 =

 λ1 µ1 ν1

λ2 µ2 ν2

λ3 µ3 ν3

 ·


x
y
z

 (11.9)

Cette forme matricielle permettant de générer des changements de repère sera classiquement
rencontrée dans les manipulations en infographie.

11.2.2 Changement de repère entre deux repères d’origines différentes

Pour modéliser un changement de repère par translation selon un vecteur connu
−→
T (figure 11.5),

on peut faire appel à la relation vectorielle simple :
−−→
O′P =

−→
OP −

−→
T (11.10)

Figure 11.5 – Changement de repère par translation.

Ce qui se traduit au niveau des coordonnées par :
x′ = x− Tx
y′ = y − Ty
z′ = z − Tz

(11.11)
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Avec (Tx, Ty, Tz) les composantes du vecteur de translation exprimées dans le repère Oxyz. On
constate directement que ce type de relation ne permet pas de passer à une forme matricielle
comme c’est le cas pour le changement de repère par rotation.
Or, l’établissement d’une forme matricielle qui est particulièrement adaptée à la programmation
informatique de ce type d’opération sera recherchée pour l’ensemble des opérations.
Pour lever cet obstacle, la description d’un point se fait alors par l’intermédiaire d’un vecteur à
quatre composantes, à savoir les trois composantes classiques x, y et z auxquelles un quatrième
terme scalaire est ajouté. Dans ce cas, la translation peut se représenter sous la forme d’un produit
matriciel : 

x′

y′

z′

1

 =


1 0 0 −Tx
0 1 0 −Ty
0 0 1 −Tz
0 0 0 1

 ·


x
y
z
1

 (11.12)

L’utilisation de cette quatrième coordonnée est devenue la règle dans le domaine du graphisme
3D. Elle correspond au souci de travailler avec des transformations qui suivent le concept général
d’applications linéaires qui modélisent le passage d’une base à une autre en exprimant des
combinaisons linéaires des vecteurs de base, excluant tout terme indépendant. Cette condition
n’est remplie que grâce à l’ajout de la quatrième coordonnée dans le cas de la translation.
Mathématiquement, ce type de représentation d’un point par l’intermédiaire de quatre coordonnées
est appelé coordonnées homogènes. De manière générale, le quatrième paramètre peut prendre
n’importe quelle valeur non nulle. Le quadruplet de coordonnées (X, Y, Z,W ) est interprété comme
les coordonnées d’un point de l’espace calculées comme suit :

x =
X

W

y =
Y

W

z =
Z

W
)

(11.13)

Avec ce type de convention, la matrice de changement de repère associée à une rotation devient :
λ1 µ1 ν1 0
λ2 µ2 ν2 0
λ3 µ3 ν3 0
0 0 0 1

 (11.14)

133



CHAPITRE 11. INFOGRAPHIE

11.2.3 Conventions particulières

11.2.3.1 Orientation du repère

Comme nous venons de le voir, la représentation des opérations de transformation peuvent se
réduire à des opérations matricielles. Il faut noter que la convention de base employée par les
librairies graphiques considère l’emploi de repères respectant la règle de la main gauche à l’opposé
de ce qui est généralement pratiqué.

Figure 11.6 – Repère ’écran’ orienté
positivement.

Figure 11.7 – Repère ’écran’ orienté
négativement.

L’explication est que de manière générale, les axes x et y sont choisis de sorte à avoir x horizontal
(orienté vers la droite) et y vertical (orienté vers le haut), ce qui implique que l’axe z serait
orienté vers l’observateur (sortant de l’écran) pour respecter la règle de la main droite (figure
11.6). Ceci reviendrait à systématiquement travailler avec des coordonnées z de points négatives
(’dans’ l’écran). Il a donc été décidé d’orienter l’axe z ’écran’ de l’observateur vers l’écran (figure
11.7), ce qui conduit à un repère orienté selon la règle de la main gauche. Les librairies graphiques
employées en infographie sont donc souvent programmées selon ce standard 1. Etant donné que la
transposition d’un type de raisonnement à l’autre est immédiate, la suite du cours sera présentée
avec les repères orientés selon la règle de la main droite par soucis de continuité.

1. Certaines d’entre elles intègrent deux variantes des opérations, mais la version ’à gauche’ est à recommander
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11.2.3.2 Représentation des vecteurs

Une autre convention employée dans les librairies graphiques est la représentation de points sous la
forme de vecteurs « lignes » alors que l’habitude est plutôt d’employer des vecteurs « colonnes ».
Pour comprendre cette convention, examinons la réalisation successive de deux changements de
repère successifs imposés à un point P. De manière générale, les nouvelles coordonnées du point
après transformation sont obtenues en multipliant le vecteur de coordonnées (x, y, z) par une
matrice 4x4 . Dans une convention ’vecteur colonne’, on obtient successivement les opérations
suivantes : 

x′

y′

z′

1

 =


λ1 µ1 ν1 0
λ2 µ2 ν2 0
λ3 µ3 ν3 0
0 0 0 1


︸ ︷︷ ︸

M1

·


x
y
z
1

 (11.15)


x′′

y′′

z′′

1

 =


λ∗1 µ∗1 ν∗1 0
λ∗2 µ∗2 ν∗2 0
λ∗3 µ∗3 ν∗3 0
0 0 0 1


︸ ︷︷ ︸

M2

·


x′

y′

z′

1

 (11.16)

L’opération résultante combinant les deux transformations s’écrirait donc :
x′′

y′′

z′′

1

 = [M2] · [M1] ·


x
y
z
1

 (11.17)

La matrice résultante serait donc obtenue en multipliant les matrices élémentaires des deux
transformations dans l’ordre inverse de leur application (rappelons que la multiplication matricielle
n’est en général pas commutative). Si nous prenons la transposée de l’équation 11.17, nous
obtenons la présentation en vecteur ligne qui correspond à :{

x′′ y′′ z′′ 1
}

=
{
x y z 1

}
· [M1]T · [M2]T (11.18)

Comme le passage de l’une à l’autre des formes est évidente via la transposée, nous continuerons
d’employer la notation classique sous forme de vecteur colonne dans la suite de ce cours.
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11.2.4 Changement de repère entre deux repères quelconques

Lorsque les deux repères considérés sont disposés de manière quelconque l’un par rapport à l’autre,
il est plus simple de décomposer le changement de repère en deux étapes successives (figure 11.8) :

— passage à un repère O′xiyizi via une translation selon un vecteur
−→
T ;

— passage au repère final 0′x′y′z′ via un changement de base.

Figure 11.8 – Changement de repère entre deux repères quelconques.

La mise sous forme matricielle de ces deux opérations donne :
xi
yi
zi
1

 =


1 0 0 −Tx
0 1 0 −Ty
0 0 1 −Tz
0 0 0 1


︸ ︷︷ ︸

M1

·


x
y
z
1

 (11.19)


x′

y′

z′

1

 =


λ1 µ1 ν1 0
λ2 µ2 ν2 0
λ3 µ3 ν3 0
0 0 0 1


︸ ︷︷ ︸

M2

·


xi
yi
zi
1

 (11.20)

L’opération résultante combinant les deux transformations s’écrirait donc :
x′

y′

z′

1

 = [M2] · [M1] ·


x
y
z
1

 (11.21)

La matrice de transformation globale est donc :

[M ] =


λ1 µ1 ν1 − (λ1 · Tx + µ1 · Ty + ν1 · Tz)
λ2 µ2 ν2 − (λ2 · Tx + µ2 · Ty + ν2 · Tz)
λ3 µ3 ν3 − (λ3 · Tx + µ3 · Ty + ν3 · Tz)
0 0 0 1

 (11.22)
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11.2.4.1 Exemple

Soit un repère orthonormé Oxyz dans lequel on place un point O′ de coordonnées (-2,4,6). Le
repère O′x′y′z′ est tel que O′x′ est orienté selon un vecteur

−→
X de composantes (2, 1, 3) tandis que

O′y′ est orienté selon un vecteur
−→
Y de composantes (1,−2, 0). Quelle est la matrice de changement

de repère pour passer de Oxyz à O′x′y′z′ ?
La matrice de translation est obtenue de manière triviale à partir des coordonnées du point O′ :

[M1] =


1 0 0 2
0 1 0 −4
0 0 1 −6
0 0 0 1

 (11.23)

Pour la rotation, on peut vérifier que
−→
X et

−→
Y sont bien orthogonaux :

−→
X ·
−→
Y = 2 · 1 + 1 · (−2) + 3 · 0 = 0 (11.24)

La direction de l’axe O′z′ est donnée par un vecteur
−→
Z obtenu selon :

−→
Z =

−→
X ∧

−→
X =

∣∣∣∣∣∣
−→ux −→uy −→uz
2 1 3
1 −2 0

∣∣∣∣∣∣ = 6 · −→ux + 3 · −→uy − 5 · −→uz (11.25)

La matrice de rotation s’obtient par l’intermédiaire des cosinus directeurs (composantes de vecteurs
unitaires définissant la nouvelle base). Elle vaut donc :

[M2] =


2√
14

1√
14

3√
14

0
1√
5
− 2√

5
0 0

6√
70

3√
70
− 5√

70
0

0 0 0 1

 (11.26)

La matrice de changement de repère globale est donc :

[M ] = [M2] · [M1] =


2√
14

1√
14

3√
14

− 18√
14

1√
5
− 2√

5
0 10√

5
6√
70

3√
70
− 5√

70
− 30√

70

0 0 0 1

 (11.27)

Si on choisit d’effectuer les opérations dans l’autre ordre (rotation puis translation), la matrice [M2]
est inchangée. Par contre il ne faut pas oublier que le vecteur utilisé dans la matrice de translation
est exprimé dans le repère courant. Les coordonnées de O′ dans le repère intermédiaire :

O′xi
O′yi
O′zi
1

 =


2√
14

1√
14

3√
14

0
1√
5
− 2√

5
0 0

6√
70

3√
70
− 5√

70
0

0 0 0 1

 ·

−2
4
6
1

 =


18√
14

− 10√
5

− 30√
70

1

 (11.28)

La matrice de translation sera donc :

[M3] =


1 0 0 − 18√

14

0 1 0 10√
5

0 0 1 30√
70

0 0 0 1

 (11.29)
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La matrice résultante se calcule dans ce cas comme :

[M ] = [M3] · [M2] =


2√
14

1√
14

3√
14

− 18√
14

1√
5
− 2√

5
0 10√

5
6√
70

3√
70
− 5√

70
− 30√

70

0 0 0 1

 (11.30)

Ce qui donne bien évidemment le même résultat que précédemment.

11.3 Méthodes de projection

La visualisation sur un écran d’ordinateur d’objets tridimensionnels doit nécessairement passer par
l’intermédiaire de projection plane. On emploie classiquement les deux types de projections qui
ont été présentées dans la première partie de ce cours à savoir la projection orthogonale (méthode
de Monge et axonométrie, figure 11.9) et la projection centrale (figure 11.10).

Figure 11.9 – Projection orthogonale
(axonométrie). Figure 11.10 – Projection centrale.

11.3.1 Orientation du repère

La première étape va consister à orienter le repère de manière correcte par rapport au plan de
projection. Si on se fixe par exemple l’orientation du plan de projection par l’intermédiaire de son
vecteur normal

−→
N , on va chercher à déterminer la matrice de changement de repère pour réaliser

la projection :
— l’axe z′ sera orienté selon le vecteur normal au plan (le plan aura pour équation ax+ by +

cz + d = 0 si le vecteur normal est de coordonnées (a, b, c) 2) ;
— l’axe x′ choisi arbitrairement dans le plan (par convention, il définira la direction horizontale

dans le plan de projection) ;
— l’axe y′ sera orienté comme le vecteur −→uz′ ∧ −→ux′ ;

2. Il faut noter que la projection orthogonale sur des plans parallèles donnera des résultats identiques, ce qui
signifie que le choix de la constante d est indifférent
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La matrice de transformation permettant de réaliser la projection plane est obtenue en reprenant
les coordonnées des vecteurs unitaires du nouveau repère projetés dans le repère initial (−→ux′ =
(λ1, λ2, λ3), −→uy′ = (µ1, µ2, µ3), −→ux′ = (ν1, ν2, ν3)) :

M =


λ1 µ1 ν1 0
λ2 µ2 ν2 0
λ3 µ3 ν3 0
0 0 0 1

 (11.31)

On peut également combiner plusieurs changements de repères successifs. Soit θ l’ angle entre le
plan vertical contenant le vecteur et le plan Oxz et φ l’angle entre le vecteur et le plan Oxy.
On peut décomposer la transformation orientant ce vecteur sur l’axe Oz en trois étapes (figure
11.11) :

— une rotation d’un angle θ autour de z pour obtenir le système Ox1y1z1 (figure 11.12) ;
— une rotation autour de l’axe y1 d’un angle π/2−φ pour obtenir le système Ox2y2z2 (figure

11.13) ;
— une rotation de π/2 radians autour de l’axe z2.

Figure 11.11 – Situation
initiale.

Figure 11.12 – Rotation de θ
autour de z.

Figure 11.13 – Rotation de
π/2− φ autour de y1.

La troisième opération ne sert qu’à se placer dans une configuration classique avec l’axe x
horizontal et l’axe y vertical.

Une fois les objets géométriques orientés de manière adéquate, il reste une dernière opération
à effectuer pour leur représentation sur un support bidimensionnel, à savoir une opération de
projection. Deux types de projections sont couramment rencontrés : la projection axonométrique
et la projection centrale.
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11.3.2 Projections classiquement employées en infographie

11.3.2.1 Projection axonométrique

La projection axonométrique est obtenue de manière naturelle en ne retenant que les coordonnées
x et y pour une représentation bidimensionnelle de la scène, la coordonnée z peut par contre servir
à la gestion du vu et caché car elle règle la profondeur. Ce type de méthode peut être employé
pour réaliser automatiquement une représentation d’une scène en axonométrie (figure 11.14).

Figure 11.14 – Rappel du principe de l’axonométrie orthogonale.
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Figure 11.15 – Exemple de projection
axonométrique d’un cube unitaire sur un plan
de vecteur directeur (1,1,1) : isométrie.

Figure 11.16 – Exemple de projection
axonométrique d’un cube unitaire sur un plan
de vecteur directeur (1,2,3).

11.3.2.2 Projection centrale

La projection centrale consiste en une représentation plane de scènes spatiales qui vise à reproduire
l’observation naturelle de l’oeil humain. L’ensemble des points de la scène est projeté sur un plan
(tableau) suivant un rayon passant par un point fixe (position de l’observateur). Contrairement à
l’axonométrie, les rayons de projection ne sont pas parallèles, mais convergent en un point unique.
La projection centrale ne respecte pas le parallélisme des droites (sauf celles parallèles au plan
du tableau). L’opérateur projection centrale (figure 11.17) peut être établi suivant la démarche
suivante :

Soit (XP , YP , ZP ) les coordonnées de P dans le système d’axes initial. Le point Pp, projection
centrale du point P est à l’intersection du plan de projection et de la droite reliant P au pôle V .
Dans le système écran, les coordonnées de Pp peuvent se trouver via la similitude des triangles
V EPp1 et V FP1 :

— Xe = EPp1 = FP1(V E/V F ) = XP (d/ZP ) ;
— Ye = PpPp1 = PP1(V Pp1/V P1) = PP1(V E/V F ) = Y P (d/ZP ) ;
— Ze = ZP − d.
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Figure 11.17 – Rappel du principe de la projection centrale.

Figure 11.18 – Exemple de projection
centrale d’un cube unitaire avec un plan de
projection parallèle à une de ses faces.

Figure 11.19 – Exemple de projection
centrale d’un cube unitaire orienté de
manière quelconque.

11.4 Matrices de transformation

La manipulation d’objets géométriques par matrice de transformation consiste à modifier
des figures décrites analytiquement dans une repère fixe. On peut distinguer différents types
d’opération :
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— les opérations visant à déplacer l’objet (translation, rotation) ;
— les opérations visant à obtenir le symétrique de l’objet par rapport à un plan ;
— les opérations modifiant l’échelle ou la forme de l’objet.

La manipulation des objets fera appel à la notion de coordonnées homogènes définie précédemment.

11.4.1 Opérations élémentaires

11.4.1.1 Translation

Si on fait subir à un point P une translation selon un vecteur
−→
T , on obtient un nouveau point P ′

qui vérifie : −−→
OP ′ =

−→
OP +

−→
T (11.32)

Les coordonnées de P ′ seront calculées par :

Figure 11.20 – Translation d’un point.


xP ′ = xP + Tx
yP ′ = yP + Ty
zP ′ = zP + Tz

(11.33)

La matrice de transformation associée à une translation sera donc :

T =


1 0 0 Tx
0 1 0 Ty
0 0 1 Tz
0 0 0 1

 (11.34)

11.4.1.2 Rotation autour d’un axe de coordonnées

La rotation autour d’un axe de coordonnées est un cas particulier de matrice de transformation.
Par exemple, dans le cas d’une rotation d’un point P d’un angle θ autour d’un axe Oz, l’image
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des vecteurs de base donne (figure 11.21) :

−→ux′ = cos θ · −→ux + sin θ · −→uy (11.35)
−→uy′ = − sin θ · −→ux + cos θ · −→uy (11.36)
−→uz′ = −→uz (11.37)

Figure 11.21 – Rotation autour de Oz
des vecteurs de base. Figure 11.22 – Rotation autour de l’axe z.

Dans le cas de la rotation d’un point de coordonnées quelconque (figure 11.22), on peut écrire :
−−→
OP ′ = xP · (cos θ · −→ux + sin θ · −→uy) + yP · (− sin θ · −→ux + cos θ · −→uy) + zp · −→uz (11.38)

ou encore : 
xP ′

yP ′

zP ′

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ·


xP
yP
zP

 (11.39)

La matrice de transformation homogène associée à une rotation autour de Oz s’écrit donc :

R (z, θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 (11.40)

On démontre facilement que l’opération inverse correspond à R (z,−θ) ≡ R (z, θ)−1 ≡ R (z, θ)T

Via un raisonnement similaire, on peut montrer que les matrices de transformation pour des
rotations autour de Ox et Oy s’établissent selon :

R (x, θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 R (y, θ) =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

 (11.41)

11.4.2 Composition d’opérations

Les matrices de transformation élémentaires sont données dans des configurations particulières ;
une combinaison de plusieurs opérations est généralement nécessaire pour décrire une opération
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de transformation. Par exemple, si on souhaite faire décrire à un ensemble de points une rotation
autour d’un axe parallèle à l’axe Oz passant par un point de coordonnées (xC , yC , zC), il faudra
combiner de trois opérations (figure 11.23) :

— une translation pour amener un point du repère sur l’origine ;
— une rotation autour de l’axe du repère ;
— une translation inverse de la première opération.

Figure 11.23 – Rotation autour d’un axe parallèle à Oz (vue de dessus).

L’avantage de l’écriture sous forme de matrice de transformation est la possibilité de synthétiser
ces trois opérations en une seule opération matricielle. En effet, on pourra écrire :

xP ′

yP ′

zP ′

1

 =


1 0 0 −xC
0 1 0 −yC
0 0 1 −zC
0 0 0 1


︸ ︷︷ ︸

M1

·


xP
yP
zP
1

 (11.42)


xP ′′

yP ′′

zP ′′

1

 =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

M2

·


xP ′

yP ′

zP ′

1

 (11.43)


xP ′′′

yP ′′′

zP ′′′

1

 =


1 0 0 xC
0 1 0 yC
0 0 1 zC
0 0 0 1


︸ ︷︷ ︸

M3

·


xP ′′

yP ′′

zP ′′

1

 (11.44)

Ce qui donne au final 
xP ′′′

yP ′′′

zP ′′′

1

 = [M3] · [M2] · [M1] ·


xP
yP
zP
1

 (11.45)
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A nouveau, la convention « vecteur colonne » conduit à la multiplication à gauche des matrices
décrivant les opérations élémentaires successives. Au final, on donc :

xP ′′′

yP ′′′

zP ′′′

1

 =


cos θ − sin θ 0 xC · cos θ − yC · sin θ − xC
sin θ cos θ 0 xC · sin θ + yC · cos θ − yC
0 0 1 0
0 0 0 1

 ·


xP
yP
zP
1

 (11.46)

Cet exemple permet de mettre en évidence une forme générale aux matrices de transformation ne
modifiant pas la forme du corps subissant l’opération :[

{R}3x3 {T}3x1

{0}1x3 1

]
(11.47)

La matrice 3x3 supérieure gauche concerne les rotations, le vecteur à 3 composantes qui y est
accolé concerne les translations et la dernière ligne est toujours constituée de trois 0 et un 1.

11.4.2.1 Ordre des opérations

La multiplication matricielle n’étant pas commutative, l’ordre des opérations doit bien évidemment
être respecté pour obtenir le résultat attendu. Par exemple, si on combine une rotation d’un quart
de tour autour de l’axe Oz dans le sens positif suivie d’une rotation d’un quart de tour autour de
l’axe Ox dans le sens positif (figure 11.24).

Figure 11.24 – Rotation autour de Oz puis
de Ox.

Figure 11.25 – Rotation autour de Ox puis
de Oz.

La matrice de transformation associée sera :

Rzx = R (x, π/2) ·R (z, π/2) (11.48)

=


1 0 0 0
0 cos π/2 − sin π/2 0
0 sinπ/2 cosπ/2 0
0 0 0 1

 ·


cos π/2 − sinπ/2 0 0
sinπ/2 cos π/2 0 0

0 0 1 0
0 0 0 1

 (11.49)

qui au final sera condensé dans la matrice :

Rzx =


0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1

 (11.50)

146



CHAPITRE 11. INFOGRAPHIE

En inversant l’ordre (figure 11.25), on obtient la matrice :

Rxz =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 (11.51)

11.4.3 Lien entre changement de repère et matrices de transformation

Les matrices de transformation homogènes sont très semblables aux matrices de changement de
repère dans leur forme. En effet, il s’agit simplement de deux méthodes pour obtenir un même
résultat. Prenons un exemple simple de la translation d’un point selon un vecteur

−→
T (figure 11.26).

Figure 11.26 – Deux approches pour la translation d’un point.

L’approche par matrice de transformation donne directement :
xP ′

yP ′

zP ′

1

 =


1 0 0 xT
0 1 0 yT
0 0 1 zT
0 0 0 1


︸ ︷︷ ︸

M1

·


xP
yP
zP
1

 (11.52)

En examinant la figure 11.26, on constate que cette translation est l’équivalent d’un changement
de repère en plaçant la nouvelle origine en un point O′ tel que

−−→
OO′ = −

−→
T . L’approche par matrice

de changement de repère donne :
x′

y′

z′

1

 =


1 0 0 xT
0 1 0 yT
0 0 1 zT
0 0 0 1


︸ ︷︷ ︸

M1

·


x
y
z
1

 (11.53)

qui donne bien évidemment un résultat similaire. On constate donc que la matrice de
transformation pour une translation d’un vecteur

−→
T est équivalente à la matrice de changement
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de repère d’une translation −
−→
T ou mieux de l’inverse de la matrice de changement de repère d’une

translation
−→
T . Ce lien matrice de transformation valant l’inverse de la matrice de changement de

repère se retrouve également pour les opérations de rotation.

11.4.4 Orientation d’un volume dans une direction particulière

Un problème fréquemment rencontré est d’orienter une droite particulière d’un volume selon une
direction donnée (figure 11.27). Cette opération sert par exemple à d’aligner l’axe de révolution
d’une figure sur un des axes du repère ou orienter la normale à un plan dans une direction
privilégiée. Cette opération peut s’effectuer de trois manières différentes.

Figure 11.27 – Orientation de figures.
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11.4.4.1 Décomposition en opérations élémentaires

Pour aligner un vecteur sur une direction particulière il est possible de combiner plusieurs matrices
de transformation. Une opération fréquente consiste à aligner un vecteur quelconque

−→
N avec un

des vecteurs de base (par exemple Oz). Soit θ, l’ angle entre le plan vertical contenant le vecteur
et le plan Oyz et φ le complément de l’angle entre le vecteur et le plan Oxy. On peut décomposer
la transformation en deux étapes (figure 11.28) :

— une rotation autour de l’axe Oz d’un angle θ pour obtenir une vecteur contenu dans le plan
Oyz (matrice [M1]) ;

— une rotation d’un angle φ autour de Ox pour pour obtenir vecteur aligné avec Oz (matrice
[M2]).

Pour la première étape, il faut aligner la projection de
−→
N sur le plan horizontal (

−→
NH avec Oy

(figure 11.28).

Figure 11.28 – Alignement d’axes : première étape.

Le sinus et le cosinus de l’angle valent respectivement 3

— sin θ =
Vx√

V 2
x + V 2

y

;

— cos θ =
Vy√

V 2
x + V 2

y

.

La matrices de transformation associée est :

[M1] = R(Z, θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 (11.54)

3. Cette méthode permet d’éviter le calcul de l’angle ce qui permet d’éviter de traiter les différents cas de figure
suivant le quadrant occupé par le vecteur
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Pour la deuxième étape, il faut aligner ce vecteur transformé avec l’axe Oz (figure 11.28).

Figure 11.29 – Alignement d’axes : deuxième étape.

Le sinus et le cosinus de l’angle valent respectivement :

— sinφ =

√
V 2
x + V 2

y

‖
−→
V ‖

.

— cosφ =
Vz

‖
−→
V ‖

;

La matrices de transformation associée est :

[M2] = R(X,φ) =


1 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 1

 (11.55)

La matrice résultante est bien évidemment obtenue en multipliant (dans le bon ordre) les deux
matrices :

[M ] = [M2] · [M1] (11.56)

11.4.4.2 Angles d’Euler

Un solide dans l’espace présente six degrés de liberté sous la forme de trois translations et de trois
rotations. La présentation de la matrice 3x3 prenant en compte la rotation dans les matrices de
transformation homogènes (équation 11.47 ) ne fait pas apparaître clairement les trois degrés de
libertés associés à la rotation d’un corps. Les neuf coefficients sont liés entre eux par six relations
liées à l’orthogonalité de la matrice. Ces relations (déjà présentées précédemment) peuvent être
synthétisées par (δij représente le symbole de Kronecker ; δij=1 si i=j et 0 sinon) :

λiλj + µiµj + νiνj = δij (11.57)
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Une autre approche pour la représentation de l’orientation d’un corps dans l’espace est l’emploi
de trois angles caractéristiques pour définir son orientation. Les angles les plus fréquemment
rencontrés dans la littérature sont les angles d’Euler qui définissent trois rotations (figure 11.30)
selon :

— l’angle de précession ψ autour de l’axe Oz ;
— l’angle de nutation θ autour de l’axe u (image de l’axe Ox après la première rotation) ;
— l’angle de rotation propre φ autour de l’axe Oz’ (image de Oz par la seconde rotation).

Figure 11.30 – Angles d’Euler.

Si θ = 0 ou π, la transformation se réduit à une rotation autour de l’axe Oz. L’emploi des angles
d’Euler est néanmoins moins intuitif que l’approche par les cosinus directeurs, mais il est possible
de relier les deux approches. On peut démontrer que la matrice de changement de repère associée
aux angles d’Euler peut se construire selon :


cosφ cosψ − sinφ cos θ sinψ − cosφ sinψ − sinφ cos θ cosψ sinφ sin θ 0
sinφ cosψ + cosφ cos θ sinψ − sinφ sinψ + cosφ cos θ cosψ − cosφ sin θ 0

sin θ sinψ sin θ cosψ cos θ 0
0 0 0 1

 (11.58)

Il est donc possible de retrouver les angles d’Euler à partir de la matrice de transformation, par
exemple (ri,j représente l’élément de la ligne i et de la colonne j de la matrice R) :

ψ = arctan r3,1
r3,2

θ = arctan

√
r23,1+r23,2
r3,3

φ = arctan− r1,3
r2,3

(11.59)

Dans la pratique, la fonction arctangente donne deux valeurs possibles à l’angle, le choix doit se
faire en fonction du quadrant occupé par le point (ceci est réglé automatiquement par la fonction
atan2 dans la plupart des langages de programmation).

151



CHAPITRE 11. INFOGRAPHIE

11.4.4.3 Opération globale

On peut également rechercher la matrice de transformation globale par l’intermédiaire d’opérations
vectorielles [2]. Considérons dans un premier temps un plan contenant l’origine du repère O et
défini par un vecteur normal

−→
N et un vecteur

−→
Vπde ce plan. le produit vectoriel de ce vecteur par

la vecteur normal unitaire −→n donne un vecteur appartenant au plan et orthogonal à
−→
Vπ (figure

11.31).

Figure 11.31 – Produit vectoriel par le vecteur normal au plan.

Le produit vectoriel est calculé selon :

−→n ∧
−→
Vπ =

∣∣∣∣∣∣
−→ux −→uy −→uz
nx ny nz
Vπ,x Vπ,y Vπ,z

∣∣∣∣∣∣ =


nyVπ,z − nzVπ,y
nzVπ,x − nxVπ,z
nxVπ,y − nyVπ,x

 (11.60)

Cette formulation est équivalente à :

−→n ∧
−→
Vπ =

 0 −nz ny
nz 0 −nx
−ny nx 0

 ·


Vπ,x
Vπ,y
Vπ,z

 (11.61)

Cette relation permet de définir la matrice [Jn] permettant le calcul du produit vectoriel par
rapport au vecteur −→n .

[Jn] =

 0 −nz ny
nz 0 −nx
−ny nx 0

 (11.62)

Si on applique une deuxième fois le produit vectoriel, on retrouve un vecteur opposé au vecteur
de départ (deux rotations de π/2 donnent une inversion).

−→n ∧
(−→n ∧ −→Vπ) = −

−→
Vπ (11.63)

Ces éléments permettent de démontrer que la matrice de rotation d’un angle θ autour d’un axe−→
N passant par l’origine est :

R
(−→
N , θ

)
= I + sin θ · Jn + (1− cos θ) · J2

n (11.64)
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Cette relation permet d’obtenir la matrice (3x3) occupant la portion supérieure de la matrice de
transformation homogène, il faut ajouter la quatrième ligne et la quatrième colonne comme suit :[

R
(−→
N , θ

)
3x3
{0}3x1

{0}1x3 1

]
(11.65)

Pour vérifier la propriété, prenons un point quelconque P . le vecteur
−→
OP peur se décomposer

en une composante normale au plan (
−−→
OPn) et une composante appartenant au plan (

−−→
OPπ). La

composante normale au plan n’est pas modifiée par la rotation :

R
(−→
N , θ

)−−→
OPn =

−−→
OPn + sin θ · −→n ∧

−−→
OPn + (1− cos θ) · −→n ∧

(−→n ∧ −−→OPn) =
−−→
OPn (11.66)

car le produit vectoriel de deux vecteurs parallèles est le vecteur nul. Pour la composante du plan,
on a

R
(−→
N , θ

)−−→
OPπ =

−−→
OPπ + sin θ · −→n ∧

−−→
OPπ + (1− cos θ) · −→n ∧

(−→n ∧ −−→OPπ) (11.67)

=
−−→
OPπ + sin θ · −→n ∧

−−→
OPπ − (1− cos θ) ·

−−→
OPπ (11.68)

= sin θ · −→n ∧
−−→
OPπ + cos θ ·

−−→
OPπ (11.69)

qui donne bien le vecteur tourné d’un angle θ dans le plan.

11.4.4.4 Exemple d’application

Tiré de l’examen de juin 2012 : construire la matrice de transformation homogène qui permet de
faire tourner de π/3 radians les points de l’espace autour de la droite d définie par les équations :

d ≡
{

2x+ 3y + 6z − 1 = 0
x+ y + z − 2 = 0

(11.70)

On va tout d’abord rechercher les équations paramétriques de la droite. Son vecteur directeur
est obtenu en prenant le produit vectoriel des vecteurs normaux des deux plans définissant les
équations cartésiennes de la droite :

−→
d =

−→
N1 ∧

−→
N2 =

∣∣∣∣∣∣
−→ux −→uy −→uz
2 3 6
1 1 1

∣∣∣∣∣∣ = −3−→ux + 4−→uy −−→uz (11.71)

pour trouver un point particulier, on fixe arbitrairement une coordonnée (exemple : z = 0) et on
recherche la solution du système formé par les équations cartésiennes de la droite et cette relation.
On obtient le point A(5,−3, 0) appartenant à la droite.

11.4.4.4.1 Combinaison de matrices élémentaires La matrice de transformation globale
est obtenue en combinant différentes opérations. La première une translation pour amener le point
A en l’origine. La matrice de translation s’écrit

M1 =


1 0 0 −5
0 1 0 3
0 0 1 0
0 0 0 1

 (11.72)
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On calcule ensuite le sinus et le cosinus de l’angle θ entre la projection du vecteur directeur et le
plan Oxz :

— sin θ =
3√

32 + 42
= 3/5 ;

— cos θ =
4√

32 + 42
= 4/5.

La deuxième opération est donc définie par :

M2 =


4/5 3/5 0 0
−3/5 4/5 0 0
0 0 1 0
0 0 0 1

 (11.73)

On peut procéder de la même façon pour le cosinus et le sinus de φ :

— sinφ =
−5√

26
;

— cosφ =
−1√

26
.

La troisième opération est une rotation autour de l’axe Ox d’un angle φ :

M3 =


1 0 0 0

0 −1/
√

26 −5/
√

26 0

0 5/
√

26 −1/
√

26 0
0 0 0 1

 (11.74)

la droite est maintenant rendue confondue avec l’axe Oz. On peut donc appliquer la rotation
autour de cet axe d’angle π/3 :

M4 =


0, 5 −

√
3/2 0 0√

3/2 0, 5 0 0
0 0 1 0
0 0 0 1

 (11.75)

on revient ensuite à la configuration d’origine en inversant les opérations 3 puis 2 puis 1. La
matrice résultante est donc calculée par :

M = (M3 ·M2 ·M1)−1 ·M4 ·M3 ·M2 ·M1 = M−1
1 ·MT

2 ·MT
3 ·M4 ·M3 ·M2 ·M1 (11.76)

Au final, on obtient :

M =


0, 6731 −0, 0609 0, 7371 1, 4518
−0, 4006 0, 8077 0, 4326 1, 4216
−0, 6217 −0, 5864 0, 5192 1, 3490

0 0 0 1

 (11.77)
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11.4.4.4.2 Opération globale La première opération est similaire puisque le plan doit passer
par l’origine. La matrice M1 définie par l’équation 11.72 reste la même. Par la suite, il suffit
d’appliquer la relation 11.64 avec θ = π/3. Le vecteur normal unitaire est obtenu par :

−→n =

−→
N

‖
−→
N ‖

=


−3/
√

26

4/
√

26

−1/
√

26

 (11.78)

La matrice associée au produit vectoriel est donc :

[Jn] =

 0 1/
√

26 4/
√

26

−1/
√

26 0 3/
√

26

−4/
√

26 −3/
√

26 0

 (11.79)

La matrice décrivant la rotation est donc :

MR =

 1 0 0
0 1 0
0 0 1

+ sin π/3 ·

 0 1/
√

26 4/
√

26

−1/
√

26 0 3/
√

26

−4/
√

26 −3/
√

26 0

 (11.80)

+ (1− cosπ/3) ·

 0 1/
√

26 4/
√

26

−1/
√

26 0 3/
√

26

−4/
√

26 −3/
√

26 0

2

(11.81)

Ce qui permet d’établir la matrice M2 :

M2 =


0, 6731 −0, 0609 0, 7371 0
−0, 4006 0, 8077 0, 4326 0
−0, 6217 −0, 5864 0, 5192 0

0 0 0 1

 (11.82)

La matrice résultante est calculée par la relation suivante :

M = M1−1 ·M2 ·M1 (11.83)

Tous calculs faits, on obtient :
0, 6731 −0, 0609 0, 7371 1, 4518
−0, 4006 0, 8077 0, 4326 1, 4216
−0, 6217 −0, 5864 0, 5192 1, 3490

0 0 0 1

 (11.84)

Qui est comme attendu le même résultat qu’avec l’approche précédente.
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11.4.5 Autres opérations de transformation 3D

Il est très fréquent de devoir réaliser dans les logiciels de dessin assisté par ordinateur un ensemble
d’opérations de transformation de figures élémentaires (on parle de primitives). Comme ces objets
sont constitués d’un ensemble de point, on peut synthétiser les transformations sous forme de
l’application d’une matrice de transformation 4x4 comme déjà évoqué précédemment. Diverses
opérations de transformation vont être présentées, en complément des rotations et translations
déjà évoquées précédemment dans ce chapitre.

11.4.5.1 Réflexion

L’opération de réflexion consiste à réaliser une symétrie orthogonale d’un objet par rapport à un
plan existant.

Figure 11.32 – Opérations de réflexion par rapport aux plans coordonnés.

11.4.5.1.1 Réflexion par rapport à un plan de référence La matrice de transformation
associée à une réflexion par rapport à l’un des plans coordonnés (figure 11.32). est établie de
manière évidente :

— une réflexion par rapport au plan Oxy consiste à changer le signe de la composante z des
points de la figure ;

— une réflexion par rapport au plan Oxz consiste à changer le signe de la composante y des
points de la figure ;

— une réflexion par rapport au plan Oyz consiste à changer le signe de la composante x des
points de la figure ;

Les matrices de transformation associées sont donc :

ROxy =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ROxz =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ROyz =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (11.85)
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11.4.5.1.2 Réflexion par rapport à un plan quelconque - décomposition Si le plan est
quelconque et caractérisé par un vecteur normal

−→
N et un point P0, la construction de l’opérateur

de symétrie par rapport à ce point peut s’établir par transformation homogène en combinant sept
opérations élémentaires :

— une translation pour amener P0 à l’origine ;
— deux rotations pour amener la normale au plan alignée sur un des axes (Oz par exemple) ;
— la réflexion de points par rapport au plan perpendiculaire à l’axe choisi (ici Oxy) ;
— l’inversion des trois premières étapes pour revenir dans la configuration initiale (deux

rotations et une translation).
A titre d’exemple, considérons le plan d’équation 3x+ 4y − 2z − 9 = 0. Si on fixe y = 0 et z = 0,
on déduit que le point (3,0,0) appartient au plan. La première matrice est donc :

M1 =


1 0 0 −3
0 1 0 0
0 0 1 0
0 0 0 1

 (11.86)

On calcule ensuite le sinus et le cosinus de l’angle θ entre la projection du vecteur directeur et le
plan Oxz :

— sin θ =
−3√

32 + 42
= 3/5 ;

— cos θ =
4√

32 + 42
= 4/5.

La deuxième opération est donc définie par :

M2 =


4/5 −3/5 0 0
3/5 4/5 0 0
0 0 1 0
0 0 0 1

 (11.87)

On peut procéder de la même façon pour le cosinus et le sinus de φ :

— sinφ =
−5√

29
;

— cosφ =
−2√

29
.

La troisième opération est une rotation autour de l’axe Ox d’un angle φ :

M3 =


1 0 0 0

0 −2/
√

29 −5/
√

29 0

0 5/
√

29 −2/
√

29 0
0 0 0 1

 (11.88)

la normale est maintenant rendue parallèle à l’axe Oz, la quatrième opération est donc simplement
M4 = ROxy. La matrice résultante est obtenue par la composition des opérations élémentaires
selon :

M = (M3 ·M2 ·M1)−1 ·M4 ·M3 ·M2 ·M1 (11.89)

Ce qui donne au final

M =


0, 3793 −0, 8276 0, 4138 1, 8621
−0, 8276 −0, 1034 0, 5517 2, 4828
0, 4138 0, 5517 0, 7241 −1, 2414

0 0 0 1

 (11.90)
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11.4.5.1.3 Réflexion par rapport à un plan quelconque - approche générale Il
est également possible de condenser la recherche de la relation matricielle en une étape par
l’intermédiaire de l’algèbre vectorielle.

Figure 11.33 – Réflexion par rapport à un plan quelconque.

Si la plan passe par l’origine, on peut calculer la position de l’image d’un point P (figure 11.33)
par : −−→

OP ′ =
−→
OP − 2 ·

(−→
OP · −→n

)
· −→n (11.91)

La deuxième partie de la formule se calcule selon :

(−→
OP · −→n

)
· −→n = (x · nx + y · ny + z · nz) ·


nx
ny
nz

 (11.92)

Sous forme matricielle, cette relation est équivalente à

(−→
OP · −→n

)
· −→n =

 nx · nx nx · ny nx · nz
ny · nx ny · ny ny · nz
nz · nx nz · ny nz · nz

 ·


x
y
z

 (11.93)

La matrice intervenant dans cette relation est équivalente au produit−→n ·−→n T . La matrice supérieure
(3x3) est donc établie par :

Rπ = I − 2 · −→n · −→n T (11.94)
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Si on reprend le même exemple que celui traité au paragraphe précédent, l’opération 1 reste
similaire. Une fois le plan passant par l’origine, on peut appliquer directement la formule
précédente pour établir la deuxième partie de l’expression. Le vecteur unitaire a pour coordonnées{

3/
√

29; 4/
√

29;−2/
√

29
}
. La partie supérieure (3x3) de la matrice s’établit selon :

Msym =

 1 0 0
0 1 0
0 0 1

− 2 ·
{

3/
√

29; 4/
√

29;−2/
√

29
}
·


3/
√

29

4/
√

29

−2/
√

29

 (11.95)

La matrice complète est donc :

M2 =


0, 3793 −0, 8276 0, 4138 0
−0, 8276 −0, 1034 0, 5517 0
0, 4138 0, 5517 0, 7241 0

0 0 0 1

 (11.96)

La matrice résultante obtenue par M = M1−1 ·M2 ·M1 donne au final

M =


0, 3793 −0, 8276 0, 4138 1, 8621
−0, 8276 −0, 1034 0, 5517 2, 4828
0, 4138 0, 5517 0, 7241 −1, 2414

0 0 0 1

 (11.97)

qui est comme attendu similaire au résultat obtenu précédemment.
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11.4.5.2 Scaling

Jusqu’ici, nous avons uniquement considéré des opérations réalisant une modification de la position
des objets, sans entraîner de modification de leur forme. Le scaling est une opération courante qui
modifie la forme de l’objet subissant l’opération.
Dans le vocabulaire de l’infographie, un scaling est une opération de mise à l’échelle dont le rapport
peut être différent selon les axes (figure 11.34). La matrice de transformation associée à un scaling
centré sur l’origine est :

H =


hx 0 0 0
0 hy 0 0
0 0 hz 0
0 0 0 1

 (11.98)

Figure 11.34 – Exemple de scaling d’un cube (rapports 3 ;2 ;1,5).

Pour obtenir une homothétie au sens classique du terme, il faut bien évidemment avoir un rapport
égal selon les trois directions de l’espace.
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11.5 Rendu réaliste

La représentation de surfaces dans des logiciels de CAO consiste nécessairement en une
représentation bidimensionnelle d’objets volumiques. Pour faire ressentir à l’observateur la notion
de profondeur, il est nécessaire de faire appel à un rendu de la surface qui favorise la compréhension
de la scène. Historiquement la première méthode qui a été employée consistait en la représentation
de différentes lignes sur les surfaces résultant de l’intersection de la surface avec un ensemble de
plans (pouvant être parallèles aux plans de références ou formant un faisceau convergeant en un
axe de symétrie de la surface). Ce type de représentation des surfaces sous forme de squelettes (ou
rendu fil de fer, figure 11.35 4) faisait appel à une reconstruction mentale de l’objet pas toujours
évidente pour l’observateur.

Figure 11.35 – Rendu « fil de fer » [2].

Figure 11.36 – Rendu réaliste d’une pièce
mécanique.

L’augmentation des performances des ordinateurs et de leurs cartes graphiques a permis la
possibilité de traitements algorithmiques visant à reproduire l’aspect de surfaces réelles en prenant
en compte un grand nombre de phénomènes physiques (réflexions, transparence, réfraction,
textures de surfaces,...) pour permettre un rendu proche de la réalité de modèles CAO de pièces
(figure 11.36).

Le rendu réaliste présente des applications bien au-delà des logiciels de CAO (un exemple
spectaculaire est la réalisation de films d’animation entièrement réalisés à partir de ce type de
techniques, les plus connus édités par les studios Pixar et Dreamworks). Dans le cadre de ce cours,
nous allons étudier les éléments de base permettant de réaliser le rendu d’une surface.

4. Cette figure, ainsi que l’ensemble des figures tirées de la même références est accompagnées de la mention
’Reproduced with the permission of the publisher from Computer Graphics : Principles and Practice, Third Edition,
by John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K. Feiner, and
Kurt Akeley. Copyright 2014 by Pearson Education, Inc’

161



CHAPITRE 11. INFOGRAPHIE

11.5.1 Eléments de base

Les éléments de base permettant le rendu des scènes sont :
— des objets modélisés par l’intermédiaire de la description analytique de leurs surfaces

(surfaces complexes ou décomposition de celles-ci sous forme de facettes triangulaires) ;
— des sources lumineuses éclairant la scène ;
— un algorithme calculant la couleur des différents points de la scène en fonction de

l’éclairement et de la configuration de la scène.
La première étape est de faire le tri entre l’information qui sera traitée et celle qui ne participera
pas au calcul (on parle de « clipping »). L’utilisateur défini deux plans entres lesquels le rendu sera
effectué : le plan proche (near plane) et la ligne d’horizon (far plane). Les éléments non compris
entre ces plans sont écartés du rendu (figure 11.37).

Figure 11.37 – Sélection de l’information [2].

Il existe deux grandes familles d’algorithmes de rendu :
— les algorithmes dits de rasterization qui consistent à réaliser la projection des points sur

l’écran et de réaliser la recherche du vu et du caché, la prise en compte de l’illumination
est réalisée par la suite ;

— les algorithmes dits de raytracing (figure 11.38) qui consistent à suivre à rebours le trajet
de la lumière en considérant les rayons issus de l’oeil qui sont « lancés » sur la scène et
dont le trajet est suivi pour déterminer la couleur et l’illumination de chaque pixels.

Les algorithmes de rasterization sont réputé plus performants et donc plus adaptés pour les
approches en temps réel [3]. Ils sont toutefois moins performants pour la représentation de certains
phénomènes (réflexions proches par exemple), c’est pourquoi ils sont parfois complétés par des
algorithmes de raytracing [4].
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Figure 11.38 – Exemple de rendu employant l’algorithme de raytracing [2].

11.5.2 Rendu de la couleur

Une scène est divisée en un ensemble de points de couleur (pixels) organisés selon un tableau
de n lignes et de m colonnes. La couleur de chacun de ces pixels est déterminée par un mélange
additif de trois couleurs de base, typiquement RGB (Red Green Blue). Chacune de ces nuances
est mélangée suivant différentes proportions pour obtenir un ensemble de couleurs dérivées. Une
couleur est donc représentée comme un triplet [R G B] avec chacune des composantes allant de 0
à 1 (figure 11.39).

Figure 11.39 – Quelques exemples de couleurs en RGB.
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11.5.3 Exemple de rendu de surface

Ce paragraphe décrit les méthodes de rendu accessibles dans Matlab [5]. Il faut noter que Matlab
ne gère que le calcul d’illumination directe et ne prend pas en compte les réflexions intermédiaires
entre différents corps, ce qui simplifie fortement les calculs.
La position des différentes sources de lumières doit être connue dans la scène modélisée (par
l’intermédiaire de ses coordonnées polaires ou cartésiennes). L’énergie des rayons lumineux issus
des sources se divise en trois contributions au contact d’objets :

— une fraction %r est réfléchie par la surface ;
— une fraction %t est transmise à travers la surface (réfraction) ;
— une fraction %a est absorbée par la surface.

La conservation de l’énergie indique que %r+%t+%a = 0. La réfraction peut être modélisée par la
loi de Snell-Descartes pour tenir compte de la déviation d’un rayon lumineux passant d’un milieu
à un autre. La réflexion sur une surface est un mécanisme plus complexe. Nous présenterons ici
un exemple de modélisation par l’intermédiaire du modèle de Phong (figure 11.40).

Figure 11.40 – Modèle Phong.

Ce modèle considère que l’intensité lumineuse observée dépend de trois facteurs :
— une luminosité « de fond » n’ayant pas d’orientation particulière qui est la luminosité

ambiante ;
— une luminosité provenant d’une réflexion diffuse (réflexion isotrope dans toutes les

directions, proportionnelle au cosinus de l’angle entre la source et la normale à la surface) ;
— une luminosité provenant d’une réflexion spéculaire (réflexion de manière prépondérante

lorsqu’on observe sous un angle égal à l’angle incident, dépendante d’un exposant spéculaire
es d’autant plus élevé que la surface est réfléchissante (figure 11.41).

En présence de n spots lumineux, l’observation d’une surface produit une intensité lumineuse
donnée par

I = Iaka +
∑
i

Ipi (kd cos θi + ks coses φi) (11.99)

Les facteurs ka, kd et ks sont les coefficients de réflexion ambiants, diffus et spéculaires ; ils sont
spécifiés sous forme d’un triplet comme les couleurs RGB pour tenir compte de réflexions différentes
suivant les couleurs (figure 11.42).

Pour ne pas effectuer ce type de calcul pour chacun des pixels de l’image, on discrétise les surfaces
sous forme de facettes au centre desquelles un calcul de couleur et d’intensité est réalisé. La
méthode de base appelée flat shading conserve cette couleur pour l’ensemble de la facette (figure
11.43). Cette méthode est la plus rapide puisqu’elle ne nécessite pas de calculs supplémentaires.
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Figure 11.41 – Exemple de l’évolution de l’énergie pour une surface rugueuse (es=1) et polie
(es=100) dans le modèle de Phong.

Figure 11.42 – Influence de l’exposant sépculaire sur le rendu de surface (tiré de
http ://udn.epicgames.com/).

Figure 11.43 – Cone et surface complexe dont le rendu est opéré avec flat et Gouraud Shading [2].

La deuxième méthode d’interpolation par ordre de complexité est la méthode dite Gouraud
shading. Elle calcule l’intensité aux sommets des facettes puis réalise une interpolation bilinéaire
pour obtenir la couleur en tout point de la facette (figure 11.44).
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Figure 11.44 – Algorithme du Gouraud shading comparé au flat shading [2].

La troisième méthode est dite Phong shading. Elle consiste à réaliser une interpolation sur les
normales à la surface puis à calculer en tout point l’intensité de chaque composante RGB . La
figure 11.45 compare à titre d’exemple le rendu d’une sphère par les trois méthodes précédemment
citées.

Figure 11.45 – Comparaison des trois méthodes de shading (tiré de http ://udn.epicgames.com/).
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CHAPITRE 12. REPRÉSENTATION CARTÉSIENNE DE SURFACES

Chapitre 12

Représentation cartésienne de surfaces

Je pense donc je suis

- R. Descartes, Discours de la méthode

12.1 Introduction

La représentation cartésienne d’une surface fait appel à des expressions qui sont des généralisations
de la représentation cartésienne de courbes planes. On distingue les formes de représentation
explicites (z = f(x, y)) et implicites (F (x, y, z) = 0).
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Figure 12.1 – Paraboloïde hyperbolique
(équation explicite z = x2 − y2).
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Figure 12.2 – Sphère (équation implicite x2 +
y2 + z2 − r2 = 0).

La forme explicite z = f(x, y) associe à tout point du plan horizontal de coordonnées (x, y) au plus
un point de la surface. La forme implicite F (x, y, z) = 0 peut elle présenter plusieurs points de la
surface sur une verticale donnée. Comme dans le cas de courbes planes, une fonction F (x, y, z) = 0
ne représente pas forcément une surface :

— x2 + y2 + z2 = 0 représente le point à l’origine ;
— x2 + y2 + z2 = −1 ne représente aucun point de l’espace réel.
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On peut faire la distinction entre une surface dite algébrique et une surface dite transcendante.

Une surface est dite algébrique si son équation implicite peut être ramenée à une forme d’un
polynôme à coefficients rationnels égalé à zéro (figure 12.3).
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Figure 12.3 – Exemple de surface algébrique (z = x2 + 3xy2).

Le degré du polynôme définit l’ordre de la surface. On parle de :
— surface plane (ordre 1) ;
— surface quadrique (ordre 2) ;
— surface cubique (ordre 3) ;
— surface quartique (ordre 4) ;
— ...

Cet ordre représente le nombre maximum de points d’intersection entre cette surface et une droite
quelconque.
Par opposition, une surface non algébrique est dite transcendante (figure 12.4). Elle peut faire
intervenir des fonctions non rationnelles (fonctions trigonométriques, logarithmes,...) et présente
éventuellement un nombre infini de points d’intersection avec une droite quelconque.
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Figure 12.4 – Exemple de surface transcendante ( z = sinx+ cos y).
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12.1.1 Interprétation d’équations particulières

Si l’équation F (x, y, z) = 0 se réduit à une expression du type F (z) = 0 dans R3, l’interprétation
physique qu’on peut en faire est que les points de cette entité géométrique ont des coordonnées x et
y totalement libres alors que les valeurs de z admises sont celles qui vérifient l’équation F (z) = 0.
On se trouve donc en présence de la définition de plans parallèles au plan Oxy. Il y aura autant
de plans que de racines de l’équation F (z) = 0 (par exemple, F (z) ≡ z2−4 = 0 définit deux plans
d’équation z=2 et z=-2, figure 12.5).

Figure 12.5 – Plans définis par F (z) = x2 −
4 = 0.

Figure 12.6 – Surface cylindrique d’équation
F(x,y)=0.

Les équations du type F (x, y) = 0 dans R3 peuvent être interprétées comme définissant des surfaces
pour lesquelles la relation entre x et y est vérifiée quelle que soit la coordonnée z. Il s’agit donc de
l’expression de surfaces pour lesquelles une courbe définie dans Oxy par F (x, y) = 0 est extrudée
parallèlement à l’axe z, on parle de surface cylindrique dont la directrice est la courbe plane définie
par F (x, y) = 0). Par exemple, l’équation implicite F (x, y, z) ≡ (x− 2)2 + (y− 2)2− 4 = 0 définit
un cylindre circulaire de rayon 2 et d’axe parallèle à l’axe z (figure 12.6).

12.2 Intersection d’une surface avec un plan

L’interprétation des équations cartésiennes d’une surface n’est pas un problème évident. Une
méthode classique d’étude préliminaire est d’observer les courbes d’intersection de la surface avec
un ensemble de plans choisis de manière judicieuse (par exemple parallèle aux plans coordonnés),
on parle de lignes coordonnées de la surface. La représentation de ces courbes permet de visualiser
le ’squelette’ de la surface et donc de s’en représenter l’allure générale.
L’intersection entre une surface et un plan s’obtient de manière simple en écrivant un système
formé des équations des deux éléments dont on cherche l’intersection. Dans le cas particulier d’un
plan parallèle au plan Oxy, le système peut s’écrire :{

F (x, y, z) = 0
z = k

(12.1)
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Où k est une constante. Le système d’équation 12.1 donne finalement l’expression d’une courbe
plane de la forme F (x, y) = 0 située dans un plan défini par z = k. L’emploi de courbes
d’intersection avec des plans perpendiculaires à Oz est d’emploi fréquent pour l’analyse des
variations de fonctions de deux variables (optimisation) ou pour l’étude du relief sur des cartes
(on parle alors de courbes de niveaux).
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Figure 12.7 – Courbes de niveau sur un
paraboloïde hyperbolique.
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Figure 12.8 – Courbes de niveau sur un
paraboloïde hyperbolique projetées sur le
plan Oxy.

La décomposition en lignes tracées dans des plans parallèles n’est pas nécessairement le meilleur
choix dans le cas de surfaces de révolution (figure 12.9). Dans ce cas, il est préférable d’établir les
intersections entre la surface et un faisceau de plans convergeant à l’axe de rotation de la surface
(figure 12.10).
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Figure 12.9 – Lignes coordonnées d’une
sphère (coordonnées cartésiennes).
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Figure 12.10 – Lignes coordonnées d’une
sphère (coordonnées sphériques).
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12.3 Quadriques

Les quadriques peuvent être vues comme la généralisation des coniques dans R3. Il s’agit de
surfaces définies par l’intermédiaire d’une équation quadratique qui a la forme générale :

F (x, y, z) ≡ Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz +Gx+Hy + Iz + J = 0 (12.2)

On peut également exprimer cette équation sous la forme suivante :
x
y
z


T

·

 A D E
D B F
E F C

 ·


x
y
z

+


G
H
I


T

·


x
y
z

+ J = 0 (12.3)

Comme dans le cas des coniques, les termes contenant des produits croisés (xy, xz et yz) peuvent
être éliminés par un changement de repère pour se retrouver sous une forme qui ne fait plus
apparaître que des termes en x, y, z et leurs carrés. La recherche de ce changement de repère qui
permet de diagonaliser la matrice sort du cadre de ce cours. Nous nous contenterons d’étudier la
forme des différentes quadriques à partir de leur équation réduite. Cette équation est de la forme

F (x, y, z) = A′x2 +B′y2 + C ′z2 +D′x+ E ′y + F ′z +G′ = 0 (12.4)

A ce stade, trois cas de figure sont possibles :
— La fonction implicite ne fait apparaître que des termes en x (ou en y ou en z), l’équation

décrit alors un ensemble de plans comme expliqué au § 12.1.1 ;
— la fonction implicite ne fait pas apparaître de terme en z (ou en x ou en y), l’équation

décrit alors une surface cylindrique dont la base est une conique (figures 12.11 à 12.13) ;
— la fonction implicite contient des termes en x, y et z, il s’agit d’une quadrique au sens

propre du terme (décrites au § 12.3.1).

Figure 12.11 – Surface cylindrique à base hyperbolique (F (x, y, z) = x2

4
− y2

9
− 1 = 0).
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Figure 12.12 – Surface cylindrique à base
elliptique (F (x, y, z) = x2

4
+ y2

9
− 1 = 0).

Figure 12.13 – Surface cylindrique à base
parabolique (F (x, y, z) = y − x2 = 0).

12.3.1 Formes propres de quadriques

Suivant le même principe utilisé pour l’identification des coniques, l’équation 12.4 peut être
réorganisée pour regrouper les termes en x, y et z sous forme de produits remarquables. Sous
cette forme, on peut distinguer les six familles de quadriques propres :

— l’ellipsoïde F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
+

(z − zC)2

c2
− 1 = 0 ;

— l’hyperboloïde à une nappe F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
− (z − zC)2

c2
− 1 = 0 ;

— l’hyperboloïde à deux nappes F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
− (z − zC)2

c2
+ 1 = 0 ;

— le paraboloïde hyperbolique F (x, y, z) =
(x− xC)2

a2
− (y − yC)2

b2
− (z − zC) = 0 ;

— le paraboloïde elliptique F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
− (z − zC) = 0 ;

— le cône à base elliptique F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
− (z − zC)2

c2
= 0 ;

Nous allons brièvement décrire ces six types de surfaces dans les paragraphes suivants.

12.3.1.1 Ellipsoïde

L’ellipsoïde (figure 12.14) est une surface dont l’équation cartésienne a la forme suivante :

F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
+

(z − zC)2

c2
− 1 = 0 (12.5)

La surface est centrée au point de coordonnées (xC , yC , zC). L’intersection de cette surface avec un
plan parallèle aux plans coordonnés donne une ellipse. En particulier, l’intersection avec un plan
parallèle aux axes passant par le centre de l’ellipsoïde donne une ellipse dont les axes sont définis
par a,b ou c.
Si a, b et c sont égaux, on retrouve l’équation d’une sphère.
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12.3.1.2 Hyperboloïde à une nappe

L’hyperboloïde à une nappe (figure 12.15) est une surface dont l’équation cartésienne a la forme
suivante :

F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
− (z − zC)2

c2
− 1 = 0 (12.6)

Son intersection avec des plans perpendiculaires à Oz donne des ellipses ; son intersection avec des
plans perpendiculaires à Ox ou Oy donne des hyperboles.

Figure 12.14 – Ellipsoïde. Figure 12.15 – hyperboloide à une nappe.

12.3.1.3 Hyperboloïde à deux nappes

L’hyperboloïde à deux nappe (figure 12.16) est une surface dont l’équation cartésienne a la forme
suivante :

F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
− (z − zC)2

c2
+ 1 = 0 (12.7)

Son intersection avec des plans perpendiculaires à Oz donne des ellipses ; son intersection avec des
plans perpendiculaires à Ox ou Oy donne des hyperboles.

12.3.1.4 Paraboloïde hyperbolique

Le paraboloïde hyperbolique (figure 12.17) est une surface dont l’équation cartésienne a la forme
suivante :

F (x, y, z) =
(x− xC)2

a2
− (y − yC)2

b2
− (z − zC) = 0 (12.8)

Son intersection avec des plans perpendiculaires à Oz donne des hyperboles ; son intersection avec
des plans perpendiculaires à Ox ou Oy donne des paraboles.

12.3.1.5 Paraboloïde elliptique

Le paraboloïde elliptique (figure 12.18) est une surface dont l’équation cartésienne a la forme
suivante :

F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
− (z − zC) = 0 (12.9)

Son intersection avec des plans perpendiculaire à Oz donne des ellipses ; son intersection avec des
plans perpendiculaires à Ox ou Oy donne des paraboles.
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Figure 12.16 – hyperboloide à deux nappes. Figure 12.17 – Paraboloïde hyperbolique.

12.3.1.6 Cône à base elliptique

Le paraboloïde elliptique (figure 12.19) est une surface dont l’équation cartésienne a la forme
suivante :

F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
− (z − zC)2

c2
= 0 (12.10)

Son intersection avec des plans perpendiculaire à Oz donne des ellipses ; son intersection avec des
plans perpendiculaires à Ox ou Oy donne des paraboles.

Figure 12.18 – Paraboloïde elliptique. Figure 12.19 – Cône elliptique.

12.4 Méthode d’obtention de l’équation cartésienne de
surfaces

Dans le cadre de ce cours, nous verrons diverses méthodes permettant de générer les équations
d’une surface quelconque. De manière générale, on peut citer :

— L’utilisation d’une condition géométrique ;
— la génération d’une surface par extrusion d’une courbe le long d’une direction ;
— la génération d’une surface par rotation d’une courbe autour d’un axe ;
— la génération d’une surface par ligne (la surface est obtenue par un ensemble de courbes

définies par des conditions particulières)
— la génération d’une surface par points.

Nous verrons différents exemples pour chacun des types de surfaces précédemment mentionnés. Il
faut noter que ces catégories ne sont pas exclusives entre elles. Un cylindre circulaire droit peut
par exemple être généré par l’extrusion d’un cercle perpendiculairement au plan le contenant ou
par la révolution d’une droite autour d’un axe.
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12.4.1 Condition géométrique pour obtenir l’équation d’une surface

S’il est possible d’exprimer de manière analytique une condition remplie par l’ensemble des points
d’une surface, on obtient de manière directe l’équation cartésienne de cette surface. Par exemple,
une sphère de centre C et de rayon R est le lieu des points situés à une distance R du point C, la
condition s’exprime donc selon :√

(x− xC)2 + (y − yC)2 + (z − zC)2 = R (12.11)

en élevant les deux membres de l’équation au carré, on retrouve bien l’équation de la sphère :

F (x, y, z) ≡ (x− xC)2 + (y − yC)2 + (z − zC)2 −R2 = 0 (12.12)

12.4.1.1 Exemple

Soient deux points A et B, quel est le lieu des points équidistants de A et de B ?
La condition géométrique s’exprime selon :√

(x− xA)2 + (y − yA)2 + (z − zA)2 =

√
(x− xB)2 + (y − yB)2 + (z − zB)2 (12.13)

En élevant au carré les deux membres et en développant les produits remarquables, on obtient :

x2 − 2xAx+ x2
A + y2 − 2yAy + y2

A + z2 − 2zAz + z2
A = . . .

. . . x2 − 2xBx+ x2
B + y2 − 2yBy + y2

B + z2 − 2zBz + z2
B (12.14)

F (x, y, z) ≡ (2xA − 2xB)x+ (2yA − 2yB) y + (2zA − 2zB) z . . .

. . .+
(
x2
A + y2

A + z2
A − x2

B − y2
B − z2

B

)
= 0 (12.15)

Qui est l’équation d’un plan (il s’agit en fait de l’équation du plan bissecteur du segment AB,
figure 12.20).
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Figure 12.20 – Plan bissecteur.

12.4.2 Extrusion d’une courbe le long d’un axe

Comme vu au § 12.1.1, l’obtention des équations d’une surface cylindrique dont l’axe est parallèle
aux axes du repère s’obtient de manière simple. Lorsque la figure est orientée de manière
quelconque (figure 12.21), il est possible de passer par l’intermédiaire d’un changement ou via
une combinaison de matrices de transformation pour obtenir l’équation finale de la surface.

Figure 12.21 – Obtention des équations cartésiennes d’une surface extrudée par changement de
repère.

Pour illustrer la procédure, prenons l’exemple de la recherche des équations décrivant un cylindre
circulaire de rayon 2 dont l’axe est défini par la droite d’équation :

x = 3 + 2µ
y = −2 + µ
z = 4 + 5µ

(12.16)
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12.4.2.1 Approche par changement de repère

Dans l’approche par changement de repère (cf figure 12.22), on établit tout d’abord les équations
de la surface dans un repère lié au cylindre :

x′′2 + y′′2 − 4 = 0 (12.17)

Pour passer du repère global Oxyz au repère local O′x′′y′′z′′, on effectue simultanément :
— un changement de repère par translation pour avoir l’origine en O’ ;
— un changement de repère par rotation pour aligner les axes.

Figure 12.22 – Exemple de figure dont l’axe est orienté de manière quelconque, approche par
changement de repère.

La matrice de changement de repère pour passer de Oxyz à O′x′y′z′ est la matrice de changement
de repère par translation de vecteur

−→
T =

−−→
OO′ = (3,−2, 4). Cette matrice est donc :

[T ] =


1 0 0 −3
0 1 0 2
0 0 1 −4
0 0 0 1

 (12.18)

Pour obtenir la matrice de changement de base, il est nécessaire de rechercher les cosinus directeurs
des vecteurs unitaires du nouveau repère O′x′′y′′z′′ exprimées dans la base de l’ancien repère
O′x′y′z′ (parallèle à Oxyz). Un vecteur aligné sur O′z′′ est le vecteur directeur de la droite :

−→
Z ′′ = 2−→ux′ + 1−→uy′ + 5−→uz′ (12.19)

Comme le cylindre est une figure de révolution, le choix des deux autres vecteurs directeurs est
libre (pour autant que les trois vecteurs directeurs forment une base orthonormée). On peut donc
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choisir de manière arbitraire deux des coordonnées du vecteur
−→
X ′′ (par exemple

−→
X ′′ = (1, y, 0)) et

de chercher la troisième en exprimant la nullité du produit scalaire entre
−→
X ′′ et

−→
Z ′′ :

−→
X ′ ·
−→
Z ′ = 2 + y = 0⇒

−→
X ′′ = (1,−2, 0) (12.20)

Le troisième vecteur est obtenu par le produit vectoriel :

−→
Y ′′ =

−→
Z ′′ ∧

−→
X ′′ =

∣∣∣∣∣∣
−→ux′ −→uy′ −→uz′
2 1 5
1 −2 0

∣∣∣∣∣∣ = (10, 5,−5) (12.21)

Les vecteurs unitaires sont obtenus en divisant ces vecteurs par leur norme :

−→ux′′ =

−→
X ′′∥∥∥−→X ′′∥∥∥ =

(
1√
5
,
−2√

5
, 0

)
(12.22)

−→uy′′ =

−→
Y ′′∥∥∥−→Y ′′∥∥∥ =

(
2√
6
,

1√
6
,
−1√

6

)
(12.23)

−→uz′′ =

−→
Z ′′∥∥∥−→Z ′′∥∥∥ =

(
2√
30
,

1√
30
,

5√
30

)
(12.24)

La matrice de changement de repère est donc :

[R] =



1√
5

−2√
5

0 0

2√
6

1√
6

−1√
6

0

2√
30

1√
30

5√
30

0

0 0 0 1


(12.25)

On a donc les relations suivantes entre les coordonnées de points du cylindre exprimées dans les
différents repère : 

x′

y′

z′

1

 = [T ]


x
y
z
1




x′′

y′′

z′′

1

 = [R]


x′

y′

z′

1

 (12.26)

On a donc la relation synthétique suivante :
x′′

y′′

z′′

1

 = [R] · [T ]


x
y
z
1

 (12.27)

La matrice résultante est donc obtenue par :

[R] · [T ] =



1√
5

−2√
5

0
−7√

5
2√
6

1√
6

−1√
6

0

2√
30

1√
30

5√
30

−24√
30

0 0 0 1


(12.28)
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Cette relation permet d’exprimer les coordonnées (x′′, y′′, z′′) en fonction des coordonnées (x, y, z)
selon :

x′′ =
1√
5
x− 2√

5
y − 7√

5
(12.29)

y′′ =
2√
6
x+

1√
6
y − 1√

6
z (12.30)

z′′ =
2√
30
x+

1√
30
y +

5√
30
z − 24√

30
(12.31)

L’équation de la surface s’établit donc en remplaçant ces relations dans l’équation 12.17 :(
1√
5
x− 2√

5
y − 7√

5

)2

+

(
2√
6
x+

1√
6
y − 1√

6
z

)2

− 4 = 0 (12.32)

1

5
(x− 2y − 7)2 +

1

6
(2x+ y − z)2 − 4 = 0 (12.33)

6
(
x2 + 4y2 + 49− 14x+ 28y − 4xy

)
. . . (12.34)

. . .+ 5
(
4x2 + y2 + z2 − 4xz − 2yz + 4xy

)
− 120 = 0

26x2 + 29y2 + 5z2 − 4xy − 10xz − 10yz + 84x+ 168y + 174 = 0 (12.35)

Ce qui donne l’équation d’une quadrique comme attendu.

12.4.2.2 Approche par matrice de transformation

Dans l’approche par matrice de transformation (cf figure 12.23), on va transformer une figure
simple pour l’orienter de manière quelconque dans le repère Oxyz.

Figure 12.23 – Exemple de figure dont l’axe est orienté de manière quelconque, approche par
matrices de transformation.

180



CHAPITRE 12. REPRÉSENTATION CARTÉSIENNE DE SURFACES

On partira de l’expression d’un cylindre d’axe Oz :

F (x, y, z) ≡ x2 + y2 − 4 = 0 (12.36)

Appelons (xP , yP , zP ) L’ensemble des points de ce cylindre. On va successivement appliquer à ces
points :

— deux rotations pour aligner Oz avec l’axe du cylindre final ;
— une translation pour placer correctement l’axe.

Pour aligner sur le vecteur directeur de la droite l’axe Oz, on peut employer deux rotations (cf §
11.4.4.1) : une rotation d’un angle −φ autour de Ox pour se placer dans le plan Oyz, puis une
rotation d’angle −θ autour de Oz pour s’aligner sur le vecteur directeur de l’axe (figure 12.24).

Figure 12.24 – Définition des angles θ et φ.

On peut calculer :
— sin θ = 2√

5
(donc cos θ = 1√

5
) ;

— cosφ = 5√
30

(donc cosφ = 1√
6
).

Les rotations sont exprimées par :


xP ′

yP ′

zP ′

1

 = [M1] ·


xP
yP
zP
1

 =


1 0 0 0
0 5√

30
1√
6

0

0 −1√
6

5√
30

0

0 0 0 1

 ·


xP
yP
zP
1

 (12.37)


xP ′′

yP ′′

zP ′′

1

 = [M2] ·


xP ′

yP ′

zP ′

1




1√
5

2√
5

0 0
−2√

5
1√
5

0 0

0 0 1 0
0 0 0 1

 ·


xP ′

yP ′

zP ′

1

 (12.38)
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La dernière transformation est une translation amenant l’origine sur un des points de l’axe (par
exemple (3,-2,4)). On transforme les points (xP ′′ , yP ′′ , zP ′′) du cylindre en points (xP ′′′ , yP ′′′ , zP ′′′).
Sous forme matricielle, on a :

xP ′′′

yP ′′′

zP ′′′

1

 = [M1] ·


xP
yP
zP
1

 =


1 0 0 −3
0 1 0 2
0 0 1 −4
0 0 0 1

 ·


xP ′′

yP ′′

zP ′′

1

 (12.39)

La relation finale permettant de passer de la figure initiale à la figure alignée sur l’axe Oz est
donc : 

xP ′′′

yP ′′′

zP ′′′

1

 = [M3] · [M2] · [M1]


xP
yP
zP
1

 (12.40)

Pour obtenir l’équation de la figure finale, il faut appliquer la transformation résultante à l’équation
12.36. Tous les points de la figure initiale (xP , yP , zP ) vérifient cette équation, on peut donc écrire :

x2
P + y2

P − 4 = 0 (12.41)

Pour obtenir l’équation de la figure finale, il suffit d’employer la relation 12.40 pour tirer les
expressions de (xP , yP , zP ) en fonction de (xP ′′′ , yP ′′′ , zP ′′′), ce qui revient simplement à inverser la
relation matricielle : 

xP
yP
zP
1

 = ([M3] · [M2] · [M1])−1


xP ′′′

yP ′′′

zP ′′′

1

 (12.42)

On peut calculer aisément que :

([M3] · [M2] · [M1])−1 =


1√
5

−2√
5

0 −7√
5

2√
6

1√
6

−1√
6

0
2√
30

1√
30

5√
30

−24√
30

0 0 0 1

 (12.43)

Ce qui donne bien évidemment le même résultat que l’approche par changement de repère.
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12.4.3 Surface de révolution

12.4.3.1 Révolution autour d’un axe du repère

Soit une surface engendrée par la révolution d’une courbe plane définie dans le plan Oyz autour
de l’axe Oz. La courbe décrivant le profil de la surface est une courbe de R2 dans le plan Oyz qui
peut être décrite par son équation cartésienne de la forme F (y, z) = 0.

Figure 12.25 – Figure de révolution.

Si on considère cette courbe ayant subi une rotation d’angle θ autour de l’axe Oz, sa forme n’a
pas été modifiée par la rotation, l’ensemble de ses points vérifie donc encore l’équation cartésienne
de la courbe, si on considère non plus la coordonnée y mais la distance entre l’axe de rotation et le
point de la courbe considéré. Ce rayon peut se calculer aisément par r =

√
x2 + y2. On peut donc

en déduire qu’une surface de révolution autour de l’axe Oz peut être exprimée sous forme d’une
fonction implicite en reprenant l’équation implicite décrivant la courbe de base et en remplaçant
dans cette expression la coordonnée y par la racine carrée de la somme des carrés des coordonnées
x et y :

f(
√
x2 + y2, z) = 0 (12.44)

Par permutation circulaire, on peut établir que :
— une surface de révolution autour de l’axe Ox est décrite par une équation implicite de la

forme f(
√
y2 + z2, x) = 0 ;

— une surface de révolution autour de l’axe Oy est décrite par une équation implicite de la
forme f(

√
x2 + z2, y) = 0 ;
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12.4.3.1.1 Exemple du tore Un exemple de surface de révolution est le tore (figure 12.26)
engendré par la rotation d’un cercle décrit dans un plan Oxz autour de l’axe Oz.

Figure 12.26 – Tore.

L’équation de la circonférence de base est :

F (x, z) ≡ (x−R)2 + z2 − r2 = 0 (12.45)

L’équation cartésienne de la surface de révolution s’exprime donc par :

F (x, y, z) ≡
(√

x2 + y2 −R
)2

+ z2 − r2 = 0 (12.46)

Cette expression peut être mise sous forme polynomiale :(√
x2 + y2 −R

)2

+ z2 − r2 = 0 (12.47)(
x2 + y2 − 2R

√
x2 + y2 +R2

)
+ z2 − r2 = 0 (12.48)

x2 + y2 + z2 +R2 − r2 = 2R
√
x2 + y2 (12.49)(

x2 + y2 + z2 +R2 − r2
)2 − 4R2

(
x2 + y2

)
= 0 (12.50)

Il s’agit d’une quartique (courbe du quatrième ordre).

A titre de vérification, recherchons l’intersection du tore avec le plan z = 0, on obtient une courbe
de la forme : (

x2 + y2 +R2 − r2
)2

= 4R2
(
x2 + y2

)
(12.51)(

x2 + y2 +R2 − r2
)

= ±2R
√
x2 + y2 (12.52)

Seul le signe plus doit être retenu car le membre de droite est toujours positif et le membre de
gauche est également positif. Le développement peut se poursuivre par :

x2 + y2 − 2R
√
x2 + y2 +R2 = r2 (12.53)(√
x2 + y2 −R

)2

= r2 (12.54)√
x2 + y2 −R = ±r (12.55)
x2 + y2 = (R± r)2 (12.56)

On obtient donc bien l’équation de deux cercles de rayon R + r et R− r (figure 12.27).
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Figure 12.27 – Intersection d’un tore avec le plan z=0.

12.4.3.2 Révolution autour d’un axe quelconque

Si l’axe de révolution n’est pas confondu avec un des axes du repère, on procède alors par
transformation ou changement de repère comme illustré au § 12.4.2.

12.4.4 Génération par lignes

La génération par lignes d’une surface consiste à considérer la surface à obtenir comme la réunion
d’un ensemble de courbes variables appelées génératrices de la surface. Comme dans l’espace R3

une courbe est constituée de l’intersection de deux surfaces, cette génératrice résulte elle-même de
l’intersection de deux surfaces variables S1 et S2.

La variabilité des surfaces S1 et S2 implique qu’elles dépendent d’un ou plusieurs paramètres pour
définir une famille de surfaces. Par exemple, une famille de plans parallèles entre eux peut être
définie par une famille à un paramètre de la forme :

F (x, y, z, λ) = ax+ by + cz − λ = 0 (12.57)

Avec λ le paramètre.

De manière générale, on peut rencontrer différents cas de figure :
— deux familles de courbes présentant un seul paramètre (commun aux deux familles) ;
— deux familles de courbes présentant plusieurs paramètres et un ensemble de relations liant

les paramètres entre eux.

12.4.4.1 Familles à un seul paramètre

Les deux équations des familles de surfaces sont de la forme :

F1(x, y, z, λ) = 0 (12.58)
F2(x, y, z, λ) = 0 (12.59)
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Cela signifie que pour chaque valeur de λ, la réunion des deux équations précédentes donne une
courbe appartenant à la surface ; cela signifie que les points de ces courbes vérifient :

F1(xP , yP , zP , λi) = 0 (12.60)
F2(xP , yP , zP , λi) = 0 (12.61)

De la relation 12.61, on peut tirer une relation de la forme

λi = F2(xP , yP , zP ) (12.62)

En réinjectant cette expression dans 12.60, on obtient une relation de la forme

F1(xP , yP , zP , f2(xP , yP , zP )) = 0 (12.63)

Cette expression est simplement l’équation résultante de l’élimination du paramètre entre les deux
expressions des familles de surface. Cette constatation permet de déduire que l’équation d’une
surface qui est le lieu des courbes d’intersection de deux familles de surfaces à un seul paramètre
s’obtient en éliminant le paramètre entre les expressions des deux familles de surfaces.

12.4.4.1.1 Exemple d’application Soit une famille de circonférences définies par
l’intersection entre un plan parallèle à Oxy et un cylindre circulaire d’axe Oz dont le rayon
vaut la moitié de la coordonnée z du plan (figure 12.28). Les équations de la famille de courbes
s’établissent comme : {

z = λ

x2 + y2 −
(
λ
2

)2
= 0

(12.64)
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Figure 12.28 – Famille de cercles.
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Figure 12.29 – Cône résultant de la réunion
des cercles de la famille.

L’équation de la surface s’établit en éliminant le paramètre entre les deux équations de la famille.
On obtient finalement :

x2 + y2 − z2

4
= 0 (12.65)

Cette équation est celle d’un cône (cf § 12.3.1.6) à base circulaire (figure 12.29).
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12.4.4.2 Familles à plusieurs paramètres présentant plusieurs relations entre ces
paramètres

Si les équations de familles de courbes font intervenir n paramètres, leur réunion ne donne plus
une surface unique, mais bien une famille de surfaces à n-1 paramètres. Pour définir une surface
unique, il est nécessaire d’adjoindre aux équations de la famille de courbes n-1 relations liant les
paramètres entre eux. Par exemple, si on considère les équations de la famille de courbes à deux
paramètres suivantes :

αx+ βy − 1 = 0 (12.66)
2αx+ 3βz − 1 = 0 (12.67)

La première équation représente une infinité de plans verticaux (parallèles à Oz), la seconde
représente une infinité de plans parallèles à Oy. En éliminant le paramètre α entre les deux
équations, on obtient la relation suivante :

3βz − 2βy + 1 = 0 (12.68)

Il s’agit de l’équation d’une famille de plans. Si on ajoute une relation entre α et β, on obtient
une surface unique ; par exemple :

αx+ βy − 1 = 0 (12.69)
2αx+ 3βz − 1 = 0 (12.70)

α− 3β = 0 (12.71)

permet par éliminations successives :

3βx+ βy − 1 = 0 (12.72)
6βx+ 3βz − 1 = 0 (12.73)

6x+ 3z

3x+ y
− 1 = 0 (12.74)

Ce qui donne finalement la relation 3x− y + 3z = 0 qui est l’équation cartésienne d’un plan.
Il faut noter que dans la majorité des cas, ce type de définition de surface n’a d’utilité pratique
que lorsque les courbes définissant la surface sont de droites. On parle alors de surfaces réglées qui
sont décrites plus en détail au § 12.5.

12.4.5 Génération par points

Trois surfaces S1, S2, S3 ont en commun un ou plusieurs points. Si ces surfaces sont variables,
l’ensemble des points formés par les points variables va constituer une surface S. Cette définition
générale permet d’introduire la notion de génération d’une surface par points. Les familles de
surfaces S1, S2 et S3 comportent deux paramètres. Le système d’équations peut se mettre sous la
forme : 

F1(x, y, z, λ, µ) = 0
F2(x, y, z, λ, µ) = 0
F3(x, y, z, λ, µ) = 0

(12.75)

L’élimination des deux paramètres entre les trois relations permet de trouver l’équation de la
surface. Par analogie avec ce qui a été présenté pour les courbes définies par lignes, il est possible
d’introduire un nombre n de paramètres supérieurs à deux. Dans ce cas, il est nécessaire d’adjoindre
n-2 relations liant ces paramètres entre eux pour définir une surface.
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12.5 Surfaces réglées

Une surface réglée est par définition une surface engendrée par une droite (appelée génératrice)
qui évolue selon une loi déterminée (figure 12.30). Ce type de surfaces rencontre un grand succès
dans la réalisation d’objets physiques car elles peuvent être matérialisées de manière relativement
simples (figure 12.31).

Figure 12.30 – Hyperboloide comme surface réglée.

Figure 12.31 – Tour de
refroidissement de la centrale
électrique de Drogenbos.

Considérons une droite quelconque comme l’intersection de deux plans perpendiculaires aux plans
coordonnés : {

x− αz − β = 0
y − γz − δ = 0

(12.76)

Conformément à ce qui a été vu au § 12.4.4.2, il est nécessaire d’imposer trois relations
complémentaires pour obtenir une surface unique. Ces relations seront la traduction de
considérations géométriques :

— la génératrice s’appuie sur trois lignes génératrices ;
— la génératrice s’appuie sur deux lignes directrices et reste parallèle à un plan (plan

directeur) ;
— la génératrice s’appuie sur une ligne et reste parallèle à deux plans directeurs ;
— la génératrice reste parallèle à deux plans directeurs et reste tangente à une surface (noyau) ;
— la génératrice s’appuie sur une ligne et reste tangente à deux surfaces ;
— la génératrice reste tangente à trois surfaces ;
— ...

L’expression mathématique de ces relations permet d’écrire trois relations liant les paramètres
entre eux pour permettre d’obtenir un système de cinq équations contenant quatre paramètres,
ce qui permet au final d’obtenir les équations de la surface réglée
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12.5.1 Recherche des équations exprimant les contraintes sur les
génératrices d’une surface réglée

12.5.1.1 Condition d’appui des génératrices sur une ligne

Si une génératrice s’appuie sur une ligne, il existe un point d’intersection entre cette ligne et la
génératrice. Le système formé des équations des génératrices (système d’équation 12.76) et des
équations de la courbe doit admettre une solution. Un tel système est de la forme suivante (dans
le cas de l’emploi des équations cartésiennes de la ligne) :

x− αz − β = 0
y − γz − δ = 0
F1(x, y, z) = 0
F2(x, y, z) = 0

(12.77)

C’est-à-dire un système de quatre équations à trois inconnues (x, yetz). Le système sera compatible
si une équation est combinaison linéaire des trois autres. Pour obtenir cette condition, il faut
exprimer une relation dans laquelle x, y et z ont été éliminés à partir du système. Cette relation
(dépendant uniquement des paramètres) est la condition de compatibilité du système, c’est-à-dire
l’expression mathématique de l’existence d’une intersection entre la courbe et les génératrices.

12.5.1.2 Condition de parallélisme à un plan

Les conditions de parallélisme entre une droite et un plan ont été exprimées au § C.6 ; il faut noter
que si une droite est parallèle à deux plans, son vecteur directeur est donné de manière immédiate
par un vecteur directeur de l’intersection entre les deux plans (figure 12.32).

Figure 12.32 – Droite parallèle à deux plans donnés.

12.5.1.3 Condition de tangence à une surface

La condition de tangence à une surface s’exprime en vérifiant les conditions qui conduisent à
l’existence d’une solution unique pour l’intersection entre la surface et les génératrices. Le système
est de la forme : 

x− αz − β = 0
y − γz − δ = 0
F (x, y, z) = 0

(12.78)
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Les deux premières expressions donnent directement :{
x = αz + β
y = γz + δ

(12.79)

qui peuvent être réinjectées dans la dernière relation pour obtenir une équation à une seule
inconnue (z). Il suffit ensuite d’établir la relation entre les paramètres pour obtenir une solution
unique à cette équation pour obtenir l’expression analytique de la condition de tangence entre la
surface et les génératrices.

12.5.2 Exemples d’application

12.5.2.1 Exemple de surface en appui sur trois droites

Prenons trois droites d1, d2 et d3 définies telles que d1//Ox, d2//Oy et d3//Oz. Les directrices
sont données par leurs équations cartésiennes :

d1 ≡
{
y − b = 0
z + c = 0

(12.80)

d2 ≡
{
x+ a = 0
z − c = 0

(12.81)

d3 ≡
{
x− a = 0
y + b = 0

(12.82)

Il s’agit d’un cas particulier pour lequel on ne fait apparaître que trois termes indépendants pour
décrire les trois droites (figure 12.33).

Figure 12.33 – Droites d’appui pour la surface réglée.

La génératrice variable a pour équation générale :{
x− αz − β = 0
y − γz − δ = 0

(12.83)
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Les trois relations entre les paramètres seront établies en considèrant que la génératrice est sécante
avec les trois droites d1, d2 et d3, ce qui permettra d’imposer trois relations entre les paramètres.
Pour imposer que la génératrice soit sécante avec d1, il faut s’assurer que le système obtenu en
réunissant les équations des deux droites donne bien une et une seule solution. Ce système s’écrit
comme suit : 

y − b = 0
z + c = 0
x− αz − β = 0
y − γz − δ = 0

(12.84)

les deux première relations donnent y = b et z = −c. Pour que le système admette une solution
il faut que la quatrième équation soit vérifiée avec ces valeurs pour y et z, on obtient donc la
condition de compatibilité qui s’exprime par :

b+ γc− δ = 0 (12.85)

Par un raisonnement tout à fait similaire, on peut déduire l’expression mathématique des
conditions de contact avec d2 et d3. Le système complet s’établit donc comme suit :

x− αz − β = 0 (12.86)
y − γz − δ = 0 (12.87)
b+ γc− δ = 0 (12.88)
a+ αc+ β = 0 (12.89)
bα + (a− β) γ + δα = 0 (12.90)

De 12.88, on tire
δ = b+ γc (12.91)

Qui réintroduite dans 12.87 donne :

y − γz − (b+ γc) (12.92)

γ =
y − b
z + c

(12.93)

En remplaçant γ par cette valeur dans 12.88, on tire

δ = b+
y − b
z + c

· c (12.94)

De 12.89, on tire
β = −a− αc (12.95)

Qui réintroduite dans 12.86 donne :

x− αz + a+ αc = 0 (12.96)

α =
x+ a

z − c
(12.97)

En remplaçant α par cette valeur dans 12.89, on tire

β = a+
x+ a

z − c
· c (12.98)
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En substituant les valeurs de α, β, γ et δ tirées des équations 12.97, 12.98, 12.93 et 12.93 dans
12.90, on obtient l’équation cartésienne de la surface réglée :

b · x+ a

z − c
+

(
a+ a+

x+ a

z − c
· c
)
y − b
z + c

+

(
b+

y − b
z + c

· c
)
x+ a

z − c
= 0 (12.99)

Les simplifications successives donnent

2b
x+ a

z − c
+

(
a+ a+

x+ a

z − c
c

)
y − b
z + c

+ c
y − b
z + c

x+ a

z − c
= 0 (12.100)

2b (x+ a) (z + c) + (y − b) [2a (z − c) + c (x+ a) + c (x+ a)] = 0 (12.101)
2b (x+ a) (z + c) + 2 (y − b) [a (z − c) + c (x+ a)] = 0 (12.102)

b (x+ a) (z + c) + (y − b) (az + cx) = 0 (12.103)
bxy + abc+ bcx+ abz + ayz + cxy − abz − bcx = 0 (12.104)

cxy + bxz + ayz + abc = 0 (12.105)

Cette surface est donc une quadrique, il s’agit d’une hyperboloïde à une nappe (figure 12.34).

Figure 12.34 – Surface réglée passant par trois droites.
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12.5.2.2 Exemple de surface dont les génératrices sont parallèles à un plan et passent
par deux droites

Soit une surface réglée passant par les droites définies par :

d1 ≡
{
x = 0
y = 0

d2 ≡
{
x− a = 0
y − bz = 0

(12.106)

et dont les génératrices sont parallèles au plan Oxy. Une génératrice passe par les points (0, 0, µ)
et (a, bµ, µ). La famille paramétrique se définit donc par :{

bµx− ay = 0
z = µ

(12.107)

L’équation de la surface se déduit donc en éliminant les paramètres entre les deux équations du
système, ce qui donne :

bxz − ay = 0 (12.108)

Il s’agit d’une surface hyperboloïde (figure 12.35).

Figure 12.35 – Surface réglée dont les génératrices passent par deux droites et sont parallèles à un
plan.
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12.5.2.3 Exemple de surface parallèle à deux plans et tangente à une surface

Dans cet exemple, nous considérons que les génératrices sont parallèles aux plans directeurs définis
par :

x = 0 (12.109)
y + z = 0 (12.110)

et que ces génératrices restent tangentes à la sphère de centre O et de rayon R :

x2 + y2 + z2 −R2 = 0 (12.111)

Comme les génératrices restent parallèles aux plans directeurs, elles peuvent être représentées par
les équations cartésiennes constituées des plans parallèles aux plans directeurs :

x− λ = 0 (12.112)
y + z − µ = 0 (12.113)

Pour assurer la tangence entre les génératrices et la sphère, il faut que leur intersection donne
un point unique ; on vérifie donc les conditions qui amènent le système formé des équations de
génératrices et de celle de la sphère à n’admettre qu’une racine unique :

x− λ = 0 (12.114)
y + z − µ = 0 (12.115)

x2 + y2 + z2 −R2 = 0 (12.116)

En remplaçant x par λ et y par µ− z dans la troisième équation, on obtient :

λ2 + (µ− z)2 + z2 −R2 = 0 (12.117)

ce qui donne une équation du second degré en z :

2z2 − 2µz + λ2 + µ2 −R2 = 0 (12.118)

Cette équation présente une racine double si le déterminant est nul ; la condition à imposer entre
λ et µ peut donc s’écrire :

δ = 4µ2 − 8
(
λ2 + µ2 −R2

)
= 0 (12.119)

En remplaçant λ et µ par leur valeur, on obtient l’équation de la surface qui est

2x2 + (y + z)2 − 2R2 = 0 (12.120)

qui est l’équation d’une surface cylindrique.
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12.6 Surfaces coniques

Par définition, une surface conique est une surface engendrée par une droite variable (génératrice)
passant par un point fixe (sommet) et se déplaçant selon une loi géométrique donnée (figure 12.36),
il s’agit d’un cas particulier de surface réglée.

Figure 12.36 – Exemple de surface conique.

Le sommet d’une surface conique peut être considéré comme étant l’intersection de trois plans
distincts π1, π2 et π3 (définis par des relations F1(x, y, z) = 0, F2(x, y, z) = 0 et F3(x, y, z) = 0).
Comme les génératrices d’un cône passent nécessairement par son sommet, les deux plans π4 et π5

passant respectivement par l’intersection i de π1 et de π2 et j de π1 et de π3. Or, π1 et π2 forment
un faisceau, ce qui signifie que π4 peut être exprimé comme une combinaison linéaire des équations
de π1 et π2. Le même raisonnement peut être suivi pour les équations de π5. Toute génératrice
passant par le sommet S peut donc s’exprimer par le système formé des équations :

F4 ≡ F2− λF1 = 0 (12.121)
F5 ≡ F3− µF1 = 0 (12.122)

Il suffit d’imposer une relation entre les deux paramètres pour définir une surface unique. Cette
relation est de la forme φ(λ, µ) ou encore :

φ

(
F2

F1
,
F3

F1

)
= 0 (12.123)

Cette relation définit une fonction homogène par rapport aux fractions F2
F1

et F3
F1

(ce qui signifie
que la fonction est toujours vérifiée même si on multiplie les fonctions par une constante. On peut
donc considérer cette relation comme une fonction homogène de la forme φ(F1, F2, F3) = 0.

12.6.1 Exemple

Recherchons les équations d’une surface conique dont le sommet S est confondu avec l’origine et
qui s’appuie sur un cercle de centre (0, 0, c) et de rayon a. Comme le sommet est à l’origine, on
peut considérer qu’il résulte de l’intersection de trois plans définis par :

F1 ≡ x = 0 (12.124)
F2 ≡ y = 0 (12.125)
F3 ≡ z = 0 (12.126)
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Les génératrices de la surface conique sont les intersections de deux plans variables :

F2− λF1 ≡ y − λx = 0 (12.127)
F3− µF1 ≡ z − µx = 0 (12.128)

(12.129)

Qui traduit le passage des génératrices par le sommet. Quelle serait la condition φ(λ, µ) à imposer
pour que les génératrices s’appuient sur le cercle ?
Cette condition peut s’exprimer mathématiquement par le fait d’avoir une intersection entre les
génératrices et le cercle, c’est-à-dire d’avoir une solution au système formé de la réunion des
équations des génératrices et du cercle :

y − λx = 0 (12.130)
z − µx = 0 (12.131)
z − c = 0 (12.132)

x2 + y2 − a2 = 0 (12.133)

La relation recherchée est obtenue en éliminant x, y et z dans le système précédent. En combinant
12.132 dans 12.131, on obtient :

x =
c

µ
(12.134)

Cette relation combinée avec 12.130 donne :

y = λ
c

µ
(12.135)

Ce qui donne au final : (
c

µ

)2

+

(
λ
c

µ

)2

= a2 (12.136)

φ (λ, µ) ≡ c2
(
1 + λ2

)
− a2µ2 = 0 (12.137)

L’équation de la surface est enfin obtenue en éliminant les deux paramètres dans le système formé
de la réunion de cette équation avec les équations des génératrices (12.127 et 12.128).On peut en
tirer :

c2

(
1 +

(y
x

)2
)
− a2

(z
x

)2

= 0 (12.138)

Cette équation peut être réorganisée sous la forme :

x2

a2
+
y2

a2
− z2

c2
= 0 (12.139)

Qui présente bien la forme générale d’un cône à base circulaire. On vérifie également que l’équation
est homogène en x, y et z, car la multiplication des variable par une constante k donne :

k2x2

a2
+
k2y2

a2
− k2z2

c2
= k2

(
x2

a2
+
y2

a2
− z2

c2

)
= 0 (12.140)
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CHAPITRE 13. REPRÉSENTATION VECTORIELLE ET PARAMÉTRIQUE DE
SURFACES

Chapitre 13

Représentation vectorielle et paramétrique
de surfaces

No. There is another.

- Yoda, The empire strikes back

13.1 Introduction

La représentation vectorielle d’une surface de R3 consiste à rechercher une relation vectorielle de
type

−−→
OM ≡

−→
V (u, v) qui détermine le vecteur liant l’origine à l’ensemble des points de la surface

par l’intermédiaire de deux paramètres. Au sens mathématique du terme, il s’agit d’une application
qui, à tout point d’un domaine de R2 défini par (u, v), associe un point image dans l’espace R3

(figure 13.1).

Figure 13.1 – Représentation vectorielle de surface.

197
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La projection de la fonction vectorielle sur les axes du repère donne accès aux équations
paramétriques de la surface qui sont de la forme :

x ≡ x(u, v)
y ≡ y(u, v)
z ≡ z(u, v)

(13.1)

13.1.1 Notion de lignes coordonnées

Comme nous venons de le voir, la représentation de surfaces de R3 implique l’utilisation de deux
paramètres. En fixant la valeur de l’un d’entre eux et en faisant varier l’autre, on décrit une
ligne qui appartient à la surface. Cette ligne à u ou v constant est appelée ligne coordonnée de
la surface. Ces lignes coordonnées peuvent être utilisées comme moyen de représentation de la
surface sous forme « fil de fer ». Ces lignes coordonnées peuvent prendre un sens physique si le
choix de la paramétrisation a été opéré de manière judicieuse. Par exemple, les lignes coordonnées
sur une sphère décrite classiquement par ses coordonnées sphériques (cf § 13.2.1) présente des
lignes coordonnées qui représentent les méridiens et les parallèles tracés sur cette sphère (figure
13.2).

Parallèle

Méridien

Figure 13.2 – Lignes coordonnées sur une sphère.
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13.2 Formes classiques de paramétrisation de surfaces

Comme dans le cas de la représentation des courbes planes, le choix de la paramétrisation est
laissé libre. Il existe toutefois certaines formes rencontrées fréquemment en pratique comme les
coordonnées sphériques et cylindriques.

13.2.1 Emploi des coordonnées sphériques

Un des modes de paramétrisation classiquement rencontrés est l’utilisation des coordonnées
sphériques (θ, φ) avec θ représentant l’angle entre le plan vertical contenant le vecteur

−−→
OM et

le plan Oxz et φ représentant l’angle entre ce vecteur et le plan Oxy (figure 13.3).

Figure 13.3 – Coordonnées sphériques. Figure 13.4 – Coordonnées cylindriques.

La recherche des équations paramétriques d’une sphère centrée en l’origine en employant ce type
de paramétrisation consiste à considérer que pour toute valeur de φ (variant de −π/2 à π/2), on
décrit un cercle sur la sphère par une variation de θ entre 0 et 2π. Les cercles considérés (parallèles)
sont situés dans un plan à une altitude valant R sinφ et ont un rayon valant R cosφ. Les équations
paramétriques de la sphère peuvent donc s’écrire :

x ≡ R cosφ cos θ
y ≡ R cosφ sin θ
z ≡ R sinφ

(13.2)

En éliminant les deux paramètres entre ces trois relations, on obtient de manière immédiate
l’équation cartésienne de la sphère :

x2 + y2 = R2 cos2 φ
(
cos2 θ + sin2 θ

)
= R2 cos2 φ (13.3)

z2 = R2 sin2 φ (13.4)
⇒ x2 + y2 + z2 = R2 (13.5)
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13.2.2 Coordonnée cylindriques

Pour la représentation de surfaces cylindriques dont l’axe est parallèle à l’axe Oz, nous avons vu
précédemment que la représentation cartésienne de la surface se réduisait à une fonction du type
F (x, y) = 0, ce qui signifiait pratiquement qu’il existait une relation entre x et y indépendamment
de la coordonnée z. Dans R2, cette relation F (x, y) = 0 représente la forme cartésienne de la
courbe servant de base à la forme cylindrique. Les coordonnées cylindriques considèrent donc
deux paramètres (θ, κ) tels que θ soit le paramètre utilisé pour établir les équations paramétriques
de la surface de base (angle entre le plan vertical contenant le vecteur

−−→
OM et le plan Oxz) et

κ représentant la coordonnée z du point de la surface (figure 13.4). En employant ce type de
paramétrisation, les équations paramétriques d’un cylindre à base circulaire peuvent s’écrire :

x = R cos θ
y = R sin θ
z = κ

(13.6)

L’équation cartésienne de ce cylindre est obtenue en éliminant les paramètres dans le système
d’équations, ce qui donne :

x2 + y2 = R2
(
cos2 θ + sin2 θ

)
(13.7)

Qui correspond à la forme classique d’une surface cylindrique dont l’axe est parallèle à l’axe Oz
(l’équation cartésienne ne comporte pas de terme en z).

13.3 Représentation paramétrique des quadriques

Ce chapitre présente les paramétrisations permettant de définir les quadriques dont les équations
cartésiennes ont été établies au § 12.3.1.

Ellipsoïde Hyperboloïde à une nappe
x = xC + a · cosu · cos v
y = yC + b · cosu · sin v
z = zC + c · sinu


x = xC + a · coshu · cos v
y = yC + b · coshu · sin v
z = zC + c · sinhu

Figure 13.5 – Ellipsoïde. Figure 13.6 – Hyperboloïde à une nappe.
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Hyperboloïde à deux nappes Paraboloïde hyperbolique
x = xC + a · sinhu · cos v
y = yC + b · sinhu · sin v
z = zC +±c · coshu


x = xC + a · u
y = yC + b · v
z = zC + c · (u2 − v2)

Figure 13.7 – hyperboloïde à deux nappes. Figure 13.8 – Paraboloïde hyperbolique.

Paraboloïde elliptique Cône à base elliptique
x = xS + a ·

√
u cos v

y = yS + b ·
√
u sin v

z = zS + u


x = xS + au cos v
y = yS + bu sin v
z = zS + cu

Figure 13.9 – Paraboloïde elliptique. Figure 13.10 – Cône elliptique.
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13.4 Représentation vectorielle et paramétrique des surfaces
de révolution

Dans le cas de surfaces de révolution autour de l’axez Oz, un choix naturel des paramètres est
l’emploi d’un premier paramètre θ qui représente l’angle entre le plan contenant une section de la
surface et le plan oyz et d’un second paramètre employé pour décrire la courbe plane dans Oyz
qui sert de profil de base à la forme obtenue par révolution (figure 13.11).

Figure 13.11 – Paramétrisation pour une forme de révolution.
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13.4.1 Exemple de la recherche des équations d’un tore

Les coordonnées d’un point courant sur la surface d’un tore sont obtenues à partir du paramètre
θ donnant la rotation autour de l’axes Oz et d’un paramètre φ permettant de décrire le cercle
mineur (figure 13.12).

Figure 13.12 – Paramétrisation pour un tore.

Les équations paramétriques peuvent donc s’écrire :
x = (R + r cosφ) cos θ
y = (R + r cosφ) sin θ
z = r sinφ

(13.8)

L’élimination des deux paramètres dans cette équation permet de retrouver l’équation cartésienne
de la surface :

x2 + y2 = (R + r cosφ)2 (cos2 θ + sin2 θ
)

= (R + r cosφ)2 (13.9)(z
r

)2

= sin2 φ⇒ cosφ = ±
√

1− sin2 φ = ±
√

1−
(z
r

)2

(13.10)

x2 + y2 =
(
R±
√
r2 − z2

)2

(13.11)

x2 + y2 = r2 ± 2R
√
r2 − z2 + r2 − z2 (13.12)[

x2 + y2 + z2 −
(
R2 + r2

)]2 − 4R2
(
r2 − z2

)
= 0 (13.13)

Qui est identique à la forme obtenue au § 12.4.3.1.1.
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13.5 Représentation vectorielle et paramétrique de surfaces
réglées

L’idée générale est de rechercher les équations paramétriques des génératrices de la surface en
déterminant les coordonnées d’un point et du vecteur directeur d’une génératrice en fonction d’un
paramètre unique. Pour obtenir les équations paramétriques de la surface, il suffit d’écrire les
équations paramétriques de la génératrice (variable).

13.5.1 Surface réglée passant par trois droites gauches

Reprenons l’exemple traité au § 12.5.2.1 qui consistait à rechercher les équations de la surface
réglée passant par les droites d1, d2 et d3 qui sont données par leurs équations cartésiennes :

d1 ≡
{
y − b = 0
z + c = 0

(13.14)

d2 ≡
{
x+ a = 0
z − c = 0

(13.15)

d3 ≡
{
x− a = 0
y + b = 0

(13.16)

Figure 13.13 – Droites d’appui pour la surface réglée.
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Soient A, B et C les points d’appui de la génératrice sur d1, d2 et d3. Les coordonnées de ces
points peuvent être exprimées par l’intermédiaire de trois paramètres comme suit :

A(λ, b,−c) B(−a, ν, c) C(a,−b, µ) (13.17)

Ces expressions permettent d’obtenir les coordonnées des vecteurs
−→
AB et

−→
AC :

−→
AB (−a− λ, ν − b, 2c) (13.18)
−→
AC (a− λ,−2b, µ+ c) (13.19)

Comme la génératrice de la surface passe simultanément par d1, d2 et d3, les vecteurs
−→
AB et

−→
AC

sont colinéaires, ce qui implique que
−→
AC = α

−→
AB. Cette condition conduit au système :

−a− λ = α (a− λ) (13.20)
ν − b = α (−2b) (13.21)
2c = α (µ+ c) (13.22)

Il est donc possible de trouver une relation donnant les trois premiers paramètres en fonction du
seul α :

λ = a
α + 1

α− 1
(13.23)

ν = b (1− 2α) (13.24)

µ = c
2− α
α

(13.25)

L’équation vectorielle de la génératrice variable peut s’établir par :

−→
V (α, β) =

−→
OA(α) + β

−→
AC(α) (13.26)

Ce qui donne :

−→
V (α, β) = [λ−→ux + b−→uy − c−→uz ] + β [(a− λ)ux − 2b−→uy + (µ+ c)−→uz ] (13.27)
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En substituant λ, µ et ν par leur expression, fonction de α (relations 13.23 à 13.25), et en projetant
cette relation sur les axes du repère, on obtient :

x = a
(α + 1) (1− β)

α− 1
+ aβ (13.28)

y = b (1− β) (13.29)

z = cβ
2− α
α

+ c (β − 1) (13.30)

Ces relations sont les équations paramétriques de la surface réglée. Si on considère les lignes à
α=constante dans ce système d’équations, on obtient les équations des génératrices (figure 13.14).
En éliminant α et β de ces équations, on peut retrouver la forme ayz + bxz + cxy + abc = 0 de
l’équation cartésienne de la surface.

Figure 13.14 – Surface réglée passant par trois droites et ses génératrices.
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13.5.2 Exemple de surface réglée à deux directrices et un plan directeur

Soit une courbe réglée définie par les directrices :

d1 ≡
{
x = 0
y = 0

(13.31)

d2 ≡
{
x− a = 0
y − bz = 0

(13.32)

et le plan directeur :
π ≡ z = 0 (13.33)

La fonction vectorielle de cette surface vise à représenter, en fonction de deux paramètres, le
vecteur joignant l’origine à tout point de la surface. On peut écrire :

−→
OP =

−→
OA+

−→
AP (13.34)

Le vecteur
−→
OA a pour coordonnée (0, 0, λ). Le paramètre λ représente la coordonnée z du point

A. Comme les génératrices de la surface sont parallèles à π, les points variables se déplaceront sur
une droite parallèle à Oxy. Les coordonnées de B sont donc obtenues en prenant l’intersection de
d2 avec le plan z = λ, c’est-à-dire : 

x− a = 0
y − bz = 0
z = λ

(13.35)
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On en tire donc aisément
−−→
OB = (a, bλ, λ). Pour parcourir l’ensemble des points de la génératrice,

on va multiplier le vecteur
−→
AB par un paramètre µ. L’équation vectorielle de la courbe s’établit

donc par : −−−−−→
V (λ, µ) =

−→
OA+ µ

−→
AB = λ−→uz + µ [a−→ux + bλ−→uy] (13.36)

Les équations paramétriques de la surface sont donc :
x = µa
y = µbλ
z = λ

(13.37)

Figure 13.15 – Surface réglée passant par deux droites et parallèle à un plan.
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SURFACES

13.6 Représentation vectorielle et paramétrique de surfaces
coniques

Les génératrices d’une surface conique passent nécessairement par le sommet de la surface. Sa

Figure 13.16 – Exemple de surface conique.

fonction vectorielle est nécessairement de la forme :
−→
V =

−→
OS + λ

−→
SP (µ) (13.38)

Il suffit donc de déterminer les coordonnées d’un vecteur directeur (fonction d’un seul paramètres)
pour reconstituer les équations paramétriques d’une surface.

13.6.1 Equations paramétriques d’un cône de révolution

Prenons par exemple un cône dont le sommet est situé en (0,0,0) et passant par un cercle (dessiné
dans un plan parallèle à Oxy à une hauteur c) de rayon a. Le vecteur directeur d’une génératrice
joint le sommet à un point P dont les coordonnées sont :

x = a cos θ (13.39)
y = a sin θ (13.40)
z = c (13.41)

La fonction vectorielle de la surface conique s’établit donc selon :

−→
V = λ

−→
OP (13.42)

La projection de cette équation sur les axes du repère donne :

x = aλ cos θ (13.43)
y = aλ sin θ (13.44)
z = cλ (13.45)

209



RÉFÉRENCES

13.6.2 Surface conique d’axe incliné

Déterminons les équations d’un cône dont le sommet S a pour coordonnées (0, b, b) et dont les
génératrices passent par une ellipse dessinée dans Oxy de demi grand axe a et de demi petit axe
b (le grand axe est parallèle à Ox). On peut déterminer :

−→
OS = (0, b, b) (13.46)
−→
OP = (a cos θ, b sin θ, 0) (13.47)

⇒
−→
SP = (a cos θ, b sin θ − b,−b) (13.48)

Les équations paramétriques de cette surface conique sont donc :

x = aλ cos θ (13.49)
y = b+ λb (sin θ − 1) (13.50)
z = b (λ− 1) (13.51)

Figure 13.17 – Surface conique d’axe incliné.
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Vectorielle, Partie 4, section 2 : Méthodes Vectorielles et Paramétriques de Représentation
d’une Surface. Mutuelle d’édition FPMs, 2008-2009.
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CHAPITRE 14. ANALYSE DES COURBES SPATIALES

Chapitre 14

Analyse des courbes spatiales

Roads ? Where we’re going we don’t need roads

- E. Brown, Back to the future

14.1 Représentation cartésienne de courbes spatiales

La représentation cartésienne de courbes spatiales se fait en considérant qu’une courbe spatiale
est l’intersection de deux surfaces. La réunion des équations cartésiennes des deux surfaces permet
la définition de la courbe sous la forme :{

F1(x, y, z) = 0
F2(x, y, z) = 0

(14.1)

Figure 14.1 – Equations cartésiennes d’une courbe.
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CHAPITRE 14. ANALYSE DES COURBES SPATIALES

De manière générale, deux surfaces peuvent se couper selon une ou plusieurs courbes ; prenons
l’exemple suivant : {

F1(x, y, z) ≡ x2 + y2 + z2 − 4 = 0

F2(x, y, z) ≡ (x+ xc)
2 + y2 − 1 = 0

(14.2)

On reconnait les équations d’une sphère centrée en l’origine de rayon 2 et d’un cylindre à base
circulaire d’axe parallèle à Oz de rayon 1. Suivant la valeur de xc, on peut avoir :

— deux courbes d’intersection si |xc| < 3 ;
— une seule courbe d’intersection si |xc| = 1
— aucun point commun si |xc| > 3
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Figure 14.2 – Intersection entre un cylindre
et une sphère : cas xc=0 (deux cercles
d’intersection).
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Figure 14.3 – Intersection entre un cylindre et
une sphère : cas xc=1 (Courbe de Viviani).
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Figure 14.4 – Intersection entre une sphère et un cylindre : cas xc=4 (pas d’intersection).

Lorsque xc vaut zéro, le cylindre coupe la sphère selon deux cercles, ce qui prouve qu’il est possible
d’obtenir une courbe d’intersection plane entre deux corps ronds.
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14.1.1 Reconnaissance de la morphologie de courbes de l’espace

Pour étudier la morphologie de surfaces, il est fréquent d’en étudier l’intersection avec des plans
parallèles aux plans coordonnés. Par analogie, il est possible d’étudier la morphologie de courbes
spatiales par leurs projections orthogonales sur les plans coordonnés. Projeter une courbe sur
un plan revient à considérer cette courbe comme directrice d’une surface cylindrique dont les
génératrices sont perpendiculaires au plan coordonné (figure 14.5).

Figure 14.5 – Cylindres projetants d’un cercle dessiné dans un plan incliné de manière quelconque
par rapport aux axes du repère.

Ce type de surface est appelé cylindre projetant de la courbe de l’espace sur les plans coordonnés.
Les équations cartésiennes de ces cylindres sont obtenues en éliminant les termes en x (ou en
y ou en z) entre les équations cartésiennes de deux surfaces pour obtenir la surface cylindrique
perpendiculaire à Oyz (ou à Oxz ou à Oxy).
Si on souhaite obtenir une construction points par points d’une courbe résultant de l’intersection
de deux surfaces données par leurs équations cartésiennes, on peut procéder comme suit :

— Rechercher les cylindre projetants de la courbe perpendiculairement à deux des axes
coordonnés (Oy et Oz par exemple) ;

— procéder un tracé points par points (c’est à dire fixer une des coordonnées, x pour cet
exemple, et rechercher les racines des fonctions f(y) et f(z)) des deux courbes ;

— reporter les coordonnées x, y et z des points obtenus.
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14.1.1.1 Exemple d’application

On cherche à déterminer les cylindres projetants d’une courbe définie par l’intersection d’une
sphère centrée en l’origine de rayon R et un plan d’équation cartésienne x + y + z − R = 0. La
courbe d’intersection est nécessairement un cercle qui est situé dans un plan incliné par rapport
aux plans coordonnés. Nous avons vu au premier quadrimestre que les projections d’un cercle sur
un plan qui n’est pas parallèle au plan le contenant est une ellipse ; le cylindre projetant doit donc
dans ce cas être un cylindre à base elliptique. Ses équations s’établissent en éliminant une des
inconnues x, y ou z dans le système formé des équations de la sphère et du plan. Prenons par
exemple le cylindre projetant parallèle à Oz :

F1(x, y, z) ≡ x2 + y2 + z2 −R2 = 0 (14.3)
F2(x, y, z) ≡ x+ y + z −R = 0 (14.4)

De 14.4, on peut tirer :
z = R− (x+ y) (14.5)

qui, introduit dans 14.3, donne :

F3(x, y, z) ≡ x2 + y2 + (R− (x+ y))2 −R2 = 2x2 + 2xy + 2y2 − 2Rx− 2Ry = 0 (14.6)

Il s’agit bien de l’équation d’un cylindre d’axe z dont la base est une conique. Etudions cette
conique comme une courbe plane de Oxy :

F (x, y) ≡ 2x2 + 2xy + 2y2 − 2Rx− 2Ry = 0 (14.7)

pour éliminer le terme en xy, il faut opérer une rotation de repère dont l’angle vaut ici π/4 car
le coefficient du terme en x2 est égal à celui du terme en y2. Suite à ce changement de repère,
l’équation de la conique devient :

3x′2 + y′2 − 2R
√

2x′ = 0 (14.8)

La forme canonique de cette ellipse s’obtient par :

3x′2 + y′2 − 2R
√

2x′ = 3

(
x′2 − 2

√
2R

3
x′ +

2

9
R2

)
+ y′2 − 2

3
R2 = 0 (14.9)

qui peut être factorisée en : (
x′ −

√
2R
3

)2

(√
2R
3

)2 +
y′2(√
2R√
3

)2 − 1 = 0 (14.10)

Qui est l’équation d’une ellipse centrée en (
√

2R
3

,0) dont le petit axe est orienté selon x′ et vaut
√

2R
3

tandis que le grand axe vaut
√

2R√
3
.

14.1.2 Etude de courbe plane résultant de l’intersection d’une surface
avec un plan quelconque

Lors de l’intersection d’une surface quelconque avec un plan, une courbe plane est obtenue. Pour
pouvoir l’étudier avec les outils présentés au chapitre 8, il est nécessaire d’obtenir une relation de
la forme f(x, y) = 0. Dans le cas où le plan est perpendiculaire à un des axes de coordonnées,
ceci est obtenu de manière évidente car l’équation du cylindre projetant d’axe parallèle à cet axe
peut être interprétée de deux manières différentes (en particularisant au cas d’un cylindre d’axe
parallèle à Oz) :
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— si on interprète la relation comme étant F (x, y, z) = 0, on dispose de l’équation cartésienne
de la surface cylindrique ;

— Si on interprète la relation comme étant F (x, y) = 0, on dispose de l’équation cartésienne
de la courbe plane dans le plan perpendiculaire à l’axe Oz.

Figure 14.6 – Intersection entre une surface et un plan perpendiculaire à Oz.

Dans le cas où le plan n’est pas perpendiculaire à un des axes, il faut opérer un changement
de repère pour obtenir les équations du cylindre projetant dans un repère Ox′y′z′ pour lequel
l’un des axes est orienté perpendiculairement au plan pour pouvoir réaliser l’analyse présentée
précédemment.

14.1.2.1 Exemple de l’intersection d’un plan et d’une sphère

Reprenons l’exemple présenté en § 14.1.1.1, c’est-à-dire l’intersection entre une sphère de rayon
R centrée en l’origine et un plan incliné de manière équivalente sur les trois axes du repère. Pour
rappel, les équations de la courbe d’intersection sont :

F1(x, y, z) ≡ x2 + y2 + z2 −R2 = 0 (14.11)
F2(x, y, z) ≡ x+ y + z −R = 0 (14.12)

Pour pouvoir étudier la courbe d’intersection entre la sphère et le plan, il faut définir un nouveau
système d’axes Ox′y′z′ pour lequel l’axe Oz′ est orienté perpendiculairement au plan. La recherche
de la matrice de changement de repère et obtenue par l’intermédiaire de la recherche des cosinus
directeurs des vecteurs de la nouvelle base. L’axe Oz′ est orienté selon la normale au plan, ce qui
implique d’avoir : −→

Z ′ = (1, 1, 1) (14.13)

L’axe Ox′ doit être perpendiculaire à 0z′ ; au-delà de cette constatation, son orientation peut être
choisie de manière arbitraire. Par exemple, il peut être choisi de manière à être horizontal, ce qui
implique que ses coordonnées soient égales à :

−→
X ′ = (1,−1, 0) (14.14)

Comme précédemment, l’axe Oy′ est obtenu en réalisant le produit vectoriel entre les vecteurs
−→
Z ′

et
−→
X ′.

−→
Y ′ =

−→
Z ′ ∧

−→
X ′ =

∣∣∣∣∣∣
−→ux −→uy −→uz
1 1 1
1 −1 0

∣∣∣∣∣∣ = (1, 1,−2) (14.15)
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Les vecteurs unitaires sont obtenus en divisant ces vecteurs par leur norme :

−→
u′x =

−→
X ′∥∥∥−→X ′∥∥∥ =

(
1√
2
,
−1√

2
, 0

)
(14.16)

−→
u′y =

−→
Y ′∥∥∥−→Y ′∥∥∥ =

(
1√
6
,

1√
6
,
−1√

6

)
(14.17)

−→
u′z =

−→
Z ′∥∥∥−→Z ′∥∥∥ =

(
1√
3
,

1√
3
,

1√
3

)
(14.18)

La matrice de changement de repère pour le passage des coordonnées (x, y, z) vers les coordonnées
(x′, y′, z′) s’établit donc selon :

R =


1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6

1√
3

 (14.19)

Ce qui permet d’exprimer les relations entre les deux systèmes de coordonnées :

x =
1√
2
x′ +

1√
6
y′ +

1√
3
z′ (14.20)

y =
−1√

2
x′ +

1√
6
y′ +

1√
3
z′ (14.21)

z =
−2√

6
y′ +

1√
3
z′ (14.22)

(14.23)

La substitution de ces valeurs dans l’équation de la sphère permet d’obtenir son équation
cartésienne dans Ox’y’z’ :

x2 + y2 + z2 −R2 = 0 (14.24)(
1√
2
x′ +

1√
6
y′ +

1√
3
z′
)2

+

(
−1√

2
x′ +

1√
6
y′ +

1√
3
z′
)2

. . . (14.25)

. . .+

(
−2√

6
y′ +

1√
3
z′
)2

−R2 = 0 (14.26)

1

6

(√
3x′ + y′ +

√
2z′
)2

+
1

6

(
−
√

3x′ + y′ +
√

2z′
)2

. . . (14.27)

. . .+
1

6

(
−2y′ +

√
2z′
)2

−R2 = 0 (14.28)

1

6

(
3x′2 + y′2 + 2z′2 + 2

√
3x′y′ + 2

√
6x′z′ + 2

√
2y′z′ + 3x′2 + y′2 + 2z′2 . . . (14.29)

. . .− 2
√

3x′y′ − 2
√

6x′z′ + 2
√

2y′z′ + 4y′2 + 2z′2 − 4
√

2y′z′
)
−R2 = 0 (14.30)

x′2 + y′2 + z′2 −R2 = 0 (14.31)
(14.32)
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Ce résultat était attendu car la sphère est invariante par rotation.
L’équation du plan dans le nouveau système de coordonnées est :

x+ y + z −R = 0 (14.33)
1√
2
x′ +

1√
6
y′ +

1√
3
z′ +

−1√
2
x′ +

1√
6
y′ +

1√
3
z′ +

−2√
6
y′ +

1√
3
z′ −R = 0 (14.34)

3√
3
z −R = 0 (14.35)

Qui représente bien un plan perpendiculaire à Oz′. La courbe d’intersection s’obtient en éliminant
z′ entre ces deux équations, ce qui donne :

x′2 + y′2 +

(√
3R

3

)2

−R2 = 0 (14.36)

x′2 + y′2 − 6R2

9
= 0 (14.37)

En analysant cette équation comme l’équation d’une courbe plane (F (x′, y′) = 0), on reconnaît
l’équation d’un cercle centré en l’origine et de rayon

√
2R√
3
.

14.1.3 Contrôle du caractère plan d’une courbe donnée par ses
équations cartésiennes

Comme nous avons pu le présenter dans l’introduction de ce chapitre, une courbe plane peut être
obtenue par l’intersection des deux surfaces qui ne sont pas elles-mêmes planes. Il est intéressant
de pouvoir déterminer si une courbe est plane à partir de ses équations cartésiennes ce qui permet,
si c’est le cas, d’étudier cette courbe plane comme une fonction à deux variables comme expliqué
au § précédent.
Considérons la courbe définie par ses équations cartésiennes :{

F1(x, y, z) = 0
F2(x, y, z) = 0

(14.38)

Pour opérer la vérification du caractère plan de la courbe, il suffit de vérifier qu’il est possible
d’obtenir l’équation d’un plan par combinaison linéaire des équations des deux surfaces décrivant la
courbe, c’est-à-dire d’obtenir une équation linéaire en x, y et z. Dans ce cas, le système d’équation
14.38 est équivalent à :{

F1(x, y, z) = 0
F3(x, y, z) = αF1(x, y, z) + βF2(x, y, z) = ax+ by + cz + d = 0

(14.39)

Ce système peut s’interpréter comme l’intersection de la surface 1 avec un plan, on a donc
effectivement une courbe plane.

14.1.3.1 Exemple : intersection de deux sphères

Considérons deux sphères de rayon R1 et R2 centrées en des points C1(a, b, c) et C2(d, e, f) en
imposant que la distance entre les centres soit inférieure à la somme des rayons.

(x− a)2 + (y − b)2 + (z − c)2 −R2
1 = 0 (14.40)

(x− d)2 + (y − e)2 + (z − f)2 −R2
2 = 0 (14.41)
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Pour essayer d’éliminer les termes non-linéaires dans le système, prenons la différence entre
l’équation 14.40 et 14.41 :

(x− a)2 − (x− d)2 + (y − b)2 − (y − e)2 + (z − c)2 − (z − f)2 −R2
1 +R2

2 = 0 (14.42)
(2x− a− d) (d− a) + (2y − b− e) (e− b) + (2z − c− f) (f − c)−

(
R2

1 −R2
2

)
= 0(14.43)

2 (d− a)x+ 2 (e− b) y + 2 (f − c) z . . . (14.44)
. . .−

[
(a+ d) (d− a) + (b+ e) (e− b) + (c+ f) (f − c) +

(
R2

1 −R2
2

)]
= 0 (14.45)

Figure 14.7 – Intersection de deux sphères.

Figure 14.8 – Intersection de deux sphères :
vue dans un plan contenant la droite joignant
les centres.

Cette équation est bien l’équation d’un plan, ce qui confirme le caractère plan de la courbe (il
s’agit en fait d’un cercle dans ce cas). On peut également remarquer que le vecteur normal au
plan est colinéaire avec le vecteur joignant les centres des sphères. En effet :

−→
N = 2 (d− a)−→ux + 2 (e− b)−→uy + 2 (f − c)−→uz (14.46)
−−−→
C1C2 = (d− a)−→ux + (e− b)−→uy + (f − c)−→uz (14.47)

(14.48)

14.1.3.2 Exemple : intersection entre une sphère et un cylindre

Considérons l’intersection d’un cylindre circulaire dont l’axe est confondu avec l’axe Oz de rayon
R1 et une sphère centrée en l’origine de rayon R2 (R2>R1). Les équations de ces surfaces sont :

x2 + y2 −R2
1 = 0 (14.49)

x2 + y2 + z2 −R2
2 = 0 (14.50)

en soustrayant la première relation de la seconde, on obtient l’équation suivante :

z2 −R22 +R12 = 0 (14.51)

Cette relation ne faisant apparaître qu’une seule variable (z en l’occurrence) représente un
ensemble de plans perpendiculaires à l’axe Oz. Dans ce cas précis, elle représente l’équation de
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deux plans d’équations :

z =
√
R22 −R12 (14.52)

z = −
√
R22 −R12 (14.53)

(14.54)

L’intersection de la sphère et du cylindre donne donc deux courbes planes qui sont l’intersection
entre ces plans et le cylindre (ou entre ces plans et la sphère). Il s’agit donc de cercles de rayon
R1 situés dans des plans perpendiculaires à l’axe Oz et dont les centres sont situés en des points
de coordonnées

(
0, 0,

√
R2

2 −R2
1

)
et
(

0, 0,−
√
R2

2 −R2
1

)
.
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Figure 14.9 – Intersection d’une sphère et d’un cylindre.
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14.2 Fonction vectorielle et paramétrique d’une courbe
spatiale

Une deuxième méthode de définition d’une courbe de l’espace est de décrire la position d’un point
P variable sur la courbe sous la forme d’une fonction vectorielle à un paramètre :

−→
OP =

−−→
V (p) (14.55)

qui est la fonction vectorielle de la courbe. Le paramètre p peut être choisi de manière quelconque.
Une paramétrisation classique pour le suivi de trajectoires spatiales est l’emploi d’un paramètre
temporel.

Figure 14.10 – Equation vectorielle de courbe spatiale.

La projection de l’équation vectorielle d’une courbe sur les axes du repère donne accès à ses
équations paramétriques : 

x = x(t)
y = y(t)
z = z(t)

(14.56)
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14.2.1 Courbe hélicoïdale

Soit une hélice cylindrique définie comme étant la trajectoire suivie par un mobile ayant une
trajectoire hélicoïdale d’axe Oz, de rayon R et de pas p (figure 14.11).

Figure 14.11 – Hélice cylindrique.

Les équations cartésiennes de cette courbe sont obtenues en considérant la combinaison d’un
mouvement circulaire autour de Oz et d’un mouvement rectiligne uniforme selon Oz :

x = R sin θ
y = R cos θ
z = p

2π
θ

(14.57)

La fonction vectorielle de la courbe est simplement exprimée par :
−−→
V (θ) = R sin θ−→ux +R cos θ−→uy +

p

2π
θ−→uz (14.58)

14.2.2 Obtention des équations paramétriques d’une courbe à partir
des équations des surfaces dont l’intersection donne la courbe

Si une courbe est définie par l’intersection de deux surfaces, on peut définir son équation
paramétrique en examinant les équations paramétriques des deux surfaces. Le système d’équations
décrivant la courbe est le suivant : 

x = f1(α, β)
y = f2(α, β)
z = f3(α, β)
x = g1(λ, µ)
y = g2(λ, µ)
z = g3(λ, µ)

(14.59)

Pour tous les points de la courbe, les coordonnées x, y et z des points vérifient à la fois les équations
de la première surface et celles de la deuxième, ce qui signifie qu’on peut écrire :

f1(α, β) = g1(λ, µ)
f2(α, β) = g2(λ, µ)
f3(α, β) = g3(λ, µ)

(14.60)
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On dispose donc de trois relations entre quatre paramètres. En exprimant un paramètre en fonction
des trois autres, puis en substituant cette valeur dans les équations paramétriques de l’une des
surfaces, on obtient les équations paramétriques de la courbe recherchée.

14.2.2.1 Exemple

On recherche les équations paramétriques de la courbe définie par l’intersection d’une sphère
centrée en l’origine de rayon R et d’un cylindre droit d’axe Oz de diamètre R tangent à la sphère.
Les équations paramétriques de la sphère sont :

x = R cosφ cos θ
y = R cosφ sin θ
z = R sinφ

(14.61)

Les équations de la surface cylindrique sont :
x = R

2
cosα

y = R
2

+ R
2

sinα
z = λ

(14.62)
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Figure 14.12 – Intersection d’une sphère et d’un cylindre tangents.
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Les relations entre les différents paramètres sont obtenues en égalant les coordonnées x, y et z des
points d’intersection des deux surfaces, ce qui donne :

R cosφ cos θ =
R

2
cosα (14.63)

R cosφ sin θ =
R

2
(1 + sinα) (14.64)

R sinφ = λ (14.65)

On va chercher à éliminer trois des paramètres de ces relations pour obtenir les coordonnées x, y
et z des points de la courbe comme des fonctions d’un seul paramètre (le choix de ce paramètre
parmi les quatre est bien évidemment libre), et donc d’exprimer soit φ en fonction de θ ; soit α en
fonction de λ. En élevant les deux premières expressions au carré et en les sommant, on obtient :

R2 cos2 φ cos2 θ +R2 cos2 φ sin2 θ =
R2

4
cos2 α +

R2

4
(1 + sinα)2 (14.66)

ce qui donne après simplification :

cos2 φ =
1 + sinα

2
(14.67)

La relation 14.65 permet de tirer :

sin2 φ =
λ2

R2
(14.68)

En sommant ces deux dernière relations, on obtient :

1 + sinα

2
+
λ2

R2
= 1 (14.69)

Qui, une fois réarrangé donne :

sinα = 1− 2
λ2

R2
(14.70)

on peut donc immédiatement obtenir l’expression du cosinus de α en fonction de λ :

cosα = ±
√

1− sin2 α = ±

√
1−

(
1− 2

λ2

R2

)2

(14.71)

Après simplification, on obtient :

cosα = ±
√

1− 1 + 4
λ2

R2
+ 4

λ4

R4
= ±2

λ

R

√
1− λ2

R2
(14.72)

En remplaçant ces expressions dans le système 14.62, on obtient les équations paramétriques de
la courbe, à savoir :


x = ±λ

√
1− λ2

R2

y = R− λ2

R
z = λ

(14.73)
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14.2.3 Recherche des équations cartésiennes d’une courbe à partir de
ses équations paramétriques

Si les équations paramétriques d’une courbe sont données, il est possible de retrouver les équations
de deux surfaces dont l’intersection donne la courbe. Il suffit pour ce faire d’éliminer le paramètre
entre les équations paramétriques de la courbe. Les relations ainsi obtenues sont des fonctions
de x, y et z, c’est-à-dire l’expression cartésiennes de surface. L’ensemble des points de la courbe
sont inclus dans ces surfaces. Notons que si l’élimination des paramètres se fait en considérant les
équations paramétriques de la courbe deux à deux, on obtient des relations qui ne contiennent
que deux des variables parmi x, y et z. On obtient donc les équations des cylindres projetants de
la courbe dans les trois plans coordonnés.

14.2.4 Contrôle du caractère plan d’une courbe donnée par ses
équations paramétriques

Le contrôle du caractère plan d’une courbe donnée par ses équations paramétriques peut s’effectuer
de plusieurs manières différentes [1]. L’une des méthodes les plus simples est de vérifier qu’il est
possible de repasser à une définition cartésienne de la surface (comme présenté au § 14.2.3) pour
laquelle l’une des surfaces est un plan. On peut également vérifier que l’ensemble des points de la
surface vérifie l’équation d’un plan unique.

14.2.4.1 Exemple

Soit la courbe définie par les équations paramétriques suivantes :

x =
R cos θ

R cos θ +R sin θ + k
(14.74)

y =
R sin θ

R cos θ +R sin θ + k
(14.75)

z =
k

R cos θ +R sin θ + k
(14.76)

(14.77)

Cette courbe est-elle une courbe plane ? Pour le vérifier, on peut contrôler s’il existe un quadruplet
(a, b, c, d) non identiquement nul tel que l’équation cartésienne d’un plan (ax + by + cz − d = 0)
se vérifie pour l’ensemble des points de la courbe. Ceci revient à vérifier qu’il existe (a, b, c, d) non
identiquement nul tel que :

a
R cos θ

R cos θ +R sin θ + k
+ b

R sin θ

R cos θ +R sin θ + k
+ c

k

R cos θ +R sin θ + k
− d = 0 (14.78)

pour toute valeur de θ. Cette expression, une fois réduite au même dénominateur devient :

(a− d)R cos θ + (b− d)R sin θ + (c− d) k ≡ 0 (14.79)

Pour que cette identité soit satisfaite pour tout θ, il faut vérifier simultanément :

a− d ≡ 0 (14.80)
b− d ≡ 0 (14.81)
c− d ≡ 0 (14.82)

(14.83)
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Ce qui est possible si on a les quatre coefficients égaux. La courbe est donc bien une courbe plane
inscrite dans un plan d’équation :

x+ y + z − 1 = 0 (14.84)
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Figure 14.13 – Représentation de la courbe pour R=4 et k=9.

La vérification du caractère plan de la courbe pouvait également s’effectuer en vérifiant que la
somme des équations 14.74, 14.75 et 14.76 donnait la relation :

x+ y + z =
R cos θ +R sin θ + k

R cos θ +R sin θ + k
= 1 (14.85)

ce qui signifie que la courbe peut être définie par l’intersection d’une surface avec un plan, ce qui
démontre le caractère plan de la courbe.

Références

[1] Y. Durand. Géométries et Communication Graphique : Tome IV : Géométrie Analytique et
Vectorielle, Partie 5 : Méthodes Algébriques et Vectorielles de Représentation d’une Courbe de
l’Espace 3D. Mutuelle d’édition FPMs, 2008-2009.
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CHAPITRE 15. GÉOMÉTRIE DIFFÉRENTIELLE 3D

Chapitre 15

Géométrie différentielle des courbes
spatiales et des surfaces

La tangente a plus de puissance que la sécante

- V. Hugo, Tas de pierres

15.1 Tangente à une courbe spatiale

15.1.1 Tangente en un point régulier d’une courbe spatiale

La détermination de la tangente à une courbe spatiale peut être réalisée en étendant le concept
de tangentes à une courbe plane (cf § 8.3). En partant de la fonction vectorielle définissant une
courbe : −→

V (t) = x (t)−→ux + y (t)−→uy + z (t)−→uz (15.1)

Figure 15.1 – Sécante à une courbe 3D.
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Le développement de Taylor de cette fonction vectorielle autour du point t0 s’écrit :

−→
V (t)−

−→
V (t0) =

(t− t0)1

1!

−→
V ′ (t0) +

(t− t0)2

2!

−→
V ′′ (t0) + · · ·+ (t− t0)n

n!

−→
V n (t0) +

−→
Rn (t, t0) (15.2)

avec

lim
t→t0

−→
Rn (t, t0)

(t− t0)n
=
−→
0 (15.3)

Le vecteur
−→
V (t) −

−→
V (t0) =

−−−→
M0M est aligné sur la sécante à la courbe passant par le point M

(figure 15.1).

Comme dans le cas 2D, la tangente est obtenue par le passage à la limite (t → t0) de la sécante,
en divisant les deux membres de l’équation 15.2 par (t− t0) :

lim
t→t0

−→
V (t)−

−→
V (t0)

t− t0
= lim

t→t0

(
−→
V ′ (t0) +

(t− t0)1

2!

−→
V ′′ (t0) + · · ·

· · ·+ (t− t0)n−1

n!

−→
V n (t0) +

−→
Rn (t, t0)

t− t0

)
(15.4)

Tous les termes autres que
−→
V ′ (t0) s’annulent quand t tend vers t0 :

lim
t→t0

−→
V (t)−

−→
V (t0)

t− t0
=
−→
V ′ (t0) (15.5)

ce qui signifie qu’un vecteur tangent à la courbe définie par sa fonction vectorielle en t0 est la dérivée
première de cette fonction vectorielle calculée en t0 si cette dérivée n’est pas le vecteur nul.
On parle dans ce cas de point régulier de la courbe. Comme dans le cas 2D, si la dérivée première
de la fonction vectorielle s’annule, on parlera de point singulier.
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15.1.2 Notion de point singulier d’une courbe spatiale

Comme dans le cas de courbes 3D, si la dérivée première de la fonction vectorielle d’une courbe
s’annule en un point, on parle de point singulier. Un vecteur tangent à la courbe peut être obtenu
en augmentant l’ordre de dérivation jusqu’à obtenir une dérivée d’ordre p de la fonction vectorielle
non nulle. Dans le cas de courbe spatiale, on peut faire la distinction entre deux types de points
singulier : les points dits de branchement (cf figure 15.2) et les points de rebroussement (figure
15.3). La détermination du type de point singulier de courbe spatiale sort du cadre de ce cours ;
elle est détaillée dans la référence[1].
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Figure 15.2 – La courbe de fonction vectorielle
−→
V (t) = t3 · −→ux + t4 · −→uy + (t3 + t4) · −→uz présente un

point singulier de branchement en l’origine.
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Figure 15.3 – La courbe de fonction vectorielle
−→
V (t) = t2 · −→ux + t5 · −→uy + t8 · −→uz présente un point

singulier de rebroussement en l’origine.
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15.1.3 Equations de la tangente à une courbe

Comme démontré précédemment, la direction du vecteur tangent en t0 est donnée par la
première dérivée non nulle de la fonction vectorielle de la courbe calculée en t0. On trouve donc
immédiatement que la fonction vectorielle décrivant le tangente à la courbe est :

−→
T (λ) =

−→
V (t0) + λ

−→
V p (t0) (15.6)

Les équations paramétriques de la tangente sont obtenues en projetant la fonction vectorielle sur
les axes du repère : 

x = Vx (t0) + λ · V p
x (t0)

y = Vy (t0) + λ · V p
y (t0)

z = Vz (t0) + λ · V p
z (t0)

(15.7)

La forme canonique des équations cartésiennes de cette tangente s’exprime selon :

x− Vx (t0)

V p
x (t0)

=
y − Vy (t0)

V p
y (t0)

=
z − Vz (t0)

V p
z (t0)

(15.8)

15.1.4 Exemples

Reprenons l’exemple de la courbe de Viviani étudiée au § 14.2.2.1 dont les équations paramétriques
sont : 

x = ±λ
√

1− λ2

R2

y = R− λ2

R
z = λ

(15.9)

Le signe ± indique qu’à une altitude déterminée, on a deux points distincts sur la courbe. Si on
cherche l’expression du vecteur dérivé à mi-hauteur (λ = R/2), il suffit de déterminer les dérivées
premières de la fonction vectorielle par rapport au paramètre λ :

dx

dλ
= ±


√

1− λ2

R2
+ λ

−2λ

R2√
1− λ2

R2

 = ± 1√
1− λ2

R2

dy

dλ
= −2

λ

R
dz

dλ
= 1

(15.10)

Les deux tangentes en λ = R/2 ont donc pour direction respectivement
(

2
√

3
3
,−1, 1

)
et(

−2
√

3
3
,−1, 1

)
. Les figures 15.4 et 15.5 représentent ces tangentes sur la courbe.

On peut également noter que la courbe de Viviani présente un point double en λ = 0 (la courbe
passe deux fois par le même point de l’espace) ; la dérivée première de la fonction vectorielle ne
s’y annule toutefois pas et on peut y calculer deux tangentes distinctes (1,-2,1) et (-1,-2,1).
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Figure 15.4 – Tangentes en λ = R/2 à la
courbe de Viviani.
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Figure 15.5 – Tangentes en λ = R/2 à la
courbe de Viviani..

15.2 Plan tangent à une surface

Un plan tangente à une surface en un point est le plan contenant simultanément l’ensemble des
tangentes à toutes les courbes de la surface passant par le point donné (figure 15.6). Un plan
tangent ne peut être défini que pour des points dits réguliers de la surface (cette notion sera
précisée plus loin dans cette section).

Figure 15.6 – Plan tangent à une surface.
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15.2.1 Surface décrite par son équation implicite

Soit une surface définie par son équation implicite F (x, y, z) = 0 (F et ses dérivées partielles
premières sont considérée comme continues). On considère qu’un point P de coordonnées
(xP , yP , zP ) est régulier si les dérivées premières de F calculées en ce point ne sont pas
simultanément toutes nulles, c’est-à-dire si :∣∣∣∣(∂F∂x

)
P

∣∣∣∣+

∣∣∣∣(∂F∂y
)
P

∣∣∣∣+

∣∣∣∣(∂F∂z
)
P

∣∣∣∣ 6= 0 (15.11)

Figure 15.7 – Plan tangent à une surface définie par son équation implicite.

Considérons une ligne appartenant à la surface, ses équations paramétriques sont de la forme :
x = f1 (t)
y = f2 (t)
z = f3 (t)

(15.12)

Comme la ligne appartient à la surface, l’ensemble de ses points vérifie l’équation de la surface, ce
qui implique que :

F (f1 (t) , f2 (t) , f3 (t)) ≡ 0 (15.13)

En dérivant cette expression par rapport au paramètre t et en particularisant au point P , on
obtient :(

dF

dt

)
P

=

(
∂F

∂f1

)
P

·
(
df1

dt

)
P

+

(
∂F

∂f2

)
P

·
(
df2

dt

)
P

+

(
∂F

∂f3

)
P

·
(
df3

dt

)
P

≡ 0 (15.14)
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Nous avons vu au chapitre précédent que les équations paramétriques de la tangente en P à la
courbe s’écrivaient (pour autant que le point P soit un point régulier) :

x = xP + λ

(
df1

dt

)
P

y = yP + λ

(
df2

dt

)
P

z = zP + λ

(
df3

dt

)
P

(15.15)

(xT , yT , zT ) représentent les coordonnées de points de la tangente à la courbe. En combinant ces
deux dernières expressions, on obtient :(

∂F

∂f1

)
P

· x− xP
λ

+

(
∂F

∂f2

)
P

· y − yP
λ

+

(
∂F

∂f3

)
P

· x− xP
λ

≡ 0 (15.16)

On peut noter que dériver F (x, y, z) selon x, y ou z est équivalent à dériver F (f1, f2, f3) selon f1,
f2 et f3, ce qui implique que les points de la tangente à la courbe vérifient l’équation :(

∂F

∂x

)
P

· (x− xP ) +

(
∂F

∂y

)
P

· (y − yP ) +

(
∂F

∂z

)
P

· (z − zP ) ≡ 0 (15.17)

Le même raisonnement aboutit à cette même conclusion pour n’importe quelle courbe prise sur
la surface (figure 15.7), ce qui signifie que l’équation 15.17 décrit l’équation cartésienne du plan
tangent à la surface en P . La condition de non singularité du point P (équation 15.11) assure
que l’équation ne dégénère pas en une équation 0 = 0. Il faut noter qu’un point singulier d’une
surface, il n’est pas possible de définir un plan tangent, mais bien un cône tangent à la surface[2].

15.2.1.1 Exemple

Soit une surface définie par la fonction implicite F (x, y, z) ≡ xyz−k3 = 0 (figure 15.8). Démontrer
que le tétraèdre formé par les plans Oxy, Oxz, Oyz et n’importe quel plan tangent à la courbe a
un volume constant.
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Figure 15.8 – Surface définie par l’équation F (x, y, z) ≡ xyz − k3 = 0 .
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L’équation cartésienne du plan tangent au point P s’écrit :

yP · zP (x− xP ) + xP · zP (y − yP ) + xP · yP (z − zP ) = 0 (15.18)
yP · zP · x+ xP · zP · y + xP · yP · z − 3 · xP · yP · zP = 0 (15.19)

L’ntersection de ce plan avec les axes du repère ont pour coordonnées A (3xP , 0, 0), B (0, 3yP , 0)
et C (0, 0, 3zP ). Le tétraèdre OABC a pour volume :

V =
1

3
· base · hauteur (15.20)

=
1

3
·
(

1

2
·OA ·OB

)
·OC (15.21)

=
1

3
·
(

1

2
· 3xP · 3yP

)
· 3zP (15.22)

=
9

2
xP · yP · zP (15.23)

Comme P appartient à la surface, xP · yP · zP est une constante qui vaut k3, ce qui signifie que le
volume du tétraèdre est constant et vaut :

V =
9

2
k3 (15.24)

15.2.2 Surface décrite par son équation explicite

Pour rappel, la forme explicite de représentation d’une surface est du type :

z = f(x, y) (15.25)

Cette expression est équivalente à la formulation implicite suivante :

F (x, y, z) ≡ z − f(x, y) = 0 (15.26)

On peut donc appliquer directement l’équation 15.17, en notant que dans le cas présent :

∂F

∂x
= −∂f

∂x
∂F
∂y

= −∂f
∂y

∂F

∂z
= 1 (15.27)

Ce qui donne :

−
(
∂f

∂x

)
P

· (x− xP )−
(
∂f

∂y

)
P

· (y − yP ) + (z − zP ) ≡ 0 (15.28)

Cette formulation est équivalente à celle décrite dans [3]
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15.2.3 Surface donnée par sa fonction vectorielle

Soit une surface définie par sa fonction vectorielle
−→
V (λ, µ). On peut mener le même type de

raisonnement que celui employé au § 15.2.1, c’est-à-dire de déterminer le plan tangent en un point
comme le plan contenant les tangentes à l’ensemble des courbes de la surface passant par un point
donné.

Figure 15.9 – Plan tangent à une surface définie par son équation vectorielle.

Dans le cas d’une surface définie par sa fonction vectorielle, il est possible de faire le choix de
courbes particulières de la surface à savoir les lignes coordonnées passant par le point déterminé
(figure 15.9). Pour rappel, les lignes coordonnées sont les lignes de la surface obtenues en
considérant que l’un des paramètres de la fonction vectorielle est constant. On peut donc prendre
comme deux vecteurs définissant le plan tangent les deux vecteurs tangents aux lignes coordonnées
passant par le point P. Si le point P est défini par les valeurs des paramètres λP et µP , les deux
lignes coordonnées passant par P ont pour fonction vectorielle respectivement

−→
V (λP , µ) (fonction

de µ uniquement) et
−→
V (λ, µP ) (fonction de λ uniquement). Les vecteurs tangents à ces courbes

ont pour fonction vectorielle :(
∂
−→
V (λ, µP )

∂λ

)
λP

et

(
∂
−→
V (λP , µ)

∂µ

)
µ

(15.29)

qui correspondent simplement aux dérivées partielles de la fonction vectorielle selon λ ou µ
calculées au point P. La fonction vectorielle du plan tangent s’établit donc selon :

−→
T (α, β) =

−→
V (λP , µP ) + α ·

(
∂
−→
V

∂λ

)
λP ,µP

+ β ·

(
∂
−→
V

∂µ

)
λP ,µP

(15.30)

Pour que cette équation détermine effectivement un plan, il faut que les deux vecteurs
(
∂V
∂λ

)
λP ,µP

et
(
∂V
∂µ

)
λP ,µP

soient linéairement indépendants, ce qui est une autre façon d’exprimer que le point

P ne soit pas singulier.
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15.2.3.1 Exemple

Soit une sphère définie par ses équations paramétriques :
x = 4 · cosφ · cos θ
y = 4 · cosφ · sin θ
z = 4 · sinφ

(15.31)

Déterminez les équations du plan tangent au point P défini par θ = π/4, φ = π/3.

Les dérivées partielles de la fonction vectorielle s’établissent selon :
∂x

∂θ
= −4 · cosφ · sin θ

∂y

∂θ
= 4 · cosφ · cos θ

∂z

∂θ
= 0



∂x

∂φ
= −4 · sinφ · cos θ

∂y

∂φ
= −4 · sinφ · sin θ

∂z

∂φ
= 4 · cosφ

(15.32)

Les équations paramétriques du plan tangent s’établissent donc comme suit :
x = 4 · cos

π

3
· cos

π

4
− α · 4 · cos

π

3
· sin π

4
− β · 4 · sin π

3
· cos

π

4
y = 4 · cos

π

3
· sin π

4
+ α · 4 · cos

π

3
· cos

π

4
− β · 4 · sin π

3
· sin π

4
z = 4 · sin π

3
+ β · 4 · cos

π

3

(15.33)

ce qui donne : 
x =
√

2−
√

2α−
√

6β

y =
√

2 +
√

2α−
√

6β

z = 2
√

3 + 2β

(15.34)

En additionnant les deux premières équations, on obtient{
x+ y = 2

√
2− 2

√
6β

z = 2
√

3 + 2β
(15.35)

En éliminant β entre ces deux équations, on obtient l’équation cartésienne du plan tangent (figure
15.10) qui est :

x+ y + 2
√

2− 2
√

6
z − 2

√
3

2
(15.36)

qui peût être réarrangée en :
x+ y −

√
6z + 8

√
2 = 0 (15.37)
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Figure 15.10 – Plan tangent à une sphère.

15.3 Normale à une surface en un point

A partir du moment où les équations du plan tangent sont obtenues, il est aisé de retrouver
les équations de la normale à une surface en un point. En effet, la normale à une surface est
orthogonale au plan tangent et passe par le point considéré (figure 15.11).

Figure 15.11 – Normale à une surface en un point.
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La fonction vectorielle décrivant cette normale est donc :
−−→
ON (λ) =

−→
OP + λ

−→
N (15.38)

−→
N est le vecteur normal au plan tangent à la surface au point P . Si la surface est décrite par sa
fonction implicite F (x, y, z) = 0, ce vecteur peut être obtenu selon :

−→
N =

((
∂F

∂x

)
P

,

(
∂F

∂y

)
P

,

(
∂F

∂z

)
P

)
(15.39)

Si la surface est décrite par sa fonction vectorielle
−→
V (λ, µ), un vecteur normal est obtenu en faisant

le produit vectoriel des deux vecteurs définissant le plan tangent :

−→
N =

(
∂
−→
V

∂λ

)
λP ,µP

∧

(
∂
−→
V

∂µ

)
λP ,µP

(15.40)

15.3.1 Exemple

Soit une sphère de centre C et de rayon R définie par son équation cartésienne :

F (x, y, z) ≡ (x− xC)2 + (y − yC)2 + (z − zC)2 −R2 = 0 (15.41)

Vérifions que les normales en tout point de la sphère passent bien par son centre.
Les composantes du vecteur normal sont :

(
∂F

∂x

)
P

= 2 (xP − xC)(
∂F

∂y

)
P

= 2 (yP − yC)(
∂F

∂z

)
P

= 2 (zP − zC)

(15.42)

Les équations paramétriques des normales sont donc :
x = xP + λ · 2 (xP − xC)
y = yP + λ · 2 (yP − yC)
z = zP + λ · 2 (zP − zC)

(15.43)

On remarque donc que si λ = −1/2, on obtient
x = xC
y = yC
z = zC

(15.44)

ce qui démontre la passage de la normale par le centre de la sphère.

Références

[1] Y. Durand. Géométries et Communication Graphique : Tome IV : Géométrie Analytique et
Vectorielle, Partie 3, chapitre VI : Géométrie différentielle des courbes gauches. Mutuelle
d’édition FPMs, 2009-2010.

237



RÉFÉRENCES

[2] Y. Durand. Géométries et Communication Graphique : Tome IV : Géométrie Analytique
et Vectorielle, Partie 7, Section 1 : Géométrie différentielle des surfaces courbes. Mutuelle
d’édition FPMs, 2010-2011.

[3] F. Fortemps. Mathématiques pour l’ingénieur 2 : Analyse - Calcul différentiel et intégral.
Mutuelle d’édition FPMs, 2012.

[4] Y. Durand. Géométries et Communication Graphique : Tome IV : Géométrie Analytique
et Vectorielle, Partie 7, Section 2 : Géométrie différentielle des surfaces courbes. Mutuelle
d’édition FPMs, 2009-2010.

238



Troisième partie

Annexes

239



Annexe A

Figures vierges de certains problèmes

Tout le succès d’une opération réside dans sa préparation.

- S. Tzu, L’art de la guerre

A.1 Introduction

Cette annexe rassemble un ensemble de figures vierges qui seront utilisées durant le cours oral.

A.2 Figures

Figure A.1 – Section d’une pyramide par le plan EFG (cf page 12).
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Figure A.2 – Projection de profil de points (cf page 41).
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Figure A.3 – Traces d’un plan défini par deux droites sécantes (cf page 44).
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Figure A.4 – Traces d’un plan défini par deux droites parallèles (cf page 45).
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Figure A.5 – Traces d’un plan défini par trois points (cf page 45).
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Figure A.6 – Trace d’un plan défini par une droite et un point (cf page 45).
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Figure A.7 – Point dans un plan défini par trois points (cf page 49).
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Figure A.8 – Point dans un plan défini par deux droites sécantes (cf page 50).
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Figure A.9 – Point dans un plan défini par deux droites parallèles (cf page 50).
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Figure A.10 – Point dans un plan défini par une droite et un point (cf page 51).
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Figure A.11 – Reconstruction de l’épure de Monge à partir du plan (cf page 63).
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Figure A.12 – Recherche du vu et du caché (cf page 66).

Géométries et communication graphique 251



ANNEXE A. FIGURES VIERGES DE CERTAINS PROBLÈMES

Figure A.13 – Recherche du vu et du caché sur plan (cf page 67).
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Figure A.14 – Intersection entre deux plans quelconques (LT = πhf = πfh = ρhf = ρfh), cf page 74.
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Figure A.15 – Point de percée d’une droite dans un plan (LT = πhf = πfh), cf page 78.Géométries et communication graphique 254
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Figure A.16 – Vraie grandeur par la règle du triangle rectangle (cf page 84).
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Figure A.17 – Rotation autour d’un axe vertical (cf page 89).
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Figure A.18 – Opération de rotation inverse pour retrouver le point P (cf page 92).
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ANNEXE B. EXEMPLE RÉCAPITULATIF SUR LA MANIPULATION DE PLANS
TECHNIQUES

Annexe B

Exemple récapitulatif sur la manipulation
de plans techniques

Vingt fois sur le métier remettez votre ouvrage, Polissez-le sans cesse, et le
repolissez, Ajoutez quelquefois, et souvent effacez.

- Boileau, L’Art poétique

B.1 Introduction

Ce chapitre reprend un exemple complet de résolution de problème associé à la lecture de plan
technique à savoir la représentation en isométrie, l’ajout d’une vue supplémentaire et la mise en
vraie grandeur de surface. Le problème a pour données les projections de face et de profil droit
d’une pièce dessinée sur un plan (figure B.1).

Figure B.1 – Deux vues d’une pièce (figure de travail en page 263.
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Figure B.2 – Figure de travail pour l’exemple.

Géométries et communication graphique 259



ANNEXE B. EXEMPLE RÉCAPITULATIF SUR LA MANIPULATION DE PLANS
TECHNIQUES

B.2 Isométrie

La première étape consiste à reconstituer la vue en isométrie de la pièce. Une méthode systématique
pour y parvenir consiste à décomposer en étapes élémentaires :

— dessiner le parallélépipède englobant la forme en reportant les dimensions maximales de la
pièce selon les trois axes (figure B.3) ;

— réaliser l’enlèvement de matière représentant la rainure inférieure (figure B.4) ;
— procéder de même pour obtenir la rainure trapézoïdale supérieure (figure B.5) ; enlever le

dernier morceau de matière pour obtenir les sommets de toutes les arêtes du volume (figure
B.6) ;

— repasser les arêtes visibles et effacer l’information devenue inutile (figure B.7) ;
— on peut éventuellement ajouter les arêtes cachées (figure B.8).

Figure B.3 – Parallélipipède englobant. Figure B.4 – Rainure inférieure.
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Figure B.5 – Rainure supérieure. Figure B.6 – Enlèvement de matière.

Figure B.7 – Dessin des arêtes visibles. Figure B.8 – Ajout des arêtes cachées.

Géométries et communication graphique 261



ANNEXE B. EXEMPLE RÉCAPITULATIF SUR LA MANIPULATION DE PLANS
TECHNIQUES

B.2.1 Vue de dessus

La vue de face et de profil droit correspondent aux projections frontales et de profil manipulées
en début de cours. Pour reconstituer la vue de dessus, il faut se fixer arbitrairement une ligne
de terre et une ligne de terre secondaire. Ceci permet de limiter le contour de la pièce en vue de
dessus (figure B.9). Une fois ce choix effectué, il ne reste plus qu’à projeter l’ensemble des autres
points (figure B.9).

Figure B.9 – Dessin des lignes de terre et
projection du contour externe.

Figure B.10 – Projection de l’ensemble des
autres points (figure aggrandie en page 267.
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Figure B.11 – Figure avec la vue de dessus.
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B.2.2 Vraie grandeur de la face inclinée

LA face inclinée est située dans un plan de bout, il suffit donc de faire le choix d’un axe de rotation
de bout pour rendre ce plan horizontal. On peut par exemple choisir l’arête inférieure de cette face
(figure B.12). Ensuite, les propriétés de la rotation sont appliquées pour obtenir la position des
points après rotation (projection frontale suivant un cercle, projection horizontale se déplaçant
parallèlement à la ligne de terre, figure B.13)

Figure B.12 – Choix d’un axe de bout. Figure B.13 – Rotation des points.

Une fois la position des points obtenus, il ne reste plus qu’à dessiner les arêtes correspondantes
(figure B.14).
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Figure B.14 – Figure finale.
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Annexe C

Rappels d’éléments de géométrie analytique

Recollect : to recall with additions something not previously known.

- A. Bierce, The Devil’s Dictionary

C.1 Analyse de courbes planes

C.1.1 Recherche des asymptotes d’une courbe plane

Par définition, une droite du plan est appelée asymptote d’une courbe plane si la distance d’un
point variable M de cette courbe à la droite tend vers zéro quand le point M tend vers l’infini. Il
existe trois types d’asymptotes suivant leur orientation :

— une asymptote horizontale est parallèle à l’axe des x ;
— une asymptote verticale est parallèle à l’axe des y ;
— une asymptote oblique a une orientation qui n’est parallèle ni à l’axe des x ni à l’axe des y.

De manière générale, une courbe peut présenter un nombre indéfini d’asymptotes (voire aucune
asymptote). Nous nous limiterons à l’étude des courbes en formulation explicite.

C.1.1.1 Asymptote horizontale

La courbe présente une asymptote horizontale si

lim
x→+∞

y(x) = a (C.1)

avec a fini (dans ce cas, y=a est l’équation de l’asymptote) ou si

lim
x→−∞

y(x) = b (C.2)

avec b fini (dans ce cas, y=b est l’équation de l’asymptote). Une courbe en formulation explicite
présente donc au plus deux asymptotes horizontales (éventuellement confondues).
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C.1.1.2 Asymptote verticale

La courbe présente une asymptote verticale si

lim
x→a

y(x) = ±∞ (C.3)

avec a fini (dans ce cas, x=a est l’équation de l’asymptote). Une courbe en formulation explicite
peut potentiellement présenter une infinité d’asymptotes verticales.

C.1.1.3 Asymptote oblique

Pour qu’une courbe en formulation explicite présente une asymptote oblique, il faut que la distance
entre l’asymptote et la courbe tende vers zéro pour x tendant vers plus ou moins l’infini. On peut
démontrer que ceci est équivalent à rechercher :

m = lim
x→+∞

y(x)

x
(C.4)

Si m est infini, la courbe ne présente pas d’asymptote oblique vers + l’infini ; si m est fini, on peut
calculer :

p = lim
x→+∞

[y(x)−mx] (C.5)

Deux cas de figure sont possibles :
— p est fini, l’asymptote a pour équation y(x)=mx+p ;
— p est infini, on dit que la courbe admet une branche parabolique sans asymptote, de

direction asymptotique y=mx (exemple : y(x) = x+
√
x) ;

Le même calcul peut être mené pour la limite vers - l’infini ; une courbe définie par sa forme
explicite possède donc au plus deux asymptotes obliques (éventuellement confondues).

C.1.1.4 Exemples

Soit la fonction :

f(x) = 2 +
x
√
x2 − 1 + x2

x− 1
(C.6)

Son domaine de définition est ]− inf −1[ ∩ ∩ [1 + inf[. Présente-t-elle des asymptotes ?

lim
x→1

=
1

0
(C.7)

x=1 est asymptote verticale de la fonction.

lim
x→−∞

f(x) = 2 + lim
x→−∞

(
x

x− 1

)
︸ ︷︷ ︸

1

lim
x→−∞

(√
x2 − 1 + x

)
︸ ︷︷ ︸

+∞−∞

(C.8)

= 2 + lim
x→−∞

(√
x2 − 1 + x

)
(C.9)

= 2 + lim
x→−∞

x2 − 1− x2

√
x2 − 1− x

(C.10)

= 2 + lim
x→−∞

−1√
x2 − 1− x

= 2 (C.11)

(C.12)
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y=2 est asymptote horizontale de la fonction.

lim
x→+∞

f(x) = 2 + lim
x→+∞

(
x

x− 1

)
︸ ︷︷ ︸

1

lim
x→+∞

(√
x2 − 1 + x

)
︸ ︷︷ ︸

+∞

= +∞ (C.13)

Recherche d’éventuelle asymptote oblique :

lim
x→+∞

f(x)

x
= lim

x→+∞

(
2

x

)
︸ ︷︷ ︸

0

+ lim
x→+∞

(
x

x− 1

)
︸ ︷︷ ︸

1

lim
x→+∞

(√
x2 − 1 + x

x

)
︸ ︷︷ ︸

+∞/+∞

(C.14)

= lim
x→+∞

(√
x2 − 1 + x

x

)
(C.15)

= lim
x→+∞

(√
1− 1/x2 + 1

)
= 2 (C.16)

(C.17)

On a potentiellement une asymptote oblique de coefficient directeur 2. Son ordonnée à l’origine se
calcule par :

lim
x→+∞

(f(x)− 2x) = 2 + lim
x→+∞

(
x
√
x2 − 1 + x2

x− 1
− 2x

)
(C.18)

= 2 + lim
x→+∞

(
x
√
x2 − 1 + x2

x− 1
− 2x2 − 2x

x− 1

)
(C.19)

= 2 + lim
x→+∞

(
x
√
x2 − 1− x2 + 2x

x− 1

)
(C.20)

= 2 + lim
x→+∞

(
x

x− 1

)
︸ ︷︷ ︸

1

lim
x→+∞

(√
x2 − 1− x+ 2

)
︸ ︷︷ ︸

+∞−∞

(C.21)

= 2 + lim
x→+∞

(√
x2 − 1− x+ 2

)
(C.22)

= 2 + lim
x→+∞

(
x2 − 1− (x− 2)2

√
x2 − 1 + (x− 2)

)
(C.23)

= 2 + lim
x→+∞

(
4x− 5√

x2 − 1 + (x− 2)

)
(C.24)

= 2 + lim
x→+∞

(
4− 5/x√

1− 1/x2 + (1− 2/x)

)
= 4 (C.25)

La droite y=2x+4 est donc asymptote oblique quand x tend vers +∞. Le graphe de la fonction
est représenté en figure C.1
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Figure C.1 – Graphe de la fonction prise pour exemple dans la recherche d’asymptotes.

C.1.2 Coniques sous forme réduite

C.1.2.1 Ellipse

La forme réduite d’une ellipse est

F (x, y) ≡ (x− xc)2

a2
+

(y − yc)2

b2
− 1 = 0 (C.26)

avec (xc, yc) définissant le centre de l’ellipse, a et b définissant les mesures des demis axes (figure
C.2). Ses équations paramétriques sont :{

x = xc + a · cos θ
y = yc + b · sin θ (C.27)

Figure C.2 – Ellipse réduite.

Les foyers sont situés à une distance c de part et d’autre du centre de l’ellipse sur son grand axe
(c =

√
|a2 − b2|). L’excentricité de l’ellipse ε vaut c/a.
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C.1.2.2 Hyperbole

La forme réduite d’une hyperbole est

F (x, y) ≡ (x− xc)2

a2
− (y − yc)2

b2
± 1 = 0 (C.28)

avec (xc, yc) définissant le centre de l’hyperbole (figure C.3). Ses équations paramétriques sont :{
x = xc ± a · cosh θ
y = yc + b · sinh θ

(C.29)

Les foyers sont situés à une distance c de part et d’autre du centre de l’hyperbole (c =
√
a2 + b2).

L’hyperbole présente deux asymptotes obliques d’équation

y = yc +
b

a
(x− xc) (C.30)

y = yc −
b

a
(x− xc) (C.31)

L’hyperbole est dite équilatère si a=b (ses asymptotes sont perpendiculaires).

Figure C.3 – Hyperbole réduite.

C.1.2.3 Parabole

La forme centrée et réduite d’une parabole d’axe x est

(y − yS)2 − 4p (x− xS) = 0 (C.32)

avec (xS, yS) définissant le sommet (figure C.4). Le foyer de la parabole se situe en (XS + p, YS).
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Figure C.4 – Parabole d’axe parallèle à x.

C.2 Représentation de plans

La surface spatiale la plus simple, à savoir le plan, va être utilisée pour introduire les diverses
formes de représentation d’une surface dans l’espace.

C.2.1 Equation vectorielle

L’équation vectorielle d’un plan représente le vecteur
−→
V variable qui joint l’origine du repère à

tous les points du plan (figure C.5).

Figure C.5 – Equation vectorielle du plan.
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Son expression est établie de la manière suivante :

−→
V (λ, µ) =

−→
OR +

−→
RP =

−→
OR + λ

−→
V1 + µ

−→
V2 (C.33)

avec R=(x0, y0, z0) un point du plan,
−→
V1 = (a, b, c) et

−→
V2 = (d, e, f) deux vecteurs linéairement

indépendants du plan. Physiquement, le fait de pouvoir représenter tout point du plan par
l’intermédiaire de deux paramètres λ et µ revient à laisser deux degrés de liberté en translation au
point parcourant le plan. En termes d’algèbre, la représentation d’un plan est donc une application
de R2 → R3 qui associe à tout point du plan (coordonnées λ et µ du point dans le plan) un point
de l’espace.

C.2.1.1 Forme normale

Soit
−→
N un vecteur normal au plan (

−→
N =

−→
V1 ∧

−→
V2 par exemple). On peut exprimer que

−→
N est

orthogonal à tout vecteur du plan par (figure C.6) :

−→
N ·

(−→
V −

−→
OR
)

= 0 (C.34)

avec
−→
V un vecteur (variable) reliant l’origine du repère à chaque point du plan. Cette équation

Figure C.6 – Equation vectorielle normale du plan.

peut également s’exprimer par : −→
N ·
−→
V =

−→
N ·
−→
OR = k (C.35)

Où k est une constante pour le plan considéré (car
−→
OR et

−→
N sont constants). Cette expression

est dénommée forme normale constante du plan, elle exprime que la projection de tout vecteur
joignant l’origine à un point du plan sur la normale au plan est constante.
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C.2.2 Equations paramétriques

En projetant la relation C.33 selon les axes, on obtient le système d’équations suivant :
x = x0 + λa+ µd
y = y0 + λb+ µe
z = z0 + λc+ µf

(C.36)

Ce système d’équation constitue les équations paramétriques du plan (ou forme paramétrique du
plan). En faisant varier λ et µ de −∞ à ∞, on obtient les coordonnées de l’ensemble des points
constituant le plan.

C.2.3 Equation cartésienne

En éliminant les paramètres λ et µ dans le système C.36, on obtient successivement :
λ =

x− x0 − µd
a

y = y0 +
x− x0 − µd

a
b+ µe

z = z0 +
x− x0 − µd

a
c+ µf

(C.37)


µ =

(
y − y0 − b

a
(x− x0)

)
/
(
e− db

a

)
=

a (y − y0)− b (x− x0)

ea− db
z = z0 +

x− x0 − µd
a

c+ µf

(C.38)

a (z − z0) = c (x− x0) + (af − cd)
a (y − y0)− b (x− x0)

ea− db
(C.39)

ce qui donne en développant :(
b
af − cd
ae− bd

− c
)
x+

(
cd− af
ae− bd

)
y + az +

[
cx0 −

af − cd
ae− bd

(bx0 − ay0)− az0

]
= 0 (C.40)

C’est-à-dire une équation linéaire en x,y et z de la forme suivante :

Ax+By + Cz −D = 0 (C.41)

Cette équation est appelée équation cartésienne du plan (ou forme cartésienne implicite du plan).
L’ensemble des points ayant des coordonnée x,y et z vérifiant l’équation sont des points appartenant
au plan. Il faut noter que les coefficients A,B,C et D de cette équation sont définis à une constante
multiplicative près.
On peut définir un vecteur normal au plan en prenant un vecteur de coordonnées (A,B,C) (figure
C.7).

Ceci se démontre de manière simple en prenant trois points quelconques du plan :

P1

(
x1, y1,

D − A · x1 −Bb · y1

C

)
P2

(
x2, y2,

D − A · x2 −B · y2

C

)
P3

(
x3, y3,

D − A · x3 −B · y3

C

) (C.42)

273



ANNEXE C. RAPPELS D’ÉLÉMENTS DE GÉOMÉTRIE ANALYTIQUE

Figure C.7 – Normale à un plan.

Un vecteur normal du plan peut être défini par :

−→
N =

−−→
P2P1 ∧

−−→
P3P1 =

∣∣∣∣∣∣∣∣∣
−→ux −→ux −→ux

x1 − x2 y1 − y2 −
A

C
(x1 − x2)− B

C
(y1 − y2)

x1 − x3 y1 − y3 −
A

C
(x1 − x3)− B

C
(y1 − y3)

∣∣∣∣∣∣∣∣∣ (C.43)

Ce qui donne : 
Nx = −A

C
· [(y1 − y3) · (x1 − x2)− (y1 − y2) · (x1 − x3)]

Ny = −B
C
· [(y1 − y3) · (x1 − x2)− (y1 − y2) · (x1 − x3)]

Nz = − (y1 − y3) · (x1 − x2) + (y1 − y2) · (x1 − x3)

(C.44)

En divisant l’ensemble des termes par −(y1 − y3) · (x1 − x2)− (y1 − y2) · (x1 − x3)

C
, on retrouve

bien (A,B,C) comme vecteur normal.

C.2.3.1 Forme implicite d’un plan donné par les points de percée des axes dans ce
plan

Si ax+by+cz-d=0 est l’équation cartésienne d’un plan, les points U=(d/a ;0 ;0), V=(0 ;d/b ;0) et
W=(0 ;0 ;d/c) situés sur les axes appartiennent à ce plan (on parle des coordonnées à l’origine du
plan, figure C.8).

De manière réciproque, si un plan passe par les points U=(xU ;0 ;0), V=(0 ;yV ;0) et W=(0 ;0 ;zW ),
ce plan aura pour équation :

(1/xU)x+ (1/yV ) y + (1/zW ) z − 1 = 0 (C.45)
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Figure C.8 – Coordonnées à l’origine d’un plan.

C.2.4 Passage d’une représentation d’un plan à une autre

C.2.4.1 Passage de la forme normale à la forme implicite

Si la forme normale est donnée par un produit mixte(−→
V −

−→
OR
)
·
(−→
V1 ∧

−→
V2

)
= 0 (C.46)

le développement du produit mixte donne immédiatement[1] :∣∣∣∣∣∣
x− xR y − yR z − zR
V1x V1y V1z

V2x V2y V2z

∣∣∣∣∣∣ = 0 (C.47)

Qui permet par développement de retrouver la forme implicite ax+by+cz-d=0 du plan.
Si l’équation normale est donnée sous la forme :

−→
N ·

(−→
V −

−→
OR
)

= 0 (C.48)

un simple développement du produit scalaire donne

Nx (x− xR) +Ny (y − yR) +Nz (z − zR) = 0 (C.49)

Qui donne également accès à la forme implicite du plan.
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C.2.4.2 Passage de la forme normale à la forme vectorielle

Pour établir la forme vectorielle il est nécessaire de déterminer deux vecteurs qui doivent satisfaire
aux conditions suivantes :

— Les deux vecteurs doivent êtres orthogonaux à
−→
N ;

— les deux vecteurs doivent être linéairement indépendants (en particulier, ils ne peuvent être
nuls).

L’idée de base est de choisir un premier vecteur du plan
−→
V1 puis de rechercher un second vecteur par

le produit vectoriel
−→
V2 =

−→
N ∧
−→
V1 qui est à la fois orthogonal à

−→
N comme demandé, mais également

orthogonal à
−→
V1. L’emploi de vecteurs unitaires pour

−→
N ,
−→
V1 et

−→
V2 permet une simplification des

calculs en ajoutant des contraintes sur les coordonnées des vecteurs (seules deux composantes
doivent être déterminées au lieu de trois).

C.2.4.3 Passage de la forme cartésienne à la forme normale

La forme normale nécessite la définition d’un point du plan et d’un vecteur normal au plan. Ce
vecteur normal est trouvé de manière immédiate comme ayant des coordonnées (a,b,c) si le plan a
pour équation ax+by+cz-d=0. La recherche des coordonnées d’un point du plan revient à se fixer
arbitrairement deux coordonnées de ce point et de rechercher la troisième coordonnée qui garantit
l’appartenance de ce point au plan.

C.2.4.4 Passage de la forme implicite à la forme paramétrique

Il existe une infinité de paramétrisations possibles pour un plan. Le choix le plus simple consiste
à employer la paramétrisation suivante :

x = α
y = β
z = 1

c
· [d− (aα + bβ)]

(C.50)

La fonction vectorielle du plan s’établira ensuite par :

−→
V = α−→ux + β−→uy +

1

c
· [d− (aα + bβ)]−→uz (C.51)

ou encore
−→
V =

d

c
−→uz + α

(−→ux − a

c
−→uz
)

+ β

(
−→uy −

b

c
−→uz
)

(C.52)
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C.3 Représentation de droites

C.3.1 Equations cartésiennes

La droite est l’exemple le plus simple d’une courbe de l’espace. Sa définition peut être réalisée par
l’intermédiaire de l’intersection de deux plans π et ρ (figure C.9). Une droite possède donc deux
équations cartésiennes de la forme suivante :{

Ax+By + Cz −D = 0
Ex+ Fy +Gz −H = 0

(C.53)

Les deux plans π et ρ ne doivent bien évidemment pas être parallèles pour présenter une droite

d’intersection. Ceci implique que la matrice
[
A B C
E F G

]
soit de rang 2 ((A,B,C) linéairement

indépendant de (E,F,G)).

Figure C.9 – Définition de droite par ses équations cartésiennes.

C.3.2 Forme canonique

Si on considère un point P(xP , yP , zP ) quelconque de la droite, celui-ci appartient aux deux plans,
on peut donc écrire : {

AxP +ByP + CzP −D = 0
ExP + FyP +GzP −H = 0

(C.54)

En soustrayant les relations C.54 de C.53, on obtient un système équivalent :{
A (x− xP ) +B (y − yP ) + C (z − zP ) = 0
E (x− xP ) + F (y − yP ) +G (z − zP ) = 0

(C.55)

Comme le système est de rang 2, il existe ∞1 de solutions, les solutions sont de la forme :

x− xP = k (BG− FC)
y − yP = k (EC −GA)
z − zP = k (AF − EB)

(C.56)
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Avec k un paramètre (pouvant varier de − inf à + inf. Ces trois équations peuvent se synthétiser
sous la forme suivante :

x− xP
BG− FC

=
y − yP

EC −GA
=

z − zP
AF − EB

(C.57)

Cette forme est appelée forme canonique de la droite.

C.3.2.1 Forme canonique d’une droite orthogonale aux axes de coordonnées

Soit une droite passant par les points P1(x1, y1, z1) et P2(x2, y2, z1). Cette droite est bien
évidemment orthogonale à l’axe Z (sa cote Z reste constante). La forme canonique de cette droite
s’écrirait sous la forme :

x− x1

x2 − x1

=
y − y1

y2 − y1

=
0

0
(C.58)

Ce qui n’a pas beaucoup de sens. Dans ce cas particulier, il faut substituer à la forme canonique
le système suivant :  z = z1

x− x1

x2 − x1

=
y − y1

y2 − y1

(C.59)

qui revient en fait à la définition d’une droite sous la forme de l’intersection de deux plans (figure
C.10).

Figure C.10 – Droite orthogonale à l’axe Z.

C.3.2.2 Forme canonique d’une droite perpendiculaire à un des plans de coordonnées

Soit une droite passant par les points P1(x1, y1, z1) et P2(x1, y1, z2). Cette droite est bien
évidemment parallèle à l’axe Z (figure C.11). La forme canonique de cette droite s’écrirait sous la
forme :

0

0
=

0

0
=

z − z1

z2 − z1

(C.60)
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Qui, comme pour le § précédent n’a pas beaucoup de sens. De nouveau, il faut substituer à la
forme canonique le système suivant : {

x = x1

y = y1
(C.61)

qui correspond à nouveau à une définition de la droite sous forme d’équations cartésiennes.

Figure C.11 – Droite parallèle à l’axe Z.

C.3.3 Equation vectorielle

La définition vectorielle d’une droite se base sur le vecteur joignant l’origine à un point de la droite
et sur un vecteur directeur de la droite (figure C.12). Cette équation a la forme suivante :

−→
OP =

−→
OA+ k ·

−→
V (C.62)

Figure C.12 – Equation vectorielle de droite.
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Le passage des équations cartésiennes à l’équation vectorielle d’une droite se réalise de manière
aisée en considérant que le vecteur directeur de l’intersection de deux plans. Un vecteur directeur
est obtenu par le produit vectoriel entre les vecteurs normaux aux deux plans (le vecteur −→v est
parallèle au vecteur

−→
N1 ∧

−→
N2).

En considérant que la droite passe par deux points connus P1 et P2, la fonction vectorielle de la
droite peut également s’écrire sous la forme :

−→
OP =

−−→
OP1 + λ

−−→
P1P2 (C.63)

ou encore
−→
OP−

−−→
OP1 =

−−→
P1P = λ

−−→
P1P2, ce qui implique que les vecteurs

−−→
P1P et

−−→
P1P2 sont colinéaires.

Une autre présentation de l’équation vectorielle d’une droite est donc :(−→
OP −

−−→
OP1

)
∧
(−−→
OP2 −

−−→
OP1

)
= 0 (C.64)

C.3.4 Equations paramétriques

Comme dans le cas des équations paramétriques d’un plan, les équations paramétriques d’une
droite sont obtenues en projetant l’équation vectorielle d’une droite dans un repère orthonormé :

x = xA + k · l
y = yA + k ·m
z = zA + k · n

(C.65)

Ces équations paramétriques permettent également d’interpréter les équations sous forme
canonique d’une droite. En effet, ces équations ont une forme générale :

x− xA
l

=
y − yA
m

=
z − zA
n

= k (C.66)

Les numérateurs de ces équations correspondent donc aux paramètres directeurs de la droite.

C.4 Mesure de distances

C.4.1 Distance entre points

La notion de distance classiquement employée dans l’espace est la distance euclidienne (figure
C.13) entre deux points définie dans un repère orthonormé par :

dP→Q =
∥∥∥−→PQ∥∥∥ =

√
(xP − xQ)2 + (yP − yQ)2 + (zP − zQ)2 (C.67)
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Figure C.13 – Calcul de la distance entre deux points.

C.4.2 Distance point droite

Soit une droite passant par un point P1 et de vecteur directeur (l,m,n) et un point P0 extérieur à
cette droite (figure C.14). La distance entre le point et la droite est mesurée selon la perpendiculaire
à la droite, c’est-à-dire dans un plan perpendiculaire à la droite. Le problème revient à la
détermination du point de percée P de la droite d dans le plan normal à d passant par P0.
La démarche de résolution est donc la suivante :

— établissement de l’équation cartésienne du plan normal :
— (l · (x− x0) +m · (y − y0) + n · (z − z0) = 0) ;

— recherche du point de percée P de d dans ce plan ;
— calcul de la distance entre P et P0.

Figure C.14 – Calcul de la distance entre un point et une droite.
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C.4.3 Distance point plan

La distance d’un point à un plan est mesurée parallèlement à la normale au plan (figure C.15).
Soit un point P = (x0; y0; z0) et un plan d’équation cartésienne Ax+By+Cz-D=0.

Figure C.15 – Calcul de la distance entre un point et un plan.

Le point de percée de la normale au plan passant par P est obtenu en combinant les équations
paramétriques de la droite perpendiculaire au plan passant par P :

x = x0 + Aλ
y = y0 +Bλ
z = z0 + Cλ

(C.68)

Avec l’équation cartésienne du plan. L’intersection se produit pour λQ′ = −(Ax0 + By0 + Cz0 −
D)/(A2 +B2 + C2). Le point de percée Q′ a donc pour coordonnées :

x = x0 + AλQ′

y = y0 +BλQ′

z = z0 + CλQ′

(C.69)

La distance entre le point P et le plan π est donc calculé comme étant la norme de PQ′, à savoir∥∥∥−−→PQ′∥∥∥ =

√
(x0 + AλQ′ − x0)2 + (y0 +BλQ′ − y0)2 + (z0 + CλQ′ − z0)2 (C.70)

= |λQ′ |
√
A2 +B2 + C2 (C.71)

Ce qui correspond donc à : ∥∥∥−−→PQ′∥∥∥ =
|Ax0 +By0 + Cz0 −D|√

A2 +B2 + C2
(C.72)
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C.5 Angle entre plans

C.5.1 Angle dièdre

Par définition, la mesure de l’angle dièdre (ou le rectiligne du dièdre) que forment deux plans est
l’angle mesuré dans un plan perpendiculaire à l’intersection entre les deux plans.

Soit un plan γ perpendiculaire à l’intersection de π et ρ, si nous menons dans ce plan des
perpendiculaires aux traces des deux plans, on définit un quadrilatère JMNP. Dans ce quadrilatère,
la somme des angles vaut 2π radians, l’angle entre les perpendiculaires est donc le supplémentaire
de l’angle formé entre les plans.

Figure C.16 – Angle entre deux plans.

En orientant les normales dans la direction inverse, on obtiendrait directement l’angle entre les
plans. En résumé, l’angle entre deux plans d’équation cartésienne

A1x+B1y + C1z −D1 = 0
A2x+B2y + C2z −D2 = 0

(C.73)

peut être calculé par

α = arccos

(
± A1A2 +B1B2 + C1C2√

A2
1 +B2

1 + C2
1

√
A2

2 +B2
2 + C2

2

)
(C.74)

Si les plans sont donnés sous leur forme normale, cette expression se réduit à

α = arccos (± (a1a2 + b1b2 + c1c2)) (C.75)
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C.5.2 Perpendicularité entre plans

Si deux plans sont perpendiculaires entre eux leurs vecteurs normaux sont orthogonaux entre eux
(figure C.17).

Figure C.17 – Plans perpendiculaires (vue orientée selon la droite d’intersection).

Donc si deux plans sont définis par leurs équations cartésiennes :

A1x+B1y + C1z −D1 = 0
A2x+B2y + C2z −D2 = 0

(C.76)

La condition de perpendicularité s’écrira
−→
N1 ·
−→
N2 = 0 ou encore A1A2 +B1B2 + C1C2 = 0.

C.5.3 Plans parallèles

Deux plans parallèles entre eux ont nécessairement leurs normales parallèles (figure C.18). La
condition de parallélisme entre deux plans définis par leurs équations cartésiennes (équation C.76)
s’exprimera donc par :

A1

A2

=
B1

B2

=
C1

C2

(C.77)

Si les vecteurs normaux sont unitaires, la condition de parallélisme peut également s’exprimer par

−→n1 · −→n2 = 1 (C.78)
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Figure C.18 – Plans parallèles.

C.6 Angle droite/plan

C.6.1 Perpendicularité plan/droite

Soient :
— une droite de paramètres directeurs (l,m,n) ;
— un plan d’équation cartésienne Ax+By+Cz-D=0.

Pour que la droite soit perpendiculaire au plan, il faut que le vecteur directeur de cette droite soit
parallèle au vecteur normal du plan (figure C.19), ce qui implique d’avoir une proportionnalité
entre les composantes de ces vecteurs :

l

A
=
m

B
=
n

C
(C.79)

L’expression d’un plan perpendiculaire à une droite passant par un point R(xR, yR, zR) sera donc :

l (x− xR) +m (y − yR) + n (z − zR) = 0 (C.80)

L’ensemble des plans perpendiculaires à une droite donnée (famille de plans perpendiculaires à
une droite) s’exprime donc par :

lX +mY + nZ = β (C.81)

avec le paramètre β valant l · xR +m · yR + n · zR.
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Figure C.19 – Droite perpendiculaire à un plan.

C.6.2 Droite parallèle à un plan donné

Rappelons que pour qu’une droite soit parallèle à un plan, il suffit qu’elle soit parallèle à une
droite de ce plan. Comme la droite est parallèle à une droite du plan, elle est donc orthogonale au
vecteur normal au plan. La condition de parallélisme entre une droite de vecteur directeur (l,m,n)
et un plan d’équation cartésienne AX+BY+CZ-D=0 s’écrit donc :

lA+mB + nC = 0 (C.82)

C.7 Etablissement de l’équation de plans particuliers

C.7.1 Plan passant par une droite et parallèle à une autre droite

Rechercher un plan passant par une droite d1 et parallèle à une droite d2 passe par l’établissement
de la fonction vectorielle du plan. Soit R un point quelconque de d1,

−→
V1 le vecteur directeur de d1

et
−→
V2 le vecteur directeur de d2. La fonction vectorielle du plan s’établit simplement par :

−→
V =

−→
OR + λ

−→
V1 + µ

−→
V2 (C.83)
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C.7.2 Plan passant par une droite et par un point extérieur à cette
droite

Soit S le point donné et R un point quelconque de la droite d. Le vecteur
−→
RS peut être pris comme

deuxième vecteur permettant de définir l’équation vectorielle du plan.

Figure C.20 – Plan passant par une droite et un point.

C.7.3 Plan passant par trois points

Soient les trois points R(xR, yR, zR), S(xS, yS, zS) et T(xT , yT , zT ). En considérant les vecteurs
−→
V 1 =

−→
RS et

−→
V 2 =

−→
ST , l’expression vectorielle peut être obtenue. Par développement, on obtient

la forme implicite cartésienne qui est équivalente à :∣∣∣∣∣∣
x− xR y − yR z − zR
xS − xR yS − yR zS − zR
xT − xR yT − yR zT − zR

∣∣∣∣∣∣ = 0 (C.84)

Il faut noter que cette méthode n’est pas la plus rapide en pratique pour obtenir l’équation d’un
plan.

C.7.4 Plan passant par une droite et perpendiculaire à un plan donné

Pour rappel, deux plans sont perpendiculaires si l’un contient une droite perpendiculaire à l’autre.
Ce problème se résoud donc en employant le vecteur normal au plan donné comme deuxième
vecteur utilisé dans l’équation vectorielle du plan recherché.

C.7.5 Plan perpendiculaire à deux plans donnés et passant par un point
donné

Les vecteurs normaux
−→
N1 et

−→
N2 des deux plans donnés peuvent être employés pour obtenir

l’expression vectorielle du plan : −→
V =

−→
OR + λ

−→
N1 + µ

−→
N2 (C.85)
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Comme le plan recherché est perpendiculaire à la fois aux deux plans donnés, ce plan est donc
perpendiculaire à leur intersection. Le vecteur

−→
N1 ∧

−→
N2 peut donc être employé comme vecteur

normal au plan, permettant de retrouver directement l’équation implicite du plan.
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Annexe D

Formulaire

Géométrie vectorielle

Norme d’un vecteur dans un repère orthonormé : ‖−→a ‖ =

√
n∑
i=1

a2
i

Vecteur unitaire −→u parallèle à −→a : −→u = ± −→a
‖−→a ‖

Combinaison linéaire de deux vecteurs : −→c = k · ~a+ l ·~b⇒ ci = k · ai + l · bi

Produit scalaire : −→a ·
−→
b = ‖−→a ‖

∥∥∥−→b ∥∥∥ cos θ =
n∑
i=1

aibi

Produit vectoriel :−→a ∧
−→
b = −→c ⇒ ‖−→c ‖ = ‖−→a ‖

∥∥∥−→b ∥∥∥ sin θ

−→a ∧
−→
b =

∣∣∣∣∣∣
−→ux −→uy −→uz
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = (a2b3 − a3b2)−→ux + (a3b1 − a1b3)−→uy + (a1b2 − a2b1)−→uz

Coniques

Forme implicite F (x, y) ≡ ax2+bxy+cy2+dx+ey+f = 0. Déterminant caractéristique ∆ = b2−4ac
(∆ < 0 : ellipse ; ∆ = 0 : parabole ; ∆ > 0 : hyperbole).
Pour la réduction :

— si a 6= c, θ = 0, 5 arctan b
a−c ;

— si a = c, θ = π/4.
Forme réduite F (x′y′) ≡ a′x′2 + b′y′2 + c′x′ + d′y′ + e′ = 0

a′ = a cos2 θ + b cos θ sin θ + c sin2 θ
b′ = a sin2 θ − b cos θ sin θ + c cos2 θ
c′ = d cos θ + e sin θ
d′ = −d sin θ + e cos θ
e′ = f
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tangente et normale à une courbe

Tangente : y = yM0 +

(
dy

dx

)
M0

(x− xM0)

Normale :y = yM0 − 1(
dy

dx

)
M0

(x− xM0)

— Forme implicite :
dy

dx
= −

∂F (x, y)

∂x
∂F (x, y)

∂y

;

— Forme paramétrique :
dy

dx
=

dy

dp
dx

dp

;

— Forme polaire :
dy

dx
=
r′(θ) sin θ + r(θ) cos θ

r′(θ) cos θ − r(θ) sin θ
;

Points singuliers

Tangente à une courbe sous forme vectorielle :

−→
T (λ) =

−→
T (t0) + λ

−→
T p (t0) avec


−→
T p (t0) 6= −→0
p ∈ N∗
p est minimum

(D.1)

si p=1 on parle de point régulier, dans le cas contraire, le point est singulier.

Asymptotes

Asymptote horizontale lim
x→±∞

y(x) = a. Asymptote verticale lim
x→a

y(x) = ±∞.

Asymptote oblique y = mx+ p : m = lim
x→+∞

y(x)
x

; p = lim
x→+∞

[y(x)−mx].

Longueur

s =
∫ u
u0
ds avec ds2 = dx2 + dy2. Forme explicite :

∫ tn

t0

√
1 +

(
∂y(t)

∂t

)2

dt

Forme polaire : s =

∫ θ

θ0

√(
df(θ)

dθ

)2

+ (f(θ))2 · dθ ;
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Courbure

1

ρ
= lim

∆s→0

∣∣∣∣∆ϕ∆s

∣∣∣∣ =

∣∣∣∣(dϕds
)
s

∣∣∣∣ =

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2
)3/2

En équation implicite : 1
ρ

=

∂F
∂y

2 ∂2F

∂x2
− 2

∂2F

∂x∂y

∂F

∂x

∂F

∂y
+
∂2F

∂y2

(
∂F

∂x

)2

∂F
∂x

2

+

∂F
∂y

2
3
2

En équation paramétrique : 1
ρ

=

∂ψ

∂t
· ∂

2η

∂t2
− ∂η

∂t
· ∂

2ψ

∂t2∂ψ
∂t

2

+

∂η
∂t

2
3
2

En équation polaire : 1
ρ

=

∣∣∣∣∣r2 + 2

(
dr

dθ

)2

− rd
2r

dθ2

∣∣∣∣∣[(
dr

dθ

)2

+ r2

] 3
2

Géométrie spatiale

Distance entre un point (x0, y0, z0) et un plan Ax+By + Cz −D = 0 :
|Ax0 +By0 + Cz0 −D|√

A2 +B2 + C2

Matrice de transformation homogène

Rotation autour des axes de coordonnées

R (X, θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 R (Y, θ) =


cos θ 0 sin θ 0
0 1 0 0
− sin θ 0 cos θ 0
0 0 0 1

 (D.2)

R (Z, θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 (D.3)
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Rotation autour d’un axe quelconque

Jn =

 0 −nz ny
nz 0 −nx
−ny nx 0

 R
(−→
N , θ

)
= I + sin θ · Jn + (1− cos θ) · J2

n (D.4)

Translation


1 0 0 Tx
0 1 0 Ty
0 0 1 Tz
0 0 0 1

 (D.5)

Symétrie orthogonale par rapport aux plans coordonnés

ROXY =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ROXZ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ROY Z =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (D.6)

Symétrie orthogonale par rapport à un plan quelconque

Rπ = I − 2 · −→n · −→n T (D.7)

Scaling

H =


hx 0 0 0
0 hy 0 0
0 0 hz 0
0 0 0 1

 (D.8)
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Quadriques

Forme générale

F (x, y, z) ≡ Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz +Gx+Hy + Iz + J = 0 (D.9)

Forme réduite

F (x, y, z) = A′x2 +B′y2 + C ′z2 +D′x+ E ′y + F ′z +G′ = 0 (D.10)

Formes propres :

— l’ellipsoïde F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
+

(z − zC)2

c2
− 1 = 0 ;

— l’hyperboloïde à une nappe F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
− (z − zC)2

c2
− 1 = 0 ;

— l’hyperboloïde à deux nappes F (x, y, z) =
(x− xC)2

a2
+

(y − yC)2

b2
− (z − zC)2

c2
+ 1 = 0 ;

— le paraboloïde hyperbolique F (x, y, z) =
(x− xC)2

a2
− (y − yC)2

b2
− (z − zC) = 0 ;

— le paraboloïde elliptique F (x, y, z) =
(x− xS)2

a2
+

(y − yS)2

b2
− (z − zS) = 0 ;

— le cône à base elliptique F (x, y, z) =
(x− xS)2

a2
+

(y − yS)2

b2
− (z − zS)2

c2
= 0 ;

Figure D.1 – Ellipsoïde.
Figure D.2 – hyperboloïde à
une nappe.

Figure D.3 – hyperboloïde à
deux nappes.

Figure D.4 – Paraboloïde
hyperbolique.

Figure D.5 – Paraboloïde
elliptique. Figure D.6 – Cône elliptique.

Surface de révolution autour de l’axe z

F (
√
x2 + y2, z) = 0 (D.11)
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Paramétrisations classiques

Figure D.7 – Coordonnées sphériques. Figure D.8 – Coordonnées cylindriques.

Equation paramétrique des quadriques

Ellipsoïde Hyperboloïde à une nappe Hyperboloïde à deux nappes
x = xC + a · cosu · cos v
y = yC + b · cosu · sin v
z = zC + c · sinu


x = xC + a · coshu · cos v
y = yC + b · coshu · sin v
z = zC + c · sinhu


x = xC + a · sinhu · cos v
y = yC + b · sinhu · sin v
z = zC ± c · coshu

Paraboloïde hyperbolique Paraboloïde elliptique Cône à base elliptique
x = xC + a · u
y = yC + b · v
z = zC + c · (u2 − v2)


x = xS + a ·

√
u cos v

y = yS + b ·
√
u sin v

z = zS + u


x = xS + a · u cos v
y = yS + b · u sin v
z = zS + c · u

Géométrie différentielle de surfaces

Forme cartésienne

point singulier surface : ∣∣∣∣(∂F∂x
)
P

∣∣∣∣+

∣∣∣∣(∂F∂y
)
P

∣∣∣∣+

∣∣∣∣(∂F∂z
)
P

∣∣∣∣ = 0 (D.12)

Plan tangent à une surface en un point régulier :(
∂F

∂x

)
P

(x− xP ) +

(
∂F

∂y

)
P

(y − yP ) +

(
∂F

∂z

)
P

(z − zP ) = 0 (D.13)

En forme explicite :

−
(
∂f

∂x

)
P

(x− xP )−
(
∂f

∂y

)
P

(y − yP ) + (z − zP ) = 0 (D.14)

Forme vectorielle

Plan tangent :

−→
T (α, β) ≡

−→
V (λP , µP ) + α ·

(
∂
−→
V

∂λ

)
λP ,µP

+ β ·

(
∂
−→
V

∂µ

)
λP ,µP

(D.15)
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