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Avant-propos

Ce cours a pour objectif de présenter les principes de représentation de figures géométriques, tant
du point de vue dessin que représentation mathématique. Il se base largement sur sa premiére
version qui a été compilée durant 'année académique 2012-2013.

Pour partie, ce cours constitue une sélection d’éléments des ouvrages édités par le professeur Yves
Durand, avec certaines adaptations ou compléments.

Les ouvrages rédigés par le professeur Durand présentent ’avantage d’une description exhaustive
et, selon le souhait de son auteur, la possibilité de les parcourir de maniére autodidacte. C’est
pourquoi nous avons fait le choix de conserver I'ensemble des conventions (notamment de notation
des éléments) qui sont employées dans ces ouvrages. Ainsi, le lecteur cherchant des renseignements
complémentaires ou des précisions sur le cours pourra aisément consulter (en plus des références
bibliographiques propres aux différents chapitres) ces syllabi de cours qui sont accessibles au format
électronique sur Moodle.

Un ensemble d’exercices d’application résolus a également été compilé par le professeur Durand,
ceux-ci inclus dans les ouvrages précités. Ces exercices permettent, en complément aux séances
d’exercices et de laboratoires, de se préparer de maniére optimale aux différentes épreuves associées
a ce cours.

Ces notes de cours sont exclusivement destinées aux étudiants de la Faculté Polytechnique de
Mons. Elles ne peuvent donc étre ni reproduites, ni diffusées, sous quelque forme que ce soit, en
dehors de ce cercle restreint.
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Chapitre 1

Géométries et communication graphique :
introduction

It is the essential role of the professor to waken the joy of work and to know.
- A. Einstein, The World As I See It

Les réalisations de 'ingénieur se concrétisent fréquemment sous la forme d’objets ou de machines
concgues dans un but précis. Aux différentes étapes de réflexion, il est nécessaire de communiquer
de maniére claire et précise I'information entre les différents intervenants aussi bien a l'intérieur
de l'entreprise (concepteur, bureau d’études, bureau des méthodes, fabrication,...) qu’a I'extérieur
(client, sous-traitant,...). Le support le plus communément employé pour la transmission de cette
information reste majoritairement bidimensionnel (feuille de papier ou écran d’ordinateur).

Figure 1.1 — Représentation CAO d’une presse a briques (projet de MA1, Blaise Mondouji).



CHAPITRE 1. INTRODUCTION

Il existe donc diverses méthodes pour synthétiser sur une représentation 2D un objet 3D.
L’évolution des performances du matériel et des logiciels de conception assistée par ordinateur
(CAO) permet actuellement d’effectuer des rendus photoréalistes d’objets avant leur réalisation
(figure 1.1). Ce type de représentation comprend malheureusement une information lacunaire voire
ambigué et n’est donc pas suffisante pour une utilisation industrielle.

La communication entre donneurs d’ordre et exécutants pour la réalisation de piéces ou de
batiments repose sur des plans d’exécution qui ont valeur de contrat. Ces plans suivent un ensemble
de régles communément admises qui sont issues de normalisation. Dans ce contexte, ce cours aura
pour objectif de permettre la compréhension des méthodes de réalisation et des conventions liées a
ce type de représentation. Ce cours a également pour objectif d’exercer les capacités & manipuler et
a représenter avec aisance cet espace 3D. Trois grands volets seront étudiés de maniére commune :
— les techniques de représentation en perspective (axonométrie et en particulier I'isométrie) ;
la plupart des exemples traités dans ce cours seront accompagnés d’un croquis en
perspective qui respecte ces conventions ;
— la représentation sous forme de plans techniques employant la méthode dite « de Monge » ;
— la représentation sous forme analytique.
Ces trois méthodes de représentation ne sont que différentes voies pour représenter la méme réalité ;
I'ingénieur est fréquemment appelé a les utiliser de maniére complémentaire (figure 1.2).

pf
X
: OP=10-wu, +20-u,
i +30-w,
|
i
%
ph P(10; 20; 30)
Figure 1.2 — Trois représentations d’'un méme point : axonométrie, épure de Monge et

représentation analytique.



CHAPITRE 1. INTRODUCTION

1.1 Contenu du cours

Ce syllabus est subdivisé en trois parties principales. La premiére traite de problémes de géométrie
descriptive en ayant pour but la compréhension des plans techniques. Le chapitre 2 présente les
méthodes classiquement employées pour représenter une figure spatiale sur un plan et décrit le
dessin en perspective. Le chapitre 3 décrit les principales conventions de la méthode « de Monge »
employée dans la production de plans techniques. La représentation de points et de droites y est
abordée, celle des plans est présentée au chapitre 4. Les normes de dessin technique sont ensuite
abordées au chapitre 5, elles mettent en avant la nécessité de disposer d’outils tels que le traitement
de l'intersection d’objets (chapitre 6) ou la mise en vraie grandeur (chapitre 7).

La deuxiéme partie du cours concerne la représentation analytique de figures et son application
a l'infographie. Le chapitre 8 reprend quelques notions de base de géométrie analytique plane.
Le chapitre 9 traite du calcul de longueur et de courbure sur des courbes planes. Le chapitre 10
étend une partie des notions de géométrie plane a la troisiéme dimension. Ces éléments servent
de base a la description de I’algorithmique utilisée en infographie (chapitre 11). La description de
surfaces sous forme cartésienne (chapitre 12) et paramétrique (chapitre 13) est ensuite abordée. Les
courbes spatiales sont traitées au chapitre 14. Enfin, la géométrie différentielle spatiale (recherche
de vecteur tangent, normal et de plan tangent) est abordée au chapitre 15.

La troisiéme partie reprend un ensemble d’annexes utiles au cours : un ensemble de figures vierges
qui seront traitées durant le cours oral (annexe A); le traitement complet d’un probléme de lecture
de plan pour reconstituer un volume (annexe B) ; des rappels de notion de bases issues de I’'examen
d’admission (annexe C) et finalement le formulaire de géométrie analytique utilisé dans ce cours
(annexe D).
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Chapitre 2

Méthodes de projection

An elegant weapon from a more civilized time

- O. Kenobi, A new hope

2.1 Introduction

Les supports fréquemment employés pour la transmission d’information sont par nature
bidimensionnels (feuille de papier, écran), alors que les objets nous entourant sont par nature
tridimensionnels. Le passage de I’espace réel a sa représentation passe donc nécessairement par une
modification de I'information. Classiquement, les méthodes de représentation d’objets de ’espace
reposent sur la projection de figures spatiales sur un ou plusieurs plans de référence (figure 2.1).

conique orthogonale

Figure 2.1 — Principaux types de projection employés.
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On distingue notamment :

— les méthodes de projection dites coniques ou I’ensemble des lignes de projection sont issues
d’un méme point.

— les méthodes de projection dites cylindriques ou la méthode de projection employée
est la projection orthogonale (les points sont projetés sur le plan suivant des droites
perpendiculaires a ce plan, ce qui implique que I'ensemble des lignes de projection sont
paralléles entre elles) ;

2.2 Projection centrale

La projection centrale (figure 2.2) est un exemple de projection conique ([1], [2]).

plan de
projection

Figure 2.2 — Projection centrale.

Le centre de projection représente 1’oeil de I'observateur, le plan de projection est le plan de ’écran
ou du tableau sur lequel la scéne est représentée.
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La projection centrale est d’usage intensif dans le domaine artistique pour faire ressortir 'effet de
perspective dans une scéne (cf figures 2.3 et 2.4).

Figure 2.3 — Exemple d’utilisation de la perspective centrale en peinture (Annonciation, D.
Veneziano, 1445).

k% B Tl -

. — @ 5T
| = & &
| I ,
i 1

18 8 =
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Figure 2.4 — Etude des éléments de perspective dans ’annonciation de Veneziano [3].

Cette méthode permet un rendu naturel de la perspective, mais perd un ensemble d’informations
exploitables (mesure de distances, parallélisme entre éléments,...) ce qui la rend peu utile a
I'ingénieur. Au-dela du rendu réaliste de scéne (expliqué au chapitre 11), cette méthode ne sera
pas exploité dans ce cours.
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2.3 Axonométrie

[’axonométrie orthogonale (figure 2.5) est une méthode de projection cylindrique sur un plan
incliné par rapport aux plans de références de Iespace [4]. Cette méthode est la plus classiquement
employée pour effectuer des représentations « en perspective » d’objets. Elle répond toutefois a des
régles particuliéres qui seront partiellement détaillées dans ce cours. Le §2.3.1 présente les bases
théoriques de représentation de figures en isométrie qui est un cas particulier d’axonomeétrie.

de projection

Figure 2.5 — Principe de la projection axonométrique.

[’axonométrie présente I'avantage de représenter des volumes par une seule vue (sans nécessiter
une reconstruction mentale du volume & partir de plusieurs vues comme c’est le cas dans la
méthode de Monge). Elle permet en outre des mesures directes de dimensions si une graduation
est associée aux axes. Cette technique se base sur la projection orthogonale d’une figure sur un
plan incliné par rapport aux axes (figure 2.5). L’observateur est supposé étre a l'infini, les lignes
de projection sont perpendiculaires entre elles.
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Les distances mesurées sur une figure sont nécessairement inférieures aux distances mesurées sur
I'objet projeté (la projection orthogonale d’un segment est un segment dont les dimensions sont
multipliées par le cosinus de ’angle formé entre le segment et le plan, valeur nécessairement
inférieure ou égale a 1).

e <
N
/
as observateur
a l'in fini

<

Plan de
projection

Figure 2.6 — Principe de I’axonométrie.
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Les rapports de réduction entre les dimensions réelles et la projection peuvent étre déterminés via
I'inclinaison du plan de projection par rapport aux axes de la figure (u est 'unité de longueur de
la figure spatiale, w,, Uy, €t u,, sont les unités de longueur selon les trois axes projetés) :

Uppy = U-COSQ
Upy = U-COSQ
Uy, = U-COSQ3

Figure 2.7 — Rapport de réduction en axonométrie.

10



CHAPITRE 2. METHODES DE PROJECTION

La création d'une figure en axonomeétrie se base sur la représentation d’un systéme d’axes Oxyz
associé a une unité de mesure sur chacun des axes. Le report d’un point se fait en reportant ses
coordonnées parallélement & chacun des axes sur le dessin (figure 2.8).

P(1;-2;3)

Figure 2.8 — Construction d’un point de coordonnées (1:;-2;3) en axonométrie.

La matérialisation des lignes de construction permet une représentation plus claire de la position
du point. Elle permet également de lever I’ambiguité inhérente & l'axonométrie. En effet, tous
les points situés sur une méme droite de projection sont représentées par un méme point sur
I'axonométrie (figure 2.9). C’est cette ambiguité qui explique que l’emploi de I"axonométrie soit
limité a une aide & la visualisation de I’aspect tridimensionnel de la piéce plutot qu’a la réalisation
de plans techniques.

Figure 2.9 — Deux points distincts de l’espace peuvent avoir la méme représentation en
axonométrie.

11



CHAPITRE 2. METHODES DE PROJECTION

Les croquis en axonométrie permettent également de résoudre des problémes de construction
spatiale élémentaires sachant que les propriétés suivantes sont rencontrées :

— le parallélisme entre droites est conservé ;

— des droites sécantes sur la projection les sont a conditions qu’elles soient coplanaires.
Un exemple de probléme classique pouvant étre résolu par cette voie est la section d’un polyéedre
par un plan (figure 2.10)

Figure 2.10 — Recherche de la section de la Figure 2.11 — Solution.
pyramide ABCDS par le plan EFG, figure
vierge page 244).

12



CHAPITRE 2. METHODES DE PROJECTION

2.3.1 Isométrie

[’isométrie est un cas particulier d’axonométrie pour laquelle le plan de projection coupe les axes
selon des points équidistants de l'origine (figure 2.12). Dans une isométrie, les échelles des 3 axes
projetés sont identiques.

observateur

a l'in fini
C(0,0,1) Plan de / |
7

projection o

Figure 2.12 — Cas particulier de 'isométrie.

2.3.1.1 Calcul du rapport de réduction en isométrie
Le plan de projection a pour équation :
r+y+z2—1=0 (2.1)

La droite OO’ a pour équations paramétriques

(2.2)

SIS
I
> > >
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CHAPITRE 2. METHODES DE PROJECTION

Le point O’ est a I'intersection de la droite et du plan, il est donc solution du systéme suivant :

r=A
=\
g:A (2.3)

r+y+z—1=0

qui donne A = 1/3. O" a donc pour coordonnées (1/3;1/3;1/3). On peut finalement calculer le
cosinus de «y en utilisant

—
A0 - A0 = | AO|| - | AO'|| - cos s (2.4)

Ce qui donne, avec les valeurs numériques :

(—=1;0;0) - (=2/3:1/3:1/3) = \/(—1)2 +02 + 02 \/(—2/3)2 +(1/3)% + (1/3)* -cosa;  (2.5)

cos o vaut donc \/% ~ 0, 816, ce qui veut dire qu’en toute rigueur il faudrait appliquer ce rapport
a toutes les dimensions sur le dessin en isométrie. Pour éviter cette complication, il est classique de
représenter directement sur le dessin le mesures réelles des objets(cela revient a tracer le croquis
isométrique a 1’échelle 1/0,816 ). C’est cette convention qui sera principalement employée pour
les figures du cours.

2.3.1.2 Reéalisation de croquis en isométrie

Deux choix sont généralement possible pour le plan de projection en isométrie : un plan d’équation
T+ y+ 2+ c=0ouun plan d’équation z — y + z + ¢ = 0 (figure 2.13).

Figure 2.13 — Représentation des deux plans les plus fréquemment employés en isométrie.

Pour réaliser un croquis isométrique, on commence par disposer les projections isométriques des 3
axes Ox, Oy et Oz, avec Oz généralement vertical et un angle de 120° (figure 2.14) ou 60° (figure
2.15) entre les axes sur le dessin suivant le plan de projection retenu. Le positionnement d’un
point P de l'objet s’opére en reportant sur les axes projetés les coordonnées x,y et z de ce point
pour déterminer les point intermédiaires repérés par a, b et ¢ sur les figures 2.14 et 2.15.

14



CHAPITRE 2. METHODES DE PROJECTION

Ensuite, des paralléles aux axes a partir de ces points sont tracées pour trouver la représentation
du point P dans le croquis spatial. L’opération est répétée autant de fois que nécessaire pour
disposer de ’ensemble des points dans le schéma.

Figure 2.15 -~ Réalisation d'un
Figure 2.14 — Reéalisation d’'un croquis en isométrie (120° croquis en isométrie (60° entre les
entre les axes). axes).

L’emploi de l'isométrie est parfois inadapté pour la représentation claire de certains éléments.
Ainsi par exemple, la représentation d’un plan incliné a 45° par rapport a Ozy (plan bissecteur
du diédre formé par les plans Oxy et Oxz) serait peu explicite (la vue du plan est dégénérée en
une droite, figure 2.16). Dans ce cas, on emploie un plan de projection présentant une inclinaison
différente de celle employée par 'isométrie pour représenter la vue.

plan

bissecteur

plan
bissecteur

Figure 2.16 — Représentation du premier bissecteur en isométrie et en axonométrie.

15



CHAPITRE 2. METHODES DE PROJECTION

2.4 Meéthode de Monge

La méthode de Monge est utilisée pour la représentation de plans techniques. Cette méthode repose
sur le principe suivant : 'objet de 1’espace 3D est représenté par ses projections sur deux plans
de référence (plan Oyz appelé plan frontal et plan Oxy appelé plan horizontal) perpendiculaires
entre eux (figure 2.17).

of
Bf
A
| | :
| | | |
' L
| | !
| D™ !
| i !
I
Ah ‘
Bh
ch
Epure

Vue spatiale

Figure 2.17 — Exemple de projection de Monge.

Par cette méthode, tout objet de 'espace 3D est représenté graphiquement sur un plan 2D, dit
plan de I’épure, dans 'objectif de résoudre, par les principes de la Géométrie Synthétique 2D, les
problémes de Géométrie Synthétique 3D qui sont liés a cet objet ou a cet ensemble d’objets [5].
La représentation des deux projections de points de ’espace sur un plan nécessite au préalable de
rendre les plans H et F coplanaires via une opération de rabattement (dans ce cas, une rotation
de 90° autour de leur droite d’intersection appelée ligne de terre, figure 2.18).

16
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eloignement

P/r

Figure 2.18 — Opération de rabattement pour obtenir Figure 2.19 — Epure d’un point
I’épure d’un point. par la méthode de Monge.

Sur une épure de Monge, un point de I'espace est nécessairement représenté par au moins deux de
ses projections (voire plus comme nous le verrons par la suite). Sur une épure, les deux projections
sont distinguées par une lettre en exposant (f pour la projection frontale, ¢’est-a-dire sur le plan
Oyz et h pour la projection horizontale , ¢’est-a-dire sur le plan Oxy). Le chapitre 5 montrera que
dans le cas de plans techniques, ce mentions sont ignorées ce qui conduit a 1'utilisation d’un plus
grand nombre de projections pour des piéces complexes. La correspondance entre épure de Monge
et isométrie est présentée aux figures 2.20 et 2.21.

Figure 2.20 — Réalisation d’un croquis en isométrie (120° entre les axes) et correspondance avec
I’épure de Monge.

17
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Figure 2.21 — Reéalisation d’un croquis en isométrie (60° entre les axes) et correspondance avec
I’épure de Monge.
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Chapitre 3

Conventions de la méthode de Monge

La géométrie descriptive est l'art de représenter sur une feuille de dessin qui n’a
que deux dimensions, les corps de 1’ espace qui en ont trois et qui sont susceptibles d’
une définition rigoureuse

- G. Monge, Journal de I’Ecole polytechnique

3.1 Introduction

Le principe général de la géométrie de Monge repose sur la projection orthogonale des points de
I'espace 3D sur deux plans orthogonaux|1]. Elle est a la base de la production des plans techniques.
Par convention, on nomme le plan Oxy H (plan horizontal) et le plan Oyz F (plan de face ou
frontal). La figure 3.1 présente par exemple la représentation d’un triangle par la méthode de
Monge.

cf
B
A
| -
|
ol
| | |
|
|
| i !
‘ ‘
|
i |
Ah, |
Bh,
Ch,

Epure

Vue spatiale

Figure 3.1 — Exemple de projection d’un triangle par la méthode de Monge.
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La représentation des deux projections de points de I’espace sur un plan nécessite au préalable de
rendre les plans H et F' coplanaires via une opération de rabattement (dans ce cas, une rotation
de 90° autour de leur droite d’intersection appelée ligne de terre, figure 3.2).

P!
X
F |
cote| |
pf :
o X A A
e |
Ron I ~_ P I
N | eloignement| |
RN - I ph |
% : ph
X
H
Figure 3.2 — Opération de rabattement pour obtenir Figure 3.3 — Epure d’un point
I’épure d’un point. par la méthode de Monge.

La figure 3.3 permet de fixer les conventions qui seront reprises tout au long de ce chapitre :

— les points de 'espace sont désignés par des lettres majuscules;

— la droite d’intersection des plans H et F' (C’est-a-dire 'axe Oy) est indiquée sur 1'épure
par 'abréviation LT';

— la projection d’un point sur le plan H est désignée par la méme lettre que le point suivie
d’un h (minuscule) porté en exposant ;

— la projection d’un point sur le plan I’ est désignée par la méme lettre que le point suivie
d’un f (minuscule) porté en exposant ;

— les deux projections d’un point sont reliées par un trait mixte appelé ligne de rappel ; on
peut démontrer simplement que la ligne de rappel est toujours perpendiculaire a la ligne
de terre;

— la distance entre la projection frontale d’'un point et la ligne de terre (c’est-a-dire la
coordonnée z du point) est appelée cote ;

— la distance entre la projection horizontale d’un point et la ligne de terre (c’est-a-dire la
coordonnée = du point) est appelée éloignement).

Géométries et communication graphique 20



CHAPITRE 3. CONVENTIONS DE LA METHODE DE MONGE

L’exemple simple de la figure 3.4 permet d’illustrer la nécessité de disposer de deux projections
simultanées de points pour une épure univoque.

Figure 3.4 — Nécessité d’employer deux projections.

L’emploi de la seule projection sur le plan horizontal par exemple ne permettrait pas de distinguer
le triangles ABC' du triangle A’B’C" (ou plus généralement tout triangle obtenu par intersection
d'un plan avec le prisme droit de base A"B"C") comme indiqué sur la figure 3.4. Ceci est lié
au fait que tout point situé sur une droite perpendiculaire au plan horizontal ! présente la méme
projection horizontale.

Le méme raisonnement est applicable & la projection sur le plan F' : les triangles ABC et A” B"C"
sont également indissociables si on mentionne uniquement la projection frontale de leurs sommets.
Ceci est lié au fait que tout point situé sur une droite perpendiculaire au plan frontal ? présente
la méme projection frontale.

1. Nous verrons par la suite qu’une telle droite est appelée droite verticale
2. Nous verrons par la suite qu'une telle droite est appelée droite de bout

Géométries et communication graphique 21



CHAPITRE 3. CONVENTIONS DE LA METHODE DE MONGE

3.2 Position d’un point

3.2.1 Division de I’espace en diédres

De maniére conventionnelle, les plans H et F' divisent ’espace en quatre dieédres (figure 3.5) :
— premier diédre en avant de F' et au-dessus de H (coordonnées = et z positives);
— deuxiéme diédre en arriére de F' et au-dessus de H (coordonnée = négative, coordonnée z
positive) ;
— troisiéme diédre en arriére de F' et en-dessous de H (coordonnées x et z négatives) ;
— quatriéme diédre en avant de F et en-dessous de H (coordonnée x positive, coordonnée z
négative) ;

2° diedre

hR 1" diédre

3¢ diedre

4° diedre

Figure 3.5 — Définition conventionnelle des diedres.

De ces définitions découle la position des points sur I’épure de Monge en fonction du diédre auquel
ils appartiennent. Un point du premier diédre par exemple a sa projection dans le plan F' au-
dessus de la ligne de terre et sa projection dans le plan H en-dessous de la ligne de terre (cf figures
3.6 et 3.7). Comme nous le verrons par la suite, la convention utilisée dans les plans techniques
postule que les éléments représentés sur un plans techniques appartiennent soit au premier diédre
(méthode « du premier diédre » ou projection européenne) soit au troisiéme (méthode « du
troisiéme diédre » ou projection américaine).

Géométries et communication graphique 22
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F
B/
Af | Bh
X
LT !
U
|
|
|
|
\Ah
X
Vue spatiale Epure

Figure 3.6 — Point A du premier diédre et point B du deuxiéme diédre.
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| Bh
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I | B/
% X
Af

Vue spatiale Epure

Figure 3.7 — Point A du troisiéme diédre et point B du quatriéme diédre.
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CHAPITRE 3. CONVENTIONS DE LA METHODE DE MONGE

3.2.2 Point appartenant aux plans de projection

Certains points ont une de leurs projections située sur la ligne de terre (cf figure 3.8) ; c’est le cas :
— d’un point appartenant au plan horizontal (sa projection f est sur la ligne de terre) ;
— d’un point appartenant au plan frontal (sa projection h est sur la ligne de terre);
— d’un point appartenant & la ligne de terre (ses deux projections sont confondues sur la ligne
de terre, dans ce cas, on note P/ = Ph = Phf),

Epure

Vue spatiale

Figure 3.8 — Point E appartenant au plan frontal, point F' appartenant au plan horizontal et point
G appartenant a la ligne de terre.

3.3 Représentation d’une droite

3.3.1 Généralités

De maniére générale, une droite de l'espace est définie par deux points non confondus. La
représentation dans une épure de Monge d’une droite peut donc étre donnée par la position
de deux points de cette droite.

Cette constatation conduit naturellement au théoréme suivant :

Théoréme 3.1. Les projections d’une droite sur les deux plans de référence sont deux droites

Ce théoréme se démontre 2] en consultant la figure 3.9 :

— la projetante BB" (perpendiculaire au plan H) forme un plan avec la droite d;

— ce plan (d,B,B") est perpendiculaire au plan H (si une droite est perpendiculaire & un plan,
tout plan passant par cette droite est perpendiculaire & ce plan);

— donc, toute les projetantes de la droite sont contenues dans le plan (d,B") (si deux plans
sont perpendiculaires et si, d'un point de I'un d’entre eux on méne une perpendiculaire a
lautre, cette perpendiculaire sera entiérement contenue dans ce plan);

— donc, toutes les projetantes coupent le plan H selon la droite d’intersection entre le plan
(d,BB") et le plan H.
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\\

Vue spatiale

Figure 3.9 — Représentation d’une droite dans une épure de Monge.

Le méme raisonnement peut étre suivi concernant le plan F. Les plans de type (d,BB") sont
dénommeés plans projetants de la droite sur les plans de référence.

Nous avons démontré qu’un point appartenant a une droite se projette sur ses projections
orthogonales ; la réciproque est-elle vraie, a savoir :

Théoréme 3.2. Si les projections d’un point sont sur les projections d’une droite, ce point
appartient a la droite

La démonstration se fait de la maniére suivante [2] :

— Comme, dans I’épure, les 2 projections d’un point se correspondent par une ligne de rappel
perpendiculaire & LT, les 2 fractions A"K" et AT K" de cette ligne de rappel situées de
part et d’autre de la ligne de terre lui restent perpendiculaires lorsque le plan F est relevé
(opération inverse du rabattement) perpendiculairement au plan H dans l'espace (cf figure
3.9);

— ces 2 droites A"K" et A K" forment donc, un plan 7 perpendiculaire & LT ;

— or, si une droite est perpendiculaire & un plan, tout autre plan passant par cette droite est
perpendiculaire au plan donné ; dés lors, le plan H qui passe par L1 est perpendiculaire au
plan 7 et le plan F' qui passe aussi par LT est aussi perpendiculaire au plan 7 ;

— or, les plans (d,d") et ( d,d’) é¢tant les plans projetants de la droite d, ils sont respectivement
perpendiculaires a H et & F';

— or encore, si 2 plans sont perpendiculaires & un méme troisiéme, leur intersection est
perpendiculaire & ce troisiéme plan (théoréme classique de géométrie synthétique 3D) ;

— donc, comme les 2 plans (d,d") et 7 sont perpendiculaires & H, leur intersection P"P est
perpendiculaire & H et, de méme, comme les 2 plans (d,d’) et 7 sont perpendiculaires a F,
leur intersection P/ P est perpendiculaire & F'; Donc P"P est perpendiculaire & H et P/P
est perpendiculaire & F';

— il s’agit donc nécessairement des projetantes du point P de la droite d.
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3.3.2 Traces d’une droite

Par définition, les traces d'une droite sont les intersections de cette droite avec les plans de
projection. Elles sont respectivement désignées par I (trace dans le plan H) et J (trace dans
le plan F).

Vue spatiale

Epure

Figure 3.10 — Traces d’une droite.

La détermination des traces d’une droite a partir de I’épure de la droite est assez immédiate (figure
3.10) :
— T'intersection de d" avec la ligne de terre donne J"; J/ est obtenue par lintersection de la
perpendiculaire & LT passant par J" avec d/ ;
— de méme, lintersection de d/ avec la ligne de terre donne I/; I" est obtenue par
'intersection de la perpendiculaire & LT passant par I avec d".
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3.3.3 Positions relatives de deux droites
3.3.3.1 Représentation de droites sécantes

Deux droites sécantes ont nécessairement un point commun. Les projections du point d’intersection
sont & l'intersection des projections horizontales et frontales des droites (figure 3.11).

bh,

Epure

Vue spatiale

Figure 3.11 — Droites sécantes.

La réciproque est également vraie : si l'intersection des projections horizontales et frontales de
deux droites sont alignées sur une méme ligne de rappel, les droites sont sécantes. On peut donc
en déduire le théoréme suivant :

Théoréme 3.3. Deux droites sont sécantes si et seulement si le point d’intersection de leurs
projections horizontales et le point d’intersection de leurs projections frontales se correspondent
par une méme ligne de rappel perpendiculaire a la ligne de terre.
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3.3.3.2 Représentation de droites paralléles

Deux droites paralléles non confondues sont coplanaires et ne présentent pas d’intersection (figure
3.12). Leur représentation sur une épure de Monge vérifie le théoréme suivant :

Théoréme 3.4. Si 2 droites sont paralléles dans [’espace, leurs projections sur les plans
de référence H, F et P sont aussi respectivement paralléles entre elles (tout en n’étant pas
nécessairement paralléles aux 2 droites paralléles de l’espace).

Epure

Vue spatiale

Figure 3.12 — Droites paralléles.

Ce théoréme se démontre comme suit [2] :

— les 2 plans projetants de a et b sur H contiennent respectivement les 2 droites paralléles
entre elles a et b et les 2 droites projetantes AA" et BB": ces 2 projetantes étant toutes
deux perpendiculaires & H, sont paralléles entre elles;

— donc, ces 2 plans projetants contiennent chacun 2 droites sécantes qui sont respectivement
paralléles entre elles; ils sont donc paralléles entre eux (pour que 2 plans soient paralléles
entre eux, il faut et il suffit que I'un d’eux contienne 2 droites sécantes respectivement
paralléles & 2 droites sécantes de l'autre) ;

— donc, les intersections des 2 plans projetants de a et b sur H sont paralléles entre elles
(les intersections de 2 plans paralléles entre eux avec un troisiéme plan qui ne leur est pas
paralléle sont paralléles entre elles) ;

— or, ces intersections ne sont rien d’autre que les projections horizontales des 2 droites a et
b; donc, les projections horizontales des 2 droites a et b, paralléles entre elles dans 1’espace,
sont aussi paralléles entre elles (tout en n’étant pas nécessairement paralléles a a et b).
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Un raisonnement tout a fait analogue conduirait & démontrer que les projections frontales des 2
droites a et b, paralléles entre elles dans ’espace, sont aussi paralléles entre elles (tout en n’étant
pas nécessairement paralléles a a et b) et en généralisant, les projections de profil des 2 droites
a et b, paralléles entre elles dans I'espace, sont aussi paralléles entre elles (tout en n’étant pas
nécessairement paralléles & a et b).

3.3.4 Droites occupant une position particuliére de 1’espace

Par convention, des droites occupant des positions particuliéres par rapport aux plans de référence
ont une désignation propre.

une droite est dite horizontale (figure 3.13) si elle est parallele au plan horizontal ; sa
projection frontale est paralléle a la ligne de terre; on la note généralement h ;

une droite est dite frontale si elle est paralléle (figure 3.14) au plan frontal ; sa projection
horizontale est paralléle & la ligne de terre; on la note généralement f;

une droite est dite de profil si elle est orthogonale a la ligne de terre; ses deux projections
sont confondues et perpendiculaires a la ligne de terre; on la note généralement p

une droite est dite verticale (figure 3.16) si elle est perpendiculaire au plan horizontal ;
sa projection frontale est perpendiculaire a la ligne de terre; sa projection horizontale se
réduit a sa trace [ ; on la note généralement v ;

une droite est dite de bout (figure 3.17) si elle est perpendiculaire au plan frontal; sa
projection horizontale est perpendiculaire a la ligne de terre; sa projection frontale se
réduit a sa trace J; on la note généralement d;

une droite paralléle a la ligne de terre (figure 3.18) est a la fois est a la fois frontale et
horizontale ; ses projections sont donc paralléles a la ligne de terre (ce type de droite n’a
pas de trace frontale ni horizontale).

Epure

Vue spatiale

Figure 3.13 — Droite horizontale.
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Ih,
Vue spatiale Epure
Figure 3.14 — Droite frontale.
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Figure 3.15 — Droite de profil.
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Figure 3.16 — Droite verticale.

J=af

Epure

Vue spatiale

Figure 3.17 — Droite de bout.
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Vue spatiale

Figure 3.18 — Droite paralléle a la ligne de terre.
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Le tableau 3.1 résume les caractéristiques principales des droites particuliéres, en prenant un
exemple sur un parallélépipéde rectangle ABCDEFH dont les faces sont paralléles aux plans
coordonnés (figure 3.19).

E = F/f ol — g’
Al —=Bf ,Cf = DI
| |
LT I
I
| |
| |
A/ :‘Eh ! F :H/
B/" :F}" th _ Gh
H
Epure

vue spatiale

Figure 3.19 — Parallélipipéde rectangle dont les faces sont paralléles aux plans de référence.

Nom (-+symbole) | définition | projection h | projection f | trace I | trace J 7 exemple

Horizontale (h) /] H quelconque /] LT 7 3 (o, 8,0) AC
Frontale (f) /] F /] LT quelconque 3 3 (0,a, B) AH
de Profil (p) 1L LT 1L LT 1L LT = 3 (o, 0, ) AF
Verticale (v) 1L H trace [ L LT 3 7 (0,0,a) | AE
De bout (d) 1LF 1L LT trace .J L 3 (,0,0) | AB
Paralléle LT /] LT /] LT /] LT 3 i (0,0,0) |  AD

TABLE 3.1 — Résumé des positions particuliéres de droites
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3.4 Représentation d’un point par trois projections

La droite de profil (figure 3.15) met en évidence 'ambiguité qui peut résulter de la seule utilisation
de deux projections pour un élément. En effet deux droites de profil coplanaires sont impossible a
distinguer (figure 3.20).

pi=pl=ph=1p]

FEpure
vue spatiale

Figure 3.20 — Tracé de deux droites de profil coplanaires, elles ne sont pas distinguables.

Une manieére de lever 'ambiguité est de représenter également deux points de chacune des droites
(leurs traces par exemple, figure 3.20).

pi=pl=ph=1]

Ji

J

h
I

FEpure

vue spatiale

Figure 3.21 — Lors de la mention de leurs traces, les droites sont définies de maniére univoque.
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Cette méthode s’avére toutefois peu satisfaisante en pratique puisqu’elle nécessite une
reconstruction mentale des formes dessinées dans un plan perpendiculaire a la ligne de terre
(on parle de plan de profil). Prenons 'exemple du tracé de la figure 3.22. Le simple examen de la
figure rend difficile d’analyser le type de quadrilatére représenté par les points ABCD.

Figure 3.22 — Quadrilatére situé dans un plan de profil.
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Dans ce type de cas, on doit faire appel a la projection des points sur un troisiéme plan de référence
orthogonal & H et F' : le plan de profil (figure 3.23).

Figure 3.23 — Vue spatiale des trois projections d’'un point.

Par analogie avec ce qui a été présenté précédemment, la projection d’'un point dans le plan de
profil est désignée par la méme lettre que le point suivie d’'un p (minuscule) porté en exposant.
La représentation d'un point par ses trois projections passe par deux opérations de rabattement :
dans un premier temps, le plan de profil est rabattu sur le plan frontal (figure 3.24). Ensuite, le
plan frontal est rabattu sur le plan horizontal comme indiqué précédemment (figure 3.25).
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Figure 3.24 — Rabattement du plan de profil sur le plan frontal.

Figure 3.25 — Rabattement sur le plan horizontal.
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L’épure d’un point représenté par ses trois projections se présente comme suit (figures 3.26 et
3.27) :
— les projections frontale et horizontale se correspondent par une ligne de rappel
perpendiculaire a la ligne de terre;
— les projections frontale et de profil se correspondent par une ligne de rappel paralléle a la
ligne de terre (ou perpendiculaire a la ligne de terre secondaire L'T” confondue avec 1'axe
2);

— la distance entre P" et LT est égale & la distance entre PP et L'T";

Figure 3.26 — Projection de profil de points du premier et deuxiéme diedre.
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Figure 3.27 — Projection de profil de points du troisiéme et quatriéme diédre.

Par application de cette méthode, on peut constater que le quadrilatére de la figure 3.22 est un
trapéze (construction en figure 3.28).
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Figure 3.28 — Recherche des projections de profil d'un quadrilatére (épure vierge en page 245).
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Chapitre 4

Représentation de plans par la méthode de
Monge

The golden rule is that there are no golden rules.

- G.B. Shaw, Mazims for Revolutionists

4.1 Introduction

Un plan peut étre défini de quatre maniéres différentes [1] :
— par trois points non colinéaires (figure 4.1) ;
— par deux droites sécantes (figure 4.2) ;
— par deux droites paralléles (figure 4.3) ;
— par une droite et un point n’appartenant pas a cette droite (figure 4.4).

o v

Al , ! pf of v

LT i ! ! LT

|
|
|
|
|
———————————————————— i Frmm i P N

|
| h

|
i
B a |
i * x
1At : ph ph
x i (L‘“
I

Figure 4.1 - Plan Figure 4.2 - Plan Figure 4.3 - Plan Figure 4.4 - Plan
défini par trois points. défini par deux droites défini par deux droites défini par une droite et
sécantes. paralléles. un point.
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4.2 Traces d’un plan

4.2.1 Définition

Par analogie avec la définition des traces d'une droite, on définit les traces d’un plan par leur
intersection avec les plans de projection. Les traces sont désignées par la lettre grecque décrivant
le plan portant en indice f ou h (désignant respectivement la trace horizontale ou frontale).

Epure

Vue spatiale
Figure 4.5 — Traces d’un plan (LT = 7] = 7}).

Cette trace est une droite, qui possede donc deux projections sur I'épure; ﬂ’]} désigne donc la
projection horizontale de la trace dans le plan frontal du plan 7! ; dans la majorité des cas, cette
droite est confondue avec la ligne de terre (elle se réduit a un point de la ligne de terre dans
certains cas particuliers décrits plus loin) 2. On peut également noter que, si les traces d’un plan
ne sont pas paralléles, elles ont nécessairement une intersection sur la ligne de terre.

L’avantage de cette représentation est de permettre de visualiser de maniére simple I’inclinaison
du plan sur les deux plans de référence, ce qui n’est pas permis de maniére immédiate par les
autres méthodes de définition d’un plan.

1. on peut également rencontrer le notation T;Lf

2. La méme observation peut étre faite pour la projection horizontale de la trace frontale
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4.2.2 Deétermination des traces d’un plan

Lorsqu’un plan est défini par deux droites sécantes (figure 4.6), les traces du plan sont les droites
qui joignent les traces respectives de ces deux droites. Cette méthode peut également étre utilisée
lorsque le plan est défini par deux droites paralléles (figure 4.7) ou par trois points (utiliser deux
droites s’appuyant sur les trois points, cf figure 4.8).

Vue spatiale Epure

Figure 4.6 — Traces d’'un plan défini par deux droites sécantes (LT:ﬂ,]: = 71'?, épure vierge page
246).

Si le plan est défini par une droite et un point, il suffit de placer un deuxiéme point sur la droite
(choisir un point sur une des projection de la droite puis trouver son autre projection grace a une
ligne de rappel). La droite reliant les deux points de I’épure permet ensuite, via la recherche de
ses traces, d’obtenir la trace du plan (figure 4.9).
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Vue spatiale Epure

Figure 4.7 — Traces d'un plan défini par deux droites paralléles (LT:W}]: = W?, épure vierge page
247).

Figure 4.9 — Trace d'un plan défini par une
Figure 4.8 — Traces d'un plan défini par trois droite et un point (LT:W}{ = n?} épure vierge
points (LT:TF}]: = ﬂ;%, épure vierge page 248). page 249).
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4.3 Plans particuliers

Comme au §3.3.4 pour des droites, il est possible de définir des plans occupant des positions
particuliéres de l'espace (le tableau 4.1 résume les propriétés de ces plans) :
— un plan vertical est perpendiculaire au plan horizontal (figure 4.10) ; sa trace frontale est

une droite verticale3 (71']; se réduit donc & un point) ; sa trace horizontale est quelconque;

un plan de bout est perpendiculaire au plan frontal (figure 4.11); sa trace horizontale est
une droite de bout (W}]: se réduit donc a un point) ; sa trace frontale est quelconque;

un plan frontal est paralléle au plan F (figure 4.12) ; sa trace horizontale est paralléle a la
ligne de terre; il ne posséde pas de trace frontale ;

un plan horizontal est paralléle au plan H (figure 4.13) ; sa trace frontale est paralléle a la
ligne de terre; il ne posseéde pas de trace horizontale ;

un plan de profil est perpendiculaire a la fois & H et & F (figure 4.14) ; sa trace frontale est

un droite verticale (71'? se réduit donc & un point) ; sa trace horizontale est une droite de
bout (] se réduit donc a un point).

Nom définition Th Tf T,{ T}L équation
Horizontal // H i // LT 7 =LT z=c
Frontal /] F // LT i =LT ? r=c
Vertical 1 H quelconque 1 LT =LT |=K"Y |ar+by=c
De bout LF L LT quelconque | K" | = LT |ay+bz=c
De profil 1L LT 1 LT 1 LT KM KM y=c

TABLE 4.1 — Résumé des positions particuliéres de plans

Epure

Vue spatiale

Figure 4.10 — Plan vertical.

3. si deux plans sécants sont perpendiculaires & un méme troisiéme, leur intersection est perpendiculaire & ce

plan
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h

Vue spatiale Epure

Figure 4.11 — Plan de bout.

Epure

Vue spatiale

Figure 4.12 — Plan frontal.
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Vue spatiale Epure
Figure 4.13 — Plan horizontal.
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Figure 4.14 — Plan de profil.
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4.4 Dessin d’un point appartenant a un plan

Le dessin d’'un point P appartenant a un plan défini par une des méthodes exposées au §4.1 peut
étre effectué de la maniére suivante :
— positionner la projection horizontale du point P & un endroit quelconque, un premier lieu
de sa projection frontale est la ligne de rappel perpendiculaire a LT ;

— si le plan est défini par trois points A,B,C (figure 4.15), dessiner la droite joignant deux
des points du plan (A et C par exemple) ; la génératrice est la droite qui joint le troisiéme
point (B) a P;

— si le plan est défini par deux droites sécantes (figure 4.16) ou paralléles (figure 4.17),
la génératrice est la droite qui passe par P et qui coupe les deux droites définissant le
plan;

— si le plan est défini par une droite et un point (figure 4.18), la méthode est similaire a
celle qui est employée pour un plan défini par trois points;

— obtenir la projection frontale de la génératrice auxiliaire (on a toujours deux points connus :
une intersection de la génératrice avec une droite et soit une deuxiéme intersection, soit un
point connu) qui est le deuxiéme lieu de la projection frontale du point

Figure 4.15 — Point dans un plan défini par trois points (épure vierge page 250.

)
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Figure 4.17 — Point dans un plan défini par deux droites paralléles (épure vierge page 252).
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Figure 4.18 — Point dans un plan défini par une droite et un point (épure vierge page 253).

4.5 Droites particuliéres de plans quelconques

4.5.1 Droites horizontales et frontales

Tout plan quelconque 7 (sauf un plan horizontal évidemment) peut étre coupé par une infinité
de plans horizontaux H’. Dans ce cas, la droite d’intersection entre ces deux plans est paralléle
a la trace horizontale du plan (les intersections de deux plans paralléles par un méme troisiéme
sont paralléles); il s’agit donc d’une droite horizontale (figure 4.19). Sur ’épure, elle peut étre
construite selon les étapes suivantes :

— la projection frontale de la droite est confondue avec la trace frontale du plan H';

— l'intersection de cette projection avec la trace frontale du plan donne la trace frontale de
la droite recherchée;

— Comme la droite recherchée est parallele a la trace horizontale du plan 7, il suffit de faire
passer une paralléle & 7} passant par J" pour obtenir la projection horizontale de la droite
recherchée.

On peut déduire le théoréme suivant :

Théoréme 4.1. Dans un plan quelconque, une infinité de droites horizontales peuvent étre
définies, elles sont toutes paralléles a la trace horizontale de ce plan.
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Vue spatiale Epure

Figure 4.19 — Intersection entre un plan horizontal et un plan quelconque (LT:W,{ = 77? = H}h).

Une démarche tout a fait similaire permettrait ’établissement d’une droite frontale par intersection
d’un plan frontal F’ avec un plan (figure 4.20). Le théoréme suivant est également d’application :

Théoréme 4.2. Dans un plan quelconque peuvent étre définies une infinité de droites frontales
qui sont toutes paralléles a la trace frontale de ce plan.

ar

Th

Epure

Vue spatiale

Figure 4.20 — Intersection entre un plan vertical et un plan quelconque (LT:W,]: = W? = F,;f ).
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4.5.2 Droites de bout et verticales

Une droite de bout est un cas particulier de droite horizontale qui est, non seulement paralléle a
H, mais encore perpendiculaire a F. De méme, une droite verticale est un cas particulier de droite
frontale qui est, non seulement paralléle & F, mais encore perpendiculaire a H (figure 4.21 ).

Droites horizontales Droites frontales

Figure 4.21 — Ensemble de droites particuliéres [1].

On ne peut toutefois pas définir dans un plan quelconque une droite verticale ou de bout. En effet,
si nous considérons le cas de la droite de bout et que nous supposons qu’elle puisse étre incluse
dans un plan 7, cela implique nécessairement que le plan 7 est un plan de bout (si une droite est
perpendiculaire a un plan, tout plan passant par cette droite est perpendiculaire au plan donné,
donc tout plan passant par la droite de bout ne peut qu’étre perpendiculaire a F, c’est-a-dire étre
lui-méme un plan de bout. La méme constatation peut étre faite pour une droite verticale (le plan
doit étre vertical).

Références

[1] Y. Durand. Géométries et communication graphique, Tome I partie 1 : La géométrie descriptive
de Monge, Fascicule III : La représentation des plans et des droites particulieres d’un plan.
Mutuelle d’édition FPMs, 2006-2007.
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Chapitre 5

Application de la méthode de Monge au
dessin technique

Le dessin est la base de tout.

- A. Giacometti, Citations

5.1 Introduction

Dans un grand nombre de domaines de I'ingénierie, la réalisation finale des concepts imaginés
aboutit a la fabrication de piéces ou d’assemblages. La démarche de conception, de l'idée a
la réalisation, doit faire appel a des supports visuels qui simplifient la communication entre
les différents intervenants (au sein de lentreprise, entre l'entreprise et ses sous-traitants,
entre l'entreprise et ses clients). Partant de schémas de principe et d’esquisse, le processus de
conception évolue vers une définition compléte des formes et des exigences sur les machines et
leurs composants élémentaires, formalisées sous la forme d’un plan.

Figure 5.2 — Représentation de la piéce de
Figure 5.1 — Piéce mécanique en alliage la figure 5.1 par le logiciel de CAO 3D
d’aluminium. Solidworks.
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Les programmes de conception assistée par ordinateur volumique, c’est-a-dire qui se basent
sur une représentation tridimensionnelle des piéces congues (figure 5.2), rencontrent un succeés
grandissant. Les possibilités de rendus réalistes permettent une amélioration de mises en
situation, avant méme la fabrication des premiéres piéces (figure 5.3). Malgré ces avancées
technologiques, dans la grande majorité des domaines, I’élément de description finale (et qui
fait office de contrat) est un plan imprimé sur un support papier (donc 2D comme sur la figure 5.4).

Figure 5.3 — Emploi de techniques de rendu pour représenter la piéce de la figure 5.1.

B

813 P | —
“ 2
g E
=l e &
oy 8

100

B17.5
= i
951001

& s

Edition étudiante de SolidWorks.
—Utilisationacademique uniquement:

Towor [UMONS 2558 =

Figure 5.4 — Plan de définition de la piéce de la figure 5.1, diverses projections de Monge servent
a la définition compléte des exigences dimensionnelles.

Le dessin technique permet la représentation sous forme de plans en deux dimensions du modéle
géométrique associé & une piéce ou a un ensemble mécanique. Pour faciliter une compréhension
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sans équivoque des plans par le plus grand nombre, une normalisation a été mise en place au
niveau international et répercutée vers les normes nationales (normes NBN pour la Belgique). La
méthode de projection la plus couramment employée est la projection orthogonale de Monge. Ce
type de projection permet de représenter les exigences dimensionnelles et de montage de maniére
fiable sur le plan.

5.2 Représentation d’une machine

La représentation graphique traditionnelle sous forme de plans respectant les normes du dessin
technique est évidemment plus abstraite que la visualisation tridimensionnelle d’une piéce. La
lecture de plan nécessite la reconstruction mentale d’un volume a partir de vues, coupes et sections,
choisies de maniére & définir le plus grand nombre d’éléments sur la surface la plus restreinte
possible. La représentation de certains éléments standardisés obéit en outre a des conventions qu’il
faut connaitre. Aux différentes étapes de définition d’un projet, plusieurs types de représentations
sont rencontrées.

5.2.1 Croquis

Le croquis (figure 5.5) est un dessin établi le plus souvent sans ’aide d’instruments de guidage ou de
mesure. Il est plus ou moins exact en formes et en positions. Il peut étre partiellement ou totalement
coté. Ce mode de communication est trés utile dans les offres, les premiéres phases d’avant-projet :
il permet d’aller & I’essentiel et de communiquer par la prise sur le vif d’informations techniques.

Mewle [“}f-&}aac)

Figure 5.5 — Croquis d'un touret & meuler.
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5.2.2 Dessin d’ensemble

Le dessin d’ensemble (figure 5.6) permet de représenter une machine assemblée pour en définir les
éléments constitutifs. Ce dessin d’ensemble présente une nomenclature qui énumeére les organes
d’une machine en rapport avec le plan permettant d’identifier les éléments en présence. La
nomenclature présente généralement :

— un index associé a 1’élément (ou au groupe d’éléments semblables) ;

— la description de I’élément ;

— le nombre d’éléments semblables dans un groupe;

— le matériau dans lequel est fabriqué 1’élément ;

— une identification du plan de définition (pour les éléments fabriqués) ou une référence d’un

numéro de série (pour les éléments standards achetés tels quels).

Touret & meuler

14 Couvercle
13 Meule
12 Flasque gauche ]
11 Arbre
10 Ecrou HmB
1] Rondelle
08 Flasque droit
07 Bague
I 06 | Chapeau
.' 05 | Roulement 20BCO2E
: “~;E|¢\ | 04 | Entreprise
f\\ [ [ 03 | Roulement 20BC10E
/ . . 0z Moyeu |
Lil} Eﬂ'l ©| | |05 (0 |07 01 | Corps

Figure 5.6 — Plan d’ensemble d'un touret & meuler.
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5.2.3 Schéma cinématique

Appréhender le fonctionnement d’une machine & partir d’une lecture de plan n’est pas un exercice
simple. Il est nécessaire de :

— déterminer la fonction globale du systéme mécanique;

— déterminer quels sont les éléments d’entrée (bout d’arbre, levier, ...) et de sortie (rechercher

les axes des mouvements, identifier les organes fixes) ;

— rechercher des liaisons élémentaires (distinguer les piéces mobiles, les éléments solidaires).
Le schéma cinématique simplifié (figure 5.7) permet de détailler chaque mécanisme particulier.
Il respecte certaines conventions; les figures 5.9 et 5.8 reprennent les représentations usuelles
des liaisons classiques. La représentation schématique d’appareillages électriques, hydrauliques et
pneumatiques répond également & une normalisation stricte (voir par exemple [1]).

MEULE

[MOTEUR —[i :é:

Figure 5.7 — Schéma cinématique d’un touret a meuler.

Désignation Représentation

s b
AT

Figure 5.8 — Symboles schématiques divers [2].
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Mom de la Mouvements |Degrés de Projection = acti
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0 translation G _‘i _i ‘“‘hq::f
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(pivot) 0 translation ety 25\ ﬁ
o
i
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annulaire 1 translation 4 e G;;'
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P
Fonctuelle 3 rotations 5
l kT

2 franslations

Figure 5.9 — Symboles des liaisons cinématiques [2].
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5.3 Plans de piéces mécaniques

Le plan permet de représenter en deux dimensions les détails de piéces tridimensionnelles. Il précise
les formes et les dimensions en vue de la réalisation de la piéce. Les régles de base présentées ici sont
issues des normes internationales extraites d’un fascicule édité par 'institut belge de normalisation

[1].

5.3.1 Eléments de base

Les formats standards des plans vont du A0 (1189 x 841 mm soit 1 m?) au A4 (297 x 210 mm). Le
plan porte toujours dans le coin inférieur droit un cartouche qui permet au minimum d’identifier
Pentreprise, 'auteur du plan, le nom de la piéce, 'échelle du dessin (& choisir dans les échelles
normalisées 5:1, 2:1, 1:1, 1:2, 1:5, ou tout multiple ou sous multiple par une puissance de 10) le type
de projection et d’'unités employées et la date de production du plan. Chaque entreprise posséde
son modeéle standardisé de cartouche reprenant plus ou moins d’informations complémentaires (la
figure 5.10 représente par exemple le cartouche employé a la Faculté pour les projets des étudiants
mécaniciens).

Tolérances générales Matériau Echelle | Unité | Format
prosecTion | Auteur Année d'étude
EUROPEENNE|
Titre du cours/projet | Titre du plan Remplace
Remplacé par

Date U M O N S ‘ T\(;I%TIEICSH Numéro de plan

Figure 5.10 — Exemple de cartouche employé par le service de Génie Mécanique de la FPMs.

5.3.2 Meéthode de projection

L’observation d’une piéce a des fins de représentation graphique peut étre conduite selon différentes
directions. Les six directions usuelles d’observation forment entre elles des angles de 90°. L’une
des directions est choisie de maniére a montrer la piéce dans sa position naturelle d'utilisation et
selon sa face la plus représentative (appelée « vue de face »).

Figure 5.11 — Symbole pour la projection Figure 5.12 — Symbole pour la projection
européenne. américaine.

La disposition standard des vues en Europe (dite « projection européenne ») est la méthode du
premier diédre (figure 5.13). Elle consiste a projeter la piéce de maniére orthogonale selon les six
directions principales (vue de face : plan frontal, vue de dessus : plan horizontal,...) puis a rabattre
les différentes projections orthogonales de la piéce comme présenté a la figure 5.14. La vue de droite
de la piéce est située a gauche de la vue de face, la vue de dessous de la piéce est située au-dessus
de la vue de face. L’indication normalisée présentée a la figure 5.11 doit étre mentionnée dans le
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cartouche. La disposition des vues selon la méthode américaine emploie la convention inverse (vue
de droite a droite,...).

DESSOUS

.
Figure 5.13 — Méthode de projection du Figure 5.14 — Disposition des vues pour la
premier diédre. méthode de projection du premier diedre.

Il est clair que suivant la complexité de la piéce, les six vues ne sont pas toujours nécessaires.
La norme préconise de représenter le nombre de vues minimum nécessaire a la compréhension du
plan. Cette recommandation n’est toutefois pas une obligation absolue et laisse au dessinateur la
liberté du choix des vues qui lui permet une clarté maximale du plan.

La disposition relative des vues est imposée par la norme (alignement et position relative), mais
I’espacement entre les vues est lui aussi libre. De maniére générale, on recherche la disposition qui
utilise au mieux l'espace de la feuille de dessin, en fonction du format de papier et de ’échelle
sélectionnée (figures 5.15 et 5.16).

]
SR
|

uuuuuuuu

[UMONS g [*

Figure 5.15 — Mauvaise exploitation de Figure 5.16 — Exploitation correcte de
I’espace de dessin. I’espace de dessin.

Lors du dessin manuel d’un plan, il est donc recommandé de commencer par le dessin du
parallélépipéde capable (« boite » parallélépipédique qui englobe la piéce) pour tester la bonne
disposition des vues sur le dessin (figures 5.17 et 5.18).
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Tolérances générales Matériau Echelle | Unité | Format

oooooooooo Auteur Année d'étude
EUROPEENNE|

Tire du cours/projet |Tirre du plan e

,,,,,,,,,,,,,,,,,

wwwwwwwwwww

U M O N S ‘ P,\!Z%Tﬁg Numéro de plan

Date

Figure 5.18 — Dessin du parallélépipéde capable pour tester la disposition des vues.

Comme le montrent les exemples précédents, le plan technique ne fait pas mention des éléments
présents sur les épures de Monge, a savoir la désignation des points et la présence des lignes de
rappel (cf figure 5.19).

Ces différences permettent d’obtenir un plan plus lisible, au détriment de 1’aspect exhaustif obtenu
par la mention des projections de points. Ceci justifie la possibilité d’avoir recours & plus de deux
projections sur un plan technique. La lecture de plan implique donc de reconstruire mentalement
les différents éléments pour une meilleure compréhension du plan (figures 5.20 et 5.21).
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Isométrie Monge

Figure 5.19 — Exemple de piéce et de son plan employant trois projections.

Figure 5.20 — Reconstruction des lignes de rappel sur le plan (figure vierge en page 254).
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Figure 5.21 — Identification des points sur I’épure (figure vierge en page 254).
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5.3.3 Traitement des arétes cachées

Les polyédres, comme d’ailleurs tous les solides figurés par des plans techniques, sont représentés
par leurs arétes, c’est-a-dire les segments qui sont les intersections de leurs faces planes (inclinées
I'une sur l'autre), en considérant que la matiére les constituant est opaque. Cette opacité de la
matiére impose qu’on distingue les arétes réellement vues des arétes cachées, mais qui existent
cependant et dont la représentation est optionnelle. La convention est de représenter les arétes
vues par des traits pleins forts, tandis que les arétes cachées sont représentées par des traits
interrompus fins (figure 5.25). La distinction entre les arétes vues et les arétes cachées permet une
interprétation plus claire du plan.

Il faut noter que de maniére générale, 'emploi des traits cachés est optionnel sur un plan. Le choix
de la représentation de ces traits est effectué pour I'ensemble du plan (si les arétes cachées sont
représentées dans une vue, elles doivent I’étre dans I’ensemble des vues).

Figure 5.22 — Piéce présentant une aréte partiellement cachée.

Pour des pieces de géométrie simple, une aréte reliant deux points vus est vue, une aréte reliant un
point caché a un autre point est cachée. Pour les piéces de géométrie plus complexe, il est nécessaire
de tester le caractére vu ou caché non seulement des sommets de la piéce, mais aussi des points
a l'intersection des projection des arétes de la piéce (certaines arétes peuvent étre partiellement
vues et partiellement cachées, figure 5.22).

La détermination automatique du statut d’une aréte peut étre obtenue par l'intermédiaire de la
géométrie synthétique. Par exemple, pour déterminer si un point de la projection horizontale est
vu ou caché, il faut rechercher 'intersection de la verticale issue de ce point avec le plan définissant
la face de la piéce pouvant potentiellement cacher ce point. S’il existe une intersection au-dessus
du point, cela signifie que ce point est caché, donc que toutes les arétes aboutissant & ce point
seront elles aussi cachées .
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Figure 5.23 — Recherche du caractére vu ou caché d’'un point (épure vierge en page 255).

La figure 5.23 détaille la procédure :
— le point D est potentiellement caché par la face ABFE dans la projection horizontale ;
— tracer la verticale v issue de D ;
— rechercher son point de percée dans le plan ABE (emploi d'une génératrice intermédiaire
9);
— la projection frontale du point de percée P étant située au-dessus de celle du point D, D
est caché par le plan ABFE, les arétes issues de D sont donc cachées.
On peut reprendre le dessin de la figure 5.19 pour déterminer le vu et caché, aussi bien en isométrie
que sur le plans (figure 5.24)
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[

Monge

Isométrie

Figure 5.24 — Recherche des arétes cachées (épure vierge page 256).

5.3.4 Types de traits

Comme indiqué précédemment, le contour des piéces et les arétes vues sont représentés en trait
continu fort. Les axes de symétrie ou de révolution sont représentés en trait mixte fin. Les arétes
cachées peuvent étre représentées en trait interrompu fin. Le trait continu fin est employé pour
hachurer les parties coupées de la piéce (figure 5.25). Pour faciliter la distinction entre trait fort
et trait fin, le rapport entre les deux largeurs de trait doit étre d’au moins 2 (0,7 mm et 0,35 mm
par exemple).

Dénomination Exemple d' emploi
— Trait continu fort Contours et arétes vues
_ Trait continu fin Hachures, lignes de cote
- — - — Trait interrompu fin | Arétes cachées

trait continu fin Limite de vues partielles
/\_/ a main levée
o Trait mixte fin Azes de symétrie ou de rotation

Figure 5.25 — Principaux styles de traits.

Figure 5.26 — Exemple de représentation d’un arbre.

On peut également utiliser un trait continu fin & main levée pour interrompre la représentation
d’une partie longue d’une piéce (figure 5.26).
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5.3.5 Coupes et sections

Une coupe (figure 5.27) est la représentation des parties d'un objet situées dans une surface sécante
et en arriere de celle-ci. La coupe permet de représenter les détails internes de la piéce. Le plan
de coupe est indiqué par un trait interrompu renforcé a ses extrémités. La disposition de la vue
en coupe (sur laquelle est indiquée la mention « coupe ») doit respecter la régle de projection
employée sur le plan. La zone située dans le plan de coupe est hachurée (traits fins) et les éléments
présents derriére le plan de coupe sont représentés. Lorsqu’on désire représenter exclusivement la
partie de l'objet située dans le plan de coupe, on emploie une section (figure 5.28). De maniére
conventionnelle, lors de la représentation en coupe longitudinale d’un assemblage, on ne coupe pas
un certain nombre d’éléments (arbres pleins selon leur axe, vis selon leur axe, écrous, nervures
dans leur plan moyen,...).

......

AL AL
COUPE A-A SECTION A-A

Figure 5.27 — Coupe dans un arbre. Figure 5.28 — Section dans un arbre.

On peut également avoir recours a des coupes partielles (figure 5.29) pour ne représenter qu’une
partie d’une vue en coupe.

Figure 5.29 — Coupe partielle pour préciser la géométrie interne d’une piéce non coupée.
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5.4 Les corps ronds

Les divers exemples ayant été traités dans le cadre de ce cours ont jusqu’ici exclusivement été
constitués de corps dont I’ensemble des faces sont planes (polyédres). Or, la quasi totalité des objets
d’utilisation industrielle présentent au moins pour partie des faces présentant des courbures. Les
différents types de corps ronds seront étudiés en détail dans la seconde partie de ce syllabus. Une
premiére introduction des principaux concepts utiles & leur représentation sur un plan technique
ser présentée dans ce chapitre.

5.4.1 Notion de contour apparent & un volume

Dans les plans techniques la représentation des corps ronds nécessite, en plus de la représentation
de 'ensemble des arétes 'vues’; le tracé du contour de la piéce vu par l'observateur (son contour
apparent). De maniére formelle, le contour apparent est défini comme la courbe de contact du
cylindre® circonscrit a cette surface et dont la direction des génératrices est perpendiculaire au
plan de projection. Par exemple, dans le cas d’une sphére de rayon R, son contour apparent sur
les plans H et F sont des cercles de rayon R (figure 5.30).

Figure 5.30 — Contour apparent d'une sphére.

1. dans le sens surface cylindrique
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lorsque leurs axes sont paralléles aux axes du systéeme de coordonnées employé, les représentations
des corps ronds simples (sphére, cylindre, cone et tore) est évidente (figure 5.31) :
— les deux projections d’une sphére de rayon r sont des cercles de rayon r;
— une des projections d'un cylindre circulaire de rayon de bas r et de hauteur h est un cercle
de rayon r, l'autre projection est un rectangle (de base 2r et de hauteur h);
— une des projections d'un cone circulaire de rayon de base r et de hauteur h est un cercle
de rayon r, l'autre projection est un triangle isocéle dont (base 2r, hauteur h;
— une des projections d’un tore de rayon majeur R et de rayon mineur r est constituée de
deux cercles concentriques (rayons R —r et R+r), autre projection est un rectangle (base
2R, hauteur 2r) complété par deux demis-cercles (rayon r).

OLJA
O OC

Figure 5.31 — Contour apparent des quatre corps ronds.

La piéce décrite en figure 5.32 regroupe les quatre types de surfaces coniques de base; son plan
est présenté en figure 5.33.

>

—

Figure 5.33 — Plan de la piéce (surface
sphérique en bleu, cylindrique en rouge,
Figure 5.32 — Exemple de piéce. conique en orange et torique en vert.
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5.5 Cotation

L’utilisation des projections orthogonales de Monge pour la représentation des vues de la piéce
implique une représentation en vraie grandeur des segments paralléles aux plans de projection.
Cette propriété permet la mesure des distances de maniére directe sur le plan lorsque les vues
utilisées sont choisies de maniére judicieuse.

d5 8

JJEAN

A
\

\\
A
V\30° To)
\i \i

18 1

10

A
A

A

Figure 5.34 — Exemples de cotations.

Les dimensions des piéces en millimétres sont indiquées sur le dessin a l'aide de lignes de cote.
Les lignes de cotation doivent nécessairement repérer des éléments vus en vraie grandeur. Il faut
noter que la cotation d’éléments cachés est interdite par la norme.

5.6 Tolérances

5.6.1 Tolérances dimensionnelles

En raison des imperfections de la fabrication, aussi limitées soient-elles, les dimensions réelles d’un
élément different des dimensions nominales, qui sont celles indiquées sur le plan d’exécution.
Compte tenu de cette incertitude, pour garantir que 1’élément puisse remplir sa fonction, on
s’assure, par un controle de qualité, que chaque dimension soit comprise entre deux limites fixées
par le concepteur dont la différence constitue la tolérance. Cette tolérance peut étre indiquée de
maniére explicite derriére la cote visée par la tolérance (par exemple 50+ 0, 01 indique que la cote
mesurée sur la piéce doit étre comprise dans I'intervalle de 49,99 mm & 50,01 mm). II faut noter
que le prix de revient est lié¢ a la qualité des tolérances (de maniére générale, une tolérance serrée
sera plus difficile & obtenir et donc plus cotteuse).

Notons enfin que, de maniére générale, on peut se rapporter a des tolérances générales définies
par des normes pour des procédés de fabrication particuliers. Une indication dans le cartouche
tolérances générales selon norme ... permet de ne tolérancer de maniére explicite que les éléments
pour lesquels une tolérance plus serrée que la norme générale est applicable (ces cotes sont appelées
cotes fonctionnelles).
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5.6.2 Tolérances géométriques

En plus de s’écarter des dimensions nominales prescrites sur le plan, les différentes parties d’'une
piéce voient leur forme géométrique différer de la forme géométrique exacte. Pour des raisons
fonctionnelles, il peut étre utile de limiter cet écart, ce qui est le but des tolérances géométriques.
Le lecteur est invité a se référer aux cours spécialisés ([3]) ou directement a la norme ISO1101 (|4,
[5]) pour plus de précisions.

5.6.3 Etats de surface

En plus des dimensions nominales et des tolérances associées, il est nécessaire de spécifier la qualité
de la surface qui sera générée. L’état de surface d’une piéce a une large incidence sur un grand
nombre de ses aptitudes, en particulier :

— ses aptitudes tribologiques (mouvement relatif entre des surfaces qui interagissent :

frottement, lubrification, usure,... );

— ses aptitudes a 'adhésion (par collage, par emmanchement,...) ;

— ses aptitudes a recevoir un revétement (peinture par exemple) ;

— ses aptitudes a résister a la corrosion, a la fatigue,...
A partir de la mesure du profil de rugosité (Z(x)), on peut extraire par différentes opérations
mathématiques des indicateurs permettant de chiffrer la rugosité. L’indication de rugosité
arithmétique (définie par la formule 5.1) est obligatoirement indiquée et choisie dans une série
normalisée (figure 5.35).

L
R, = Z/o |Z ()| dx (5.1)

Ra(mm) Ra(mm)
20 1,6 Guidage,
Ral,6 25 Surface brute|o g centrage
125 04 —
\/ 63 | Contact |02 Haute precision,
3,2 fixe 0,1 trajectoire
0,05 précise
0,025

Figure 5.35 — Indication de rugosité et classes normalisées.

Géométries et communication graphique 71



REFERENCES

Références

1]
2l

13l
4]

5]

(6]

7]

Sélection de normes Belges. Fascicule 2 : Dessin technique (8e édition) 2000.

P. Dehombreux. Génie mécanique - formulaire. Technical report, Faculté Polytechnique de
Mons, 2001.

E. Filippi. Dessin Technique et Métrologie Dimensionnelle. Mutuelle d’édition FPMs, 2004.

Norme internationale ISO 1101 :Spécification géométrique des produits (GPS) - Tolérancement
géométrique - Tolérancement de forme, orientation, position et battement, 200.

J. Boulanger. Tolérances et écarts dimensionnels, géométriques et d’états de surface.
Techniques de lingénieur, B7010, 1991.

Y. Durand. Géométries et communication graphique, Tome I partie 1 : La géométrie descriptive
de Monge, Fuascicule X1V : Les applications de la méthode de Monge au dessin industriel,
établissement d’un plan technique, conventions de tracé et de mise en page. Mutuelle d’édition
FPMs, 2006-2007.

Y. Durand. Géométries et communication graphique, Tome I partie 1 : La géométrie descriptive
de Monge, Fascicule XV : Les applications de la méthode de Monge au dessin industriel, les
coupes et les sections. Mutuelle d’édition FPMs, 2006-2007.

[8] Y. Durand. Géométries et communication graphique, Tome I partie 1 : La géométrie descriptive

de Monge, Fascicule XVI : Les applications de la méthode de Monge au dessin industriel,
introduction a la cotation fonctionnelle. Mutuelle d’édition FPMs, 2006-2007.

Géométries et communication graphique 72



Chapitre 6

Intersection d’éléments entre eux par la
méthode de Monge

The geometry of the things around us creates coincidences, intersections

- E. De Luca, Three horses

6.1 Intersection de deux plans

6.1.1 Introduction

L’intersection de deux plans non paralléles est une droite. Pour déterminer cette droite, il est
nécessaire d’en connaitre deux points.

Vue spatiale

Figure 6.1 — Intersection entre deux plans quelconques (LT = W? = ), épure vierge

page 257.
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L’examen de la figure 6.1 permet de constater qu’il existe deux points d’intersection évidents :
Iintersection des traces frontales des plans et 'intersection des traces horizontales des plans. La
recherche de l'intersection de deux plans dans une épure de Monge est donc assez immédiate a
obtenir si le plan est défini par ses traces.

En effet dans ce cas, la droite d’intersection est définie par les deux points a 'intersection des
traces « de méme nom » (c’est-a-dire les deux traces horizontales et les deux traces verticales).

6.1.2 Cas particuliers de problémes d’intersection entre plans

Il existe un grand nombre de cas particuliers nécessitant d’adapter la démarche présentées ci-
dessus (plans dont les traces sont paralléles, dont les traces se coupent hors de 1’épure, dont le
point commun des traces est confondu,...). L’ensemble de ces cas particuliers est présenté a la
référence [1]. Dans le cadre de ce cours, nous nous contenterons de résoudre deux problémes qui
seront utiles pour les développements futurs (intersection avec un plan vertical ou de bout utile
pour l'intersection droite-plan et avec un plan horizontal ou frontal utile pour la mise en vraie
grandeur).

6.1.2.1 Intersection avec un plan vertical ou de bout

L’intersection d'un plan quelconque avec un plan vertical peut se traiter par la méthode générale
d’intersection de plans définis par leurs traces. Il faut toutefois noter que comme la droite
d’intersection est contenue dans un plan vertical, sa projection horizontale est nécessairement
confondue avec la trace horizontale du plan vertical (figure 6.2).

Epure

Vue spatiale

Figure 6.2 — Intersection d'un plan avec un plan vertical.
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De méme, lors de la recherche de l'intersection d’un plan avec un plan de bout, la trace frontale
de la droite d’intersection est confondue avec la trace frontale du plan de bout.

6.1.2.2 Intersection avec un plan horizontal ou frontal

Ce cas de figure est un cas particulier du point précédent. Prenons le cas d’un plan frontal ; dans ce
cas, la droite d’intersection (en plus de présenter sa projection horizontale confondue avec la trace
horizontale du plan frontal) est une droite frontale (sa projection horizontale est donc paralléle a
la ligne de terre, figure 6.3).

Epure

Vue spatiale

Figure 6.3 — Intersection d’un plan avec un plan frontal.

Dans le cas de l'intersection avec un plan horizontal, la droite d’intersection est une droite
horizontale. dont la projection frontale est confondue avec la trace frontale du plan.
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6.2 Intersection d’une droite avec un plan

6.2.1 Intersection d’une droite quelconque avec un plan quelconque

La résolution de ce probléme passe par l'utilisation d’un plan auxiliaire contenant la droite.
L’intersection de ce plan auxiliaire avec le plan de départ donne une droite commune aux deux
plans. L’intersection de cette droite avec la droite de départ donne le point de percée de la droite
dans le plan original (figure 6.4). En effet, on a :

— un plan 7 et une droite d dont on cherche le point de percée dans 7 ;

— le plan auxiliaire p qui contient d;

— la droite d’intersection w = 7 N p dont tous les points appartiennent a 7 et & p;

— le point P = dNw dont les points appartiennent a 7 et a d, il s’agit donc du point recherché.
Le plan auxiliaire peut étre choisi quelconque, toutefois, il est plus simple de le choisir vertical
ou de bout. Dans le cas d’un plan vertical, sa trace horizontale est confondue avec la projection
horizontale de la droite et sa trace frontale est perpendiculaire a la ligne de terre. La figure 6.5
présente un exemple de résolution du probléme.

Vue spatiale Epure

Figure 6.4 — Point de percée d’une droite dans un plan : probléme de départ (LT = W}L = 71'}{,

épure vierge page 258).
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E
Vue spatiale pure

Figure 6.5 — Point de percée d’une droite dans un plan : construction d’un plan vertical, de la
droite d’intersection et du point de percée (LT:W}]::W?:pﬁ).

La procédure a suivre est la suivante :

— construction des traces du plan vertical contenant la droite (la trace horizontale est
confondue avec la projection horizontale de la droite d, la trace frontale est perpendiculaire
a la ligne de terre et passe par I'intersection de la trace horizontale avec la ligne de terre) ;

— construire la droite d’intersection w par la méthode classique d’intersection de deux plans
définis par leurs traces (sa projection horizontale est confondue avec celle de d);

— le point de percée est a 'intersection de d et de w, sa projection frontale est & 'intersection
des projections frontales de d et de w, sa projection horizontale lui correspond par une ligne
de rappel.
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6.2.2 Intersection d’une droite quelconque avec un plan projetant

L’intersection d’une droite avec un plan projetant (c’est-a-dire perpendiculaire & H ou a F)
ne nécessite pas l'utilisation d’un plan auxiliaire. En effet, I'une des projections du point est
déterminée de maniére immédiate sur ’épure :

— lors de l'intersection d’une droite avec un plan frontal ou vertical, la projection horizontale
du point d’intersection est a l'intersection entre la trace horizontale du plan et la projection
horizontale de la droite (figure 6.6), la projection frontale du point est obtenue grace a une
ligne de rappel;

— lors de l'intersection d’une droite avec un plan horizontal ou de bout, la projection frontale
du point d’intersection est a l'intersection entre la trace frontale du plan et la projection
frontale de la droite, la projection horizontale du point est obtenue grace a une ligne de
rappel.

— lors de Ulintersection d’une droite avec un plan de profil, les projections du point
d’intersection sont & 'intersection des projections de la droite et des traces (confondues)
du plan de profil.

Epure

Vue spatiale

Figure 6.6 — Intersection d’une droite avec un plan frontal.
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6.2.3 Intersection d’une droite projetante avec un plan quelconque

L’intersection d’une droite projetante (c’est-a-dire perpendiculaire & H ou & F') avec un plan
ne nécessite pas l'utilisation d’'un plan auxiliaire. Prenons ’exemple d’une droite verticale. La
projection horizontale du point d’intersection est nécessairement la trace horizontale de la droite.
La projection frontale du point d’intersection est ensuite obtenue a l’aide d’une génératrice
auxiliaire.

d’

Epure

Vue spatiale

Figure 6.7 — Intersection d’une droite verticale avec un plan (LT = W? = 7@{)

Le choix de la génératrice auxiliaire est entiérement libre; pour améliorer la clarté de 1’épure, il
est par exemple possible de la choisir horizontale ou frontale (figure 6.8).
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Figure 6.8 — Intersection d'une droite verticale avec un plan, emploi de génératrices particuliéres.
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Chapitre 7

Mise en vraile grandeur d’éléments

Your eyes can deceive you. Don’t trust them

- O. Kenobi, A new hope

7.1 Introduction

Comme annoncé dans les objectifs de ce cours, la représentation par la méthode de Monge vise
a une représentation qui permette l'exploitation directe du plan pour la description des piéces.
Une figure est dite ’en vraie grandeur’ si la longueur de ses segments projetés est égale a celle du
segment de l'espace et si les angles projetés sont égaux aux angles dans 1’espace.

F
Al
B/
Figure 7.1 — Un triangle d’un plan frontal Figure 7.2 — Un polygone contenu dans un
se projette en vraie grandeur sur le plan plan frontal se projette en vraie grandeur

frontal. sur le plan frontal.
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On constate aisément que lorsqu’un segment est contenu dans un plan paralléle & un plan projetant
(frontal par exemple), sa projection dans ce plan est vue en vraie grandeur. En considérant la figure
7.1, on démontre aisément que le triangle ABC se projette en vraie grandeur sur le plan frontal :
— les segments AB, BC et C'A se projettent en vraie grandeur dans le plan frontal ;
— le triangle A’ B/C7 a ses trois cotés égaux a ceux de ABC, les deux triangles sont donc
isométriques ;
— les triangles étant isométriques, I’angle entre les cotés est donc identique entre les deux
figures.
Cette propriété est également vraie pour un polygone quelconque (figure 7.2). En effet, il est
toujours possible de décomposer ce polygone en un ensemble de triangles. Chacun des triangles
étant isométrique par rapport a sa projection, le polygone est isométrique par rapport a sa
projection. En poussant ce raisonnement & la limite (dimension des cotés tendant vers zéro),
on en déduit également que toute courbe plane contenue dans un plan paralléle a un plan de
projection se projette en vraie grandeur dans ce plan.

Figure 7.3 — Une courbe appartenant a un plan frontal se projette en vraie grandeur sur le plan
frontal.

Il faut également noter qu'un angle qui n’est pas droit ne se projette en vraie grandeur que si ses
deux cotés sont paralléles a un plan projetant. Par contre, pour qu'un angle droit se projette en
vraie grandeur, il suffit q’un seul de ses c6tés soit paralléle & un plan de projection.
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7.2 Meéthode du triangle rectangle

Dans le cas ot seul un nombre réduit de mesures doivent étre obtenues sur la plan, il est possible
d’appliquer la régle du triangle rectangle pour obtenir de maniére simple la vraie grandeur d’un
segment. La démarche est présentée en figure 7.4.

Vue spatiale

Figure 7.4 — Mise en vraie grandeur d’'un segment par la méthode du triangle rectangle (épure
vierge en page 259).

Elle consiste & :
— tracer la paralléle a d" passant par B. Cette droite coupe la projetante de A au point M ;
— le triangle ABM est rectangle en M ; la connaissance de la longueur de deux cotés permet
de déduire la longueur du troisiéme ;
— BM étant paralléle a H, on a [BM| = |B"M"|;
— AM étant parallele & F' (A et M appartiennent a la projetante de A, donc & une droite
verticale), on a |[AM| = |ATM/|;
— il suffit donc de reporter la distance |[AM| = !Af M/ | = Ac perpendiculairement au segment
B"M" pour reformer une image en vraie grandeur du triangle ABM.
Il faut noter que cette démarche permet également d’obtenir ’angle que forme la droite qui porte
le segment AB avec le plan H ('angle entre une droite et un plan est 'angle que forme cette
droite avec sa projection dans ce plan).
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La méme démarche serait applicable en passant par la projection frontale. Dans ce cas, c’est 'angle
formé par la droite avec le plan frontal F' qui est obtenue (figure 7.5).

Vue spatiale

Figure 7.5 — Mise en vraie grandeur d’'un segment par la méthode du triangle rectangle (2e
possibilité).

On peut également noter que dans le cas particulier ot le segment de départ appartient a un plan
paralléle & un plan de projection (frontal ou horizontal donc), la projection de ce segment dans ce
plan de projection est directement la vue en vraie grandeur du segment (la différence de cote Ac
ou Ae suivant le cas est nulle).
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7.3 Mise en vraie grandeur d’une figure compléte

Les projections d’un solide sur un plan technique se réalisent sur des plans orthogonaux entre eux.
Toutefois, si le volume présente des faces orientées de maniére non adéquate, il est impossible de
les représenter dans leur intégralité en vraie grandeur. La norme prévoit la possibilité d’ajouter
sur le plan une représentation en vraie grandeur d’une face inclinée annotée d une fleche indiquant
la direction d’observation (figure 7.6).

Figure 7.6 — Mise en vraie grandeur d’une face d’une picce [1].

D’un point de vue pratique, cette mise en vraie grandeur peut étre réalisée selon trois techniques
distinctes :

— la méthode de rabattement qui fait tourner I’ensemble des points d’un plan autour d’une
droite (appelée charniére) horizontale ou frontale ;

— la méthode de rotation qui fait tourner I’ensemble des points d’un plan vertical ou de bout
autour d’un axe (lui-méme vertical ou de bout) ; une premiére rotation préalable permet
de rendre un plan quelconque vertical ou de bout ;

— la méthode de changement de plan qui modifie le plan horizontal ou frontal de projection
pour 'amener paralléle & un plan vertical ou de bout (un premier changement de plan
permet de rendre un plan quelconque vertical ou de bout).

Figure 7.9 — Mise en vraie
Figure 7.7 — Mise en vraie Figure 7.8 — Mise en vraie grandeur par changement de
grandeur par rabettement. grandeur par rotation. plan.

Dans le cadre de ce cours, nous nous contenterons d’étudier la méthode de rotation.
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7.4 Mise en vraie grandeur par rotation

7.4.1 Introduction

L’axe de rotation de la méthode de mise en vraie grandeur par rotation est choisi soit vertical,
soit de bout. Dans ces deux cas de figure, le plan dans lequel s’inscrit ’arc de circonférence
décrit par le point en mouvement devient paralléle, respectivement a H ou a F, il sera donc vu
« en vraie grandeur ». Ceci permettra de mesurer directement, sur cette projection, 'angle au
centre interceptant un arc de cette circonférence. Cette mesure sera essentielle quand il s’agira de
déterminer la rotation de I’ensemble des points d’une figure plane.

7.4.2 Rotation d’un point
7.4.2.1 Rotation autour d’un axe vertical

La figure 7.10 présente la technique de rotation. Par convention, ’axe vertical de rotation est
appelé Z (on déroge donc a la convention de représentation d’une droite par une lettre minuscule).
Dans I'épure, 'amplitude angulaire o du mouvement circulaire du point W est mesurable en vraie
grandeur sur la projection horizontale.
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vue spatiale

Figure 7.10 — Rotation autour d’un axe vertical.
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7.4.2.2 Rotation autour d’un axe de bout

La rotation autour d’'un axe de bout se présente de la méme facon qu’une rotation autour d’un
axe vertical, en inversant les projections frontales et horizontales entre les deux examples (figure
7.11).

Xh
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I |
| I
| |
I |
| I
X — 4— R
h \
B P!
Epure

vue spatiale

Figure 7.11 — Rotation autour d’un axe de bout.

7.4.3 Mise en vraie grandeur de figures
7.4.3.1 Figures contenues dans un plan vertical ou de bout

Lorsqu’une figure est contenue dans un plan vertical, il est aisé d’obtenir une figure en vraie
grandeur. En effet, il suffit de faire tourner le plan autour d’une droite verticale pour le rendre
frontal (figure 7.12). Dans ce cas de figure, toutes les figures tracées dans ce plans sont vues en
vraie grandeur dans la projection frontale. Le méme raisonnement peut étre tenu pour une figure
tracée dans un plan de bout (une rotation autour d’un axe de bout le rend horizontal, figure 7.13).
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H
Figure 7.12 — Rotation d’un plan vertical Figure 7.13 — Rotation d’'un plan de bout
autour d'un axe vertical pour le rendre autour d’'un axe de bout pour le rendre
frontal. horizontal.

A titre d’exemple, on peut rechercher la vraie grandeur du quadrilatére ABC'D de la figure 7.14 :

Figure 7.14 — Rotation autour d’un axe de vertical (figure vierge page 260).
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7.4.3.2 Plan quelconque

Le cheminement employé pour rendre un plan quelconque paralléle aux plans de projection par la
méthode de rotation va étre présenté. Il se base sur le classement des plans selon leurs particularités
(figure 7.15).

Plans de bout

Plans
horizontaux

Plans verticaux

Figure 7.15 — Classement des plans particuliers [2].

Pour passer d’un plan quelconque a un plan horizontal, il faut, d’abord appliquer une premiére
rotation pour que le plan quelconque devienne de bout. Pour transformer ensuite ce plan de bout
en horizontal, il faudrait appliquer au plan déja rendu de bout une seconde rotation pour le rendre
horizontal. La question se pose immédiatement de savoir quel type de rotation il faut imposer au
plan quelconque pour parvenir & le rendre de bout. La réponse a cette question fait appel au
théoréme suivant :

Théoréme 7.1. Si une droite est perpendiculaire a un plan, tout autre plan passant par cette

droite sera perpendiculaire au premier plan cité (Théoréme classique de Géométrie Synthétique
3D).

Ainsi, si un plan contient une droite de bout (c’est-a-dire perpendiculaire au plan frontal F), ce
plan sera lui-méme perpendiculaire & F' (c’est-a-dire de bout). Donc, si 'on parvient a trouver,
dans le plan quelconque, une droite qui soit susceptible de devenir de bout par une rotation
appropriée, il sera possible de rendre ce plan de bout par cette rotation. En effet, comme la droite
en question appartient au plan, tous les points (aussi bien ceux de la droite que ceux du plan)
vont subir une rotation de méme amplitude angulaire et autour du méme axe lors de l'opération
de rotation, initiée au départ pour rendre la droite de bout.

Si on se rappelle du classement des droites (figure 4.21 page 53), on peut constater qu'une droite
de bout est un cas particulier de droite horizontale (elle a en plus sa projection horizontale
perpendiculaire a la ligne de terre). Autrement dit, pour obtenir un plan de bout, il suffit de
rendre de bout par rotation autour d’un axe vertical une droite horizontale du plan.

Ensuite, dés que le plan est ainsi rendu de bout, il suffit ensuite de le faire tourner autour d’un
axe de bout X, pour le rendre horizontal (figure 7.17).

En synthése, pour amener un plan quelconque en position horizontale, il faut :
— d’abord faire choix d’une horizontale de ce plan;
— la faire ensuite tourner autour d’un axe vertical pour I'amener en position de bout en faisant
tourner simultanément le plan lui-méme afin qu’il devienne un plan de bout ;
— enfin faire tourner ce plan devenu un plan de bout autour de ’horizontale devenue de bout
afin de I’amener en position horizontale.
De méme, pour amener un plan quelconque en position frontale, il faut :
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Figure 7.17 — Rotation d’'un plan de bout
autour d’un axe horizontal pour le rendre
horizontal.

Figure 7.16 — Rotation d’un plan autour
d’un axe vertical pour le rendre de bout.

— d’abord faire choix d’une frontale de ce plan;

— la faire ensuite tourner autour d’un axe de bout pour I’amener en position verticale en
faisant tourner simultanément le plan lui-méme afin qu’il devienne un plan vertical ;

— enfin faire tourner ce plan devenu un plan vertical autour de la frontale devenue verticale
afin de 'amener en position frontale.

7.5 Rotations inverses

La mise en vraie grandeur d’éléments permet de réaliser des constructions géométriques dans la
figure de maniére directe. Il est souvent nécessaire de procéder a I'opération inverse pour obtenir
I'original d’un point avant ’application de la rotation.
Le probléme est posé de la maniére suivante : un point P, est défini sur I'image de la droite d par
une rotation autour d'un axe vertical. Comment retrouver le point original sur d? Ce probléme
est résolu en suivant le cheminement qui méne a la rotation de maniére inverse (figure 7.18) :

— P/ appartient a d’ et est situé a la méme cote que Pr/ ;

— P" appartient & d" et est situé sur un arc de cercle centré en K" passant par Pr”.
La construction peut étre vérifiée en s’assurant que P" et P’ se correspondent via une ligne de
rappel perpendiculaire a la ligne de terre.
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Figure 7.18 — Opération de rotation inverse pour retrouver le point P (figure vierge page 261).
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7.6 Application aux droites de profil

Dés le début du cours, nous avons vu comment résoudre les problémes relatifs aux droites et
aux plans de profil en faisant usage de leurs projections sur le plan de profil. L’inconvénient
de cette méthode est qu’elle exige de doubler la largeur de I’épure pour que les projections de
profil puissent étre dessinées dans la moitié gauche de I’épure. La méthode des rotations apporte
une autre réponse a ces problémes de droites et plans de profil, mais sans l'inconvénient associé
a la largeur de I’épure. Nous examinerons, au titre d’exemple-type, le probléme suivant [2] : Un
segment de profil AB est donné par ses projections. Déterminer, en faisant usage de la méthode des
rotations, les projections des sommets du carré ABC'D appartenant au plan de profil passant par
AB et tel que les sommets C' et D présentent des cotes supérieures a celles de A et B. La résolution
consiste dans un premier temps a rendre le segment AB vu en vraie grandeur (par exemple frontal,
figure 7.19) pour pouvoir dessiner le carré de maniére directe. Ensuite, les positions originales des
points C' et D sont obtenues par une rotation inverse d’amplitude égale a celle qui a servi a rendre
AB frontal.

B/

B}z

Ah

Figure 7.19 — Résolution d'un probléme impliquant une figure dans un plan de profil.
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CHAPITRE 8. ANALYSE DES COURBES PLANES

Chapitre 8

Analyse des courbes planes

Math tells us three of the saddest love stories : tangent lines which had one chance
to meet and then parted forever, parallel lines which were never meant to meet and
asymptotes lines which can get close but will never be together

- Unknown, Popular quotes

8.1 Introduction

Une courbe plane est une courbe entiéerement contenue dans un plan. L’étude de ces courbes planes
est fréquemment employée pour les études de fonctions ou pour le suivi de trajectoires de mobiles
par exemple. Ce chapitre décrit les formes principales de représentation de ces courbes, I'étude
différentielle de ces courbes et de leurs éventuels points singuliers.

84
64 64
4

4
2

2.
0

6 10 12 1 16 18 20 22 24 . . . .

Figure 8.1 — Exemple de courbe simple : Figure 8.2 — Exemple de courbe plane
fonction f(x) = 8- cosb. complexe : courbe de Lissajous.
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8.2 Différentes méthodes de représentation d’une courbe
plane
De maniére générale, I'expression d’une courbe plane est une relation qui permet de relier les

coordonnées (x,y) des points appartenant a cette courbe. On peut trouver suivant 'usage divers
types de représentation qui sont rappelés dans les paragraphes suivants.

8.2.1 Formes implicites

La forme implicite d’une courbe plane est une relation de la forme F(z,y) telle que I’ensemble
des points de la courbe vérifient I'expression F'(z,y) = 0. Il s’agit de la forme la plus générale de
description d’une courbe plane.
I faut noter qu'une fonction F'(x,y) = 0 ne représente pas nécessairement une courbe plane,
comme par exemple :

— F(z,y) = 2% + y? = 0 qui représente le point (0,0) ;

— F(z,y) = 2> + y* + 1 = 0 qui ne représente aucun point du plan réel.
Le cercle de rayon r et de centre (x¢,yc) est représenté par I’équation :

Flx,y)=(x—zc)’+@y—ac) —r2=0 (8.1)

Ce qui signifie que I'ensemble des points du cercle vérifient cette équation.

8.2.1.1 Coniques
Les fonctions quadratiques implicites de la forme
F(z,y)=az® +bay+cy? +dr+ey+ f=0 (8.2)

définissent des courbes planes appelées coniques.

X .0

Figure 8.3 — Coniques propres : ellipse, parabole, hyperbole.
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Il existe deux méthodes différentes pour les définir de maniére physique :
— soit par U'intersection entre un coéne de révolution et un plan (figure 8.4);
— Soit comme un lieu géométrique de points présentant des rapports de distances fixes entre
une droite (directrice) et un point (foyer) ; ce rapport étant appelé excentricité de la conique
(figure 8.5).

i
j directrice
i

Figure 8.4 — Définition des coniques
par intersection d’un plan et d’un Figure 8.5 — Définition des coniques sous forme de lieux

cone. géométriques.

Il existe trois formes dites propres (parabole, hyperbole et ellipse) et plusieurs formes dite
dégénérées (point, droite ou droites sécantes) suivant la position et l'orientation relative entre
le plan et le cone. On peut déterminer le type de conique via I’étude du signe du discriminant
b? — 4ac de I’équation 8.2 :

— ¢’il est négatif, il s’agit d'une ellipse;

— ¢s'il est nul, il s’agit d'une parabole ;

— ¢’il est positif, il s’agit d’une hyperbole ;
Cette distinction s’observe également au niveau de I'excentricité de la conique :

— si e<1, il s’agit d’une ellipse;

— e=1, il s’agit d’une parabole;

— e>1 est positif, il s’agit d’'une hyperbole ;
Au dela de cette information, il est difficile de tirer de la forme de I’équation 8.2 des informations
sur la morphologie générale des coniques.
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8.2.1.1.1 Reéduction de coniques Les propriétés des coniques s’étudient de maniére plus
simple lorsque le terme en zy de I’équation est nul (on parle de forme réduite de la conique. Pour
ce faire, on procéde a la réduction de la conique, c’est a dire un changement de repére via une
rotation d’un angle 6 (figure 8.6). Dans le nouveau systéme d’axes, on peut substituer & z et y de
nouvelles coordonnées =’ et 3 telles que :

{ x' = xcosf + ysinb { x=12"cosf — 1y sinf

Yy = —xsinf + ycosl y=a'sinf + 1y cos 6 (8.3)

Figure 8.6 — Changement de repére pour obtenir une conique sous forme réduite.

L’équation de la conique devient alors :
a(z' cos® —y'sinf)” + b (' cos — ¢ sin ) (2 sin 6 + ¢ cos 6) (8.4)
+c (' sinf + 4 cos0)” + d (x' cosf — i sin @) + e (2/sin + ¢/ cosO) + f = 0
le terme en z'y’ vaut alors :
—2acosfsin + bcos® § — bsin® § + 2ccosfsin ) = (c — a) sin26 + bcos 20 (8.5)
En choisissant judicieusement l'angle 6, il est possible d’annuler ce terme en 'y :
—sia#c 0= 0,5arctanﬁ;
—sia=c¢, 0 =mn/4
On obtient par la suite une équation de la forme
da? + by + 2 +dy +ée =0 (8.6)

avec

a = acos’f+ bcosfsinf + csin® b

asin®f — bcosfsinf + ccos? b

! dcosf + esinf (8.7)
—dsinf + ecos

e = f

En regroupant les termes en 2’ et 3’ sous forme de doubles produits, on peut obtenir la forme
centrée et réduite des coniques (Il s’agit en fait de la forme rencontrée a l’examen d’admission
rappelée a 'annexe C.1.2). Un changement de repére inverse permet ensuite de revenir dans le
repére initial pour décrire les différents éléments :

x' =z cosf+ ysinb
Yy = —xsinf + ycos b

A
I

&
I

(8.8)
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8.2.1.1.2 Exemple Dans l'espace Euclidien R?, on considére la courbe définie par I’équation
F(z,y) = 32> — 10zy +3y*> — 40 — 4y —12=0 (8.9)

Quelles sont les caractéristiques de cette courbe ?

Le déterminant caractéristique vaut ici A = b —4ac = 10> —4-3-3 = 64 > 0, la conique est donc
une hyperbole.

Pour définir ses caractéristiques, on va commencer par en obtenir la forme réduite en procédant
a un changement de repére. Comme les paramétres a et ¢ de la conique sont égaux, 'angle de
rotation est de 7/4, les paramétres de la forme réduite de I’hyperbole sont donc :

o = 3cos’ T —10cos Fsin§ + 3sin® T = —2
Y = 3sin®T+10cosfsinf +3cos® T =8
d = —4dcosT —4sinT =42 (8.10)
d = 4sinf —4cosy =0
e = —12
L’équation de I’hyperbole dans le nouveau repére devient donc :
F('y) = =22 + 8y — 4v/22' — 12 =0 (8.11)

Cette équation peut ensuite étre mise sous forme canonique en commencant par regrouper es
termes sous forme de produits remarquables :

—22"% + 8y — 422’ — 12 =0 (8.12)
9 (a;’2 +2V20 + 2) + 82 —124+4=0 (8.13)
2
9 <x + \/§> + 82 —8=0 (8.14)
2
42
%—y'Q—i—l:O (815)

On est donc en présence d’'une hyperbole dont le centre est situé en (—\/5, 0) (dans Ox'y’) et dont
les asymptotes ont pour équation :

h=v =30+ v2) 8.16)
dQEy’:—%(x’+\/§) '
Le retour dans le repére initial passe par le changement de base inverse :
x:x’cos%—y’sin%: ﬁcos%—&sin%:—l (8.17)
y=—a'sin? 4y cosT=—2sinT+0-cosT =—1 '

Ce qui donne pour coordonnées dans Oxy (-1,-1).
Le méme changement de repére est appliqué aux équations des asymptotes pour obtenir leur
équation dans Oxy :

dy = —zsin T +ycost = 5 (zcos§ +ysing + v/2) (8.18)
dy = —wsin§ +ycosf =~ (vcos§ +ysinf +2) |
c’est-a-dire :
{d253y—x+2=0 (19
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8.2.2 Formes explicites

La forme explicite d’'une courbe est une représentation sous la forme d’une fonction y = f(z)
(& une valeur de x correspond au plus une valeur de y). La forme explicite la plus simple est la
relation :

y=mzx+p (8.20)

qui représente une droite d’ordonnée a 'origine p et de coefficient directeur m (figure 8.7).

« = arctanm

Figure 8.7 — Droite d’équation y = mx + p. Figure 8.8 — Parabole de tir.

La forme explicite n’est que peu rencontrée en-dehors de 'analyse fonctionnelle car dans de
nombreux cas, il n’est soit pas possible, soit pas réalisable d’'un point de vue pratique d’obtenir
une forme explicite d’une courbe. Dans de nombreux cas, il est également nécessaire d’employer
plusieurs fonctions explicites pour définir une courbe. Par exemple, le cercle serait représenté sous
la forme :

Y=yt \/R2 — (z — z.)° (8.21)

Il y a donc deux branches nécessaires pour sa représentation explicite.

8.2.3 Forme vectorielle (paramétrique)

La forme vectorielle d’'une courbe plane un vecteur variable 7(15) joignant l'origine a tous les
points de la courbe. Elle fait intervenir un parameétre dont dépendent les coordonnées = et y des
points de cette courbe. En projetant ce vecteur sur les axes du repére, on obtient les équations
paramétriques de la courbe. Par exemple, I’équation vectorielle d'un cercle de rayon R et de centre

(xc,yc) est :
V(0) = (v + Reos) - @, + (yo + Rsind) - @, (8.22)

Ses équations paramétriques sont :

{ r=x.+ Rsinf

Y =Y.+ Rcost (8.23)

0 est le parameétre qui a ici un sens physique (’angle entre la droite joignant le centre et le point
courant avec 'horizontale), mais ce n’est pas nécessairement toujours le cas.
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La forme paramétrique est fréquemment rencontrée en physique par I'intermédiaire d’un paramétre
temporel. Par exemple, le projectile balistique lancé avec une vitesse initiale 1}y orientée selon un
angle 0 par rapport a I’horizontale (figure 8.8) aura, dans une approche simplifiée, un mouvement
décrit par les équations paramétriques suivantes :

{x:VOcosé’-t (8.24)

y:%sinﬂt—%

8.2.4 Forme polaire

L’équation polaire d’une courbe est I'expression qui lie le rayon polaire a ’angle polaire. Le rayon
polaire est le segment joignant 'origine du systéme d’axes au point courant sur la courbe. L’angle
polaire est ’angle fait par ce rayon polaire avec 1'axe des x positifs (figure 8.9).

y

e

\q

Figure 8.9 — Définition polaire d'une courbe

Par exemple, la forme r = acos (kf + ¢) définit une rosace a k branches si k est impair et a 2k
branches si k est pair. A titre d’exemple, la rosace & quatre branches d’équation polaire r = a-sin 26
est représentée en figure 8.10.

Figure 8.10 — Rosace a quatre branches.
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8.2.5 Passage d’une forme a une autre

De maniére générale, il n’existe pas qu’une seule forme de représentation valide pour une
courbe déterminée. Un cercle unitaire centré en l'origine peut par exemple étre représenté par
I'intermédiaire des cinq formes suivantes (figure 8.11) :

Flr,y)=2*+y*—1=0 y(z) = £V 1 — 2?2

p(0) =1
P
0
0 /

F(0) =cosf- W, +sinb- w,

x = cosf A
y =sinf

y

Figure 8.11 — Différentes formes pour représenter le cercle unité centré en l’origine.

Le passage d'une forme a une autre peut s’effectuer de maniére plus ou moins aisée suivant les
cas.

8.2.5.1 Passage de la forme polaire a la forme paramétrique

Si une courbe est donnée par son équation polaire r = f(#), il est possible de se ramener & ses
équations paramétriques de la maniére suivante :

x = f(0)cosb
{ y — £(6) sin (8.25)

8.2.5.2 Passage de la forme paramétrique a la forme cartésienne implicite

Le passage de la forme paramétrique a la forme cartésienne implicite consiste a éliminer le
paramétre entre les deux équations. Notons que de maniére générale, cette transformation n’est
pas toujours réalisable.
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r=t
y = f(t)
Ha,y)=y— flz) =0
—_—
Forme
paramétrique F olrn'w
(vectorielle) potarre
- - -
Isolery Eliminer z = p(0) - cosd
le parametre y=p(0) -sind

*on tente de faire disparaitre racines et denoiminateurs

Figure 8.12 — Passage d’une forme de représentation a une autre.

8.2.5.3 Passage de la forme cartésienne implicite la forme cartésienne explicite

Cette transformation consiste a (quand cela est possible) isoler y dans la forme implicite.

8.2.5.4 Passage de la forme cartésienne explicite a la forme cartésienne implicite

Ce passage est toujours possible en posant simplement F(z,y) =y — f(z) = 0. Toutefois, si cela
est possible, on préférera faire disparaitre les racines et dénominateurs dans I’expression.

8.2.5.5 Passage de la forme cartésienne a la forme paramétrique

Une courbe donnée sous la forme y=f(x) peut étre représentée sous une forme paramétrique de

maniére évidente :
r=1t
8.26
{ y = f(t) (8.26)

8.3 Recherche de la tangente et de la normale & une courbe

La recherche des tangentes et normales a une courbe en un point donné permet d’en déduire
différentes caractéristiques. Par exemple, si un mobile parcours une courbes donnée, le vecteur
vitesse est orienté selon la tangente & la courbe. Ce chapitre présentera la généralisation du calcul
de la tangente pour les différents types de représentation. Pour certaines formes des équations,
une ambiguité peut apparaitre pour la tangente en certains points des courbes. La recherche de
ces points, appelés points singuliers, sera également abordée.
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8.3.1 Courbe donnée par son équation cartésienne explicite

Soit une courbe quelconque définie par son équation explicite y=f(x). Soit les points My et M,
sur cette courbe et MyM; la sécante & la courbe. La pente de cette sécante est définie par (figure
8.13) :

A
tan = A—i (8.27)

Figure 8.13 — Recherche de la tangente a une courbe.

Si on fait tendre M; vers My (ou de maniére équivalente si on fait tendre Az vers 0), la sécante
tend vers la tangente a la courbe en M :

: Ay
tan ¢g = algr(l) tan ¢ = }gr(l) Ay =Y (Mp) (8.28)
La tangente en M, aura donc pour équation :
Yy =ym, + 9 (Mo) (x — was,) (8.29)

Par convention, la normale a la courbe en M, est la droite passant par My qui est perpendiculaire
a sa tangente. Son équation sera donc :
-1

Y=yYum, + v (Vo) (. — 2a,) (8.30)
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8.3.2 Courbe donnée par son équation cartésienne implicite

La recherche de la tangente & une courbe définie par son équation implicite en un point donné
peut se calculer sans nécessiter la recherche de la forme explicite en employant le résultat classique
d’analyse mathématique :

Théoréme 8.1. Soit une fonction continue définie par l’équation implicite F(x,y) = 0 ou F(x,y)
et ses dérivées partielles selon x© et y sont continues en un point P. La dérivée de la fonction
implicite en P est obtenue par l'opposé du quotient entre la dérivée partielle selon x et la dérivée
partielle selon y calculées en P.

Autrement dit, la dérivée en P se calcule comme :

OF (z,y)

C%?)%: _%%%% (8.31)

Oy My

Pour rappel, la dérivée partielle de F(z,y) par rapport & x se calcule en considérant la dérivée
de l'expression F'(x,y) par rapport & x en considérant y comme une constante. L’équation de la
tangente et de la normale est donc identique aux équations 8.29 et 8.30 en remplacant y'( M) par
le résultat de I'équation 8.31.

8.3.3 Courbe donnée par son équation vectorielle

Par définition, la fonction vectorielle d’une variable scalaire réelle ¢ (définie dans un domaine D de
R) est une application de D dans R" (n=2 dans le cas des courbes planes) qui associe a tout réel

—
t de D un vecteur 7(15) (ou un point-image M tel que OM = 7(t)) L’ensemble des point-image
M définit le graphe (ou indicatrice) de la fonction vectorielle. La fonction vectorielle définissant
une courbe plane est a rapprocher de sa définition paramétrique. En effet, on peut définir :

Vt) = a(t) - wl +y(t) - (8.32)

Cette définition permettra de maniére aisée de définir que :

— V() est continue sur D sur z(t) et y(t) le sont aussi;

— V(1) est dgivable sur D sur z(t) et y(t) le sont aussi;

— la dérivée V'(t) = 2/(t) - up + v/ (t) - Uy ;

— de méme pour n entier>1 V"(t) = 2™(t) - uy, + y"(t) - uy.
Si la fonction vectorielle V(t) est dérivable d’ordre n au voisinage de ¢y, on peut ’approcher par
son développement de Taylor :

VQy;wa+C_“)E%@+(ﬁgﬁf)VWm+~~+91E£Ww@ (8.33)

1! ! n!

RSO s

(n+ 1) +e]
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M,

Moo M

(]

Figure 8.14 — Recherche de la tangente en un point d’une courbe exprimée par sa fonction
vectorielle.

La différence 7(1&) — 7(150) permet de définir un vecteur définissant une sécante a la courbe.
L’expression 8.34 peut étre réorganisée sous la forme :

(n-1)
7(2 : z<t0) _ ‘7(150) " t ;!to W(to) 4ot %W(to) (8.34)
+% Vi) +7] (8:35)

A la limite, si on fait tendre t vers ty, on peut déduire qu’'un vecteur tangent peut étre obtenu par
la dérivée premiére de la fonction vectorielle :

i V0 = V(o)

t—to t— 1o

_>
= V(o) (8.36)

%
Ceci est valable si V'(ty) # 0, on parle dans ce cas de point régulier de la courbe. La pente de la

%
tangente est équivalente a la pente du vecteur V'(tg), c’est-a-dire :

dy

dy  dt

/ _ — = =
yie) == ds (8.37)

dt
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8.3.4 Courbe donnée sous forme paramétrique

Le but est d’obtenir le coefficient directeur de la tangente & une courbe définie par ses équations
paramétriques sans repasser par la forme implicite. Soient les équations paramétriques

{ 5 - 5((:)) (8.38)

avec t le paramétre. Si on suppose que la fonction inverse ¢ = t(x) existe et est dérivable, la forme
explicite serait obtenue simplement par

y(z) =y (t(z)) (8.39)
et sa dérivée par rapport a x serait la simple dérivée de fonction composée :

, dy dydt
Or, l'analyse mathématique démontre que la dérivée d’une fonction inverse est l'inverse de la
dérivée de la fonction, dés lors

dy

Syl vt g

de dtdr dx

dt

ce qui correspond logiquement a ’équation 8.37. Il suffit donc simplement de prendre le rapport
des dérivées de x et y par rapport a t pour obtenir la pente de la tangente a la courbe.

(8.41)

8.3.5 Courbe donnée par sa forme polaire

Dans ce cas de figure, il suffit de repasser sous forme paramétrique comme expliqué au § 8.2.5.1,
puis de calculer la dérivée comme expliqué au § précédent. En développant le calcul d’une courbe
donnée sous sa forme polaire r = r(f), on obtient la forme paramétrique :

(2= o

Le coefficient directeur de la tangente peut donc étre obtenu par :

dy
ion_ dp _ 7r'(0)sing +r(6)cosb
vie) = dz /() cos§ — r(0)sind (8.43)
df
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8.4 Points singuliers de courbes planes

8.4.1 Introduction

les calculs de tangente menés au paragraphe précédent peuvent dans certains cas conduire a des
cas d’indétermination. L’ensemble des points pour lesquels le calcul de la pente de la tangente
méne & une indétermination sont appelés points singuliers de la courbe. On peut en distinguer
plusieurs types :
— les points singuliers dits de premiére espéce identifiés a 1’aide de la fonction vectorielle ;
— les points multiples ou isolés identifiés & 1’aide de la forme implicite ;
— les points anguleux pour lesquels la dérivée a gauche différe de la dérivée a droite.
Nous allons brievement évoquer les deux premiers cas de figure.

8.4.2 Points singuliers de premiére espéce

La relation 8.36 donne l'orientation de la tangente en un point de la courbe, a condition que le

vecteur V'(ty) soit différent du vecteur nul. Si au contraire la dérivée premiére s’annule, le point
est dit singulier car un vecteur nul ne définit pas d’orientation. Ceci ne signifie pas nécessairement

qu’il ne soit pas possible de définir une tangente en ce point. Par exemple, si V'(ty) = 0 et

\7’(1&0) =% 0, on peut reprendre le développement limité de la fonction vectorielle et écrire :

9. w V() e 12 %W(to) (8.44)
)
2. % Vi) + 7] (8.45)
et donc :
lim 2 Vi) - 7§t°> = W(to) (8.46)
t—to (t — to)

Cette procédure peut étre répétée jusqu’a obtenir un vecteur dérivé d’ordre k£ non nul. Si k est
I'ordre de la premiére dérivée non-nulle de la fonction, il suffit de placer au dénominateur de

k
I’expression 8.35 le terme % pour que le passage a la limite donne un vecteur tangent non nul

défini par V (o). On en déduit donc :

Théoréme 8.2. Le vecteur directeur de la tangente au graphique de la fonction vectorielle 7(1&) en
un point d’une courbe est le premier vecteur dérivé d’ordre k non nul de la fonction vectorielle ; si
l'ordre de dériwvation vaut 1, le point est dit régulier, dans tout autre cas, ce point est dit singulier.

Ces points pour lesquels la dérivée premiére de la fonction vectorielle s’annule sont appelés points
singuliers de premiére espéce. Il est possible de les classer en quatre catégories :

— point méplat ;

— point d’inflexion ;

— point de rebroussement de premiére espéce ;

— point de rebroussement de deuxiéme espéce.
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Le classement s’effectue en fonction de l'ordre de dérivation nécessaire pour obtenir les deux
premiers vecteurs dérivés non-nuls et non-colinéaires (figure 8.15, plus de détail dans [1]) :

point d'in flexion

rebroussement de 1° espéce rebroussement de 2° espece

Figure 8.15 — Points singuliers de premiére espece.

8.4.3 Recherche des points singuliers d’une courbe donnée par sa forme
cartésienne implicite

La méthode qui vient d’étre décrite a partir de la fonction vectorielle (ou des équations
paramétriques, ou de I’équation polaire) ne permet d’identifier que les points singuliers de premiére
espéce. Les points multiples ne sont pas considérés comme singuliers car méme s’ils occupent une
place identique dans le plan, ils résultent de valeurs différentes de parameétre ce qui ne conduit pas
a une ambiguité sur la détermination de la tangente.

La recherche des points singuliers a partir de 1’équation implicite d’une courbe permettra de
mettre ces points multiples en évidence. Elle implique la recherche des points pour lesquelles la
détermination de la tangente conduit & une indétermination. Pour rappel, le calcul de la pente de
la tangente & une courbe définie par son équation implicite est obtenue par :

oF
dy B o
dy

cette expression est indéterminée si on a simultanément %—i et %—5 qui s’annulent en un point
particulier de la courbe. Pour lever I'indétermination, on peut employer la régle de I’Hospital qui
d (0F
) dy ) dr \ Ox
lim =1 =

conduit a
(82F> ( 82F) . (dy)
0z% ) 0xdy ) p \dz /) p (8.48)

dr \ Oy 0x0y ) p 0y )p \dz /),
si on pose p comme le coefficient directeur de la tangente en P (p = (%) P), on peut réécrire la

relation précédente comme :

0*F 0*F 0*F
2 _— _— —
P (3y2)p+2p <3$3y)p+ (3x2>p ’ (8.49)
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Il faut donc résoudre une équation du deuxiéme degré pour laquelle le nombre de racines dépend

du signe du déterminant
2F\? 2F 2F
A (2 (9 oO°F (8.50)
0x0y ) » 0r? ) , \ 0y* ) p

— si A>0, on a deux solutions réelles distinctes, il s’agit donc d’un point double (figure 8.16) ;

— si A=0, on a deux solutions réelles confondues, il existera une seule tangente, on a donc un
point singulier de premiére espéce (figure 8.15) ;

— si A<0, on n’a pas de solution réelle, il s’agit d’un point isolé (figure 8.17).

Figure 8.16 — Point double. Figure 8.17 — Point isolé.

Si 'expression 8.48 conduit & une indétermination (0/0), il faut augmenter 'ordre de dérivation
jusqu’a obtenir une expression levant cette indétermination. Suivant l'ordre de dérivation
nécessaire, on est en présence d'une équation du troisiéme, quatriéme,... degré qui conduit a
Iexistence d’un point triple, quadruple,...
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Chapitre 9

Longueur, rectification et courbure de
courbes planes

Le chemin le plus court d’un point a un autre c’est de ne pas y aller

- P. Geluck, L’Fxcellent du chat

9.1 Longueur d’un arc de courbe

Soit une courbe donnée par ses équations paramétriques employant un paramétre t. On peut
approcher I'arc joignant les points A et B (définis par les valeurs t, et ¢, du paramétre) par la
ligne brisée joignant les points définis par les parameétres to, ti, ..., t, (avec to<t;< ...< t,, figure
9.1). Si on fait tendre le nombre de points vers I'infini, la longueur des segments tend vers zéro et
le périmeétre de la ligne brisée tend vers la longueur de I’arc entre A et B.

Figure 9.1 — Discrétisation d’une portion de courbe.

La longueur d’une corde est exprimée par :

liyh = \/(5171‘+1 - %‘)2 + (Yip1 — yi)z (9.1)

La longueur de la ligne brisée vaudra donc :

[ = Z liv1= Z \/(%’H —2)" + i1 — v) (9.2)
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n—1 n—1 2 2
Tit1 — L4 Yi+1 — Yi
l= E liv1 = E —_— — | At .
rr A < At ) - ( At ) (9:3)

On peut démontrer ([1],[2]) qu’a la limite, cette expression tend vers la longueur de l'arc (notée
s) qui peut étre calculée par :

o= [ () (B0 0

On peut également démontrer que la différentielle de cette fonction s’établit selon :

ds* = dx® + dy? (9.5)

9.1.1 Abscisse curviligne d’un point sur un arc

Pour un arc donné, on a ’expression générale :

u
s = / ds (9.6)
uQ
On peut définir de maniére arbitraire :
— une origine a ’arc pour la valeur ug du paramétre ;
— un sens positif de parcours du point défini par ug vers celui défini par wuy.
La valeur définie par la relation est alors appelée abscisse curviligne d’un point sur I’arc orienté.

9.2 Rectification d’une courbe

Le calcul de la longueur d’un arc est dénommé rectification de I’arc. Ce calcul va étre présenté sur
base d’exemples pour différentes formulations de courbes.

9.2.1 Courbe donnée par ses équations paramétriques

Soit par exemple une cycloide, courbe décrite par un point d’un cercle qui roule sans glisser sur
I'axe OX (figure 9.2). Ses équations paramétriques sont :

r =R (0 —sin®)
{ y = R(1—cosb) (9.7)
L’abscisse curviligne sur cette courbe se calcule comme suit :
dx
B 1— .
7 R (1 — cosf) (9.8)
dy )
= Rsin 6 (9.9)
0
s = / \/(R (1 —cos))® + (Rsinf)” - db (9.10)
o
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Les développements successifs donnent :

0
s = vV R? — 2R? cos f + R2 cos?  + R?sin 6 - df (9.11)
[%
0
= V2R2 —2R2cos @ - df) (9.12)
0o

— /9 V2R2 (1 — cos @) - df (9.13)

= /00 \/ 2R?2 sin’ (9.14)
= [ 2R
/90 (9.16)

Si on se limite a une variation d’angle de 0 a 2w, le sinus reste positif, on peut donc lever la
valeur absolue (si on considére des valeurs faisant changer de signe le sinus, il faut intégrer par
morceaux). En imposant 6,=0, ’expression de I’abscisse curviligne est donc :

= anlen(8)] o

sin 2‘ df (9.15)

0
= —4Rcos 5T 4R (9.18)
= 4R <1 — o8 g) (9.19)
.50
= 8Rsin 1 (9.20)

Pour un seul cycle de roulement (6 = 27), la longueur de I’arc est donc de 8 R.

lo 5 10 15 20 25 30 35 40 45 50 55 60 6

Figure 9.2 — Représentation de la cycloide pour R=5.

9.2.2 Courbe donnée par son équation explicite

Une courbe donnée sous la forme y = f(z) peut étre représentée sous une forme paramétrique de
maniére évidente :
T =1
9.21
{ y=f(t) (5-21)

d
La formule de I'abscisse curviligne s’établit donc dans ce cas (on a bien sir d—f =1):

dy
/ 1+ — dt (9.22)
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9.2.3 Courbe donnée par son équation polaire

Comme vu précédemment, si une courbe est donnée par son équation polaire r = f(6), il est
? 7
possible de se ramener a ses équations paramétriques de la maniére suivante :

x = f(0)cosb
{ y — £(6) sin (9-23)
Les dérivées partielles selon 0 s’établissent comme :
dx , .
- f(0)cost — f(0)sinb (9.24)
Z—Z = f'(#)sinf + f(#)cosb (9.25)

La longueur d’arc s’obtient dés lors comme :

3:/6 V((0)cost — £(8)sin@)? + (f/(8) sin0 + f(8) cos 0)* - b (9.26)

= [ \/ (F0)? - ds (927

Par exemple, si on considére la spirale (figure 9. 3 donnée par ’équation polaire r = #, on peut
calculer :

Ou encore :

0
s:j:/ vu?+1-du (9.28)
)

Figure 9.3 — Spirale d’équation polaire r = 6.

En prenant pour origine # = 0 et en considérant le sens positif dans le sens des # croissants, on
peut calculer (La primitive se trouve dans les tables d’intégrales) :

s= 05 (w14 n (u+ m))]z (9.29)

ce qui donne :
s=0,5(0VE+ T+ (04 VP +1)) (9.30)

Pour un tour complet, la longueur de spirale vaudra approximativement 2,08.
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9.3 Notion de courbure

La notion de courbure est un concept lié & la morphologie d’une courbe ; elle traduit physiquement
I’accélération plus ou moins brusque d’'un mobile parcourant la courbe a vitesse constante.

9.3.1 Définition

Soit une courbe C dans un repére Oxy sur laquelle on choisit arbitrairement un sens de parcours.
Soit ¢ 'angle que fait la tangente & la courbe au point d’abscisse curviligne s et ¢ + Ay 'angle
que fait la tangente a la courbe au point d’abscisse curviligne s+As (figure 9.4).

Par définition, la courbure de C au point d’abscisse curviligne s se définit comme :

15

La courbure est donc une valeur essentiellement positive homogéne a I'inverse d’une distance. On
nomme rayon de courbure p l'inverse de la courbure.

Ap

As

1 )
— = lim
P As—0

Figure 9.4 — Définition de la courbure.

Le centre de courbure en un point d’une courbe est le point situé sur la normale & la courbe a une
distance équivalente au rayon de courbure dans la direction de la concavité. Le lieu des centres de
courbure a une courbe est appelée développée de la courbe. Inversement, la courbe originale est
appelée développante de la courbe développée.
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9.3.1.1 Cas particulier du cercle

Soient M, et M5 deux points particuliers d’un cercle de centre C' et de rayon R. On sait que si Ap
est 'angle au centre interceptant 'arc M; My, alors |As| = £RAp. Soit K le point d’intersection
des deux tangentes aux cercle en M; et M, (figure 9.5).

\j

Figure 9.5 — Calcul de la courbure d'un cercle.

Dans le quadrilatére C'MyK Ms, les angles m et m sont droits. L’angle « est donc le
supplémentaire de I'angle au centre. a + 8 est un angle plat, ce qui implique donc que g = Aep.
Le calcul de la courbure en un point du cercle donne donc :

Ay 1
— p— —_— . 2
RA@‘ ‘R‘ (9:32)

— = lim
p As—0

= 11m
As—0

2y
As
Une circonférence est donc une courbe dont la courbure est constante et vaut inverse de son

rayon. Par extension, une droite peut étre vue comme un cercle de rayon infini, sa courbure est
donc nulle.
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9.3.2 Calcul de la courbure
9.3.2.1 Courbe donnée par son équation explicite

Il est clair que 9 et s sont des fonctions de x. Dans 1’équation 9.31, le calcul de la dérivée partielle
peut donc étre réalisé par :

do

dp  dr

o= E (9.33)
dx

Dans le cas de la formulation explicite, 'angle ¢ que fait une courbe avec 'axe des = peut étre
calculé par :

X

tan @ = g—z ou ¢ = arctan <Z—y) (9.34)

la dérivation par rapport a x de cette expression donne :

do _ ﬂ (9.35)

dz dy 2
1 <
(@)

On a également démontré (relation 9.5) que

ds dy 2
> _ 1 = .
I + < ) (9.36)

La courbure se calcule donc par :

1_ (9.37)

3
1% du\2\ 2
(1+ %))
9.3.2.2 Courbe donnée par ses équations paramétriques

Soit les équations paramétriques d’une courbe :
x=1(t)
9.38
e (9:3%)

Pour calculer la courbure selon 9.37, il faut pouvoir déterminer les dérivées premiére et seconde
de y par rapport a x. Il a été démontré au §8.3.4 que la dérivée premiére peut s’exprimer sous la
forme :

dn
dy gt
= g_@tw (9.39)
dt
La seconde dérivation de cette expression donne :
dn dn
d*y d gl A a 1 9.40
@2 e \ 4o | T | v | 0 40
dt dt / dt
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Le développement de I’expression précédente donne :

dt
En intégrant dans 9.37 les résultats de 9.39 et 9.41, on obtient :

dy &Py dy d*

1_ @t a2 dt ar (9.42)
d 2 d 212

AT (dn

dt dt

9.3.2.2.1 Exemple d’application Déterminer la courbure d’'une ellipse donnée par ses
équations paramétriques :

2 — — — —— o —
d*y g A2 dt de (9.41)

x =acosb
{ y = bsin 6 (9-43)
On peut calculer :
d d
id — —asingd T —peosd
dg df (9.44)
d=vy d°n .
W:—GCOSQ W:—bSHle
La courbure se calcule par 9.42 :
1 (—asinf) (—bsinf) — (bcos ) (—acosh) ab
1_ 2 N - —— _ (9.45)
P [(—asin®)” + (bcosh)] [a? sin® 6 + b2 cos? 6] 2
Pour obtenir la courbure en tout point (x,y) de la courbe, on peut substituer :
a?sin®0 + bv? cos?’ 0 = a®sin? 6 + b cos> O + a® cos® O + b? sin? 0 (9.46)
— (a2 cos?  + b* sin® 0)
= a’+ b — (2% +9°) (9.47)
Ce qui donne finalement
1 b
- = ¢ _ (9.48)
P a4+ 0% — (2% 4 y?)]?

On peut vérifier que si a = b = R, on retrouve bien la propriété du cercle d’avoir p = R.

9.3.2.3 Courbe donnée par sa forme implicite

Comme pour le cas précédent, il faut rechercher les dérivées premiére et seconde de y par rapport
a x. Comme présenté au § 8.3.2 on calcule les deux premiéres dérivées de la fonction explicite par :

dF _0Fde OFdy _

- — 2 = 9.49
dr Oz dx - Oy dx (9.49)
d*’F  d (dF
= ()= (9:30)
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Cette expression donne :

2 2 2 2 2
a@x}; + 2865553;% + (zylj (j_i) (z_];% =0 (9.51)
donc , . . . ,
d 1 F F d F (d
d_xz - _% Ox? +28x8y% * Jy? (d_i> ] (9:52)
Il suffit de replacer 9.49 et 9.52 dans 9.37 pour obtenir :
(3_F>232_F _ OFOFOF  &F <3_F)2
1 _ dy ) Ox? 0x0y Ox Oy ?gﬂ ox (9.53)

2

1% (9_F 2+ (9_F 2
ox dy

9.3.2.3.1 Exemple Reprenons le cas de lellipse, cette fois-ci donnée par son équation
implicite :

2y
ou encore b*z? + a’y? — a?b* = 0. On peut calculer immédiatement :
F F
8_ =2z 8— = 24’y
PF L, PF 0P, ~
_— = = a
0x? 0xdy Oy?

Ce qui permet de calculer la courbure :

1 4a'y*20* — 0 + 4b'2%20° (9.56)
p (4b%x? + 4a4y2)g .
8 (bta2 +a4y2)%
4b4
- ¢ i (9.58)
(422 + aty?)2
(9.59)
Le dénominateur peut étre réorganisé selon :
b'a® +a'y® = b (a*0? — a®y?) + a® (a®0* — 0°2®) = a®0 [a® + 07 — (2® +o7)] (9.60)
Ce qui donne au final :
1 ipt
- ? _ (9.61)
p [a2b2 [a2 + b2 — (12 + y2)]]2
b
- ? i (9.62)
a2 + 52 — (2 4+ 2]

Ce qui est équivalent au résultat obtenu avec le calcul mené a partir de la forme paramétrique.
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9.3.2.4 Courbe donnée par sa forme polaire

La forme polaire d'une courbe r = f() peut étre transformée de maniére simple en une forme

paramétrique :
x = f(0)cosb
{ y = f(6)sind (9.63)
Les relations étudiées au § 9.3.2.2 peuvent étre employées avec ces expressions. Le développement
complet|3] donne finalement I’expression de la courbure :

1_ (9.64)

9.3.2.5 Cas pratique

Un mobile circulant a vitesse constante sur une trajectoire constituée d’un segment de droite suivi
d’un arc de cercle verra au raccordement entre les deux courbes une discontinuité de courbure
(passage d’une valeur nulle & une valeur fini). Il en résultera une discontinuité d’accélération du
mobile. En effet, 'accélération d’un point parcourant une courbe se calcule selon|2] :

d?s ds\*u
n
- _ - ) I 9.65
¢ dt2ut+(dt) . (9.65)

Cette discontinuité d’accélération provoquera des effets sensibles pour les passagers du mobile
(vibrations) qui entraineront un certain inconfort. C’est pourquoi dans la pratique, les
raccordements a l'entrée et a la sortie des virages devant étre pris a grande vitesse (autoroutes,
chemins de fer,...) sont constitués d’'un raccordement intermédiaire & courbure continument
variable appelé clothoide. Cette courbe peut étre décrite par son équation intrinséque :

02

§=— (9.66)

p
avec C une constante homogéne a une longueur. Il n’est pas possible d’établir une forme analytique
de cette fonction, sa construction doit se réaliser point par point par intégration numeérique.
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Chapitre 10

Introduction a la géométrie analytique
spatiale

Look behind you, a Three-Headed Monkey !

- G. Threepwood, Monkey island

10.1 Introduction

La géométrie analytique spatiale étend les concepts de géométrie plane en considérant une
troisiéme coordonnée z. Le repére de base Ozyz sera supposé orthonormé et orienté positivement
pour l’ensemble des calculs. Un rappel des éléments de base issus des prérequis de 'examen
d’admission sont rappelés en annexe C

10.2 (Géométrie vectorielle et repére

Dans l'espace R™, un repére est constitué d’un point origine O et de n vecteurs linéairement
indépendants uj,us,...,u,. Ce repére permet de décrire la position de tout point par
I'intermédiaire d’une combinaison linéaire unique des vecteurs de base. La géométrie analytique
associe a tout point P de I’espace une représentation sous la forme de coordonnées (p1, pa, ..., Dn)-
Ces coordonnées sont les composantes du vecteur joignant ’origine au point dans le repére qui a
été choisi :

ﬁ = ZPZUZ (10'1)
i=1

La pratique recommande toutefois d’employer un repére orthonormé (c’est-a-dire dont les vecteurs
de base sont orthogonaux entre eux et dont les mesures sont égales et équivalentes a 1'unité de
mesure employée) qui conduit & de nombreuses simplifications dans les calculs.

10.2.1 Opérations courantes de géométrie vectorielle

Dans le cadre de ce cours, un grand nombre de relations feront appel aux notions de géométrie
vectorielle classiques déja évoquées notamment dans le cours de mécanique rationnelle[1] ou de
physique [2] dont voici quelques rappels.



CHAPITRE 10. INTRODUCTION A LA GEOMETRIE ANALYTIQUE SPATIALE

8l

<l

Figure 10.1 — Opérations de base en géométrie vectorielle.

La norme d’un vecteur dans un repére orthonormé :

(10.2)
(10.3)

La combinaison linéaire de deux vecteurs @ et ? donne un vecteur ¢ :
C=k-d+l-b=c=k-a;+1-b (10.4)

10.2.1.1 Produit scalaire

Le produit scalaire de deux vecteurs @ et b formant un angle 6 entre eux donne un scalaire :

70 = || H?‘cosQ:Zaibi (10.5)

1=

Son emploi est pratique pour la calcul d’angle entre éléments.

10.2.1.2 Produit vectoriel

%
Le produit _\)/ectoriel de deux vecteurs @ et b donne un vecteur @ perpendiculaire au plan défini
par d et b (orienté positivement selon la régle de la main droite) dont la norme vaut l'aire du

parallélogramme défini par det b

— —
TAD :'?:¢H7ﬂ]:H7ﬂW‘b‘$n6 (10.6)
Le produit vectoriel peut étre calculé comme :
L ma
ANAND =|a ay az | = (a2bs — azbs) u + (asby — a1b3) 173/) + (a1b2 — azby) ul (10.7)
bi by b3
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10.2.1.3 Produit mixte

On appelle produit mixte une expression de la forme :
7 (7aT) 108)

dont le résultat donne un scalaire. Ce scalaire représente le volume d’un parallélépipéde porté par
les trois vecteurs 71, V; et V§ (figure 10.2).

Figure 10.2 — Parallélépipéde construit sur trois vecteurs.

10.3 Traitement de ’intersection d’objets

De maniére générale, pour obtenir I'intersection de deux éléments décrits par leurs équations, il
suffit de résoudre le systéme formé en rassemblant les équations des deux figures. Une courbe
de l'espace sera donc définie par 'intersection de deux surfaces (par exemple d’un plan avec une
surface pour définir une courbe plane).

Un exemple simple consiste & rechercher I'intersection de trois plans définis par leurs équations
cartésiennes. Le systéme résultant est constitué de trois équations linéaires a trois inconnues :

Ar+By+Cz—D = 0
Erx+Fy+Gz—H = 0 (10.9)
e+ Jy+Kz—L = 0

Ce systeme peut également se mettre sous forme matricielle :

A B C T D
EF G| {dyb={H (10.10)
I J K z L

Suivant les positions relatives des plans, le systéme peut étre inversible (un seul point
d’intersection) sous-déterminé (intersection donnant une droite ou un plan) ou impossible
(intersections paralléles entre elles par exemple). Les différents cas sont résumés sur la figure
10.3.
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A =07
/\

Compatible
N
POINT

i PLAN

DROITE AUCUNE INTERSECTION

Figure 10.3 — Différents cas de figure pour l'intersection de trois plans.

10.3.1 Application

Soient trois plans déterminés par leur équation cartésienne :

T=3r+2y+2z2+1=0
p=—20+y—2—2=0 (10.11)
c=122+y+72+8=0

L’intersection des trois plans est obtenue résolvant le systéme formé des équations des trois plans,
& savoir :
r+2y+22+1=0
2r+y—2—-2=0 (10.12)
120 +y+724+8=0

La résolution de ce systéme par la méthode de Gauss [3] donne successivement :

32 2:-1]1L1
-2 1 —1: 2|L2 (10.13)
12 1 7:-8|L3

3 2 92:i-1
0 7 1 4|2L1+3L2 (10.14)
0 —7 —1:—4|L3—4L1
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32 2:-1
07 1: 4
00 0: O0fL3—1L2

21 0 12:—15|7L1 —3L2

7T 1@ 4
0 0 0
4
10 4:-3)L17
D4
01 i 4\r2/7
00 0i 0

L’intersection des trois plans forme donc une droite dont ’équation paramétrique est :

I
PN |

I
A

5
7

[SEENSIE
I
i |

10.3.2 Projection d’une droite sur les plans de coordonnées

Soit une droite donnée par ses équations cartésiennes :

Ar+By+Cz—D = 0
Ex+Fy+Gz—H = 0

Figure 10.4 — Projection d’une droite sur le plan horizontal.

(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

La recherche de sa projection dans le plan Oxy s’obtient en réalisant l'intersection du plan
vertical contenant la droite avec le plan d’équation z = 0. N'importe quel point du plan vertical
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contenant la droite est caractérisé par le fait que les coordonnées x et y sont liées par une relation
indépendante de z. L’équation de ce plan est donc obtenue en éliminant z entre les deux équations
cartésiennes :

(AG-CE)x+ (BG—-CF)y+ (CH - DG) =0 (10.20)
Cette relation correspond a 1’équation cartésienne du plan vertical contenant la droite.

Le méme type de raisonnement peut étre suivi pour la recherche de la projection dans les autres
plans de coordonnées.

10.4 Vecteur directeur et cosinus directeurs

Un vecteur permet de définir une direction dans 'espace (sauf le vecteur nul bien entendu). Toute
vecteur colinéaire définit la méme direction, il est donc possible de normaliser le vecteur de maniére
libre. Une méthode classique de normalisation consiste & rendre ce vecteur unitaire, dans ce cas,
ses composantes (I,m,n) sont telles que [ + m? + n? = 1. On les appelle parameétres directeurs
absolus de la droite.

Projetons orthogonalement ce vecteur 7 sur les axes de coordonnées (figure 10.5) et appelons «,
B et 7 les angles formés par le vecteur avec Ox, Oy et Oz.

Figure 10.5 — Cosinus directeurs d’une droite.

Dans les triangles rectangles OAD, OBD et OCD, on obtient de maniére directe que cosa =
[, cosp = m et cosy = n (car on a H@
d’une droite sont donc les cosinus directeurs de la droite. On vérifie de maniére évidente que
cos?>a + cos? B + cos? vy = 1.

‘ = HVH = 1). Les paramétres directeurs absolus
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10.5 Forme implicite normalisée d’un plan

Une méthode de normalisation de I’équation cartésienne d’un plan consiste a rendre unitaire son
vecteur normal en divisant les coefficients A, B et C' par le facteur /A2 + B2 4+ C? :

( A
VAL B P
B

W (10.21)
J D

dans ce cas, le vecteur normal au plan rendu unitaire est noté 7. Nous avons défini précédemment
que le cosinus des angles formés par la normale & un plan avec les axes sont donnés par les
coefficients de x, y et z dans la forme normalisée. Cette normale peut étre orientée du plan vers
l'origine ou inversement suivant les cas (si le coefficient d dans la forme normalisée est positif,
le vecteur normal est orienté de l'origine vers le plan; les conclusions sont inverses dans le cas
contraire).

Si on recherche les coordonnées du point de percée O de la normale au plan passant par ’origine, il
faut résoudre le systéme formé des équations paramétriques de la droite combinées avec I’équation
cartésienne du plan :

ar + by + cz — d = 0 avec

T = a\
= b\
'Z: o (10.22)

ar +by+cz—d=0

Le point de percée est donc défini pour A = d/(a® + b* + ¢?), il a donc pour coordonnées :
r = ad/(a®+b*+?)
y = bd/(a®+b*+c?) (10.23)
z = cd/(a®>+ b+ )

la distance |OO'| vaut donc :

, S a2d? b2d? 22
OO = VR - (a2 + 0% + c2)° " (a2 + 0% + ¢2)° " (a2 + 0% + ¢2)° =d (1024

Une nouvelle interprétation de ’équation sous forme normalisée est donc la suivante :

cos a+ cos 8 + cosy — |00'| =0 (10.25)

Cette forme est également appelée forme polaire du plan ; le vecteur TO est appelé vecteur polaire
du plan. Sur ce canevas, les formes polaires des différentes équations peuvent étre établies. On
déduit par exemple que les points de percée des axes dans le plan sont les points A, B et C tels que
A = ((|00'| | cos);0;0), B = (0; (|OO’'| / cos B);0) et C' = (0;0; (JOO'| / cos7)). Une fonction

vectorielle du plan peut donc étre établie par
— —
Vp =00 + A\CA + uCB (10.26)
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Figure 10.6 — Forme polaire d’un plan.

Un systéme d’équations paramétriques peut donc étre immédiatement déduit :

r = |00'|(cosa+ A/ cosa)
y = |00 (cosp+ p/ cos ) (10.27)
z = |00 (cosy — (A~ ) /cosv)

s
L’équation vectorielle polaire se détermine en exprimant le vecteur O'P constamment

perpendiculaire a OO’ :
— —
00" - ((ﬁ; - OO’) —0 (10.28)

5057 = |60

ou

(10.29)
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CHAPITRE 11. INFOGRAPHIE

Chapitre 11
Infographie

To infinity and beyond.

- Buzz, Toy story

11.1 Introduction

La représentation et la manipulation d’objets tridimensionnels par voie informatique sont utilisées
de maniére intensive, que ce soit pour des applications industrielles (dessin assisté par ordinateur,
infographie,...) ou ludiques (jeux vidéos, films d’animation,...). L’ensemble de ces disciplines
utilise directement des notions de géométrie analytique pour décrire mathématiquement les
différentes opérations effectuées.

m=a

Figure 11.1 — Logiciel de conception assistée par ordinateur (Soliworks).

Dans le cadre de ce chapitre, nous étudierons successivement les opérations de changement de
repére, la réalisation de projections, les transformations d’objets et les bases des algorithmes de
rendu. Ce chapitre a pour but de présenter les conventions et les algorithmes employés dans les
logiciels de dessin assisté par ordinateur.

11.2 Changement de repére

L’opération de changement de repére consiste & décrire dans un repére O'z'y’z’ un objet qui est
connu dans un repére Oxyz. Il s’agit d’une des opérations de base des logiciels de dessin assisté
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Figure 11.2 — Personnages de films d’animation ((¢)Pixar).

par ordinateur (orientation d’un objet pour son observation ou sa projection par exemple). Ce
type d’approche est également trés utile pour simplifier la description de problémes complexes.
La mécanique rationnelle [1] fait fréquemment appel a ce type de notion (les équations d’équilibre
d’un systéme complexe peuvent étre écrites dans des repéres locaux liés aux différents corps puis
retranscrites dans un repeére global par la suite).

Figure 11.3 — Changement de repére.

La description d’un changement de repére aboutit a une formulation matricielle qui est
généralement décomposée en deux étapes : la mise en commun des origines des deux repéres
puis leur orientation.
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11.2.1 Changement de repére entre deux repéres d’origines identiques

On souhaite obtenir les coordonnées de ’ensemble des points d’un objet connu dans un repére
orthonormé Ox’y’z’ connaissant leurs coordonnées dans un repére orthonormé Oxyz (figure 11.4).
Ce type de transformation est 'analogue de la variance tensorielle abordée dans le cadre du cours
de mécanique rationnelle.

Figure 11.4 — Changement de repére par rotation.

Pour rappel, si un point P a pour coordonnées (P, P,, P,) dans un repére Oxyz, cela signifie que
le vecteur joignant 'origine au point P peut étre décrit par :

O = P, + Py, + Pz, (11.1)

La méthode la plus simple pour effectuer le changement de repére est de rechercher les cosinus
directeurs (cf § 10.4) des nouveaux vecteurs de base dans le systéme Oxyz. Ils permettent
directement d’écrire (avec (A;, i1, v;) les cosinus directeurs du vecteur i de la nouvelle base) :

Uy = N, +Mll7 + vl
Uy = Moty + i}, + o} (11.2)
U = \atty + H3Uy + V3L,

Le passage des coordonnées xyz aux coordonnées x'y'z" s’effectue en repartant de la définition des
coordonnées d’un point dans un repére :

OP = 2 +yi@ + 2@ (11.3)
oP = g + Yy + 2 (11.4)
O? = 2 ()\117; + ulu—; + l/lu—>z) + y, (/\QQT; + /L217y> + VQU_Z) + 2 (/\317;6> + ,U327y> + V3U—>Z> (1].5)

(11.6)

oP — (TN + Y X+ 2 Xs) 1w + (211 + Y g + 2 pas) Uy 4 (2'vn + y'vs + 2vs) WL

Le lien entre coordonnées s’établit donc par multiplication matricielle :

Xz /\1 )\2 )\3 l’/
y o= 1|t p2 pz|-q Y (11.7)
z v, Uy Us Z



CHAPITRE 11. INFOGRAPHIE

Le passage des coordonnées dans le deuxiéme repére (2,1, 2’) s’effectue en inversant ce systéme :

-1

Z’l )\1 )\2 )\3 T
v o= m pe w Y (11.8)
2z v, Vs U3 z

La matrice & inverser présente la particularité d’étre une matrice « orthogonale » caractérisée par
le fait d’avoir :
— la somme des carrés de ses colonnes unitaire (A? + u? + /2 représente la norme des vecteurs
de base unitaires) ;
— le produit des éléments de deux colonnes nul (A;\;+ ;1 +1v;v; représente le produit scalaire
de vecteurs de base, donc orthogonaux) ;
Les matrices orthogonales présentent la particularité que leur inverse soit simplement leur
transposée, ce qui permet un calcul facile de 'opération réciproque :

x Moo x
Y o= A p2 v |-q Yy (11.9)
2 A3 3 U3 z

Cette forme matricielle permettant de générer des changements de repére sera classiquement
rencontrée dans les manipulations en infographie.

11.2.2 Changement de repére entre deux repéres d’origines différentes

Pour modéliser un changement de repére par translation selon un vecteur connu 7 (figure 11.5),
on peut faire appel a la relation vectorielle simple :

OP-—0P-T (11.10)

Figure 11.5 — Changement de repére par translation.

Ce qui se traduit au niveau des coordonnées par :

¥ = x-T,
y = y-—T1, (11.11)
2z = z-T,
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Avec (T;,T,,T.) les composantes du vecteur de translation exprimées dans le repére Ozyz. On
constate directement que ce type de relation ne permet pas de passer a une forme matricielle
comme c’est le cas pour le changement de repére par rotation.

Or, I'établissement d'une forme matricielle qui est particulierement adaptée a la programmation
informatique de ce type d’opération sera recherchée pour ’ensemble des opérations.

Pour lever cet obstacle, la description d’un point se fait alors par l'intermédiaire d’un vecteur a
quatre composantes, a savoir les trois composantes classiques x, y et z auxquelles un quatriéme
terme scalaire est ajouté. Dans ce cas, la translation peut se représenter sous la forme d’un produit

matriciel :
/

T 1 0 0 -1, T
vy L |01 0 =T, y
Z( |00 1 T, z (11.12)
1 0 0 01 1

L’utilisation de cette quatriéme coordonnée est devenue la régle dans le domaine du graphisme
3D. Elle correspond au souci de travailler avec des transformations qui suivent le concept général
d’applications linéaires qui modélisent le passage d’une base a une autre en exprimant des
combinaisons linéaires des vecteurs de base, excluant tout terme indépendant. Cette condition
n’est remplie que grace a I'ajout de la quatriéme coordonnée dans le cas de la translation.
Mathématiquement, ce type de représentation d’un point par I'intermédiaire de quatre coordonnées
est appelé coordonnées homogénes. De maniére générale, le quatrieme paramétre peut prendre
n’importe quelle valeur non nulle. Le quadruplet de coordonnées (X, Y, Z, W) est interprété comme
les coordonnées d’un point de ’espace calculées comme suit :

(11.13)

NS <=

W)

Avec ce type de convention, la matrice de changement de repére associée a une rotation devient :

Ao 0
Ao po vp 0

11.14
A3 pz vz 0 ( )
0O 0 0 1
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11.2.3 Conventions particuliéres
11.2.3.1 Orientation du repére

Comme nous venons de le voir, la représentation des opérations de transformation peuvent se
réduire a des opérations matricielles. Il faut noter que la convention de base employée par les
librairies graphiques considére I’emploi de repéres respectant la régle de la main gauche a ’'opposé
de ce qui est généralement pratiqué.

Figure 11.6 — Repére ’écran’ orienté Figure 11.7 — Repére ’écran’ orienté
positivement. négativement.

L’explication est que de maniére générale, les axes x et y sont choisis de sorte a avoir x horizontal
(orienté vers la droite) et y vertical (orienté vers le haut), ce qui implique que l'axe z serait
orienté vers l'observateur (sortant de I’écran) pour respecter la régle de la main droite (figure
11.6). Ceci reviendrait a systématiquement travailler avec des coordonnées z de points négatives
(’dans’ I’écran). Il a donc été décidé d’orienter I'axe z ’écran’ de I'observateur vers 1’écran (figure
11.7), ce qui conduit & un repére orienté selon la régle de la main gauche. Les librairies graphiques
employées en infographie sont donc souvent programmeées selon ce standard!. Etant donné que la
transposition d’un type de raisonnement a l'autre est immédiate, la suite du cours sera présentée
avec les repéres orientés selon la régle de la main droite par soucis de continuité.

1. Certaines d’entre elles intégrent deux variantes des opérations, mais la version ’'a gauche’ est a recommander
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11.2.3.2 Représentation des vecteurs

Une autre convention employée dans les librairies graphiques est la représentation de points sous la
forme de vecteurs « lignes » alors que I'habitude est plutot d’employer des vecteurs « colonnes ».
Pour comprendre cette convention, examinons la réalisation successive de deux changements de
repére successifs imposés a un point P. De maniére générale, les nouvelles coordonnées du point
aprés transformation sont obtenues en multipliant le vecteur de coordonnées (z,y,z) par une
matrice 4x4 . Dans une convention ’vecteur colonne’, on obtient successivement les opérations
suivantes :

) [ A o v 0] x
vy | A pe . O Yy
2 (T s s vs O . (11.15)
I L 0 0 0 1 1 1
M1
" ) RN Z N
/! * * * /
vl s s 0 v (11.16)
z Ay opy v 0 z
) |0 0 0 1 1\ 1
M2
L’opération résultante combinant les deux transformations s’écrirait donc :
x’ x
/!
g,, = [M2] - [M1] - Z (11.17)
1 1

La matrice résultante serait donc obtenue en multipliant les matrices élémentaires des deux
transformations dans I'ordre inverse de leur application (rappelons que la multiplication matricielle
n'est en général pas commutative). Si nous prenons la transposée de ’équation 11.17, nous
obtenons la présentation en vecteur ligne qui correspond a :

{2y 2" 1}={zy = 1} -[M1]"-[M2" (11.18)

Comme le passage de 'une a 'autre des formes est évidente via la transposée, nous continuerons
d’employer la notation classique sous forme de vecteur colonne dans la suite de ce cours.
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11.2.4 Changement de repére entre deux repéres quelconques

Lorsque les deux repéres considérés sont disposés de maniére quelconque I'un par rapport a ’autre,
il est plus simple de décomposer le changement de repére en deux étapes successives (figure 11.8) :
— passage a un repére O'x;y;z; via une translation selon un vecteur 7' ;
— passage au repére final 0'z’y’z’ via un changement de base.

Figure 11.8 — Changement de repére entre deux repéres quelconques.

La mise sous forme matricielle de ces deux opérations donne :

Z; 1 0 0 -1, z
v \ |0 1 0 =T, Y
z ([0 0 1 —-T, z (11.19)
1 00 01 1
M1
x P T 2 x;
YU _ | A p2 a0 Yi
S Sl I VR - (11.20)
1 0 0 0 1 1
M2
L’opération résultante combinant les deux transformations s’écrirait donc :
x’ x
/
‘Z/ = [M2] - [M1] - Z (11.21)
1 1

La matrice de transformation globale est donc :

Moo =MD+ Ty +uvy - To)

Ao pto v — (Mo Tp+po-Ty+vs-T.)
M| = Y 11.22
M) A3 p3 U3 (A3 T4 ps - Ty +v3-To) ( )

0 0 0 1
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11.2.4.1 Exemple

Soit un repére orthonormé Ozyz dans lequel on place un point O’ de coordonnées (-2,4,6). Le
repére O'x'y'z’ est tel que O’2’ est orienté selon un vecteur Y de composantes (2, 1,3) tandis que

O'y' est orienté selon un vecteur 7 de composantes (1, —2,0). Quelle est la matrice de changement
de repére pour passer de Oxyz a O'z'y'2'?
La matrice de translation est obtenue de maniére triviale a partir des coordonnées du point O’ :

100 2
010 —4
[M;] = 00 1 —6 (11.23)
000 1
Pour la rotation, on peut vérifier que 7 et 7 sont bien orthogonaux :
X Y =21+1-(-2)4+3-0=0 (11.24)
La direction de I'axe Oz’ est donnée par un vecteur ? obtenu selon :
wow, Ul
Z=XAX=|2 1 3 |=6-w+3-0-5u (11.25)
1 =2 0

La matrice de rotation s’obtient par l'intermédiaire des cosinus directeurs (composantes de vecteurs
unitaires définissant la nouvelle base). Elle vaut donc :

2 1 3
Via V4 Vi
L -2 0 0
M) = ¥ 5 (11.26)
V@ Vo vw Y
0 0 0 1
La matrice de changement de repére globale est donc :
2 L 3 _ 18
Vi V4 V14 V14
1S U T (R ]
=pg = | ¥ E % % (11.27
V70 V70 V0 V70
0 0 0 1

Si on choisit d’effectuer les opérations dans l’autre ordre (rotation puis translation), la matrice [M]
est inchangée. Par contre il ne faut pas oublier que le vecteur utilisé dans la matrice de translation
est exprimé dans le repére courant. Les coordonnées de O’ dans le repére intermédiaire :

2 1 3 18
O vi va va —2 vl
O I 0 0 4 10
O N R B S S (1128
z V70 /70 V70 V70
1 0 0 0 1 1 1
La matrice de translation sera donc :
18
1 00 v
010 &
Ml = 0 g1 W (11.29)
V70
000 1
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La matrice résultante se calcule dans ce cas comme :

[M] = [Ms] - [M] =

o 3f5i-5f
oSfgh i
3lg e

§|w
~
—
[

V14
0 10
V5

5 30

V70 V70
0 1

Ce qui donne bien évidemment le méme résultat que précédemment.

11.3 Meéthodes de projection

La visualisation sur un écran d’ordinateur d’objets tridimensionnels doit nécessairement passer par
I'intermédiaire de projection plane. On emploie classiquement les deux types de projections qui
ont été présentées dans la premiére partie de ce cours a savoir la projection orthogonale (méthode

de Monge et axonométrie, figure 11.9) et la projection centrale (figure 11.10).

plan
de projection

Figure 11.9 — Projection orthogonale
(axonométrie).

11.3.1 Orientation du repére

La premiére étape va consister a orienter le repére de maniére correcte par rapport au plan de
projection. Si on se fixe par exemple 'orientation du plan de projection par 'intermédiaire de son
vecteur normal N, on va chercher a déterminer la matrice de changement de repére pour réaliser

la projection :

— l'axe 2’ sera orienté selon le vecteur normal au plan (le plan aura pour équation ax + by +

plan de -
projection - =~

Figure 11.10 — Projection centrale.

cz +d = 0 si le vecteur normal est de coordonnées (a, b, c)?);

— P’axe 2’ choisi arbitrairement dans le plan (par convention, il définira la direction horizontale

dans le plan de projection);

— l’axe 3/ sera orienté comme le vecteur u_; A u_; ;

2. 11 faut noter que la projection orthogonale sur des plans paralléles donnera des résultats identiques, ce qui

signifie que le choix de la constante d est indifférent
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La matrice de transformation permettant de réaliser la projection plane est obtenue en reprenant
les coordonnées des vecteurs unitaires du nouveau repére projetés dans le repére initial (u—ﬁ =

()\1;)\2a)\3>7 lL—g} - (Ml?ﬂ?au?))u @ - (Vlay27]/3)) :

)\1 H1 0
Ao pp vy 0

M = 11.31
A3 p3z vz 0 ( )
0O 0 0 1

On peut également combiner plusieurs changements de repéres successifs. Soit 6 I’ angle entre le
plan vertical contenant le vecteur et le plan Oxz et ¢ 'angle entre le vecteur et le plan Oxy.
On peut décomposer la transformation orientant ce vecteur sur 'axe Oz en trois étapes (figure
11.11) -

— une rotation d'un angle # autour de z pour obtenir le systéme Oxyy;z; (figure 11.12);

— une rotation autour de 'axe y; d’un angle 7/2 — ¢ pour obtenir le systéme Oxyys29 (figure

11.13);
— une rotation de 7/2 radians autour de I'axe z2.

Figure 11.11 - Situation  Figure 11.12 — Rotation de ¢ ~ Figure 11.13 — Rotation de
initiale. autour de z. 7/2 — ¢ autour de y;.

La troisiéme opération ne sert qu’a se placer dans une configuration classique avec 'axe x
horizontal et ’axe y vertical.

Une fois les objets géométriques orientés de maniére adéquate, il reste une derniére opération
a effectuer pour leur représentation sur un support bidimensionnel, & savoir une opération de
projection. Deux types de projections sont couramment rencontrés : la projection axonométrique
et la projection centrale.
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11.3.2 Projections classiquement employées en infographie
11.3.2.1 Projection axonométrique

La projection axonométrique est obtenue de maniére naturelle en ne retenant que les coordonnées
x et y pour une représentation bidimensionnelle de la scéne, la coordonnée z peut par contre servir
a la gestion du vu et caché car elle régle la profondeur. Ce type de méthode peut étre employé
pour réaliser automatiquement une représentation d’une scéne en axonométrie (figure 11.14).

z

7
N
/
20\ observateur
a l'infing

Plan de
projection

Figure 11.14 — Rappel du principe de I’axonométrie orthogonale.

140



CHAPITRE 11. INFOGRAPHIE

Figure 11.15 - Exemple de projection Figure 11.16 - Exemple de projection
axonomeétrique d’un cube unitaire sur un plan axonomeétrique d’un cube unitaire sur un plan
de vecteur directeur (1,1,1) : isométrie. de vecteur directeur (1,2,3).

11.3.2.2 Projection centrale

La projection centrale consiste en une représentation plane de scénes spatiales qui vise a reproduire
I'observation naturelle de ’oeil humain. L’ensemble des points de la scéne est projeté sur un plan
(tableau) suivant un rayon passant par un point fixe (position de 'observateur). Contrairement a
I’axonomeétrie, les rayons de projection ne sont pas paralléles, mais convergent en un point unique.
La projection centrale ne respecte pas le parallélisme des droites (sauf celles paralléles au plan
du tableau). L'opérateur projection centrale (figure 11.17) peut étre établi suivant la démarche
suivante :

Soit (Xp,Yp, Zp) les coordonnées de P dans le systéme d’axes initial. Le point P,, projection
centrale du point P est a 'intersection du plan de projection et de la droite reliant P au pole V.
Dans le systeme écran, les coordonnées de P, peuvent se trouver via la similitude des triangles
VEP, et VFP :

— X.=FEP,=FP(VE/VF)=XP(d/ZP);

— Y.=P,Py =PP(VP,/VP)=PP(VE/VF)=YP(d/ZP);

— Z.=/P —d.
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Figure 11.17 — Rappel du principe de la projection centrale.

Figure 11.18 — Exemple de projection Figure 11.19 - Exemple de projection
centrale d’un cube unitaire avec un plan de centrale d'un cube unitaire orienté de
projection parallele & une de ses faces. maniére quelconque.

11.4 Matrices de transformation

La manipulation d’objets géométriques par matrice de transformation consiste a modifier
des figures décrites analytiquement dans une repére fixe. On peut distinguer différents types
d’opération :
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— les opérations visant a déplacer I'objet (translation, rotation) ;
— les opérations visant a obtenir le symétrique de l'objet par rapport a un plan;
— les opérations modifiant I’échelle ou la forme de 'objet.
La manipulation des objets fera appel a la notion de coordonnées homogeénes définie précédemment.
11.4.1 Opérations élémentaires
11.4.1.1 Translation
Si on fait subir & un point P une translation selon un vecteur ?, on obtient un nouveau point P’

qui vérifie : R
OP =0P+ T (11.32)

Les coordonnées de P’ seront calculées par :

=l

Figure 11.20 — Translation d'un point.

rp = xp+T;
ypr = yp+7T, (11.33)
zpr = zp+ T,

La matrice de transformation associée a une translation sera donc :

0 0 T,
T,
T,
1

<

(11.34)

o O O

1
0
0

o = O

11.4.1.2 Rotation autour d’un axe de coordonnées

La rotation autour d'un axe de coordonnées est un cas particulier de matrice de transformation.
Par exemple, dans le cas d’une rotation d’un point P d’un angle # autour d’un axe Oz, 'image
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des vecteurs de base donne (figure 11.21) :

Uy = cos@-u_;—l—sine-u_)y (11.35)
u, = —sinf-u,+cosf-u, (11.36)
. = ul (11.37)

@] Ed

Figure 11.21 — Rotation autour de Oz
des vecteurs de base. Figure 11.22 — Rotation autour de 'axe z.

Dans le cas de la rotation d’un point de coordonnées quelconque (figure 11.22), on peut écrire :

—
OP' = xp-(cos - w, +sinb - ) +yp - (—sinf-up +cosf - u,) + 2, - (11.38)
ou encore :
Tpr cosf) —sinf O Tp
ypr p = | sinf cos@ O |-< yp (11.39)
zZp! 0 0 1 zZp

La matrice de transformation homogeéne associée & une rotation autour de Oz s’écrit donc :

cos@ —sinf 0 0
sinf cosf@ 0 O

R(z0)=| ", 010 (11.40)
0 0 01

On démontre facilement que Popération inverse correspond a R (z,—60) = R (2,0)" = R(z,0)"

Via un raisonnement similaire, on peut montrer que les matrices de transformation pour des
rotations autour de Ox et Oy s’établissent selon :

1 0 0 0 cos@ 0 sinf 0
0 cosf —sinf 0 0 1 0 0

R(z,0) = 0 sinf cosf 0 R(y,0) = —sinf 0 cos@ O (11.41)
0 0 0 1 0 0o 0 1

11.4.2 Composition d’opérations

Les matrices de transformation élémentaires sont données dans des configurations particuliéres ;
une combinaison de plusieurs opérations est généralement nécessaire pour décrire une opération
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de transformation. Par exemple, si on souhaite faire décrire & un ensemble de points une rotation
autour d'un axe paralléle & 'axe Oz passant par un point de coordonnées (z¢,yc, z¢), il faudra
combiner de trois opérations (figure 11.23) :

— une translation pour amener un point du repére sur ’origine ;

— une rotation autour de ’axe du repére;

— une translation inverse de la premiére opération.

ol ~« i -

Figure 11.23 — Rotation autour d’un axe paralléle & Oz (vue de dessus).

L’avantage de I’écriture sous forme de matrice de transformation est la possibilité de synthétiser
ces trois opérations en une seule opération matricielle. En effet, on pourra écrire :

X p! 1 00 —Xc rp
ypr \ _ |01 0 —ye | ) yp
zpr [ ] 0 01 —z¢ Zp (11.42)
1 00 01 1
M1
T pr cos) —sinf 0 O Tpr
ypr \ | sinf cosf 0 0O ypr
o (T 1o o 10 o (11.43)
1 0 0 0 1 1
M2
X prr 1 00 Hitel X pr
?JP'” . 0 1 0 yC ) yp//
zZprm o 0 0 1 zZC zpr (1 1 44)
1 0 0 01 1
M3
Ce qui donne au final
,ZCP/// l’P
ZP’” = [M3] - [M2]- [M1]-{ Y (11.45)
pr ZP
1 1
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A nouveau, la convention « vecteur colonne » conduit a la multiplication & gauche des matrices
décrivant les opérations élémentaires successives. Au final, on donc :

X pim cos) —sinf 0 zc-cosf —ye-sinf — ze

xp
ypr | _ | sin@ cos 0 zc-sinf+yc-cosd—yc | ) yp
Zpm o 0 0 10 Zp (1146)
1 0 0 01 1

Cet exemple permet de mettre en évidence une forme générale aux matrices de transformation ne
modifiant pas la forme du corps subissant 'opération :

{{]O%iazj {T%&zl (11.47)

La matrice 3x3 supérieure gauche concerne les rotations, le vecteur a 3 composantes qui y est
accolé concerne les translations et la derniére ligne est toujours constituée de trois 0 et un 1.

11.4.2.1 Ordre des opérations

La multiplication matricielle n’étant pas commutative, ’ordre des opérations doit bien évidemment
étre respecté pour obtenir le résultat attendu. Par exemple, si on combine une rotation d’'un quart
de tour autour de I'axe Oz dans le sens positif suivie d’une rotation d’un quart de tour autour de
I'axe Ox dans le sens positif (figure 11.24).

Figure 11.24 — Rotation autour de Oz puis Figure 11.25 — Rotation autour de Ox puis
de Oz. de Oz.

La matrice de transformation associée sera :

R. = R(z,7/2) R(z7/2) (11.48)

1 0 0 0 cosw/2 —sinm/2 0 0
| 0 cosm/2 —sinm/2 0 sinm/2  cosm/2 0 0 (11.49)
| 0 sinw/2 cosw/2 O 0 0 10 '
0 0 0 1 0 0 01
qui au final sera condensé dans la matrice :
0 -1 0 0
00 —-120
R, = 10 0 0 (11.50)
00 0 1
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En inversant l'ordre (figure 11.25), on obtient la matrice :
0

R, = (11.51)

o = O O
o O O =
_— o O O

1
0
0

11.4.3 Lien entre changement de repére et matrices de transformation

Les matrices de transformation homogénes sont trés semblables aux matrices de changement de
repére dans leur forme. En effet, il s’agit simplement de deux méthodes pour obtenir un méme
résultat. Prenons un exemple simple de la translation d’un point selon un vecteur T (figure 11.26).

T

Trans formation Changement de repeére

Figure 11.26 — Deux approches pour la translation d'un point.

L’approche par matrice de transformation donne directement :

X pr 1 00 T Ip
ypr \ |01 0 yr | ] yp
zZp! o 0 0 1 zT zZp (1152)
1 0 001 1
M1

En examinant la figure 11.26, on constate que cette translation est ’équivalent d’un changement

de repére en plagant la nouvelle origine en un point O’ tel que OO’ = —?. L’approche par matrice
de changement de repére donne :

T 1 0 0 zp x
vy L _ {010 yr Y
Z( |0 0 1 2 z (11.53)
1 00 01 1
M1

qui donne bien évidemment un résultat similaire. On constate donc que la matrice de
transformation pour une translation d’un vecteur ? est équivalente a la matrice de changement

147



CHAPITRE 11. INFOGRAPHIE

de repére d’une translation —? ou mieux de l'inverse de la matrice de changement de repére d’une
translation T'. Ce lien matrice de transformation valant I'inverse de la matrice de changement de
repére se retrouve également pour les opérations de rotation.

11.4.4 Orientation d’un volume dans une direction particuliére

Un probléme fréquemment rencontré est d’orienter une droite particuliéere d’un volume selon une
direction donnée (figure 11.27). Cette opération sert par exemple a d’aligner I’axe de révolution
d’une figure sur un des axes du repére ou orienter la normale & un plan dans une direction
privilégiée. Cette opération peut s’effectuer de trois maniéres différentes.

(@]

s

Figure 11.27 — Orientation de figures.
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11.4.4.1 Deécomposition en opérations élémentaires

Pour aligner un vecteur sur une direction particuliére il est possible de combiner plusieurs matrices
de transformation. Une opération fréquente consiste a aligner un vecteur quelconque avec un
des vecteurs de base (par exemple Oz). Soit #, I’ angle entre le plan vertical contenant le vecteur
et le plan Oyz et ¢ le complément de I'angle entre le vecteur et le plan Oxy. On peut décomposer
la transformation en deux étapes (figure 11.28) :
— une rotation autour de I’axe Oz d’un angle 6 pour obtenir une vecteur contenu dans le plan
Oyz (matrice [M1]);
— une rotation d’'un angle ¢ autour de Oz pour pour obtenir vecteur aligné avec Oz (matrice
[M2]). N
Pour la premiére étape, il faut aligner la projection de ﬁ sur le plan horizontal (Ny avec Oy
(figure 11.28).

Figure 11.28 — Alignement d’axes : premiére étape.

Le sinus et le cosinus de I’angle valent respectivement 3

. Va
— 8inf = ——;
,/Vf%—VyQ
— cosf = Vy

La matrices de transformation associée est :

cos@ —sinf 0 0
sinf cos6 00

M1 =R(Z,0)=| Lo (11.54)
0 0 01

3. Cette méthode permet d’éviter le calcul de 'angle ce qui permet d’éviter de traiter les différents cas de figure
suivant le quadrant occupé par le vecteur
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Pour la deuxiéme étape, il faut aligner ce vecteur transformé avec 'axe Oz (figure 11.28).

Figure 11.29 — Alignement d’axes : deuxiéme étape.

Le sinus et le cosinus de ’angle valent respectivement :

La matrices de transformation associée est :

0 0
cos¢p —sing
sing  cos ¢

0 0

[M2] = R(X, ¢) = (11.55)

o O O
_— o O O

La matrice résultante est bien évidemment obtenue en multipliant (dans le bon ordre) les deux
matrices :

[M] = [M2] - [M1] (11.56)

11.4.4.2 Angles d’Euler

Un solide dans I’espace présente six degrés de liberté sous la forme de trois translations et de trois
rotations. La présentation de la matrice 3x3 prenant en compte la rotation dans les matrices de
transformation homogénes (équation 11.47 ) ne fait pas apparaitre clairement les trois degrés de
libertés associés a la rotation d’un corps. Les neuf coeflicients sont liés entre eux par six relations
lices a l'orthogonalité de la matrice. Ces relations (déja présentées précédemment) peuvent étre
synthétisées par (0;; représente le symbole de Kronecker ; §;;=1 si i=j et 0 sinon) :

Aidj + pity + vivy = 0 (11.57)
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Une autre approche pour la représentation de l’orientation d’un corps dans 'espace est I’emploi
de trois angles caractéristiques pour définir son orientation. Les angles les plus fréquemment
rencontrés dans la littérature sont les angles d’Euler qui définissent trois rotations (figure 11.30)
selon :

— l’angle de précession 1 autour de I'axe Oz;

— l’angle de nutation # autour de I’axe u (image de 'axe Ox aprés la premiére rotation);

— Pangle de rotation propre ¢ autour de 1’axe Oz’ (image de Oz par la seconde rotation).

Figure 11.30 — Angles d’Euler.

Si 0 =0 ou m, la transformation se réduit a une rotation autour de 'axe Oz. L’emploi des angles
d’Euler est néanmoins moins intuitif que 'approche par les cosinus directeurs, mais il est possible
de relier les deux approches. On peut démontrer que la matrice de changement de repére associée
aux angles d’Euler peut se construire selon :

cos ¢ cosyy —singcosfsiny —cos@siny —singcosfcosyy  singsing 0
sin ¢ cos Y + cos ¢ cosfsiny —sin@siny + cospcosfcosy —cospsind 0
sin 6 sin ¢ sin  cos Y cos 6 0

0 0 0 1

(11.58)

Il est donc possible de retrouver les angles d’Euler a partir de la matrice de transformation, par
exemple (r; ; représente I’élément de la ligne i et de la colonne j de la matrice R) :

Y = arctan 2%

73,2

w/r? +7r2
0 = arctan% (11.59)
¢ = arctan—--2

2,3

Dans la pratique, la fonction arctangente donne deux valeurs possibles a ’angle, le choix doit se
faire en fonction du quadrant occupé par le point (ceci est réglé automatiquement par la fonction
atan2 dans la plupart des langages de programmation).
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11.4.4.3 Opération globale

On peut également rechercher la matrice de transformation globale par I'intermédiaire d’opérations
vectorielles [2]. Considérons dans un premier temps un plan contenant l'origine du repére O et
défini par un vecteur normal ﬁ et un vecteur ﬁde ce plan. le produit vectoriel de ce vecteur par

la vecteur normal unitaire 77 donne un vecteur appartenant au plan et orthogonal a Vi (figure
11.31).

=l

Figure 11.31 — Produit vectoriel par le vecteur normal au plan.

Le produit vectoriel est calculé selon :

e

up U, Ul NyVez —n.Vey
A 77r =|n, ny N =< nVeg —n, Ve (11.60)
Vw,x V7r,y Vw,z nxvﬂ,y - nyvﬂ,z
Cette formulation est équivalente a :
0 —N, Ny Vi
TAV.=|n. 0  —n |4 Vi, (11.61)
—Ny Ny 0 |

Cette relation permet de définir la matrice [J,] permettant le calcul du produit vectoriel par
rapport au vecteur .
0 N, Ny
)= n. O —Ny (11.62)
—ny ng, 0

Si on applique une deuxiéme fois le produit vectoriel, on retrouve un vecteur opposé au vecteur
de départ (deux rotations de 7/2 donnent une inversion).

A (ﬁ A ﬁ) -V (11.63)

Ces éléments permettent de démontrer que la matrice de rotation d’un angle # autour d’un axe
passant par l'origine est :

R(ﬁ,@) — [ +sinf-J, + (1 — cosd) - J? (11.64)
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Cette relation permet d’obtenir la matrice (3x3) occupant la portion supérieure de la matrice de
transformation homogéne, il faut ajouter la quatriéme ligne et la quatriéme colonne comme suit :

& (ﬁ’e):ug {0} 301 ] (11.65)
{0}145 1

Pour vérifier la propriété, prenons un point quelconque P. le vecteur O? peur se décomposer
en une composante normale au plan (OP,) et une composante appartenant au plan (OP;). La
composante normale au plan n’est pas modifiée par la rotation :

R(ﬁ,@)5—P_>n:O—>RL+sin9-%>/\O—>R1+(1—COSH)-ﬁ/\(W/\T&) :6__>Pn (11.66)

car le produit vectoriel de deux vecteurs paralléles est le vecteur nul. Pour la composante du plan,
on a

RC?@OE.:cnmmmwﬁA5i+u—mwynA(ﬁA5ﬁ) (11.67)
— OF, +sinf-7 AOP, — (1 —cosf) - OF, (11.68)
— sinf-7 AOP, +cosf-OP, (11.69)

qui donne bien le vecteur tourné d’un angle ¢ dans le plan.

11.4.4.4 Exemple d’application

Tiré de I'examen de juin 2012 : construire la matrice de transformation homogéne qui permet de
faire tourner de 7/3 radians les points de I’espace autour de la droite d définie par les équations :

(11.70)

_J 204+3y+62—-1=0
|l rH+y+z2—-2=0

On va tout d’abord rechercher les équations paramétriques de la droite. Son vecteur directeur
est obtenu en prenant le produit vectoriel des vecteurs normaux des deux plans définissant les
équations cartésiennes de la droite :

G —
d =N, AN, = = 3+ i, — (11.71)

)
~os

pour trouver un point particulier, on fixe arbitrairement une coordonnée (exemple : z = 0) et on
recherche la solution du systéme formé par les équations cartésiennes de la droite et cette relation.
On obtient le point A(5, —3,0) appartenant a la droite.

11.4.4.4.1 Combinaison de matrices élémentaires La matrice de transformation globale
est obtenue en combinant différentes opérations. La premiére une translation pour amener le point
A en l'origine. La matrice de translation s’écrit

)

M, = (11.72)

o O O =
OO~ O
O = OO
—_ O W
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On calcule ensuite le sinus et le cosinus de 'angle 6 entre la projection du vecteur directeur et le

plan Ozxz :
3

— sinf = ——= =3/5;
V32 I 42 /
— cost) = ——= =4/5.
e
La deuxiéme opération est donc définie par :
4/5 3/5 0 0
| -3/5 4/5 0 0
M2 = 0 0 10 (11.73)
0 0 01
On peut procéder de la méme facon pour le cosinus et le sinus de ¢ :
: -5
— singp = —
¢ V26
s -1
— COsp = ——.
V26
La troisiéme opération est une rotation autour de 'axe Ox d’un angle ¢ :
1 0 0 0
M3 — 0 —1/v26 —5/v/26 0 (11.74)

0 5/v26 —1/v26 0
0 0 0 1

la droite est maintenant rendue confondue avec I’axe Oz. On peut donc appliquer la rotation
autour de cet axe d’angle 7/3 :

0,5 —v3/2 0
Ma— | V32005 (1)
0

) (11.75)
0

_— o O O

0

0
on revient ensuite a la configuration d’origine en inversant les opérations 3 puis 2 puis 1. La
matrice résultante est donc calculée par :

M = (Ms-My- M) - My-Ms- My- My = MY MI - MI - My - My - M, - M, (11.76)
Au final, on obtient :

0,6731 —0,0609 0,7371 1,4518
—0,4006 0,8077 0,4326 1,4216
—0,6217 —0,5864 0,5192 1,3490

0 0 0 1

M = (11.77)
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11.4.4.4.2 Opération globale La premiére opération est similaire puisque le plan doit passer
par lorigine. La matrice M1 définie par I’équation 11.72 reste la méme. Par la suite, il suffit
d’appliquer la relation 11.64 avec § = w/3. Le vecteur normal unitaire est obtenu par :

NN v
n = =< 4//26 11.78
IN —/1/\/% e

La matrice associée au produit vectoriel est donc :

0 1/V26  4/v26
[J.) =] —=1/v/26 0 3//26 (11.79)
—4/4/26 —3//26 0

La matrice décrivant la rotation est donc :

100 0 1/v/26  4//26
Mp = |01 0| +sinw/3-| —1/v/26 0 3/v/26 (11.80)
00 1 —4/4/26 —3/4/26 0
0 1/v26  4/v26 1°
+ (1—cosm/3)- | —1/v/26 0 3/1/26 (11.81)

—4/v/26 —3/3/26 0

Ce qui permet d’établir la matrice M2 :

0,6731 —0,0609 0,7371

—0,4006 0,8077 0,4326

—0,6217 —0,5864 0,5192
0 0 0

M2 = (11.82)

_— o O O

La matrice résultante est calculée par la relation suivante :
M=M1""" M2 -M1 (11.83)
Tous calculs faits, on obtient :

0,6731 —0,0609 0,7371 1,4518
—0,4006 0,8077 0,4326 1,4216
—0,6217 —0,5864 0,5192 1,3490

0 0 0 1

(11.84)

ul est comme attendu le méme résultat qu’avec 'approche précédente.
q pp p

155



CHAPITRE 11. INFOGRAPHIE

11.4.5 Autres opérations de transformation 3D

Il est tres fréquent de devoir réaliser dans les logiciels de dessin assisté par ordinateur un ensemble
d’opérations de transformation de figures élémentaires (on parle de primitives). Comme ces objets
sont constitués d’un ensemble de point, on peut synthétiser les transformations sous forme de
I’application d’une matrice de transformation 4x4 comme déja évoqué précédemment. Diverses
opérations de transformation vont étre présentées, en complément des rotations et translations
déja évoquées précédemment dans ce chapitre.

11.4.5.1 Reéflexion

L’opération de réflexion consiste a réaliser une symétrie orthogonale d’un objet par rapport & un
plan existant.

Figure 11.32 — Opérations de réflexion par rapport aux plans coordonnés.

11.4.5.1.1 Reéflexion par rapport 4 un plan de référence La matrice de transformation
associée a une réflexion par rapport a l'un des plans coordonnés (figure 11.32). est établie de
maniére évidente :
— une réflexion par rapport au plan Oxy consiste a changer le signe de la composante z des
points de la figure;
— une réflexion par rapport au plan Oxz consiste & changer le signe de la composante y des
points de la figure ;
— une réflexion par rapport au plan Oyz consiste a changer le signe de la composante x des
points de la figure;
Les matrices de transformation associées sont donc :

100 0 10 00 -10 0 0
010 0 0 -1 0 0 0 100
Rowy=| g g 1 0| Bo==1]¢g ¢ 10| fo==1]0¢ 010 (11.85)
000 1 00 01 0 00 1
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11.4.5.1.2 Réflexion par rapport a un plan quelconque - décomposition Si le plan est
quelconque et caractérisé par un vecteur normal N et un point Fy, la construction de 'opérateur
de symétrie par rapport a ce point peut s’établir par transformation homogéne en combinant sept
opérations élémentaires :

— une translation pour amener F; a 1’origine;

— deux rotations pour amener la normale au plan alignée sur un des axes (Oz par exemple) ;

— la réflexion de points par rapport au plan perpendiculaire & 1’axe choisi (ici Ozy);

— Dinversion des trois premiéres étapes pour revenir dans la configuration initiale (deux

rotations et une translation).

A titre d’exemple, considérons le plan d’équation 3x +4y — 2z —9=0. Sion fixe y =0 et z =0,
on déduit que le point (3,0,0) appartient au plan. La premiére matrice est donc :

100 -3
010 0

Mi=|0 01 o (11.86)
000 1

On calcule ensuite le sinus et le cosinus de 'angle 6 entre la projection du vecteur directeur et le
plan Ozz :

— sinf = ——— =3/5;
V32 4 42 /
4/5.

4
VIR

La deuxiéme opération est donc définie par :

— cosf =

4/5 —3/5 0 0
C13/5 4/5 0 0

M2=| 7 Lo (11.87)
0 0 01

On peut procéder de la méme facon pour le cosinus et le sinus de ¢ :

V29

— COS P = —=
29
La troisiéme opération est une rotation autour de I’axe Ox d’un angle ¢ :

— sing = —

1 0 0 0
0 —2/v/29 —5/v29 0
0 5/VB 2V 0 (11.88)
0 0 0 1

M3

la normale est maintenant rendue paralléle a I'axe Oz, la quatriéme opération est donc simplement
M4 = Ro,,. La matrice résultante est obtenue par la composition des opérations élémentaires

selon :
M = (M3-M2-M1)""- M4-M3-M2- M1 (11.89)

Ce qui donne au final

0.3793 —0.8276 0,4138 1,8621
—0.8276 —0,1034 0,5517 2,4828
M=1"04138 05517 07241 —1,2414 (11.90)

0 0 0 1
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11.4.5.1.3 Réflexion par rapport a4 un plan quelconque - approche générale Il
est également possible de condenser la recherche de la relation matricielle en une étape par
I'intermédiaire de 1’algébre vectorielle.

(N, iy, M)

Figure 11.33 — Réflexion par rapport a un plan quelconque.

Si la plan passe par 'origine, on peut calculer la position de 'image d’un point P (figure 11.33)

par : .
OP’z(ﬁé—z-(O‘ﬁﬁ)-ﬁ (11.91)

La deuxiéme partie de la formule se calcule selon :

Ny
(OT%-W)-ﬁ:(:c~nx+y-ny+z-nz)- ny (11.92)
ny
Sous forme matricielle, cette relation est équivalente a
Ng - Ny Mg Ny Ny - Ny x
(O?ﬁ)ﬁ: Ny =Ny Ny =Ny Ny = N Yy (11.93)
z

Ny Ny Ny-Ny Ny Ny

La matrice intervenant dans cette relation est équivalente au produit 7-77T. La matrice supérieure

(3x3) est donc établie par :
Ry=I-2-7-7" (11.94)

158



CHAPITRE 11. INFOGRAPHIE

Si on reprend le méme exemple que celui traité au paragraphe précédent, I'opération 1 reste
similaire. Une fois le plan passant par l'origine, on peut appliquer directement la formule
précédente pour établir la deuxiéme partie de I’expression. Le vecteur unitaire a pour coordonnées

{3/+/29;4/v/29; —2/+/29}. La partie supérieure (3x3) de la matrice s’établit selon :

100 3/v/29
My = | 010 | =2-{3/V39,4/v/20;~2/v29} - 4/ (11.95)
001 —2/4/29

La matrice compléte est donc :

0,3793 —0,8276 0,4138

0
—0,8276 —0,1034 0,5517 0
0
1

M2 = (11.96)

0,4138  0,5517 0,7241
0 0 0

La matrice résultante obtenue par M = M171- M2 - M1 donne au final

0,3793 —0,8276 0,4138 1,8621

—0,8276 —0,1034 0,5517 2,4828

0,4138  0,5517 0,7241 —1,2414
0 0 0 1

M = (11.97)

qui est comme attendu similaire au résultat obtenu précédemment.
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11.4.5.2 Scaling

Jusqu’ici, nous avons uniquement considéré des opérations réalisant une modification de la position
des objets, sans entrainer de modification de leur forme. Le scaling est une opération courante qui
modifie la forme de I'objet subissant ’opération.

Dans le vocabulaire de I'infographie, un scaling est une opération de mise a 1’échelle dont le rapport
peut étre différent selon les axes (figure 11.34). La matrice de transformation associée a un scaling
centré sur l'origine est :

(11.98)

o o o =
oo > O
<
o O O

N
_— o O O

Figure 11.34 — Exemple de scaling d’un cube (rapports 3;2;1,5).

Pour obtenir une homothétie au sens classique du terme, il faut bien évidemment avoir un rapport
égal selon les trois directions de 1’espace.

160



CHAPITRE 11. INFOGRAPHIE

11.5 Rendu réaliste

La représentation de surfaces dans des logiciels de CAO consiste nécessairement en une
représentation bidimensionnelle d’objets volumiques. Pour faire ressentir a ’observateur la notion
de profondeur, il est nécessaire de faire appel & un rendu de la surface qui favorise la compréhension
de la scéne. Historiquement la premiére méthode qui a été employée consistait en la représentation
de différentes lignes sur les surfaces résultant de l'intersection de la surface avec un ensemble de
plans (pouvant étre paralléles aux plans de références ou formant un faisceau convergeant en un
axe de symétrie de la surface). Ce type de représentation des surfaces sous forme de squelettes (ou
rendu fil de fer, figure 11.35%) faisait appel & une reconstruction mentale de I'objet pas toujours
évidente pour 1'observateur.

Figure 11.36 — Rendu réaliste d’une piéce
mécanique.

Figure 11.35 — Rendu « fil de fer » [2].

L’augmentation des performances des ordinateurs et de leurs cartes graphiques a permis la
possibilité de traitements algorithmiques visant a reproduire ’aspect de surfaces réelles en prenant
en compte un grand nombre de phénomeénes physiques (réflexions, transparence, réfraction,
textures de surfaces,...) pour permettre un rendu proche de la réalité de modéles CAO de piéces
(figure 11.36).

Le rendu réaliste présente des applications bien au-dela des logiciels de CAO (un exemple
spectaculaire est la réalisation de films d’animation entiérement réalisés a partir de ce type de
techniques, les plus connus édités par les studios Pixar et Dreamworks). Dans le cadre de ce cours,
nous allons étudier les éléments de base permettant de réaliser le rendu d’une surface.

4. Cette figure, ainsi que I’ensemble des figures tirées de la méme références est accompagnées de la mention
"Reproduced with the permission of the publisher from Computer Graphics : Principles and Practice, Third Edition,
by John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K. Feiner, and
Kurt Akeley. Copyright 2014 by Pearson Education, Inc’
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11.5.1 Eléments de base

Les éléments de base permettant le rendu des scénes sont :
— des objets modélisés par l'intermédiaire de la description analytique de leurs surfaces
(surfaces complexes ou décomposition de celles-ci sous forme de facettes triangulaires) ;
— des sources lumineuses éclairant la scéne;
— un algorithme calculant la couleur des différents points de la scéne en fonction de
I’éclairement et de la configuration de la scéne.
La premiére étape est de faire le tri entre 'information qui sera traitée et celle qui ne participera
pas au calcul (on parle de « clipping » ). L’utilisateur défini deux plans entres lesquels le rendu sera
effectué : le plan proche (near plane) et la ligne d’horizon (far plane). Les éléments non compris
entre ces plans sont écartés du rendu (figure 11.37).

Far clipping

Near clipping plane

plane

‘-H-H-""‘“L
Discarded Rendered Clipped Discarded

Figure 11.37 — Sélection de I'information [2].

Il existe deux grandes familles d’algorithmes de rendu :

— les algorithmes dits de rasterization qui consistent a réaliser la projection des points sur
I’écran et de réaliser la recherche du vu et du caché, la prise en compte de I'illumination
est réalisée par la suite;

— les algorithmes dits de raytracing (figure 11.38) qui consistent & suivre a rebours le trajet
de la lumiére en considérant les rayons issus de 1’oeil qui sont « lancés » sur la scéne et
dont le trajet est suivi pour déterminer la couleur et 'illumination de chaque pixels.

Les algorithmes de rasterization sont réputé plus performants et donc plus adaptés pour les
approches en temps réel [3]. Ils sont toutefois moins performants pour la représentation de certains
phénomeénes (réflexions proches par exemple), c¢’est pourquoi ils sont parfois complétés par des
algorithmes de raytracing [4].
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Figure 11.38 — Exemple de rendu employant 1’algorithme de raytracing [2].

11.5.2 Rendu de la couleur

Une scéne est divisée en un ensemble de points de couleur (pixels) organisés selon un tableau
de n lignes et de m colonnes. La couleur de chacun de ces pixels est déterminée par un mélange
additif de trois couleurs de base, typiquement RGB (Red Green Blue). Chacune de ces nuances
est mélangée suivant différentes proportions pour obtenir un ensemble de couleurs dérivées. Une
couleur est donc représentée comme un triplet [R G B| avec chacune des composantes allant de 0

a1 (figure 11.39).

Rouge [100] Vert [010] Bleu [001]

Cyan [011] Magenta [101] Jaune [110]

Figure 11.39 — Quelques exemples de couleurs en RGB.
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11.5.3 Exemple de rendu de surface

Ce paragraphe décrit les méthodes de rendu accessibles dans Matlab [5]. Il faut noter que Matlab
ne gére que le calcul d’illumination directe et ne prend pas en compte les réflexions intermédiaires
entre différents corps, ce qui simplifie fortement les calculs.
La position des différentes sources de lumiéres doit étre connue dans la scéne modélisée (par
I'intermédiaire de ses coordonnées polaires ou cartésiennes). L’énergie des rayons lumineux issus
des sources se divise en trois contributions au contact d’objets :

— une fraction %, est réfléchie par la surface;

— une fraction %, est transmise a travers la surface (réfraction);

— une fraction %, est absorbée par la surface.
La conservation de I'énergie indique que %, + %;+ %, = 0. La réfraction peut étre modélisée par la
loi de Snell-Descartes pour tenir compte de la déviation d’un rayon lumineux passant d’'un milieu
a un autre. La réflexion sur une surface est un mécanisme plus complexe. Nous présenterons ici
un exemple de modélisation par 'intermédiaire du modéle de Phong (figure 11.40).

>

Figure 11.40 — Modéle Phong.

Ce modéle considére que 'intensité lumineuse observée dépend de trois facteurs :
— une luminosité « de fond » n’ayant pas d’orientation particuliére qui est la luminosité
ambiante ;
— une luminosité provenant d'une réflexion diffuse (réflexion isotrope dans toutes les
directions, proportionnelle au cosinus de 1’angle entre la source et la normale a la surface) ;
— une luminosité provenant d’une réflexion spéculaire (réflexion de maniére prépondérante
lorsqu’on observe sous un angle égal a I'angle incident, dépendante d’'un exposant spéculaire
es d’autant plus élevé que la surface est réfléchissante (figure 11.41).
En présence de n spots lumineux, l'observation d’une surface produit une intensité lumineuse
donnée par

I =1k, + Z I, (kg cosO; + kg cos® ¢;) (11.99)

Les facteurs k,, kg et ks sont les coefficients de réflexion ambiants, diffus et spéculaires; ils sont
spécifiés sous forme d’un triplet comme les couleurs RGB pour tenir compte de réflexions différentes
suivant les couleurs (figure 11.42).

Pour ne pas effectuer ce type de calcul pour chacun des pixels de I'image, on discrétise les surfaces
sous forme de facettes au centre desquelles un calcul de couleur et d’intensité est réalisé. La
méthode de base appelée flat shading conserve cette couleur pour I'ensemble de la facette (figure
11.43). Cette méthode est la plus rapide puisqu’elle ne nécessite pas de calculs supplémentaires.
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Poli

~ — — — - Rugueux

Intensité relative

?T Angle (rad) /2

Figure 11.41 — Exemple de I’évolution de ’énergie pour une surface rugueuse (es=1) et polie
(es=100) dans le modele de Phong.

SpecularPovrer: 5.0 SpecularPower: 25.0 SpecularPovser: 125.0

Figure 11.42 — Influence de lexposant sépculaire sur le rendu de surface (tiré de
http ://udn.epicgames.com/).

Figure 11.43 — Cone et surface complexe dont le rendu est opéré avec flat et Gouraud Shading [2].

La deuxiéme méthode d’interpolation par ordre de complexité est la méthode dite Gouraud
shading. Elle calcule I'intensité aux sommets des facettes puis réalise une interpolation bilinéaire
pour obtenir la couleur en tout point de la facette (figure 11.44).

165



CHAPITRE 11. INFOGRAPHIE

Yellow curve shows
the actual surface.

Black lines and green
vertex dots demonstrate
the approximation mesh.

Per-vertex

computed lighting -

Copying
(flat shading)

Interpolation
(Gouraud shading)

— [

Figure 11.44 — Algorithme du Gouraud shading comparé au flat shading [2].

La troisiéme méthode est dite Phong shading. Elle consiste a réaliser une interpolation sur les
normales a la surface puis a calculer en tout point 'intensité de chaque composante RGB . La
figure 11.45 compare a titre d’exemple le rendu d’une sphére par les trois méthodes précédemment

0L

Figure 11.45 — Comparaison des trois méthodes de shading (tiré de http ://udn.epicgames.com/).

citées.

166



REFERENCES

Références

1]
2l
3]

4]

[5]

O. Verlinden. Computer-Aided Kinematics and Dynamics of Mechanical Systems. Mutuelle
d’édition FPMs, 2012.

J. F. Hughes, A. Van Dam, M. McGuire, D. Sklar, J. D. Foley, S. K. Feiner, and K. Akeley.
Computer Graphics Principles and Practice Third Edition. Addison-Wesley, 2014.

R. L. Cook, L. Carpenter, and E. Catmull. The reyes image rendering architecture. In
Proceedings of the 14th annual conference on Computer graphics and interactive techniques,

1987.

P. H. Christensen, J. Fong, D. M. Laur, and D. Batali. Ray tracing for the movie ’cars’. In
Proceedings of the IEEE Symposium on Interactive Ray Tracing, 2006.

Y. Durand. Géométries et Communication Graphique : Tome VI : Matlab : Opérer des Tracés
Graphiques sous MATLAB. Mutuelle d’édition FPMs, 2009-2010.

[6] Y. Durand. Géométries et Communication Graphique : Tome III : Infographie, Fascicule I

Partie I : Les concepts de base de l'infographie. Mutuelle d’édition FPMs, 2006-2007.

[7] Y. Durand. Géométries et Communication Graphique : Tome III : Infographie, Fascicule I

Partie II : Les concepts de base de [’infographie. Mutuelle d’édition FPMs, 2006-2007.

167



CHAPITRE 12. REPRESENTATION CARTESIENNE DE SURFACES

Chapitre 12

Représentation cartésienne de surfaces

Je pense donc je suis

- R. Descartes, Discours de la méthode

12.1 Introduction

La représentation cartésienne d’une surface fait appel a des expressions qui sont des généralisations
de la représentation cartésienne de courbes planes. On distingue les formes de représentation
explicites (z = f(z,y)) et implicites (F(z,y,z) = 0).

Figure 12.1 — Paraboloide hyperbolique Figure 12.2 — Sphére (équation implicite x2 +
(équation explicite z = x? — ?). >+ 22— 1?2 =0).

La forme explicite z = f(z,y) associe a tout point du plan horizontal de coordonnées (z,y) au plus
un point de la surface. La forme implicite F'(z,y, z) = 0 peut elle présenter plusieurs points de la
surface sur une verticale donnée. Comme dans le cas de courbes planes, une fonction F(z,y,z) =0
ne représente pas forcément une surface :

— 22 4+ 9% 4 2% = 0 représente le point & l'origine ;

— 2% +y? + 2% = —1 ne représente aucun point de I’espace réel.
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On peut faire la distinction entre une surface dite algébrique et une surface dite transcendante.

Une surface est dite algébrique si son équation implicite peut étre ramenée & une forme d’un
polynéme a coefficients rationnels égalé a zéro (figure 12.3).

4000
3000
2000

1000

2SS ‘:::“:““::‘.‘::‘o’
=S
S SSESSS
ST SOSSSSSIS,
“:“:‘“““:‘
<

Figure 12.3 — Exemple de surface algébrique (z = 2% + 3zy?).

Le degré du polynéme définit 'ordre de la surface. On parle de :

— surface plane (ordre 1);

— surface quadrique (ordre 2);

— surface cubique (ordre 3);

— surface quartique (ordre 4);
Cet ordre représente le nombre maximum de points d’intersection entre cette surface et une droite
quelconque.
Par opposition, une surface non algébrique est dite transcendante (figure 12.4). Elle peut faire
intervenir des fonctions non rationnelles (fonctions trigonométriques, logarithmes,...) et présente
éventuellement un nombre infini de points d’intersection avec une droite quelconque.

o=
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927 70000\
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1 o'//"o"‘\%s“Q"%‘.s‘%//o“\\«.,/,/,,%“ SO\
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N SN NI N\
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AN
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Figure 12.4 — Exemple de surface transcendante ( z = sinz + cos y).
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12.1.1 Interprétation d’équations particuliéres

Si 'équation F(z,y,z) = 0 se réduit a une expression du type F(z) = 0 dans R3, l'interprétation
physique qu’on peut en faire est que les points de cette entité géométrique ont des coordonnées x et
y totalement libres alors que les valeurs de z admises sont celles qui vérifient 1’équation F'(z) = 0.
On se trouve donc en présence de la définition de plans paralléles au plan Oxy. Il y aura autant
de plans que de racines de 1’équation F'(z) = 0 (par exemple, F(z) = 2% —4 = 0 définit deux plans
d’équation z=2 et z=-2, figure 12.5).

Figure 12.5 — Plans définis par F(z) = 22 — Figure 12.6 — Surface cylindrique d’équation
4 =0. F(x,y)=0.

Les équations du type F/(z,y) = 0 dans R? peuvent étre interprétées comme définissant des surfaces
pour lesquelles la relation entre x et y est vérifiée quelle que soit la coordonnée z. Il s’agit donc de
Iexpression de surfaces pour lesquelles une courbe définie dans Ozxy par F(z,y) = 0 est extrudée
parallélement & I’axe z, on parle de surface cylindrique dont la directrice est la courbe plane définie
par F(x,y) = 0). Par exemple, I'équation implicite F(z,y,2) = (z — 2)? + (y — 2)? — 4 = 0 définit
un cylindre circulaire de rayon 2 et d’axe paralléle a I'axe z (figure 12.6).

12.2 Intersection d’une surface avec un plan

L’interprétation des équations cartésiennes d’une surface n’est pas un probléme évident. Une
méthode classique d’étude préliminaire est d’observer les courbes d’intersection de la surface avec
un ensemble de plans choisis de maniére judicieuse (par exemple paralléle aux plans coordonnés),
on parle de lignes coordonnées de la surface. La représentation de ces courbes permet de visualiser
le 'squelette’ de la surface et donc de s’en représenter ’allure générale.

L’intersection entre une surface et un plan s’obtient de maniére simple en écrivant un systéme
formé des équations des deux éléments dont on cherche I'intersection. Dans le cas particulier d’un
plan paralléle au plan Ozy, le systéme peut s’écrire :

F(z,y,2)=0
{ o ky (12.1)
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Ot k est une constante. Le systéme d’équation 12.1 donne finalement ’expression d’une courbe
plane de la forme F(z,y) = 0 située dans un plan défini par z = k. L’emploi de courbes
d’intersection avec des plans perpendiculaires a Oz est d’emploi fréquent pour l'analyse des
variations de fonctions de deux variables (optimisation) ou pour ’étude du relief sur des cartes
(on parle alors de courbes de niveaux).
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Figure 12.8 — Courbes de niveau sur un
Figure 12.7 — Courbes de niveau sur un paraboloide hyperbolique projetées sur le
paraboloide hyperbolique. plan Ozy.

La décomposition en lignes tracées dans des plans paralléles n’est pas nécessairement le meilleur
choix dans le cas de surfaces de révolution (figure 12.9). Dans ce cas, il est préférable d’établir les

intersections entre la surface et un faisceau de plans convergeant a I’axe de rotation de la surface
(figure 12.10).

-2 -2 -2 -2

Figure 12.9 — Lignes coordonnées d’'une Figure 12.10 — Lignes coordonnées d’'une
sphére (coordonnées cartésiennes). sphére (coordonnées sphériques).

171



CHAPITRE 12. REPRESENTATION CARTESIENNE DE SURFACES

12.3 Quadriques

Les quadriques peuvent étre vues comme la généralisation des coniques dans R3. Il s’agit de
surfaces définies par l'intermédiaire d’une équation quadratique qui a la forme générale :

F(x,y,2) = Ax* + By* + C2* + 2Dy + 2Ex2 + 2Fyz + Gz + Hy + [+ J =0 (12.2)

On peut également exprimer cette équation sous la forme suivante :

T T A D FE T G T T
Y -\ D B F |- Xy 4+ H ey 2+J=0 (12.3)
z E F C z I z

Comme dans le cas des coniques, les termes contenant des produits croisés (zy, z et yz) peuvent
étre éliminés par un changement de repére pour se retrouver sous une forme qui ne fait plus
apparaitre que des termes en x, y, z et leurs carrés. La recherche de ce changement de repére qui
permet de diagonaliser la matrice sort du cadre de ce cours. Nous nous contenterons d’étudier la
forme des différentes quadriques a partir de leur équation réduite. Cette équation est de la forme

F(a,y,2) = Ae® + By’ + C'2° + Do+ E'y + F'2 + G' = 0 (12.4)

A ce stade, trois cas de figure sont possibles :
— La fonction implicite ne fait apparaitre que des termes en z (ou en y ou en z), I’équation
décrit alors un ensemble de plans comme expliqué au § 12.1.1;
— la fonction implicite ne fait pas apparaitre de terme en z (ou en x ou en y), ’équation
décrit alors une surface cylindrique dont la base est une conique (figures 12.11 & 12.13);
— la fonction implicite contient des termes en x, y et z, il s’agit d’'une quadrique au sens
propre du terme (décrites au § 12.3.1).
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Figure 12.12 - SurfaceQCylirzldrique a base Figure 12.13 — Surface cylindrique a base
elliptique (F(z,y,2) =4 +% —1=0). parabolique (F(x,y,2) =y — 2? = 0).

12.3.1 Formes propres de quadriques

Suivant le méme principe utilisé pour l'identification des coniques, 1’équation 12.4 peut étre
réorganisée pour regrouper les termes en x, y et z sous forme de produits remarquables. Sous
cette forme, on peut distinguer les six familles de quadriques propres :

o (z — fﬂc)z (y — yc)2 (2 — 20)2
— Ulellipsoide F(z,y,z2) = " + 72 + 2 —-1=0;
) w1 A _ (z — $C)2 (y — yc)2 (z - 20)2 _n.
— Thyperboloide a une nappe F(x,y,z) = 5 + 7 — > —1=0;
a c
, 1 s - (z — 560)2 (y — yc)2 (2 — 20)2 _n.
— P’hyperboloide & deux nappes F(x,y, z) = 5 + 2 — 5 +1=0;
a c
2 2
— le paraboloide hyperbolique F(z,y, z) = (v fc) — y beC) —(z2—=20)=0;
a
2 2
— le paraboloide elliptique F(z,y, z) = (z Qxc) + y bec) —(z—2¢) =0;
a
Ay - - (z — 560)2 (y — yc)2 (2 — 20)2 _n.
— le cone a base elliptique F(z,y,2) = 5 + 5 — 5 =0;
c

Nous allons brievement décrire ces six types de surfaces dans les paragraphes suivants.

12.3.1.1 Ellipsoide

L’ellipsoide (figure 12.14) est une surface dont I’équation cartésienne a la forme suivante :

(z — !EC)2 i (y— yc)2 i (z — 20)2

F(l‘7y, Z) = a2 B2 2

—1=0 (12.5)

La surface est centrée au point de coordonnées (z¢, yc, zc). L'intersection de cette surface avec un
plan paralléle aux plans coordonnés donne une ellipse. En particulier, I'intersection avec un plan
paralléle aux axes passant par le centre de 'ellipsoide donne une ellipse dont les axes sont définis
par a,b ou c.

Sia, b et ¢ sont égaux, on retrouve I’équation d’une sphére.
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12.3.1.2 Hyperboloide a une nappe

L’hyperboloide & une nappe (figure 12.15) est une surface dont ’équation cartésienne a la forme
suivante :

(z — 330)2 (y — yc)2 _ (z — 20)2
a? + b? c?
Son intersection avec des plans perpendiculaires & Oz donne des ellipses ; son intersection avec des

plans perpendiculaires & Ox ou Oy donne des hyperboles.

F(z,y,2z) = -1=0 (12.6)

Figure 12.14 — Ellipsoide. Figure 12.15 — hyperboloide a une nappe.

12.3.1.3 Hyperboloide & deux nappes

L’hyperboloide & deux nappe (figure 12.16) est une surface dont I’équation cartésienne a la forme

suivante : ) ) )
(z — z¢) +(y—yc) o (2 — 20)

a? b? c?
Son intersection avec des plans perpendiculaires & Oz donne des ellipses ; son intersection avec des
plans perpendiculaires & Ox ou Oy donne des hyperboles.

F(z,y,z) = +1=0 (12.7)

12.3.1.4 Paraboloide hyperbolique

Le paraboloide hyperbolique (figure 12.17) est une surface dont 1’équation cartésienne a la forme

suivante : ) )
(z —20) (y — yo)
F(z,y,2) = " — 72 —(z2—2¢)=0 (12.8)
Son intersection avec des plans perpendiculaires a Oz donne des hyperboles ; son intersection avec
des plans perpendiculaires & Oz ou Oy donne des paraboles.

12.3.1.5 Paraboloide elliptique

Le paraboloide elliptique (figure 12.18) est une surface dont 1’équation cartésienne a la forme

suivante : ) )
(z —z0) (Y —yo)

=t (z—2¢)=0 (12.9)
Son intersection avec des plans perpendiculaire & Oz donne des ellipses ; son intersection avec des
plans perpendiculaires & Ox ou Oy donne des paraboles.

F(z,y,z) =
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ttunneeis! X
A\AtNNRRR R RES o
RNt

Figure 12.16 — hyperboloide a deux nappes. Figure 12.17 — Paraboloide hyperbolique.
12.3.1.6 Cobne a base elliptique

Le paraboloide elliptique (figure 12.19) est une surface dont l’équation cartésienne a la forme
suivante :

Floyz) = &= ro) | Wwowo) (E-z) (12.10)
T a? b2 2
Son intersection avec des plans perpendiculaire & Oz donne des ellipses; son intersection avec des
plans perpendiculaires & Ox ou Oy donne des paraboles.

NN/
eSS\ Z

Figure 12.18 — Paraboloide elliptique. Figure 12.19 — Cone elliptique.

12.4 Meéthode d’obtention de I’équation cartésienne de
surfaces

Dans le cadre de ce cours, nous verrons diverses méthodes permettant de générer les équations
d’une surface quelconque. De maniére générale, on peut citer :
— L’utilisation d’une condition géométrique ;
la génération d’une surface par extrusion d’'une courbe le long d’une direction ;
)

la génération d’une surface par rotation d’une courbe autour d’un axe;

Y
la génération d’une surface par ligne (la surface est obtenue par un ensemble de courbes
définies par des conditions particuliéres)
la génération d’une surface par points.
Nous verrons différents exemples pour chacun des types de surfaces précédemment mentionnés. Il
faut noter que ces catégories ne sont pas exclusives entre elles. Un cylindre circulaire droit peut
par exemple étre généré par l'extrusion d’un cercle perpendiculairement au plan le contenant ou
par la révolution d’une droite autour d’un axe.
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12.4.1 Condition géométrique pour obtenir I’équation d’une surface

S’il est possible d’exprimer de maniére analytique une condition remplie par I’ensemble des points
d’une surface, on obtient de maniére directe I’équation cartésienne de cette surface. Par exemple,
une spheére de centre C' et de rayon R est le lieu des points situés a une distance R du point C, la
condition s’exprime donc selon :

\/(x —ze) '+ W—ve)+(z—20)°=R (12.11)
en élevant les deux membres de ’équation au carré, on retrouve bien 1’équation de la sphére :

Flz,y,2)=(x—zc) + (y—ye)’ + (2 —2¢)> = R*=0 (12.12)

12.4.1.1 Exemple

Soient deux points A et B, quel est le lieu des points équidistants de A et de B?
La condition géométrique s’exprime selon :

V@ =22 + =y + (2 — 24 = /(2 — 2)’ + (y — yp)? + (= — 25)’ (12.13)
En élevant au carré les deux membres et en développant les produits remarquables, on obtient :

22w+ Y 2yay s 2R - 2ear 2 =

cowt = 2rpr oy +yt — 2By +yn + 20 — 2252 + 25 (12.14)
F(z,y,2) = (204 — 2zp)x + (2ya — 2yp)y + (224 — 2zB) 2 ...
...—l—(xi—i—yi—i—zi—m%—y%—zé):O (12.15)

Qui est I’équation d’un plan (il s’agit en fait de I’équation du plan bissecteur du segment AB,
figure 12.20).

176



CHAPITRE 12. REPRESENTATION CARTESIENNE DE SURFACES

Figure 12.20 — Plan bissecteur.

12.4.2 Extrusion d’une courbe le long d’un axe

Comme vu au § 12.1.1, 'obtention des équations dune surface cylindrique dont 1’axe est parallele
aux axes du repére s’obtient de maniére simple. Lorsque la figure est orientée de maniére
quelconque (figure 12.21), il est possible de passer par l'intermédiaire d’'un changement ou via
une combinaison de matrices de transformation pour obtenir I’équation finale de la surface.

o7

Figure 12.21 — Obtention des équations cartésiennes d’une surface extrudée par changement de

repeére.

Pour illustrer la procédure, prenons I'exemple de la recherche des équations décrivant un cylindre
circulaire de rayon 2 dont 1’axe est défini par la droite d’équation :

r=3+2u
y=-—-24+pn (12.16)
z=445u
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12.4.2.1 Approche par changement de repére

Dans l'approche par changement de repére (cf figure 12.22), on établit tout d’abord les équations
de la surface dans un repére li¢ au cylindre :

2?4 y? —4=0 (12.17)

Pour passer du repére global Oxyz au repére local O'xz"y"z", on effectue simultanément :

— un changement de repére par translation pour avoir l'origine en O’;
— un changement de repére par rotation pour aligner les axes.

Figure 12.22 — Exemple de figure dont I'axe est orienté de maniére quelconque, approche par
changement de repére.

La matrice de changement de repére pour passer de Oxyz & O'z'y'2’ est la matrice de changement
de repére par translation de vecteur ? = 00" = (3,-2,4). Cette matrice est donc :

1 0 0 =3
01 0 2

T=10 01 -4 (12.18)
000 1

Pour obtenir la matrice de changement de base, il est nécessaire de rechercher les cosinus directeurs
des vecteurs unitaires du nouveau repére O'z"y”z" exprimées dans la base de l'ancien repére
O'z'y' 2" (paralléle & Ozyz). Un vecteur aligné sur O'z" est le vecteur directeur de la droite :

7" — 27 + Ly + 5t (12.19)

Comme le cylindre est une figure de révolution, le choix des deux autres vecteurs directeurs est
libre (pour autant que les trois vecteurs directeurs forment une base orthonormée). On peut donc

178



CHAPITRE 12.

REPRESENTATION CARTESIENNE DE SURFACES

~h

choisir de maniére arbitraire deux des coordonnées du vecteur X' (par exemple X" = (1,y,0)) et
de chercher la troisiéme en exprimant la nullité du produit scalaire entre X" et Z” :
¥ wh
X' -Z'=24y=0=X"=(1,-2,0) (12.20)
Le troisiéme vecteur est obtenu par le produit vectoriel :
R A oy
Y'=Z2"ANX"=| 2 1 5 |=(10,5-5) (12.21)
1 =2 0
Les vecteurs unitaires sont obtenus en divisant ces vecteurs par leur norme :
X' ( i o) (12.22)
Ugr = =\ 7= —F=» .
Hxif V5 V5
_?
Ty R (i * —_1) (12.23)
[V7] AV VET Ve
7l (b ) 122)
H V307 /307 /30 '
La matrice de changement de repére est donc :
ro1 -2 0 0 T
b} 5
v
[R] = \éé \{6 \éé (12.25)
0
V30 V30 /30
| 0 0 0 1

On a donc les relations suivantes entre les coordonnées de points du cylindre exprimées dans les

différents repére :

J/

x/ x x// :LJ
/ ! /
Lor=1mg Y Yo =R Y (12.26)
1 1 1 1
On a donc la relation synthétique suivante :
m// ( T
2
oo =R-T8 Y (12.27)
1 L1
La matrice résultante est donc obtenue par :
T2 T
o oY
-~ = = 0
[B] - [T] = 6 V6 6 (12.28)
o
V30 V30 V30 V30
0 0 0 1
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Cette relation permet d’exprimer les coordonnées (z”,y”, z”) en fonction des coordonnées (z,y, z)
selon :

1 2 7

¥ =—r—-—y—— 12.29
5 53/ 5 ( )
2 1 1

"= —o+-—y——z2 12.30
y A LA (12.30)
2= 2 T+ ! + > z— 2 (12.31)

V30 V30T V30 V30 |

L’équation de la surface s’établit donc en remplacant ces relations dans I’équation 12.17 :
1 2 7\’ 2 1 1\’

—r—-——=yY——7=| +|—=2r+—4y——z) —4=0 12.32
() (v ) 1252
1 1
5(55—21/—7)2—1-6(2x+y—z)2—4:0 (12.33)
6 (2% + 4y® +49 — 14z + 28y — day) . .. (12.34)
...+5(4x2+y2+22—4xz—2yz+4$y) —120=0
2612 + 29y* + 52 — 4oy — 102z — 10yz + 842 + 168y + 174 = 0 (12.35)

Ce qui donne I’équation d’une quadrique comme attendu.

12.4.2.2 Approche par matrice de transformation

Dans I'approche par matrice de transformation (cf figure 12.23), on va transformer une figure
simple pour l'orienter de maniére quelconque dans le repére Oxyz.

Figure 12.23 — Exemple de figure dont 'axe est orienté de maniére quelconque, approche par
matrices de transformation.
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On partira de I'expression d’un cylindre d’axe Oz :
F(z,y,2) =2 +9y*—4=0 (12.36)

Appelons (xp, yp, zp) L’ensemble des points de ce cylindre. On va successivement appliquer a ces
points :

— deux rotations pour aligner Oz avec ’axe du cylindre final ;

— une translation pour placer correctement ’axe.
Pour aligner sur le vecteur directeur de la droite I’axe Oz, on peut employer deux rotations (cf §
11.4.4.1) : une rotation d’un angle —¢ autour de Ox pour se placer dans le plan Oyz, puis une
rotation d’angle —@ autour de Oz pour s’aligner sur le vecteur directeur de 1'axe (figure 12.24).

Figure 12.24 — Définition des angles 6 et ¢.

On peut calculer :
— sinf = \% (donc cosf = \/ig),

— co§¢ = \/% (don.c cos ¢ = \/ig)
Les rotations sont exprimées par :

Z pr Ip 1 0 0 0 Ip
yp yp 0 \/L?TO \/Lg 0 yp
— [My]- _ 3 (12.37)
zZp! zZp O 76 730 0 zp
1 1 0 0 0 1 1
X pr X pr [ \/Lg \/lg 0 0 X pr
yP// yp/ _—2 L 0 0 yP/
= [M2] - Vs W5 (12.38)
Zpr Zpr 0 0 10 Zp
1 1 | 0 0 01 1
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La derniére transformation est une translation amenant ’origine sur un des points de I'axe (par
exemple (3,-2,4)). On transforme les points (xpr, ypr, zpr) du cylindre en points (xpm, ypir, zpm).
Sous forme matricielle, on a :

X pm Trp 1 00 -3 X pr

Yprr - ) yp - O 1 O 2 ) Ypr

Zpm o [Ml] Zp o O O 1 —4 Zpn (1239)
1 1 000 1 1

La relation finale permettant de passer de la figure initiale & la figure alignée sur l'axe Oz est
donc :

:CP/// Q}‘P

e = (Mg - [M] - M) {0 (12.40)
ZP/// ZP

1 1

Pour obtenir I’équation de la figure finale, il faut appliquer la transformation résultante a I’équation
12.36. Tous les points de la figure initiale (zp, yp, zp) vérifient cette équation, on peut donc écrire :

5 +yp—4=0 (12.41)

Pour obtenir I’équation de la figure finale, il suffit d’employer la relation 12.40 pour tirer les

expressions de (xp,yp, zp) en fonction de (xpw, ypm, zpm), ce qui revient simplement a inverser la
relation matricielle :

Trp X pr

b = (M) - (Mo [y SO (12.42)
P Zpm

1 1

On peut calculer aisément que :

1 =2 0 =1

([Ms] - [Ms] - [M;]) " = oo, (12.43)
V30 VB0 V30 V30
0 0 0 1

Ce qui donne bien évidemment le méme résultat que I’approche par changement de repére.
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12.4.3 Surface de révolution
12.4.3.1 Reévolution autour d’un axe du repére

Soit une surface engendrée par la révolution d'une courbe plane définie dans le plan Oyz autour
de I'axe Oz. La courbe décrivant le profil de la surface est une courbe de R? dans le plan Oyz qui
peut étre décrite par son équation cartésienne de la forme F(y, z) = 0.

Figure 12.25 — Figure de révolution.

Si on considére cette courbe ayant subi une rotation d’angle # autour de 'axe Oz, sa forme n’a
pas été modifiée par la rotation, ’ensemble de ses points vérifie donc encore ’équation cartésienne
de la courbe, si on considére non plus la coordonnée y mais la distance entre I’axe de rotation et le
point de la courbe considéré. Ce rayon peut se calculer aisément par r = /22 + y2. On peut donc
en déduire qu’une surface de révolution autour de 'axe Oz peut étre exprimée sous forme d’une
fonction implicite en reprenant I’équation implicite décrivant la courbe de base et en remplacant
dans cette expression la coordonnée y par la racine carrée de la somme des carrés des coordonnées

rety:
f(War+y%2) =0 (12.44)

Par permutation circulaire, on peut établir que :
— une surface de révolution autour de l'axe Ox est décrite par une équation implicite de la

forme f(\/y?+ 2%,2) = 0;

— une surface de révolution autour de l'axe Oy est décrite par une équation implicite de la

forme f(va?+ 22,y) =0;
183



CHAPITRE 12. REPRESENTATION CARTESIENNE DE SURFACES

12.4.3.1.1 Exemple du tore Un exemple de surface de révolution est le tore (figure 12.26)

engendré par la rotation d’un cercle décrit dans un plan Oxz autour de l'axe Oz.

Figure 12.26 — Tore.

L’équation de la circonférence de base est :
F(z,z)=(x—R’+22—r*=0
L’équation cartésienne de la surface de révolution s’exprime donc par :
F(z,y,2) = <\/5627—|—y2—R>2+z2 —r?=0
Cette expression peut étre mise sous forme polynomiale :
(\/W-R>2+22—T2—0
(902+y2—2R\/m+R2) +22-r2=0
x2+y2—|—z2+R2—7’2 :2]%\/5627—l—y2
(332+y2+22+R2—7“2)2—4R2 (2 +y*) =0

Il s’agit d’une quartique (courbe du quatriéme ordre).

A titre de vérification, recherchons l'intersection du tore avec le plan z = 0, on obtient une courbe

de la forme :
(:132 +y*+ R — 7”2)2 =4R? (:1:2 + y2)

(z? +y® + R — 1) = £2R /a2 + 42

(12.51)
(12.52)

Seul le signe plus doit étre retenu car le membre de droite est toujours positif et le membre de

gauche est également positif. Le développement peut se poursuivre par :

2? + 1y — 2R/ 22 + 2+ R* =1?
2

(x/:v2+y2—R> = r?

Vil +y?— R=+r

2+ = (R+r)

On obtient donc bien I’équation de deux cercles de rayon R+ r et R — r (figure 12.27).
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Figure 12.27 — Intersection d'un tore avec le plan z=0.

12.4.3.2 Reévolution autour d’un axe quelconque

Si 'axe de révolution n’est pas confondu avec un des axes du repére, on procéde alors par
transformation ou changement de repére comme illustré au § 12.4.2.

12.4.4 Génération par lignes

La génération par lignes d’une surface consiste a considérer la surface a obtenir comme la réunion
d’un ensemble de courbes variables appelées génératrices de la surface. Comme dans I’espace R3
une courbe est constituée de l'intersection de deux surfaces, cette génératrice résulte elle-méme de
I'intersection de deux surfaces variables S; et Ss.

La variabilité des surfaces S; et Sy implique qu’elles dépendent d’un ou plusieurs parameétres pour
définir une famille de surfaces. Par exemple, une famille de plans paralléles entre eux peut étre
définie par une famille & un parameétre de la forme :

F(z,y,z,\) =ar+by+cz—A=0 (12.57)
Avec \ le parameétre.

De maniére générale, on peut rencontrer différents cas de figure :
— deux familles de courbes présentant un seul parameétre (commun aux deux familles) ;

— deux familles de courbes présentant plusieurs parameétres et un ensemble de relations liant
les paramétres entre eux.

12.4.4.1 Familles & un seul paramétre

Les deux équations des familles de surfaces sont de la forme :

Fl(z,y,z,\) = 0 (12.58)
F2(z,y,z,\) = 0 (12.59)
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Cela signifie que pour chaque valeur de A, la réunion des deux équations précédentes donne une
courbe appartenant & la surface; cela signifie que les points de ces courbes vérifient :

Fl(zp,yp,zp,N;) = 0 (12.60)
F2(zp,yp,zp,Ni) = 0 (12.61)
De la relation 12.61, on peut tirer une relation de la forme
Ni = F2(xp,yp,zp) (12.62)
En réinjectant cette expression dans 12.60, on obtient une relation de la forme
Fl(zp,yp, zp, f2(xp,yp,zp)) =0 (12.63)

Cette expression est simplement I’équation résultante de I’élimination du parameétre entre les deux
expressions des familles de surface. Cette constatation permet de déduire que I'équation d’une
surface qui est le lieu des courbes d’intersection de deux familles de surfaces a un seul parameétre
s’obtient en éliminant le parameétre entre les expressions des deux familles de surfaces.

12.4.4.1.1 Exemple d’application Soit une famille de circonférences définies par
I'intersection entre un plan parallele & Ozxy et un cylindre circulaire d’axe Oz dont le rayon
vaut la moitié de la coordonnée z du plan (figure 12.28). Les équations de la famille de courbes
s’établissent comme :

z=A
{ g (3 = (12.64)
2

\\\\\\\l Illl[%

I

Figure 12.29 — Cone résultant de la réunion
Figure 12.28 — Famille de cercles. des cercles de la famille.

L’équation de la surface s’établit en éliminant le paramétre entre les deux équations de la famille.
On obtient finalement : )
z

P4y - =0 (12.65)

4
Cette équation est celle d'un cone (cf § 12.3.1.6) a base circulaire (figure 12.29).
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12.4.4.2 Familles & plusieurs paramétres présentant plusieurs relations entre ces
parameétres

Si les équations de familles de courbes font intervenir n paramétres, leur réunion ne donne plus
une surface unique, mais bien une famille de surfaces & n-1 paramétres. Pour définir une surface
unique, il est nécessaire d’adjoindre aux équations de la famille de courbes n-1 relations liant les
parameétres entre eux. Par exemple, si on considére les équations de la famille de courbes a deux
parameétres suivantes :

ar+py—1 = 0 (12.66)
2ar +382z—1 = 0 (12.67)

La premiére équation représente une infinité de plans verticaux (paralléles & Oz), la seconde
représente une infinité de plans paralléles a Oy. En éliminant le paramétre o entre les deux
équations, on obtient la relation suivante :

32— 28y+1=0 (12.68)

Il s’agit de ’équation d’une famille de plans. Si on ajoute une relation entre « et [3, on obtient
une surface unique ; par exemple :

ar+py—1 = 0 (12.69)
e +3Bz—1 = 0 (12.70)
a—38=0 (12.71)
permet par éliminations successives :

3Pr+pPy—1 = 0 (12.72)
68 +36z—1 = 0 (12.73)
brt3dz | _, (12.74)

3+ vy

Ce qui donne finalement la relation 3x — y 4+ 3z = 0 qui est 1’équation cartésienne d'un plan.

Il faut noter que dans la majorité des cas, ce type de définition de surface n’a d’utilité pratique
que lorsque les courbes définissant la surface sont de droites. On parle alors de surfaces réglées qui
sont décrites plus en détail au § 12.5.

12.4.5 Génération par points

Trois surfaces Sp, Sy, S3 ont en commun un ou plusieurs points. Si ces surfaces sont variables,
I’ensemble des points formés par les points variables va constituer une surface S. Cette définition
générale permet d’introduire la notion de génération d'une surface par points. Les familles de
surfaces Sp, S9 et S3 comportent deux parametres. Le systéme d’équations peut se mettre sous la
forme :

Fl(z,y,z,\,pp) =0

F2(z,y,z,\,pu) =0 (12.75)

F3(x,y,z,\,u) =0
L’élimination des deux paramétres entre les trois relations permet de trouver 1’équation de la
surface. Par analogie avec ce qui a été présenté pour les courbes définies par lignes, il est possible

d’introduire un nombre n de parameétres supérieurs a deux. Dans ce cas, il est nécessaire d’adjoindre
n-2 relations liant ces paramétres entre eux pour définir une surface.
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12.5 Surfaces réglées

Une surface réglée est par définition une surface engendrée par une droite (appelée génératrice)
qui évolue selon une loi déterminée (figure 12.30). Ce type de surfaces rencontre un grand succeés
dans la réalisation d’objets physiques car elles peuvent étre matérialisées de maniére relativement
simples (figure 12.31).

Figure 1231 -  Tour de
refroidissement de la centrale
Figure 12.30 — Hyperboloide comme surface réglée. électrique de Drogenbos.

Considérons une droite quelconque comme l'intersection de deux plans perpendiculaires aux plans

coordonnés : 8
r—az—0=0
{ Yz —6=0 (12.76)

Conformément & ce qui a été vu au § 12.4.4.2, il est nécessaire d’imposer trois relations
complémentaires pour obtenir une surface unique. Ces relations seront la traduction de
considérations géométriques :

— la génératrice s’appuie sur trois lignes génératrices ;

— la génératrice s’appuie sur deux lignes directrices et reste paralléle & un plan (plan

directeur) ;

— la génératrice s’appuie sur une ligne et reste paralléle & deux plans directeurs;

— la génératrice reste paralléle & deux plans directeurs et reste tangente a une surface (noyau) ;

— la génératrice s’appuie sur une ligne et reste tangente a deux surfaces;

— la génératrice reste tangente a trois surfaces;
L’expression mathématique de ces relations permet d’écrire trois relations liant les paramétres
entre eux pour permettre d’obtenir un systéme de cinq équations contenant quatre parameétres,
ce qui permet au final d’obtenir les équations de la surface réglée
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12.5.1 Recherche des équations exprimant les contraintes sur les
génératrices d’une surface réglée

12.5.1.1 Condition d’appui des génératrices sur une ligne

Si une génératrice s’appuie sur une ligne, il existe un point d’intersection entre cette ligne et la
génératrice. Le systéme formé des équations des génératrices (systéme d’équation 12.76) et des
équations de la courbe doit admettre une solution. Un tel systéme est de la forme suivante (dans
le cas de 'emploi des équations cartésiennes de la ligne) :

r—az—pF=0
y—vz—0=0
Fl(z,y,2) = 0 (12.77)
F2(z,y,2) =0

C’est-a-dire un systéme de quatre équations a trois inconnues (z, yetz). Le systéme sera compatible
si une équation est combinaison linéaire des trois autres. Pour obtenir cette condition, il faut
exprimer une relation dans laquelle z, y et z ont été éliminés & partir du systéme. Cette relation
(dépendant uniquement des paramétres) est la condition de compatibilité du systéme, c’est-a-dire
I’expression mathématique de 'existence d’une intersection entre la courbe et les génératrices.

12.5.1.2 Condition de parallélisme & un plan

Les conditions de parallélisme entre une droite et un plan ont été exprimées au § C.6; il faut noter
que si une droite est paralléle & deux plans, son vecteur directeur est donné de maniére immeédiate
par un vecteur directeur de l'intersection entre les deux plans (figure 12.32).

Figure 12.32 — Droite paralléle & deux plans donnés.

12.5.1.3 Condition de tangence a une surface

La condition de tangence a une surface s’exprime en vérifiant les conditions qui conduisent a
I’existence d’une solution unique pour 'intersection entre la surface et les génératrices. Le systéme
est de la forme :

r—az—pF=0
y—vz—0=0 (12.78)
F(z,y,2) =0
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Les deux premiéres expressions donnent directement :

r=az+pf
{ et s (12.79)

qui peuvent étre réinjectées dans la derniére relation pour obtenir une équation a une seule
inconnue (z). Il suffit ensuite d’établir la relation entre les paramétres pour obtenir une solution
unique a cette équation pour obtenir ’expression analytique de la condition de tangence entre la
surface et les génératrices.

12.5.2 Exemples d’application
12.5.2.1 Exemple de surface en appui sur trois droites

Prenons trois droites dy, dy et d3 définies telles que dy//Ox, dy//Oy et d3//Oz. Les directrices
sont données par leurs équations cartésiennes :

_Jy=-0b=0

dl _{ =0 (12.80)
) x4+a=0

dQ:{ 0 (12.81)
| x—a=0

d3:{ Y4 b=0 (12.82)

Il s’agit d’un cas particulier pour lequel on ne fait apparaitre que trois termes indépendants pour
décrire les trois droites (figure 12.33).

Figure 12.33 — Droites d’appui pour la surface réglée.

La génératrice variable a pour équation générale :

r—az—0=0
{ y—vz—?:() (12.83)
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Les trois relations entre les parameétres seront établies en considérant que la génératrice est sécante
avec les trois droites dq, ds et ds3, ce qui permettra d’imposer trois relations entre les parameétres.
Pour imposer que la génératrice soit sécante avec dl1, il faut s’assurer que le systéme obtenu en
réunissant les équations des deux droites donne bien une et une seule solution. Ce systéme s’écrit
comme suit :

y—0b=0
z+c=0
r—az—fB=0 (12.84)
y—v2—0=0
les deux premiére relations donnent y = b et z = —c. Pour que le systéme admette une solution

il faut que la quatriéme équation soit vérifiée avec ces valeurs pour y et z, on obtient donc la
condition de compatibilité qui s’exprime par :

b+vc—0=0 (12.85)

Par un raisonnement tout & fait similaire, on peut déduire l'expression mathématique des
conditions de contact avec dy et d3. Le systéme complet s’établit donc comme suit :

r—az—p3=0 (12.86)
y—v2—0=0 (12.87)
b+vyc—0=0 (12.88)
at+ac+ =0 (12.89)
ba+(a—p)y+da=0 (12.90)
De 12.88, on tire
d=b+nc (12.91)
Qui réintroduite dans 12.87 donne :
y—vz— (b+c) (12.92)
y—2>b
_ 12.93
Y= (12.93)
En remplagant v par cette valeur dans 12.88, on tire
y—>b
0=>b+ - c (12.94)
z+c
De 12.89, on tire
f=—a—ac (12.95)
Qui réintroduite dans 12.86 donne :
r—az+a+ac=0 (12.96)
g tte (12.97)
z—c
En remplagant o par cette valeur dans 12.89, on tire
B=—a+ X% . (12.98)
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En substituant les valeurs de «, 3,7 et d tirées des équations 12.97, 12.98, 12.93 et 12.93 dans
12.90, on obtient ’équation cartésienne de la surface réglée :

—b —b
b-x+a+<a+a+x+a'c)y +<b+y ~c)x+a:0 (12.99)
zZ—c Z—c zZ+c zZ+c z—cC
Les simplifications successives donnent
—b —b
2bx+a+(a+a+x+a6)y LD orte g 12.100
z—c z—c ) z+c z+cz—c

( )
2b(x+a)(z+c)+y—b)2a(z—c)+c(z+a)+c(r+a)]=0 ( )
20(z+a)(z+c)+2(y—bla(z—c)+c(zr+a)]=0 ( )
b(z+a)(z+c)+ (y—>b)(az+cx)=0 (12.103)

bry + abc 4+ bex + abz 4+ ayz + cxy — abz — bex =0 ( )

( )

cxy + brz + ayz + abc =0

Figure 12.34 — Surface réglée passant par trois droites.
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12.5.2.2 Exemple de surface dont les génératrices sont paralléles a un plan et passent
par deux droites

Soit une surface réglée passant par les droites définies par :

_J x=0 [ z—a=0
d1:{y20 d2:{y_bzzo (12.106)

et dont les génératrices sont paralléles au plan Oxy. Une génératrice passe par les points (0,0, u)
et (a, by, u). La famille paramétrique se définit donc par :

{ bpx = ay =0 (12.107)
2=

L’équation de la surface se déduit donc en éliminant les paramétres entre les deux équations du
systéme, ce qui donne :
brz —ay =0 (12.108)

Il s’agit d’une surface hyperboloide (figure 12.35).

Figure 12.35 — Surface réglée dont les génératrices passent par deux droites et sont paralléles a un
plan.
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12.5.2.3 Exemple de surface paralléle a deux plans et tangente a une surface

Dans cet exemple, nous considérons que les génératrices sont paralléles aux plans directeurs définis
par :

z=0 (12.109)
y+2=0 (12.110)

et que ces génératrices restent tangentes a la sphére de centre O et de rayon R :
- RP=0 (12.111)

Comme les génératrices restent paralléles aux plans directeurs, elles peuvent étre représentées par
les équations cartésiennes constituées des plans paralléles aux plans directeurs :

r—A=0 (12.112)
Pour assurer la tangence entre les génératrices et la spheére, il faut que leur intersection donne

un point unique; on vérifie donc les conditions qui ameénent le systéme formé des équations de
génératrices et de celle de la sphére a n’admettre qu’une racine unique :

r—A=0 (12.114)
ytz—p=0 (12.115)
4y + 22— R =0 (12.116)

En remplacant x par A et y par u — z dans la troisiéme équation, on obtient :

N4 (p—2°+22—R*=0 (12.117)
ce qui donne une équation du second degré en z :

22 —2uz+ N+ pt— R*=0 (12.118)

Cette équation présente une racine double si le déterminant est nul; la condition & imposer entre
A et pu peut donc s’écrire :

§=4 -8 (N +p*—R*) =0 (12.119)
En remplacant A\ et p par leur valeur, on obtient ’équation de la surface qui est

2% + (y+2)> —2R? =0 (12.120)

qui est I’équation d’une surface cylindrique.
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12.6 Surfaces coniques

Par définition, une surface conique est une surface engendrée par une droite variable (génératrice)
passant par un point fixe (sommet) et se déplagant selon une loi géométrique donnée (figure 12.36),
il s’agit d’un cas particulier de surface réglée.

heY

Figure 12.36 — Exemple de surface conique.

Le sommet d’une surface conique peut étre considéré comme étant l'intersection de trois plans
distincts 7y, mo et w3 (définis par des relations F1(z,y,2) =0, F2(z,y,z) =0 et F3(x,y,z) = 0).
Comme les génératrices d'un cone passent nécessairement par son sommet, les deux plans 7, et 75
passant respectivement par 'intersection i de 71 et de m et j de m; et de 73. Or, m; et 7y forment
un faisceau, ce qui signifie que 74 peut étre exprimé comme une combinaison linéaire des équations
de m et my. Le méme raisonnement peut étre suivi pour les équations de 75. Toute génératrice
passant par le sommet S peut donc s’exprimer par le systéme formé des équations :

F4=F2—-AF1 = 0 (12.121)
F5=F3—puF1 = 0 (12.122)

Il suffit d’imposer une relation entre les deux parameétres pour définir une surface unique. Cette
relation est de la forme ¢(\, i) ou encore :

2 F3
—,— ] =0 12.123
" (Fl, m) (12.123)
Cette relation définit une fonction homogéne par rapport aux fractions % et % (ce qui signifie

que la fonction est toujours vérifiée méme si on multiplie les fonctions par une constante. On peut
donc considérer cette relation comme une fonction homogene de la forme ¢(F'1, F2, F'3) = 0.

12.6.1 Exemple

Recherchons les équations d’'une surface conique dont le sommet S est confondu avec I'origine et
qui s’appuie sur un cercle de centre (0,0, ¢) et de rayon a. Comme le sommet est a 'origine, on
peut considérer qu’il résulte de I'intersection de trois plans définis par :

F1 = =0 (12.124)
F2 = y=0 (12.125)
F3 = 2=0 (12.126)
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Les génératrices de la surface conique sont les intersections de deux plans variables :

F2-)F1 = y— Az =0 (12.127)
F3—uFl = 2z—pux=20 (12.128)
(12.129)

Qui traduit le passage des génératrices par le sommet. Quelle serait la condition ¢(A, x) & imposer
pour que les génératrices s’appuient sur le cercle?

Cette condition peut s’exprimer mathématiquement par le fait d’avoir une intersection entre les
génératrices et le cercle, c’est-a-dire d’avoir une solution au systéme formé de la réunion des
équations des génératrices et du cercle :

y—Ar =0 (12.130)

2 —pr =0 (12.131)
z—c=0 (12.132)
Pyt —a*=0 (12.133)

La relation recherchée est obtenue en éliminant x, y et z dans le systéme précédent. En combinant
12.132 dans 12.131, on obtient :

c
= — (12.134)
1
Cette relation combinée avec 12.130 donne :
y =2 (12.135)
14
Ce qui donne au final :
c\? c\?
(—) + <)\—) =a’ (12.136)
I 0
)= (1+X) —a®y* =0 (12.137)

L’équation de la surface est enfin obtenue en éliminant les deux parameétres dans le systéme formé
de la réunion de cette équation avec les équations des génératrices (12.127 et 12.128).0On peut en

(1 () - () o e

Cette équation peut étre réorganisée sous la forme :

[L’Q y2 22
S5 =0 (12.139)

Qui présente bien la forme générale d'un cone a base circulaire. On vérifie également que 1’équation
est homogeéne en x, y et z, car la multiplication des variable par une constante k£ donne :

2.2 2,2 2.2 2 2 2
kx_l_k:y kz:kQ(x Y z>:0

a? a? c?

Sts -5 (12.140)
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CHAPITRE 13. REPRESENTATION VECTORIELLE ET PARAMETRIQUE DE
SURFACES

Chapitre 13

Représentation vectorielle et paramétrique
de surfaces

No. There is another.

- Yoda, The empire strikes back

13.1 Introduction

La représentation vectorielle d’une surface de R? consiste a rechercher une relation vectorielle de
type OM = V (u,v) qui détermine le vecteur liant l'origine a ’ensemble des points de la surface
par I'intermédiaire de deux parameétres. Au sens mathématique du terme, il s’agit d’une application
qui, a tout point d'un domaine de R? défini par (u,v), associe un point image dans l’espace R3

(figure 13.1).

Figure 13.1 — Représentation vectorielle de surface.
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La projection de la fonction vectorielle sur les axes du repére donne accés aux équations
paramétriques de la surface qui sont de la forme :

=
S
=

(13.1)

SIS
10
<
—
S

N
—~
e e
e
S—

13.1.1 Notion de lignes coordonnées

Comme nous venons de le voir, la représentation de surfaces de R? implique 'utilisation de deux
parameétres. En fixant la valeur de I'un d’entre eux et en faisant varier I'autre, on décrit une
ligne qui appartient a la surface. Cette ligne & u ou v constant est appelée ligne coordonnée de
la surface. Ces lignes coordonnées peuvent étre utilisées comme moyen de représentation de la
surface sous forme « fil de fer ». Ces lignes coordonnées peuvent prendre un sens physique si le
choix de la paramétrisation a été opéré de maniére judicieuse. Par exemple, les lignes coordonnées
sur une sphére décrite classiquement par ses coordonnées sphériques (cf § 13.2.1) présente des
lignes coordonnées qui représentent les méridiens et les paralléles tracés sur cette sphére (figure
13.2).

Parallele

Méridien

Figure 13.2 — Lignes coordonnées sur une sphére.
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13.2 Formes classiques de paramétrisation de surfaces

Comme dans le cas de la représentation des courbes planes, le choix de la paramétrisation est
laissé libre. Il existe toutefois certaines formes rencontrées fréquemment en pratique comme les
coordonnées sphériques et cylindriques.

13.2.1 Emploi des coordonnées sphériques

Un des modes de paramétrisation classiquement rencontrés est 1'utilisation des coordonnées

—
sphériques (0, ¢) avec 0 représentant 'angle entre le plan vertical contenant le vecteur OM et
le plan Oxz et ¢ représentant 'angle entre ce vecteur et le plan Oxy (figure 13.3).

Figure 13.3 — Coordonnées sphériques. Figure 13.4 — Coordonnées cylindriques.

La recherche des équations paramétriques d’une sphére centrée en l'origine en employant ce type
de paramétrisation consiste & considérer que pour toute valeur de ¢ (variant de —7w/2 a 7/2), on
décrit un cercle sur la sphére par une variation de 6 entre 0 et 27. Les cercles considérés (paralléles)
sont situés dans un plan a une altitude valant Rsin ¢ et ont un rayon valant R cos ¢. Les équations
paramétriques de la sphére peuvent donc s’écrire :

x = Rcos¢cost
y = Rcos¢sind (13.2)
z = Rsin ¢

En éliminant les deux paramétres entre ces trois relations, on obtient de maniére immeédiate
I’équation cartésienne de la sphére :

2® +y* = R?cos® ¢ (cos® 0 + sin® §) = R* cos® ¢ (13.3)
2? = R*sin’ ¢ (13.4)
=2 +y*+ 27 = R (13.5)
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13.2.2 Coordonnée cylindriques

Pour la représentation de surfaces cylindriques dont ’axe est paralléle a I’axe Oz, nous avons vu
précédemment que la représentation cartésienne de la surface se réduisait & une fonction du type
F(z,y) = 0, ce qui signifiait pratiquement qu’il existait une relation entre = et y indépendamment
de la coordonnée z. Dans R?, cette relation F(z,y) = 0 représente la forme cartésienne de la
courbe servant de base & la forme cylindrique. Les coordonnées cylindriques considérent donc
deux paramétres (0, k) tels que 6 soit le paramétre utilisé pour établir les équations paramétriques
de la surface de base (angle entre le plan vertical contenant le vecteur _O—]\_>/[ et le plan Oxz) et
K représentant la coordonnée z du point de la surface (figure 13.4). En employant ce type de
paramétrisation, les équations paramétriques d’un cylindre a base circulaire peuvent s’écrire :

= Rcost
y = Rsinf (13.6)
=K

L’équation cartésienne de ce cylindre est obtenue en éliminant les parameétres dans le systéme
d’équations, ce qui donne :
2* +y* = R? (cos® 0 + sin” §) (13.7)

Qui correspond a la forme classique d’une surface cylindrique dont 1’axe est paralléle a I’axe Oz
('équation cartésienne ne comporte pas de terme en z).

13.3 Représentation paramétrique des quadriques

Ce chapitre présente les paramétrisations permettant de définir les quadriques dont les équations
cartésiennes ont été établies au § 12.3.1.

Ellipsoide Hyperboloide a une nappe
T =2c+a-cosu - Ccosv xr =1xc+ a-coshu-cosv
y=1yc+0b-cosu-sinv y=1yc +0b-coshu-sinv
z=2zc+c-sinu 2 =2zc+c-sinhu

Figure 13.5 — Ellipsoide. Figure 13.6 — Hyperboloide & une nappe.
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Hyperboloide a deux nappes Paraboloide hyperbolique

T =2¢c+a-sinhu - cosv r=xzc+a-u
y=1vyc+0b-sinhu-sinv y=yoc—+b-v
z=2zc+ Fc-coshu Z:Zc—l—c'(uQ—v?)

Figure 13.7 — hyperboloide a deux nappes.

Paraboloide elliptique ~ Coéne a base elliptique

x:x5+a-\/ﬂcosv T =g+ aucosv
y=1ys+b-\/usinv Yy =1ys + businv
Z=2zg+tu z=2z5+cu

Figure 13.9 — Paraboloide elliptique.

Figure 13.10 — Cone elliptique.

Figure 13.8 — Paraboloide hyperbolique.
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13.4 Représentation vectorielle et paramétrique des surfaces
de révolution

Dans le cas de surfaces de révolution autour de ’axez Oz, un choix naturel des paramétres est
I’emploi d’'un premier paramétre 6 qui représente ’angle entre le plan contenant une section de la
surface et le plan oyz et d'un second paramétre employé pour décrire la courbe plane dans Oyz
qui sert de profil de base a la forme obtenue par révolution (figure 13.11).

Figure 13.11 — Paramétrisation pour une forme de révolution.
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13.4.1 Exemple de la recherche des équations d’un tore

Les coordonnées d'un point courant sur la surface d’un tore sont obtenues a partir du paramétre
0 donnant la rotation autour de l'axes Oz et d’'un paramétre ¢ permettant de décrire le cercle
mineur (figure 13.12).

Figure 13.12 — Paramétrisation pour un tore.

Les équations paramétriques peuvent donc s’écrire :

z = (R+rcos¢)cost
y=(R+rcos¢)sind (13.8)
Z=rsine

L’élimination des deux parameétres dans cette équation permet de retrouver ’équation cartésienne
de la surface :

22 +y? = (R +rcos ¢)2 (cos2 0 + sin? 9) = (R + rcos ¢)2 (13.9)

(;)2 —sin?¢ = cos¢ = +1/1 —sin?¢ = £4/1 — (;)2 (13.10)

2
2?4y = <R + /2o 22) (13.11)

x2+y2:r2i2Rm+r2—z2 (13.12)
[ a4 2t (R AR (- 2) =0 (13.13

Qui est identique & la forme obtenue au § 12.4.3.1.1.
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13.5 Représentation vectorielle et paramétrique de surfaces
réglées

L’idée générale est de rechercher les équations paramétriques des génératrices de la surface en

déterminant les coordonnées d’un point et du vecteur directeur d’'une génératrice en fonction d’un

parameétre unique. Pour obtenir les équations paramétriques de la surface, il suffit d’écrire les
équations paramétriques de la génératrice (variable).

13.5.1 Surface réglée passant par trois droites gauches

Reprenons 'exemple traité au § 12.5.2.1 qui consistait a rechercher les équations de la surface
réglée passant par les droites dq, do et d3 qui sont données par leurs équations cartésiennes :

_Jy=-0b=0

dl_{ =0 (13.14)
_Jx+a=0

d2:{ =0 (13.15)
| x—a=0

d3:{ ytb=0 (13.16)

Figure 13.13 — Droites d’appui pour la surface réglée.
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Soient A, B et C' les points d’appui de la génératrice sur dy, dy et d3. Les coordonnées de ces
points peuvent étre exprimées par 'intermédiaire de trois paramétres comme suit :

AN\ b, —c) B(—a,v,c) C(a,—b,p) (13.17)

Ces expressions permettent d’obtenir les coordonnées des vecteurs 1@ et z@ :

AB (—a— A\, v—>,2c) (13.18)

AC (a— A, —2b, i+ ¢) (13.19)

Comme la génératrice de la surface passe simultanément par di, ds et ds, les vecteurs zﬁ et @
sont colinéaires, ce qui implique que AC = aAB. Cette condition conduit au systéme :

—a—A=a(a— N\ (13.20)

v—>b=a(—2b) (13.21)

2c=a(p+c) (13.22)

Il est donc possible de trouver une relation donnant les trois premiers parameétres en fonction du
seul a :

Azajji (13.23)
v=>0(1—2a) (13.24)
P (13.25)
L’équation vectorielle de la génératrice variable peut s’établir par :
V(a, 8) = OA(a) + BAC(a) (13.26)
Ce qui donne :
V (@, 8) = NI + bz, — ca?) + Bl(a = A) w, — 26, + (i + ) @) (13.27)
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En substituant A, et v par leur expression, fonction de « (relations 13.23 a 13.25), et en projetant
cette relation sur les axes du repére, on obtient :

R +;)_(11_ B) 4 (13.28)
y = b(l—B) (13.29)
s o= B s o ) (13.30)

Ces relations sont les équations paramétriques de la surface réglée. Si on considére les lignes a
a—constante dans ce systéme d’équations, on obtient les équations des génératrices (figure 13.14).
En éliminant « et 3 de ces équations, on peut retrouver la forme ayz + bxz + cxy + abc = 0 de
I’équation cartésienne de la surface.

Figure 13.14 — Surface réglée passant par trois droites et ses génératrices.
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13.5.2 Exemple de surface réglée a deux directrices et un plan directeur

Soit une courbe réglée définie par les directrices :

Tr =
dy = 13.31
={12 (1331
| x—a=
dy = { o b (13.32)
et le plan directeur :
T=z= (13.33)

La fonction vectorielle de cette surface vise a représenter, en fonction de deux paramétres, le
vecteur joignant l’origine a tout point de la surface. On peut écrire :

OP = OA + AP (13.34)

Le vecteur 0—121 a pour coordonnée (0,0, \). Le paramétre A représente la coordonnée z du point
A. Comme les génératrices de la surface sont paralléles & 7, les points variables se déplaceront sur
une droite paralléle & Oxy. Les coordonnées de B sont donc obtenues en prenant l'intersection de
dy avec le plan z = A, c’est-a-dire :

r—a=0
y—bz=0 (13.35)
zZ=A
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On en tire donc aisément O@ = (a, b, \). Pour parcourir ’ensemble des points de la génératrice,

on va multiplier le vecteur 1@ par un parameétre u. L’équation vectorielle de la courbe s’établit
donc par :

V) = OA + yAB = N@ + plai + bAT) (13.36)

Les équations paramétriques de la surface sont donc :

T = pua
y = pub\ (13.37)
z=A

Figure 13.15 — Surface réglée passant par deux droites et parallele & un plan.
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13.6 Représentation vectorielle et paramétrique de surfaces
coniques

Les génératrices d’une surface conique passent nécessairement par le sommet de la surface. Sa

Figure 13.16 — Exemple de surface conique.

fonction vectorielle est nécessairement de la forme :
V =08 + A\SP(n) (13.38)

I1 suffit donc de déterminer les coordonnées d’un vecteur directeur (fonction d’un seul paramétres)
pour reconstituer les équations paramétriques d’une surface.

13.6.1 Equations paramétriques d’un céne de révolution
Prenons par exemple un cone dont le sommet est situé en (0,0,0) et passant par un cercle (dessiné

dans un plan parallele & Oxy a une hauteur ¢) de rayon a. Le vecteur directeur d’une génératrice
joint le sommet & un point P dont les coordonnées sont :

r = acosf (13.39)
y =asind (13.40)
Z=c (13.41)

La fonction vectorielle de la surface conique s’établit donc selon :
V = 0P (13.42)

La projection de cette équation sur les axes du repére donne :

x = aMcosl (13.43)
y = a\sinf (13.44)
Z=c\ (13.45)
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13.6.2 Surface conique d’axe incliné

Déterminons les équations d’un cone dont le sommet S a pour coordonnées (0,b,b) et dont les
génératrices passent par une ellipse dessinée dans Oxy de demi grand axe a et de demi petit axe
b (le grand axe est paralléle a Ox). On peut déterminer :

0% = (0,0,b) (13.46)
OP = (acosf,bsinb,0) (13.47)
~ SP- (acosf,bsinf — b, —b) (13.48)

Les équations paramétriques de cette surface conique sont donc :

x = aMcosl (13.49)
y="b—+ Ab(sinf — 1) (13.50)
2=b(A—1) (13.51)

Figure 13.17 — Surface conique d’axe incliné.

Références

[1] Y. Durand. Géométries et Communication Graphique : Tome IV : Géométrie Analytique et
Vectorielle, Partie 4, section 2 : Méthodes Vectorielles et Paramétriques de Représentation
d’une Surface. Mutuelle d’édition FPMs, 2008-2009.
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Chapitre 14

Analyse des courbes spatiales

Roads ? Where we’re going we don’t need roads

- E. Brown, Back to the future

14.1 Représentation cartésienne de courbes spatiales

La représentation cartésienne de courbes spatiales se fait en considérant qu’une courbe spatiale
est l'intersection de deux surfaces. La réunion des équations cartésiennes des deux surfaces permet

la définition de la courbe sous la forme :

Fl(z,y,2) =0
{ F2(x,zgj,z) =0 (14.1)

Figure 14.1 — Equations cartésiennes d’une courbe.

211



CHAPITRE 14. ANALYSE DES COURBES SPATIALES

De maniére générale, deux surfaces peuvent se couper selon une ou plusieurs courbes; prenons
I’exemple suivant :

2 22 0 .24
{Fl(m,y,z)_x +y +22—4=0 (14.2)

F2(x,y,2) = (x4 2.)" +12—1=0

On reconnait les équations d’une sphére centrée en l'origine de rayon 2 et d'un cylindre a base
circulaire d’axe paralléle & Oz de rayon 1. Suivant la valeur de x., on peut avoir :

— deux courbes d’intersection si |z.| < 3;

— une seule courbe d’intersection si |z.| =1

— aucun point commun si |z.| > 3

Figure 14.2 — Intersection entre un cylindre
et une sphére : cas z.=0 (deux cercles Figure 14.3 — Intersection entre un cylindre et
d’intersection). une sphere : cas z.=1 (Courbe de Viviani).

A

ZUIN \

GAUINN
ZITTI

IS

N

Figure 14.4 — Intersection entre une sphére et un cylindre : cas x.—4 (pas d’intersection).

Lorsque x. vaut zéro, le cylindre coupe la sphére selon deux cercles, ce qui prouve qu’il est possible
d’obtenir une courbe d’intersection plane entre deux corps ronds.
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14.1.1 Reconnaissance de la morphologie de courbes de ’espace

Pour étudier la morphologie de surfaces, il est fréquent d’en étudier 'intersection avec des plans
paralléles aux plans coordonnés. Par analogie, il est possible d’étudier la morphologie de courbes
spatiales par leurs projections orthogonales sur les plans coordonnés. Projeter une courbe sur
un plan revient a considérer cette courbe comme directrice d’une surface cylindrique dont les
génératrices sont perpendiculaires au plan coordonné (figure 14.5).

Figure 14.5 — Cylindres projetants d’un cercle dessiné dans un plan incliné de maniére quelconque
par rapport aux axes du repére.

Ce type de surface est appelé cylindre projetant de la courbe de I'espace sur les plans coordonnés.
Les équations cartésiennes de ces cylindres sont obtenues en éliminant les termes en x (ou en
y ou en z) entre les équations cartésiennes de deux surfaces pour obtenir la surface cylindrique
perpendiculaire & Oyz (ou & Ozz ou a Ozxy).
Si on souhaite obtenir une construction points par points d’une courbe résultant de I'intersection
de deux surfaces données par leurs équations cartésiennes, on peut procéder comme suit :
— Rechercher les cylindre projetants de la courbe perpendiculairement & deux des axes
coordonnés (Oy et Oz par exemple) ;
— procéder un tracé points par points (c’est a dire fixer une des coordonnées, z pour cet
exemple, et rechercher les racines des fonctions f(y) et f(z)) des deux courbes;
— reporter les coordonnées x, y et z des points obtenus.
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14.1.1.1 Exemple d’application

On cherche a déterminer les cylindres projetants d’une courbe définie par l'intersection d’une
sphére centrée en l'origine de rayon R et un plan d’équation cartésienne x +y + 2 — R = 0. La
courbe d’intersection est nécessairement un cercle qui est situé dans un plan incliné par rapport
aux plans coordonnés. Nous avons vu au premier quadrimestre que les projections d'un cercle sur
un plan qui n’est pas paralléle au plan le contenant est une ellipse ; le cylindre projetant doit donc
dans ce cas étre un cylindre a base elliptique. Ses équations s’établissent en éliminant une des
inconnues x, y ou z dans le systéme formé des équations de la sphére et du plan. Prenons par
exemple le cylindre projetant paralléle & Oz :

Fl(z,y,2) = 2®+9y*+2°—-R*=0 (14.3)
F2(z,y,2) = x4+y+2—R=0 (14.4)

De 14.4, on peut tirer :
z=R—(x+y) (14.5)

qui, introduit dans 14.3, donne :
F3(z,y,2) =2+ 9>+ (R— (x +9))* — R? = 22% + 22y + 24> — 2Rz — 2Ry = 0 (14.6)

Il s’agit bien de I’équation d'un cylindre d’axe z dont la base est une conique. Etudions cette
conique comme une courbe plane de Oxy :

F(z,y) = 22* + 2xy + 2> — 2Rz — 2Ry = 0 (14.7)

pour éliminer le terme en zy, il faut opérer une rotation de repére dont I'angle vaut ici 7/4 car
le coefficient du terme en x? est égal a celui du terme en 3% Suite & ce changement de repére,
I’équation de la conique devient :

32 +y? —2RV22' = 0 (14.8)
La forme canonique de cette ellipse s’obtient par :
2V2R 2 2
32" +y? — 2RV22' = 3 <x’2 - %x/ + §R2> +y? = SR =0 (14.9)
qui peut étre factorisée en :
2
(l‘l — @) 2
VAR - (14.10)
var)® var)” |
3 V3
Qui est ’équation d’une ellipse centrée en (@,0) dont le petit axe est orienté selon z’ et vaut

V2R

V2R
3 Yol

tandis que le grand axe vaut 7

14.1.2 Etude de courbe plane résultant de ’intersection d’une surface
avec un plan quelconque

Lors de I'intersection d’une surface quelconque avec un plan, une courbe plane est obtenue. Pour
pouvoir 1’étudier avec les outils présentés au chapitre 8, il est nécessaire d’obtenir une relation de
la forme f(x,y) = 0. Dans le cas ou le plan est perpendiculaire & un des axes de coordonnées,
ceci est obtenu de maniére évidente car 1’équation du cylindre projetant d’axe paralléle a cet axe
peut étre interprétée de deux maniéres différentes (en particularisant au cas d’un cylindre d’axe
paralléle & Oz) :
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— si on interpréte la relation comme étant F'(z,y, z) = 0, on dispose de I’équation cartésienne
de la surface cylindrique;

— Si on interpréte la relation comme étant F'(z,y) = 0, on dispose de I’équation cartésienne
de la courbe plane dans le plan perpendiculaire a 'axe Oz.

Figure 14.6 — Intersection entre une surface et un plan perpendiculaire & Oz.

Dans le cas ou le plan n’est pas perpendiculaire & un des axes, il faut opérer un changement
de repére pour obtenir les équations du cylindre projetant dans un repére Oz'y’z’ pour lequel
I'un des axes est orienté perpendiculairement au plan pour pouvoir réaliser I’analyse présentée
précédemment.

14.1.2.1 Exemple de l’intersection d’un plan et d’une sphére

Reprenons 'exemple présenté en § 14.1.1.1, c’est-a-dire l'intersection entre une sphére de rayon
R centrée en l'origine et un plan incliné de maniére équivalente sur les trois axes du repére. Pour
rappel, les équations de la courbe d’intersection sont :

Fl(z,y,2) = 2°+9y*+2°—-R*=0 (14.11)
F2(x,y,2) = z+y+2—R=0 (14.12)

Pour pouvoir étudier la courbe d’intersection entre la sphére et le plan, il faut définir un nouveau
systéme d’axes Ox'y'z" pour lequel I'axe Oz’ est orienté perpendiculairement au plan. La recherche
de la matrice de changement de repére et obtenue par I'intermédiaire de la recherche des cosinus
directeurs des vecteurs de la nouvelle base. L’axe Oz’ est orienté selon la normale au plan, ce qui
implique d’avoir : N

Z'=(1,1,1) (14.13)

L’axe Ox’ doit étre perpendiculaire & 02" ; au-dela de cette constatation, son orientation peut étre
choisie de maniére arbitraire. Par exemple, il peut étre choisi de maniére a étre horizontal, ce qui
implique que ses coordonnées soient égales a :

_>
X' =(1,-1,0) (14.14)

%
Cogme précédemment, I'axe Oy’ est obtenu en réalisant le produit vectoriel entre les vecteurs 2’
et X'

— o

N T T e A

Y=ZAX'=|1 1 1 |=(1,1,-2) (14.15)
1 -1 0
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Les vecteurs unitaires sont obtenus en divisant ces vecteurs par leur norme :

g _<LL__1)
y_H?f - \WV6 V6 V6
- 7 1 1 1
qu? :(ﬁﬁﬁ>

(14.16)

(14.17)

(14.18)

La matrice de changement de repére pour le passage des coordonnées (x,y, z) vers les coordonnées

(«’,y, 2") s’établit donc selon :

41 1
V2 V6 VB
R—| =2 1 T
0 %
Ce qui permet d’exprimer les relations entre les deux systémes de coordonnées :
1 L1
r=— — —z
VoAU
-1 o 1 - 1,
—z
RV ARV
2 /_|_ 1 !/
z2=— —z
RV

(14.19)

(14.20)
(14.21)

(14.22)
(14.23)

La substitution de ces valeurs dans l’équation de la sphére permet d’obtenir son équation

cartésienne dans Ox’y’z’ :

1 / 1 / 1 /2 _1/ 1 / 1 /2
— + —=Y + —F=z + EJI—F%?/‘FﬁZ

1 2 1 2
G <\/§x’+y’+\/§z'> + <—\/§x’+y’+ \/§z’>

1 2

=

L= 2V3Bay — 2V62 Y+ 2V2y Ayt + 22 — 4\/53/,2’) —R*=0
x’2+y/2+2'2—R2:0

<3:c’2 + % + 22" + 232"y + 2V62 2 + 2V 2y 2 + 32 + y? + 222

(14.24)

(14.25)

(14.26)

(14.27)
(14.28)

14.29

14.31

(14.29)
(14.30)
(14.31)
(14.32)
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Ce résultat était attendu car la sphére est invariante par rotation.
L’équation du plan dans le nouveau systéme de coordonnées est :

r+y+z2-—R=0 (14.33)
VIS SIS SR SV NI 2 1

4y —2 + —2 4+ —=y +—2—R=0 (14.34
N R LAY SV b A S LAV (14.34)
3

= - R=0 (14.35)

V3

Qui représente bien un plan perpendiculaire & Oz’. La courbe d’intersection s’obtient en éliminant
2" entre ces deux équations, ce qui donne :

z? + +<\[R) ~R*=0 (14.36)

6.R2
o 4y — —5 =0 (14.37)
En analysant cette équation comme ’équation d’une courbe plane (F'(2’,y") = 0), on reconnait
V2R

I’équation d’un cercle centré en l'origine et de rayon Nl

14.1.3 Controle du caractére plan d’une courbe donnée par ses
équations cartésiennes

Comme nous avons pu le présenter dans I'introduction de ce chapitre, une courbe plane peut étre
obtenue par 'intersection des deux surfaces qui ne sont pas elles-mémes planes. Il est intéressant
de pouvoir déterminer si une courbe est plane a partir de ses équations cartésiennes ce qui permet,
si c’est le cas, d’étudier cette courbe plane comme une fonction & deux variables comme expliqué
au § précédent.

Considérons la courbe définie par ses équations cartésiennes :

Fl(z,y,2) =0
{ F2(x,ggj,z) o (14.38)

Pour opérer la vérification du caractére plan de la courbe, il suffit de vérifier qu’il est possible
d’obtenir I’équation d’un plan par combinaison linéaire des équations des deux surfaces décrivant la
courbe, c’est-a-dire d’obtenir une équation linéaire en x, y et z. Dans ce cas, le systéme d’équation
14.38 est équivalent a :

Fl(z,y,2) =0 (14.39)
F3(x,y,2) = alF'l(z,y,2) + BF2(2,y,2) = ar + by +cz +d =0 '

Ce systéme peut s’interpréter comme l'intersection de la surface 1 avec un plan, on a donc

effectivement une courbe plane.

14.1.3.1 Exemple : intersection de deux sphéres

Considérons deux sphéres de rayon R; et Ry centrées en des points Ci(a,b,c) et Cy(d, e, f) en
imposant que la distance entre les centres soit inférieure a la somme des rayons.

(z—a)+@Wy—-0"+(z—¢c)’-R*=0 (14.40)
(x—d)’+(y—e’+(z—f)*—R3=0 (14.41)
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Pour essayer d’éliminer les termes non-linéaires dans le systéme, prenons la différence entre
I’équation 14.40 et 14.41 :

(r—a) —(2—d)’+@y—0>—-y—e’+(z—-c)’ (-’ —RI+RI=0 (14.42)
(2r—a—d)(d—a)+(2y—b—e)(e=b)+ (2z—c— f)(f — ) — (R} — R3) = (14.43)
2(d—a)z+2(e—=by+2(f—c)z... (14.44)
—[la+d)(d—a)+ (b+e)(e=b)+ (c+ f)(f—c)+ (R —R3)] =0 (14.45)

Figure 14.8 — Intersection de deux sphéres :

vue dans un plan contenant la droite joignant
Figure 14.7 — Intersection de deux sphéres. les centres.

Cette équation est bien I’équation d’un plan, ce qui confirme le caractére plan de la courbe (il
s’agit en fait d’un cercle dans ce cas). On peut également remarquer que le vecteur normal au
plan est colinéaire avec le vecteur joignant les centres des sphéres. En effet :

N=2(d-a)il+2(c—ba +2(f - (14.46)
CI03 = (d— )@+ (e —b) T+ (f — ) @ (14.47)
(14.48)

14.1.3.2 Exemple : intersection entre une sphére et un cylindre

Considérons 'intersection d’un cylindre circulaire dont ’axe est confondu avec 1'axe Oz de rayon
R et une sphére centrée en l'origine de rayon Ry (Re>R;). Les équations de ces surfaces sont :

2 +y*— R} =0 (14.49)
P+t + 22— R =0 (14.50)

en soustrayant la premiére relation de la seconde, on obtient 1’équation suivante :
22— R2Z+R1°=0 (14.51)

Cette relation ne faisant apparaitre qu'une seule variable (z en l'occurrence) représente un
ensemble de plans perpendiculaires a 'axe Oz. Dans ce cas précis, elle représente 1’équation de
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deux plans d’équations :

2 =+R2® — RI2 (14.52)
2= —VR2 - RI? (14.53)
(14.54)

L’intersection de la sphére et du cylindre donne donc deux courbes planes qui sont 'intersection
entre ces plans et le cylindre (ou entre ces plans et la sphére). Il s’agit donc de cercles de rayon
R, situés dans des plans perpendiculaires a 'axe Oz et dont les centres sont situés en des points

de coordonnées (0, 0,/ R3— Rf) et (0, 0,—/R%— Rf)

Figure 14.9 — Intersection d'une spheére et d'un cylindre.
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14.2 Fonction vectorielle et paramétrique d’une courbe
spatiale

Une deuxiéme méthode de définition d’une courbe de I'espace est de décrire la position d’un point
P variable sur la courbe sous la forme d’une fonction vectorielle & un paramétre :

OB =V (p) (14.55)

qui est la fonction vectorielle de la courbe. Le paramétre p peut étre choisi de maniére quelconque.
Une paramétrisation classique pour le suivi de trajectoires spatiales est I’emploi d'un parametre
temporel.

Figure 14.10 — Equation vectorielle de courbe spatiale.

La projection de I’équation vectorielle d’'une courbe sur les axes du repére donne accés a ses
équations parameétriques :

r = z(t)
y=y(t) (14.56)
z = z(t)
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14.2.1 Courbe hélicoidale

Soit une hélice cylindrique définie comme étant la trajectoire suivie par un mobile ayant une
trajectoire hélicoidale d’axe Oz, de rayon R et de pas p (figure 14.11).

Figure 14.11 — Hélice cylindrique.

Les équations cartésiennes de cette courbe sont obtenues en considérant la combinaison d’un
mouvement circulaire autour de Oz et d’'un mouvement rectiligne uniforme selon Oz :

x = Rsinf
y = Rcos?0 (14.57)
z =40

La fonction vectorielle de la courbe est simplement exprimée par :

V(6) = Rsin 0T, + R cos 0T, + 2ﬁeu—; (14.58)
T

14.2.2 Obtention des équations paramétriques d’une courbe a partir
des équations des surfaces dont l’intersection donne la courbe

Si une courbe est définie par l'intersection de deux surfaces, on peut définir son équation
paramétrique en examinant les équations paramétriques des deux surfaces. Le systéme d’équations
décrivant la courbe est le suivant :

(x = fl(Oé,B)
B
z = f3(a,
2= 10\ ) (14.59)
y=g2(\, )

Pour tous les points de la courbe, les coordonnées x, y et z des points vérifient a la fois les équations
de la premiére surface et celles de la deuxiéme, ce qui signifie qu'on peut écrire :

(e, B) = gl(A, 1)
F2(a, ) = g2(\. 1) (14.60)
f3(a, B) = g3(A, i)
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On dispose donc de trois relations entre quatre paramétres. En exprimant un paramétre en fonction
des trois autres, puis en substituant cette valeur dans les équations paramétriques de 1'une des
surfaces, on obtient les équations paramétriques de la courbe recherchée.

14.2.2.1 Exemple

On recherche les équations paramétriques de la courbe définie par l'intersection d'une sphére
centrée en l'origine de rayon R et d’un cylindre droit d’axe Oz de diamétre R tangent a la sphére.
Les équations paramétriques de la spheére sont :

x = Rcos¢cost
y = Rcos¢sind (14.61)
z= Rsing¢

Les équations de la surface cylindrique sont :

R

T = 5 Cos
y=++ Zsina (14.62)
z2=A
2
—
1
il \
0 , L1
*
»
v 7
-1 7
W

Figure 14.12 — Intersection d’une spheére et d'un cylindre tangents.
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Les relations entre les différents parameétres sont obtenues en égalant les coordonnées x, y et z des
points d’intersection des deux surfaces, ce qui donne :

R
Rcos¢pcos = 5 cosa (14.63)
Rcos¢sing = g(l—l—sina) (14.64)
Rsing = A (14.65)

On va chercher a éliminer trois des paramétres de ces relations pour obtenir les coordonnées z, y
et z des points de la courbe comme des fonctions d’un seul paramétre (le choix de ce paramétre
parmi les quatre est bien évidemment libre), et donc d’exprimer soit ¢ en fonction de 6 ; soit o en
fonction de A. En élevant les deux premiéres expressions au carré et en les sommant, on obtient :

R? R?
R? cos® ¢ cos® O + R? cos® sin® § = T cos® a + e (14 sina)’ (14.66)
ce qui donne aprés simplification :
1+«
cos? ¢ = w (14.67)
La relation 14.65 permet de tirer :
. A
sin ¢ = 2 (14.68)
En sommant ces deux derniére relations, on obtient :
1+sina A2
—t+==1 14.69
Qui, une fois réarrangé donne :
)\2
sina=1— 2@ (14.70)

on peut donc immédiatement obtenir I’expression du cosinus de « en fonction de \ :

A2\ ?
cosa =4V 1 —sin*a = :I:\/l— (1—2—) (14.71)

R2

Apreés simplification, on obtient :

A2 ) A A2
cosa—i\/1—1+4ﬁ+4ﬁ—i2ﬁ -2 (14.72)

En remplacant ces expressions dans le systéme 14.62, on obtient les équations paramétriques de
la courbe, & savoir :

\? (14.73)
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14.2.3 Recherche des équations cartésiennes d’une courbe a partir de
ses équations paramétriques

Si les équations paramétriques d’une courbe sont données, il est possible de retrouver les équations
de deux surfaces dont 'intersection donne la courbe. Il suffit pour ce faire d’éliminer le paramétre
entre les équations paramétriques de la courbe. Les relations ainsi obtenues sont des fonctions
de z, y et z, c’est-a-dire 'expression cartésiennes de surface. L’ensemble des points de la courbe
sont inclus dans ces surfaces. Notons que si I’élimination des parameétres se fait en considérant les
équations paramétriques de la courbe deux & deux, on obtient des relations qui ne contiennent
que deux des variables parmi x, y et z. On obtient donc les équations des cylindres projetants de
la courbe dans les trois plans coordonnés.

14.2.4 Controle du caractére plan d’une courbe donnée par ses
équations paramétriques

Le controle du caractére plan d’une courbe donnée par ses équations paramétriques peut s’effectuer
de plusieurs maniéres différentes [1]. L'une des méthodes les plus simples est de vérifier qu’il est
possible de repasser a une définition cartésienne de la surface (comme présenté au § 14.2.3) pour
laquelle I'une des surfaces est un plan. On peut également vérifier que 1’ensemble des points de la
surface vérifie ’équation d’un plan unique.

14.2.4.1 Exemple

Soit la courbe définie par les équations paramétriques suivantes :

Rcos6
- 14.74
’ Rcos + Rsinf + k (14.74)
Rsind
Y~ Recosf 1 Rsinf + k (14.75)
k
“~ Rcosf + Rsinf + k (14.76)
(14.77)

Cette courbe est-elle une courbe plane ? Pour le vérifier, on peut controler s’il existe un quadruplet
(a, b, c,d) non identiquement nul tel que I’équation cartésienne d’un plan (ax + by + cz — d = 0)
se vérifie pour ’ensemble des points de la courbe. Ceci revient & vérifier qu’il existe (a, b, ¢, d) non
identiquement nul tel que :
Rcos@ Rsind k
a . +0 . +c .
Rcosf+ Rsinf + k Rcosf + Rsinf + k Rcosf + Rsinf + k

pour toute valeur de 6. Cette expression, une fois réduite au méme dénominateur devient :

(a—d)Rcos@+ (b—d)Rsinf+ (c—d)k=0 (14.79)

—d=0  (14.78)

Pour que cette identité soit satisfaite pour tout 6, il faut vérifier simultanément :

a—d=0 (14.80)
b—d=0 (14.81)
c—d=0 (14.82)

(14.83)
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Ce qui est possible si on a les quatre coefficients égaux. La courbe est donc bien une courbe plane
inscrite dans un plan d’équation :
r+y+z—1=0 (14.84)

0.5

Figure 14.13 — Représentation de la courbe pour R=4 et k=9.

La vérification du caractére plan de la courbe pouvait également s’effectuer en vérifiant que la
somme des équations 14.74, 14.75 et 14.76 donnait la relation :

Rcosf + Rsin0 + k B
Rcosf + Rsinf +k

T4y+z= (14.85)

ce qui signifie que la courbe peut étre définie par I'intersection d’une surface avec un plan, ce qui
démontre le caractére plan de la courbe.

Références

[1] Y. Durand. Géométries et Communication Graphique : Tome IV : Géométrie Analytique et
Vectorielle, Partie 5 : Méthodes Algébriques et Vectorielles de Représentation d’une Courbe de
["Espace 3D. Mutuelle d’édition FPMs, 2008-2009.
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CHAPITRE 15. GEOMETRIE DIFFERENTIELLE 3D

Chapitre 15

Géométrie différentielle des courbes
spatiales et des surfaces

La tangente a plus de puissance que la sécante

- V. Hugo, Tas de pierres

15.1 Tangente & une courbe spatiale

15.1.1 Tangente en un point régulier d’'une courbe spatiale

La détermination de la tangente a une courbe spatiale peut étre réalisée en étendant le concept
de tangentes & une courbe plane (cf § 8.3). En partant de la fonction vectorielle définissant une
courbe :

Viy=cm+y®)a+z()a (15.1)
Mo MM
M
V(to)
V()

@]

Figure 15.1 — Sécante a une courbe 3D.
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Le développement de Taylor de cette fonction vectorielle autour du point ¢, s’écrit :

V() =V (tg) = @7’ (to) + (t_z—f‘”QW (to) + - + “‘n—fO)W (to) + R (£, 1) (15.2)

avec
ﬁ
R, (t,t
lim Fn(L10) _ 5 (15.3)
t—to (t — to)
—
Le vecteur V (t) — i (to) = MoM est aligné sur la sécante a la courbe passant par le point M
(figure 15.1).

Comme dans le cas 2D, la tangente est obtenue par le passage a la limite (¢t — t;) de la sécante,
en divisant les deux membres de 1'équation 15.2 par (¢ — ty) :

V-V (-0
R L
_>
(t—to)" ' = Ry (t,to)
e V" (t _— 154
+ n! (to) + t—tp ( )
_>
Tous les termes autres que V' (ty) s’annulent quand ¢ tend vers tg :
7 t —7 t =

lim ) () _ 3 (to) (15.5)

t—to t—to

ce qui signifie qu'un vecteur tangent a la courbe définie par sa fonction vectorielle en ¢ est la dérivée
premiére de cette fonction vectorielle calculée en t, si cette dérivée n’est pas le vecteur nul.
On parle dans ce cas de point régulier de la courbe. Comme dans le cas 2D, si la dérivée premiére
de la fonction vectorielle s’annule, on parlera de point singulier.
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15.1.2 Notion de point singulier d’une courbe spatiale

Comme dans le cas de courbes 3D, si la dérivée premiére de la fonction vectorielle d’une courbe
s’annule en un point, on parle de point singulier. Un vecteur tangent a la courbe peut étre obtenu
en augmentant ’ordre de dérivation jusqu’a obtenir une dérivée d’ordre p de la fonction vectorielle
non nulle. Dans le cas de courbe spatiale, on peut faire la distinction entre deux types de points
singulier : les points dits de branchement (cf figure 15.2) et les points de rebroussement (figure
15.3). La détermination du type de point singulier de courbe spatiale sort du cadre de ce cours;
elle est détaillée dans la référencell].

25

20

15

y 0 -10 X

Figure 15.2 — La courbe de fonction vectorielle 7(15) — 3, 4+ t* - w, + (3 4+ tY) - ul présente un
point singulier de branchement en l'origine.

Figure 15.3 — La courbe de fonction vectorielle 7(t) =120 4+t u_; + 18w présente un point
singulier de rebroussement en 1’origine.
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15.1.3 Equations de la tangente & une courbe

Comme démontré précédemment, la direction du vecteur tangent en t; est donnée par la
premiére dérivée non nulle de la fonction vectorielle de la courbe calculée en t3. On trouve donc
immédiatement que la fonction vectorielle décrivant le tangente a la courbe est :

T (\) = V (o) + AVP (t) (15.6)

Les équations paramétriques de la tangente sont obtenues en projetant la fonction vectorielle sur
les axes du repére :
x =V, (to) + X VP (to)
y=V,(to) + - VP (to) (15.7)
2=V, (to) + X- VP (o)

La forme canonique des équations cartésiennes de cette tangente s’exprime selon :

CVilt)) oy Vy(t) = Vil(t)
) W) V) (158)

15.1.4 Exemples

Reprenons I'exemple de la courbe de Viviani étudiée au § 14.2.2.1 dont les équations paramétriques
sont :

)\2
A2 (15.9)
= R—- —
Y R
zZ= A

Le signe + indique qu’a une altitude déterminée, on a deux points distincts sur la courbe. Si on
cherche 'expression du vecteur dérivé a mi-hauteur (A = R/2), il suffit de déterminer les dérivées
premiéres de la fonction vectorielle par rapport au paramétre A :

( 22
dx A2 R 1
— =4 l- S+t A | =t—F——
d\ R? * 22 22
L= R? L= R? (15.10)
dy A
dA R
z
g
L dA
Les deux tangentes en A = R/2 ont donc pour direction respectivement <%§,—1,1> et

(%g, —1, 1). Les figures 15.4 et 15.5 représentent ces tangentes sur la courbe.

On peut également noter que la courbe de Viviani présente un point double en A = 0 (la courbe
passe deux fois par le méme point de I'espace) ; la dérivée premiére de la fonction vectorielle ne
s’y annule toutefois pas et on peut y calculer deux tangentes distinctes (1,-2,1) et (-1,-2,1).
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2
1
1 0.5
N O
N O
-0.5
_1 _1
= -15
-2
2
1 ! 05 0
0
-0.5 1
-1
2
. y
Figure 15.4 — Tangentes en A = R/2 a la Figure 15.5 — Tangentes en A = R/2 a la
courbe de Viviani. courbe de Viviani..

15.2 Plan tangent & une surface

Un plan tangente & une surface en un point est le plan contenant simultanément 1’ensemble des
tangentes & toutes les courbes de la surface passant par le point donné (figure 15.6). Un plan
tangent ne peut étre défini que pour des points dits réguliers de la surface (cette notion sera
précisée plus loin dans cette section).

Figure 15.6 — Plan tangent a une surface.
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15.2.1 Surface décrite par son équation implicite

Soit une surface définie par son équation implicite F(x,y,z) = 0 (F et ses dérivées partielles
premiéres sont considérée comme continues). On considére qu'un point P de coordonnées
(xp,yp,zp) est régulier si les dérivées premiéres de F calculées en ce point ne sont pas
simultanément toutes nulles, c¢’est-a-dire si :

o)1 1(&),

£0 (15.11)

L2
0z ) p

Figure 15.7 — Plan tangent & une surface définie par son équation implicite.

Considérons une ligne appartenant a la surface, ses équations paramétriques sont de la forme :

xr = fl (t)
y=falt) (15.12)
Z = f3 (t)

Comme la ligne appartient & la surface, I’ensemble de ses points vérifie I’équation de la surface, ce
qui implique que :

F(fi®),f2(t), f3(t) =0 (15.13)

En dérivant cette expression par rapport au paramétre ¢ et en particularisant au point P, on
obtient :

dF\  (OF dfy oF dfs OF dfs
(%)J (a—fl); (%)ﬁ (aTa)P' (%)ﬁ (8_1%)} (ﬂp

0 (15.14)
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Nous avons vu au chapitre précédent que les équations paramétriques de la tangente en P a la
courbe s’écrivaient (pour autant que le point P soit un point régulier) :

y=yp+A (E) (15.15)
P

(x1,yr, zr) représentent les coordonnées de points de la tangente a la courbe. En combinant ces
deux derniéres expressions, on obtient :

oF — oF — oF —
(—> I IR (—) i (—> R (15.16)
ofi)p A 0f2) p A ofs) p A
On peut noter que dériver F(z,y, z) selon x, y ou z est équivalent a dériver F (f1, fa, f3) selon fi,
fo et f3, ce qui implique que les points de la tangente a la courbe vérifient ’équation :

Le méme raisonnement aboutit a cette méme conclusion pour n’importe quelle courbe prise sur
la surface (figure 15.7), ce qui signifie que I’équation 15.17 décrit 1’équation cartésienne du plan
tangent a la surface en P. La condition de non singularité du point P (équation 15.11) assure
que I’équation ne dégénére pas en une équation 0 = 0. Il faut noter qu’un point singulier d'une
surface, il n’est pas possible de définir un plan tangent, mais bien un cone tangent a la surface[2].

15.2.1.1 Exemple

Soit une surface définie par la fonction implicite F'(z,y, z) = zyz —k* = 0 (figure 15.8). Démontrer
que le tétraedre formé par les plans Oxy, Oxz, Oyz et n'importe quel plan tangent & la courbe a
un volume constant.

10 10 X

Figure 15.8 — Surface définie par 'équation F(x,y,z) = xyz — k> =0.
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L’équation cartésienne du plan tangent au point P s’écrit :

yp-zp(x —xp)+xp-2p(y—yp)+xp-yp (2 —2p) =0 (15.18)
Yyp-2p-x+xp-zp-yYy+xrp-yp-z2—3-xp-yp-zp=>0 (15.19)

L’ntersection de ce plan avec les axes du repére ont pour coordonnées A (3xp,0,0), B (0,3yp,0)
et C'(0,0,3zp). Le tétracdre OABC a pour volume :

V = % - base - hauteur (15.20)
1 1
= §~<§~OA~OB)«OC’ (15.21)
I 3 (15.22)
= 3 9 Trp Yyp Zp .
9
— 53;13 -yp - 2p (15.23)

Comme P appartient & la surface, zp - yp - zp est une constante qui vaut k?, ce qui signifie que le
volume du tétraedre est constant et vaut :

V= gkf” (15.24)

15.2.2 Surface décrite par son équation explicite

Pour rappel, la forme explicite de représentation d’une surface est du type :

z= f(x,y) (15.25)

Cette expression est équivalente a la formulation implicite suivante :
F(.I‘,y,Z)EZ—f(;E,y):O (1526)
On peut donc appliquer directement I’équation 15.17, en notant que dans le cas présent :

OF _ _0f or _ _or OF _
or Oz % % 8z_1 (15.27)

Ce qui donne :

~(3) e (3) )+ =0 (15.28)

Cette formulation est équivalente & celle décrite dans 3|
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15.2.3 Surface donnée par sa fonction vectorielle

Soit une surface définie par sa fonction vectorielle 7 (A, 1t). On peut mener le méme type de
raisonnement que celui employé au § 15.2.1, c’est-a-dire de déterminer le plan tangent en un point
comme le plan contenant les tangentes a I’ensemble des courbes de la surface passant par un point
donné.

Figure 15.9 — Plan tangent a une surface définie par son équation vectorielle.

Dans le cas d’une surface définie par sa fonction vectorielle, il est possible de faire le choix de
courbes particuliéres de la surface a savoir les lignes coordonnées passant par le point déterminé
(figure 15.9). Pour rappel, les lignes coordonnées sont les lignes de la surface obtenues en
considérant que I'un des parameétres de la fonction vectorielle est constant. On peut donc prendre
comme deux vecteurs définissant le plan tangent les deux vecteurs tangents aux lignes coordonnées
passant par le point P. Si le point P est défini par les valeurs des paramétres A\p et up, les deux
lignes coordonnées passant par P ont pour fonction vectorielle respectivement V' (Ap, ) (fonction
de 1 uniquement) et i (A, pp) (fonction de A uniquement). Les vecteurs tangents a ces courbes
ont pour fonction vectorielle :

<67 <A,up>> y (67 <Ap,u>> (1529
A 8M n |

O\

qui correspondent simplement aux dérivées partielles de la fonction vectorielle selon A ou p
calculées au point P. La fonction vectorielle du plan tangent s’établit donc selon :

T (a, B) = i (Ap,pp) + o (%—?) +5- <%) (15.30)

Pour que cette équation détermine effectivement un plan, il faut que les deux vecteurs ( g—‘;

) Ap,up
et (g_v) soient linéairement indépendants, ce qui est une autre fagon d’exprimer que le point
Ap,pup

P ne soit pas singulier.
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15.2.3.1 Exemple

Soit une sphére définie par ses équations paramétriques :

xr=4-cos¢-cosb
y=4-cos¢-sinf
z=14-sin¢

Déterminez les équations du plan tangent au point P défini par 0 = 7 /4, ¢ = /3.

Les dérivées partielles de la fonction vectorielle s’établissent selon :

( Ox )
%:_4.Cos¢.sin9 a—¢:—4'81n(b~0089
0
g—gz4~cos¢~cose a—Z:—4~sin¢~sin0
z 0z
%—0 \ a—¢:4-cosgb

Les équations paramétriques du plan tangent s’établissent donc comme suit :

T s T . m LT T
r=4-cos—-cos— —a-4-cos—-sin—— [3-4-sin— - cos —

# A7

y:4-cos—-sinz+a-4-cosg-COSZ—B-éL-sing-sinZ

T
:4- 1 —+ .4. —
z sm3 15} 0083

ce qui donne :
=2 —v2a—6p
y=2+V2a—63
z=2/3+23

En additionnant les deux premiéres équations, on obtient

T4y =2v2—-2/68
z=2v/3+28

(15.31)

(15.32)

(15.33)

(15.34)

(15.35)

En éliminant 5 entre ces deux équations, on obtient I’équation cartésienne du plan tangent (figure

15.10) qui est :
— 23

qui pefit étre réarrangée en :

x+y—\/52+8\/§:0

(15.36)

(15.37)
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= N
750 TTTANKSX
ATV

S

Figure 15.10 — Plan tangent a une spheére.
15.3 Normale a une surface en un point
A partir du moment ou les équations du plan tangent sont obtenues, il est aisé de retrouver

les équations de la normale a une surface en un point. En effet, la normale & une surface est
orthogonale au plan tangent et passe par le point considéré (figure 15.11).

Figure 15.11 — Normale & une surface en un point.
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La fonction vectorielle décrivant cette normale est donc :

ON (\) = OP + AN (15.38)

ﬁ est le vecteur normal au plan tangent a la surface au point P. Si la surface est décrite par sa
fonction implicite F'(x,y, z) = 0, ce vecteur peut étre obtenu selon :

(&), (&), (5),) 453

Si la surface est décrite par sa fonction vectorielle 7 (A, i), un vecteur normal est obtenu en faisant
le produit vectoriel des deux vecteurs définissant le plan tangent :

oV oV
N = (W>AMP A <%> . (15.40)

Soit une sphére de centre C' et de rayon R définie par son équation cartésienne :

15.3.1 Exemple

Flz,y,2) = (z—2c)"+(y—ye)’ + (z—20)° = R*=0 (15.41)

Vérifions que les normales en tout point de la sphére passent bien par son centre.
Les composantes du vecteur normal sont :

( (%)P =2(zp —x¢)

(%)P =2(yp —yc) (15.42)

\ (%—Z)P =2(zp — 2¢)

Les équations paramétriques des normales sont donc :

r=xzp+A-2(xp—z0)
y=yr+X\ 2(yr—yo) (15.43)
z2=zp+A-2(zp—20)

On remarque donc que si A = —1/2; on obtient
r = X¢
Y =Yc (15.44)
Z = zZC

ce qui démontre la passage de la normale par le centre de la sphére.
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Annexe A

Figures vierges de certains problémes

Tout le succeés d’une opération réside dans sa préparation.

- S. Tzu, L’art de la guerre

A.1 Introduction

Cette annexe rassemble un ensemble de figures vierges qui seront utilisées durant le cours oral.

A.2 Figures

Figure A.1 — Section d’une pyramide par le plan EFG (cf page 12).
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Figure A.2 — Projection de profil de points (cf page 41).
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LT

Figure A.3 — Traces d’un plan défini par deux droites sécantes (cf page 44).

Géométries et communication graphique
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Figure A.4 — Traces d’'un plan défini par deux droites paralléles (cf page 45).
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Figure A.5 — Traces d’un plan défini par trois points (cf page 45).
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Figure A.6 — Trace d’un plan défini par une droite et un point (cf page 45).
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Figure A.7 — Point dans un plan défini par trois points (cf page 49).
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a’

%72

i

|

|

i
LT |
T |_ .................

|

|

WNC X

a" p"

Figure A.8 — Point dans un plan défini par deux droites sécantes (cf page 50).
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Figure A.9 — Point dans un plan défini par deux droites paralléles (cf page 50).
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Figure A.10 — Point dans un plan défini par une droite et un point (cf page 51).
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Figure A.11 — Reconstruction de ’épure de Monge a partir du plan (cf page 63).
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Figure A.12 — Recherche du vu et du caché (cf page 66).
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Monge

Isométrie

Figure A.13 — Recherche du vu et du caché sur plan (cf page 67).
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Figure A.14 — Intersection entre deux plans quelconques (LT = W? =7

Géométries et communication graphique



ANNEXE A. FIGURES VIERGES DE CERTAINS PROBLEMES

254

$tries et communication graphiqu

Figure A.15 — Point de percécééﬁ une droite dans un plan (LT = 71'? = 7T£), cf page 78:
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Figure A.17 — Rotation autour d’un axe vertical (cf page 89).
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Figure A.18 — Opération de rotation inverse pour retrouver le point P (cf page 92)
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TECHNIQUES

Annexe B

Exemple récapitulatif sur la manipulation
de plans techniques

Vingt fois sur le métier remettez votre ouvrage, Polissez-le sans cesse, et le
repolissez, Ajoutez quelquefois, et souvent effacez.

- Boileau, L’Art poétique

B.1 Introduction

Ce chapitre reprend un exemple complet de résolution de probléme associé a la lecture de plan
technique a savoir la représentation en isométrie, I’ajout d’une vue supplémentaire et la mise en
vraie grandeur de surface. Le probléeme a pour données les projections de face et de profil droit
d’une piéce dessinée sur un plan (figure B.1).

0| ¢

Figure B.1 — Deux vues d’une piéce (figure de travail en page 263.
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Figure B.2 — Figure de travail pour I’exemple.
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B.2 Isométrie

La premiére étape consiste a reconstituer la vue en isométrie de la piece. Une méthode systématique
pour y parvenir consiste a décomposer en étapes élémentaires :
— dessiner le parallélépipéde englobant la forme en reportant les dimensions maximales de la
piéce selon les trois axes (figure B.3);
— réaliser I'enlévement de matiére représentant la rainure inférieure (figure B.4);
— procéder de méme pour obtenir la rainure trapézoidale supérieure (figure B.5); enlever le
dernier morceau de matiére pour obtenir les sommets de toutes les arétes du volume (figure
B.6);
— repasser les arétes visibles et effacer I'information devenue inutile (figure B.7);
— on peut éventuellement ajouter les arétes cachées (figure B.8).

Figure B.3 — Parallélipipéde englobant. Figure B.4 — Rainure inférieure.
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Figure B.5 — Rainure supérieure. Figure B.6 — Enlévement de matiére.

Ead

Figure B.7 — Dessin des arétes visibles. Figure B.8 — Ajout des arétes cachées.

Géométries et communication graphique 261



ANNEXE B. EXEMPLE RECAPITULATIF SUR LA MANIPULATION DE PLANS
TECHNIQUES

B.2.1 Vue de dessus

La vue de face et de profil droit correspondent aux projections frontales et de profil manipulées
en début de cours. Pour reconstituer la vue de dessus, il faut se fixer arbitrairement une ligne
de terre et une ligne de terre secondaire. Ceci permet de limiter le contour de la piéce en vue de
dessus (figure B.9). Une fois ce choix effectué, il ne reste plus qu’a projeter 'ensemble des autres
points (figure B.9).

T
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\ \
\ \
\ \
‘ n ‘ ]
[ [ I
[ [ Iy
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\ o \ b by
\ o \ b by
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L _* _____ _(4_.\_._¢ _________ . 11 _._H_\._\..‘_\4_.\_._‘4_._._‘.4_.\ ________ 17T
\ N | o b l
\ AN AN N !
N | RN \\ -+ —
N AN %
T~ 4 ~ -
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
Figure B.9 — Dessin des lignes de terre et Figure B.10 — Projection de ’ensemble des
projection du contour externe. autres points (figure aggrandie en page 267.
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Figure B.11 — Figure avec la vue de dessus.
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B.2.2 Vraie grandeur de la face inclinée

LA face inclinée est située dans un plan de bout, il suffit donc de faire le choix d’un axe de rotation
de bout pour rendre ce plan horizontal. On peut par exemple choisir I’aréte inférieure de cette face
(figure B.12). Ensuite, les propriétés de la rotation sont appliquées pour obtenir la position des
points aprés rotation (projection frontale suivant un cercle, projection horizontale se déplacant

parallélement & la ligne de terre, figure B.13)

Figure B.12 — Choix d'un axe de bout.

Une fois la position des points obtenus, il ne reste plus qu’a dessiner les arétes correspondantes

(figure B.14).
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Figure B.13 — Rotation des points.
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Figure B.14 — Figure finale.
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Annexe C

Rappels d’éléments de géométrie analytique

Recollect : to recall with additions something not previously known.

- A. Bierce, The Deuwil’s Dictionary

C.1 Analyse de courbes planes

C.1.1 Recherche des asymptotes d’une courbe plane

Par définition, une droite du plan est appelée asymptote d’une courbe plane si la distance d’un
point variable M de cette courbe & la droite tend vers zéro quand le point M tend vers I'infini. Il
existe trois types d’asymptotes suivant leur orientation :

— une asymptote horizontale est paralléle a ’axe des x;

— une asymptote verticale est parallele a I'axe des y;

— une asymptote oblique a une orientation qui n’est paralléle ni a I'axe des x ni a I’axe des y.
De maniére générale, une courbe peut présenter un nombre indéfini d’asymptotes (voire aucune
asymptote). Nous nous limiterons a ’étude des courbes en formulation explicite.

C.1.1.1 Asymptote horizontale

La courbe présente une asymptote horizontale si

lim y(z) =a (C.1)

T—r+00

avec a fini (dans ce cas, y=a est I’équation de 'asymptote) ou si

lim y(z)="b (C.2)

T—r—00

avec b fini (dans ce cas, y=b est I’équation de ’asymptote). Une courbe en formulation explicite
présente donc au plus deux asymptotes horizontales (éventuellement confondues).
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C.1.1.2 Asymptote verticale

La courbe présente une asymptote verticale si

lim y(z) = £o0 (C.3)
r—a
avec a fini (dans ce cas, x=a est I’équation de I'asymptote). Une courbe en formulation explicite
peut potentiellement présenter une infinité d’asymptotes verticales.

C.1.1.3 Asymptote oblique

Pour qu'une courbe en formulation explicite présente une asymptote oblique, il faut que la distance
entre I’asymptote et la courbe tende vers zéro pour x tendant vers plus ou moins l'infini. On peut
démontrer que ceci est équivalent & rechercher :

m = lim y(x) (C4)
T——+00 €T
Si m est infini, la courbe ne présente pas d’asymptote oblique vers + l'infini ; si m est fini, on peut
calculer :
p= lim [y(x)— mz] (C.5)

T—+00

Deux cas de figure sont possibles :
— p est fini, asymptote a pour équation y(x)=mx+p;
— p est infini, on dit que la courbe admet une branche parabolique sans asymptote, de
direction asymptotique y=mx (exemple : y(z) = = + \/x);
Le méme calcul peut étre mené pour la limite vers - l'infini; une courbe définie par sa forme
explicite posséde donc au plus deux asymptotes obliques (éventuellement confondues).

C.1.1.4 Exemples

Soit la fonction :
xvz? — 1+ 22

r—1

Son domaine de définition est |—inf —1[NN[1 + inf[. Présente-t-elle des asymptotes ?

1
lim = — .
im =5 (C.7)

rz—1

x=1 est asymptote verticale de la fonction.

lim f(z) = 2+ lim ( ) lim (\/ﬁ —I—x)/ (C.8)

T——00 z——00 \ T — T—>—00
‘f “+00—00
= 2+ lim (\/ 2 -1+ a:) (C.9)
T—>—00
2?2 —1—2?
= 24 lim —/—— C.10
=00 \/12 — 1 —x ( )
—1
— 24 lm ——— =2 (C.11)

2o i — 1 — 1
(C.12)
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y=2 est asymptote horizontale de la fonction.

lim f(z) = 24 lim < xl) lim (m+x>:+oo (C.13)

T—r+00 r—+oo \ T — T—r+00 g
b e
Recherche d’éventuelle asymptote oblique :
2—-1
lim J@) = lim ( )+ lim ’ ) lim (u) (C.14)
x—+00 I Tr—~400 Tr—400 €T — x~>+oo €T
X T +ooﬁoo
vaz—1
= lim (—x —i—x) (C.15)
T—~400 €T
— lim ( 1—1/22 + 1) —2 (C.16)
T——+00
(C.17)

On a potentiellement une asymptote oblique de coefficient directeur 2. Son ordonnée a 1’origine se
calcule par :

v —1 2
lim (f(z)—2z) = 2+ lim (x ro e —2x) (C.18)
Tr—+00 Tr—+00 ,jE—l
2 2 2_2
— 24 lim (“’” 1+2° 2 “7> (C.19)
T——+00 r—1 rz—1
V21— a2 +2
- lim (x ’ 4 x) (C.20)
x%Jroo

= 2+ lim - ) lim (\/xQ—l—x+2) (C.21)

z—>+<>o T — T——+00
T +o<‘>,—oo
— 24 lim (V22—1-az+ 2) (C.22)
T—>+00

(V-1
— 2+ lim_ (\/:;;_2);)) (C.23)

4o —
= 2+ lim C.24
T—r+00 \/1’2 —|_ T — 2)> ( )

= 2+ lim < 4-5/z ):4 (C.25)

atoo \ \/T— 1/22 + (1 — 2/x)

La droite y=2x+4 est donc asymptote oblique quand x tend vers 4+o00. Le graphe de la fonction
est représenté en figure C.1
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Figure C.1 — Graphe de la fonction prise pour exemple dans la recherche d’asymptotes.

C.1.2 Coniques sous forme réduite

C.1.2.1 Ellipse

La forme réduite d’une ellipse est

2 2
F( ):<x_ajc) _'_(y_yc> —1=0 (026)
l‘? y — a2 b2 — .
avec (z.,y.) définissant le centre de lellipse, a et b définissant les mesures des demis axes (figure
C.2). Ses équations paramétriques sont :

xr=1x.+ a-cosf
y=19y.+0b-sinf

(C.27)

I

|

/

B F |
2b

Figure C.2 — Ellipse réduite.

Les foyers sont situés a une distance c¢ de part et d’autre du centre de l'ellipse sur son grand axe

(c = \/]a® — b?|). L’excentricité de Dellipse € vaut c/a.
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C.1.2.2 Hyperbole

La forme réduite d’une hyperbole est

Flog)= @ @-w)l C.28

avec (., y.) définissant le centre de I'hyperbole (figure C.3). Ses équations paramétriques sont :
T =x.+ta-coshf

Y=Y+ b-sinh6

(C.29)

Les foyers sont situés a une distance ¢ de part et d’autre du centre de ’hyperbole (¢ = Va? + b?).
L’hyperbole présente deux asymptotes obliques d’équation

Y=Y+ g (iL‘ - l‘c) (C?)O)
Y="Yc— 2 (1’ - wc) (C31)

L’hyperbole est dite équilatére si a=b (ses asymptotes sont perpendiculaires).

Figure C.3 — Hyperbole réduite.

C.1.2.3 Parabole

La forme centrée et réduite d’une parabole d’axe x est
(y—ys)? —4p(z —x5) =0 (C.32)

avec (rg,ys) définissant le sommet (figure C.4). Le foyer de la parabole se situe en (Xg + p, Ys).
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(@]

Figure C.4 — Parabole d’axe paralléle a x.

C.2 Représentation de plans

La surface spatiale la plus simple, a savoir le plan, va étre utilisée pour introduire les diverses
formes de représentation d’une surface dans I'espace.

C.2.1 Equation vectorielle

L’équation vectorielle d'un plan représente le vecteur 7 variable qui joint l'origine du repére a
tous les points du plan (figure C.5).

Figure C.5 — Equation vectorielle du plan.
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Son expression est établie de la maniére suivante :
V (\p) = OB+ RP = OR + AV, + uVs (C.33)

avec R=(z¢, Yo, 20) un point du plan, 71 = (a,b,c) et @ = (d,e, f) deux vecteurs linéairement
indépendants du plan. Physiquement, le fait de pouvoir représenter tout point du plan par
I'intermédiaire de deux paramétres A et p revient a laisser deux degrés de liberté en translation au
point parcourant le plan. En termes d’algebre, la représentation d’un plan est donc une application
de R? — R? qui associe a tout point du plan (coordonnées A et p du point dans le plan) un point
de l'espace.

C.2.1.1 Forme normale

Soit Nz un vecteur normal au plan (ﬁ = V_{ A\ @ par exemple). On peut exprimer que ﬁ est
orthogonal & tout vecteur du plan par (figure C.6) :

N (7 - (ﬁ%) —0 (C.34)

avec 7 un vecteur (variable) reliant l'origine du repére a chaque point du plan. Cette équation

Figure C.6 — Equation vectorielle normale du plan.

peut également s’exprimer par :

N.-V=N.-Ok=k (C.35)

Ou k est une constante pour le plan considéré (car O? et ﬁ sont constants). Cette expression
est dénommée forme normale constante du plan, elle exprime que la projection de tout vecteur
joignant l'origine & un point du plan sur la normale au plan est constante.
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C.2.2 Equations paramétriques

En projetant la relation C.33 selon les axes, on obtient le systéme d’équations suivant :

T = o+ Aa+ pd
Yy = Yo+ Ab+ pe (C.36)
z = 2+ e+ puf

Ce systéme d’équation constitue les équations paramétriques du plan (ou forme paramétrique du
plan). En faisant varier A et u de —oco & oo, on obtient les coordonnées de I'ensemble des points
constituant le plan.

C.2.3 Equation cartésienne

En éliminant les paramétres A et p dans le systéme C.36, on obtient successivement :

\ = xr —xo— pd
3 d
T —x9—
y o= gt P20+ e (C.37)
—x9 — pd

po= (y—vo—t(x—x0)) /(e —2)
a(y —yo) —b(x —x0)

- ea — db (C.38)

z = zo—i-%_ﬂdc%—uf

Cd>a(y—yo)—b($—$o)

a(z—z) =c(z—x0)+ (af — b

(C.39)

ce qui donne en développant :

af —cd cd —af af —cd B
(bae_bd—c)x—i—(ae_bd)y—l—az—i— [cxo— S (bxg — ayo) — azp| =0 (C.40)

C’est-a-dire une équation linéaire en x,y et z de la forme suivante :
Az +By+Cz—D =0 (C.41)

Cette équation est appelée équation cartésienne du plan (ou forme cartésienne implicite du plan).
L’ensemble des points ayant des coordonnée x,y et z vérifiant I’équation sont des points appartenant
au plan. Il faut noter que les coefficients A,B,C et D de cette équation sont définis & une constante
multiplicative prés.

On peut définir un vecteur normal au plan en prenant un vecteur de coordonnées (A,B,C) (figure
C.7).

Ceci se démontre de maniére simple en prenant trois points quelconques du plan :

( D—Al’l—Bbyl
Py 1,1, C
D—A-zy—B-
P2 T2, Y2, xg V2 (042)
D—A'l'g—B'yg
P3 T3, Ys, C
\
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Figure C.7 — Normale a un plan.

Un vecteur normal du plan peut étre défini par :

A B
ﬁ:PQ—Pl)/\P?’—Pi: Ty — T2 Y1 — Y2 —6(351—902)—g(y1—y2) (C.43)
A
1 —2T3 Y1—Y3 —5(351—963)—5(2/1—3/3)

Ce qui donne :

N, = —é [y —y3) - (21— 22) — (11 — y2) - (21 — 23)]

f

Ny, = _6 : [(yl - ys) : (3?1 - 372) - (yl - ?J2) : (331 - 553)]
N, ==y —y3) - (1 —22) + (1 — ¥2) - (x1 — 23)

(C.44)

(y1 —y3) - (z1 —x2) — (11 — y2) - (21 — 73)
C

En divisant I’ensemble des termes par — , on retrouve

bien (A,B,C) comme vecteur normal.

C.2.3.1 Forme implicite d’un plan donné par les points de percée des axes dans ce
plan

Si ax+by+cz-d=0 est 'équation cartésienne d’un plan, les points U=(d/a;0;0), V=(0;d/b;0) et
W=(0;0:d/c) situés sur les axes appartiennent a ce plan (on parle des coordonnées & l'origine du
plan, figure C.8).

De maniére réciproque, si un plan passe par les points U=(zy ;0;0), V=(0;yy ;0) et W=(0;0;2p),
ce plan aura pour équation :

(1av) e+ () y+ (1/zw) 2 =1 =0 (C.45)

274



ANNEXE C. RAPPELS D’ELEMENTS DE GEOMETRIE ANALYTIQUE

Figure C.8 — Coordonnées a 'origine d’un plan.

C.2.4 Passage d’une représentation d’un plan & une autre
C.2.4.1 Passage de la forme normale a la forme implicite
Si la forme normale est donnée par un produit mixte
(V- 58). (V.n7) =0
le développement du produit mixte donne immédiatement|1] :
T—TR Y —YrR < —ZR
‘/190 ‘/1y ‘/12 =0
Vg Vay Va.

Qui permet par développement de retrouver la forme implicite ax-+by-+cz-d=0 du plan.
Si ’équation normale est donnée sous la forme :

N (V-0R) =0
un simple développement du produit scalaire donne
Nz(x—zr)+ Ny(y—yr)+ Nz(z2—2r) =0

Qui donne également accés a la forme implicite du plan.

(C.46)

(C.47)

(C.48)

(C.49)
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C.2.4.2 Passage de la forme normale a la forme vectorielle

Pour établir la forme vectorielle il est nécessaire de déterminer deux vecteurs qui doivent satisfaire
aux conditions suivantes :

— Les deux vecteurs doivent étres orthogonaux a ﬁ ;

— les deux vecteurs doivent étre linéairement indépendants (en particulier, ils ne peuvent étre

nuls).

L’idée de base est de choisir un premier vecteur du plan 71 puis de rechercher un second vecteur par
le produit vectoriel 72 = ﬁ AV} qui est a la fois orthogonal a ﬁ comme demandé, mais également
orthogonal a V;. L’emploi de vecteurs unitaires pour N, V; et @ permet une simplification des
calculs en ajoutant des contraintes sur les coordonnées des vecteurs (seules deux composantes
doivent étre déterminées au lieu de trois).

C.2.4.3 Passage de la forme cartésienne & la forme normale

La forme normale nécessite la définition d’un point du plan et d’'un vecteur normal au plan. Ce
vecteur normal est trouvé de maniére immédiate comme ayant des coordonnées (a,b,c) si le plan a
pour équation ax+by+cz-d=0. La recherche des coordonnées d'un point du plan revient & se fixer
arbitrairement deux coordonnées de ce point et de rechercher la troisieme coordonnée qui garantit
I’appartenance de ce point au plan.

C.2.4.4 Passage de la forme implicite a la forme paramétrique

Il existe une infinité de paramétrisations possibles pour un plan. Le choix le plus simple consiste
a employer la paramétrisation suivante :

r = «
y = 0 (C.50)
z = 1.[d— (aa+bP)
La fonction vectorielle du plan s’établira ensuite par :
1
7:a@+/ﬁ@+z-[d—(aa+b5)m (C.51)
ou encore p )
7:_@+a(@_€@)+@(@_-@) (.52)
c c c
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C.3 Représentation de droites

C.3.1 Equations cartésiennes

La droite est ’exemple le plus simple d’une courbe de ’espace. Sa définition peut étre réalisée par
I'intermédiaire de I'intersection de deux plans 7 et p (figure C.9). Une droite posséde donc deux
équations cartésiennes de la forme suivante :

{ Ar+By+Cz—D = 0

Ex+Fy+Gz—H = 0 (C.53)

Les deux plans 7 et p ne doivent bien évidemment pas étre paralléles pour présenter une droite

A B C
E F G

d’intersection. Ceci implique que la matrice { } soit de rang 2 ((A, B, C) linéairement

indépendant de (E, F,G)).

Figure C.9 — Définition de droite par ses équations cartésiennes.

C.3.2 Forme canonique

Si on considére un point P(xp, yp, zp) quelconque de la droite, celui-ci appartient aux deux plans,
on peut donc écrire :

Al‘p—i—Byp'f‘CZP—D = 0
{ FExp+Fyp+Gzp—H = 0 (C.54)
En soustrayant les relations C.54 de C.53, on obtient un systéme équivalent :
E(x—azp)+ Fy—yp)+G(z—2p) = 0 .

Comme le systéme est de rang 2, il existe co!' de solutions, les solutions sont de la forme :

r—xzp = k(BG—-FQC)
y—yp = k(EC—GA) (C.56)
z—zp = k(AF —EB)
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Avec k un parameétre (pouvant varier de —inf a + inf. Ces trois équations peuvent se synthétiser

sous la forme suivante :
r—rp  Y—Yyp 22— Zp

BG—-FC EC-GA AF-FEB
Cette forme est appelée forme canonique de la droite.

(C.57)

C.3.2.1 Forme canonique d’une droite orthogonale aux axes de coordonnées

Soit une droite passant par les points Pl(xy,41,21) et P2(xq,y2,21). Cette droite est bien
évidemment orthogonale a I'axe Z (sa cote Z reste constante). La forme canonique de cette droite
s’écrirait sous la forme :
r—r _y—yn 0 (C.58)
ra—z1  Yao—y 0
Ce qui n’a pas beaucoup de sens. Dans ce cas particulier, il faut substituer a la forme canonique
le systéme suivant :

=21
e N R )| (C.59)

Tog — 21 Y2 — U1

qui revient en fait a la définition d’une droite sous la forme de l'intersection de deux plans (figure

C.10).

Figure C.10 — Droite orthogonale a ’axe Z.

C.3.2.2 Forme canonique d’une droite perpendiculaire a un des plans de coordonnées

Soit une droite passant par les points Pl(zy1,y1,21) et P2(xy,y1,22). Cette droite est bien
évidemment paralléle & 'axe Z (figure C.11). La forme canonique de cette droite s’écrirait sous la
forme :

0O 0 z— 2z
R C.60
0 0 2o — 21 ( )
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Qui, comme pour le § précédent n’a pas beaucoup de sens. De nouveau, il faut substituer a la
forme canonique le systéme suivant :
{x_xl (C.61)

Yy=11

qui correspond & nouveau a une définition de la droite sous forme d’équations cartésiennes.

2

Figure C.11 — Droite paralléle a I'axe Z.

C.3.3 Equation vectorielle

La définition vectorielle d’une droite se base sur le vecteur joignant 1’origine & un point de la droite
et sur un vecteur directeur de la droite (figure C.12). Cette équation a la forme suivante :

OP-0A+k-V (C.62)

Figure C.12 — Equation vectorielle de droite.
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Le passage des équations cartésiennes a I’équation vectorielle d’une droite se réalise de maniére
aisée en considérant que le vecteur directeur de I'intersection de deux plans. Un vecteur directeur
est obtenu par le produit vectoriel entre les vecteurs normaux aux deux plans (le vecteur o est
paralléle au vecteur ﬁl A ]V;)

En considérant que la droite passe par deux points connus P; et P,, la fonction vectorielle de la
droite peut également s’écrire sous la forme :

OP = OP, + AP\ P, (C.63)

> —_—
ou encore O?—OPl = Plp = AP, P,, ce qui implique que les vecteurs P; ﬁ et P, P, sont colinéaires.
Une autre présentation de ’équation vectorielle d’une droite est donc :

((ﬁ% ~OF}) A (OPZ - OP;) —0 (C.64)

C.3.4 Equations paramétriques

Comme dans le cas des équations paramétriques d’'un plan, les équations paramétriques d’une
droite sont obtenues en projetant 1’équation vectorielle d'une droite dans un repére orthonormé :

r = wa+k-1
Yy = yatk-m (C.65)
z = za+k-n

Ces équations paramétriques permettent également d’interpréter les équations sous forme
canonique d’une droite. En effet, ces équations ont une forme générale :
T—TA  Y—Ya Z— %4

7 - - (C.66)

Les numérateurs de ces équations correspondent donc aux parameétres directeurs de la droite.

C.4 Mesure de distances

C.4.1 Distance entre points

La notion de distance classiquement employée dans l'espace est la distance euclidienne (figure
C.13) entre deux points définie dans un repére orthonormé par :

drso = PG = \/(wp = 20)* + (5r — )" + (2 — 20)° (C.67)
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Figure C.13 — Calcul de la distance entre deux points.

C.4.2 Distance point droite

Soit une droite passant par un point P; et de vecteur directeur (1,m,n) et un point Py extérieur a
cette droite (figure C.14). La distance entre le point et la droite est mesurée selon la perpendiculaire
a la droite, c’est-a-dire dans un plan perpendiculaire a la droite. Le probléme revient a la
détermination du point de percée P de la droite d dans le plan normal & d passant par F,.
La démarche de résolution est donc la suivante :

— établissement de I’équation cartésienne du plan normal :

— (- (z—z0)+m-(y—yo) +n-(2—2)=0);
— recherche du point de percée P de d dans ce plan;
— calcul de la distance entre P et F,.

Figure C.14 — Calcul de la distance entre un point et une droite.

281



ANNEXE C. RAPPELS D’ELEMENTS DE GEOMETRIE ANALYTIQUE

C.4.3 Distance point plan

La distance d’un point & un plan est mesurée parallélement & la normale au plan (figure C.15).
Soit un point P = (zo; yo; 20) et un plan d’équation cartésienne Ax+By+Cz-D=0.

Figure C.15 — Calcul de la distance entre un point et un plan.

Le point de percée de la normale au plan passant par P est obtenu en combinant les équations
paramétriques de la droite perpendiculaire au plan passant par P :

r = Zo-+ AN
y = Yo+ BA (C.68)
z = zp+ CA

Avec I'équation cartésienne du plan. L’intersection se produit pour Ao = —(Azg + Byo + Cz —

D)/(A% + B% + C?). Le point de percée Q' a donc pour coordonnées :
r = X9+ A)\Q/
Yy = Yo+ By (CGQ)
zZ = zZy+ C)\Q/

La distance entre le point P et le plan 7 est donc calculé comme étant la norme de PQ’, & savoir

= \/(x() + A)\Ql — 1’0)2 + (yo + B)\Q/ — yo)2 + (Z() + C)\Q/ — 20)2 (C?O)
— Dol VAT B (c.71)

Ce qui correspond donc a :

|Fa

. |AZL’0 + Byo + CZO - D|

P /
@ AT+ B L C?

H
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C.5 Angle entre plans

C.5.1 Angle diédre

Par définition, la mesure de 'angle diédre (ou le rectiligne du diédre) que forment deux plans est
I’angle mesuré dans un plan perpendiculaire & 'intersection entre les deux plans.

Soit un plan ~ perpendiculaire a l'intersection de 7 et p, si nous menons dans ce plan des
perpendiculaires aux traces des deux plans, on définit un quadrilatére JMNP. Dans ce quadrilatére,
la somme des angles vaut 27 radians, 'angle entre les perpendiculaires est donc le supplémentaire
de I'angle formé entre les plans.

Figure C.16 — Angle entre deux plans.

En orientant les normales dans la direction inverse, on obtiendrait directement l’angle entre les
plans. En résumé, ’angle entre deux plans d’équation cartésienne

Alx—i—Bly—l—Clz—Dl = 0

Asx 4+ Boy +Coz — D2 = 0 (C.73)
peut étre calculé par
Qv = arccos (:l: Az + BiBa + C1Ch ) (C.74)
VA2 + B? + C3 /A% + B} + C2
Si les plans sont donnés sous leur forme normale, cette expression se réduit a
a = arccos (£ (a1as + biby + ¢1¢2)) (C.75)
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C.5.2 Perpendicularité entre plans

Si deux plans sont perpendiculaires entre eux leurs vecteurs normaux sont orthogonaux entre eux

(figure C.17).

Figure C.17 — Plans perpendiculaires (vue orientée selon la droite d’intersection).

Donc si deux plans sont définis par leurs équations cartésiennes :

A+ Biy+Ciz—D1 = 0

Apxr + Byy +Cy2— D2 = 0 (C.76)

H
La condition de perpendicularité s’écrira ﬁl - Ny = 0 ou encore A Ay + B1By + CCy = 0.

C.5.3 Plans paralléles

Deux plans paralléles entre eux ont nécessairement leurs normales paralléles (figure C.18). La
condition de parallélisme entre deux plans définis par leurs équations cartésiennes (équation C.76)
s’exprimera donc par :

A _Bi_ G
Ay By

Si les vecteurs normaux sont unitaires, la condition de parallélisme peut également s’exprimer par

(C.77)

nonp=1 (C.78)
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Figure C.18 — Plans paralléles.

C.6 Angle droite/plan

C.6.1 Perpendicularité plan/droite

Soient :

— une droite de paramétres directeurs (1,m,n);

— un plan d’équation cartésienne Ax+By-+Cz-D=0.
Pour que la droite soit perpendiculaire au plan, il faut que le vecteur directeur de cette droite soit
paralléle au vecteur normal du plan (figure C.19), ce qui implique d’avoir une proportionnalité
entre les composantes de ces vecteurs :

: (C.79)

L’expression d’un plan perpendiculaire a une droite passant par un point R(zg, yg, 2r) sera donc :

l(x—zr)+m(y—yr)+n(z—2r) =0 (C.80)

L’ensemble des plans perpendiculaires & une droite donnée (famille de plans perpendiculaires a
une droite) s’exprime donc par :

IX +mY +nZ =8 (C.81)

avec le paramétre [ valant [ - xr +m - yr + n - zg.
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Figure C.19 — Droite perpendiculaire & un plan.

C.6.2 Droite paralléle & un plan donné

Rappelons que pour qu'une droite soit parallele a un plan, il suffit qu’elle soit paralléle & une
droite de ce plan. Comme la droite est paralléle & une droite du plan, elle est donc orthogonale au
vecteur normal au plan. La condition de parallélisme entre une droite de vecteur directeur (1,m,n)
et un plan d’équation cartésienne AX+BY+CZ-D=0 s’écrit donc :

IA+mB+nC =0 (C.82)

C.7 Etablissement de I’équation de plans particuliers

C.7.1 Plan passant par une droite et paralléle & une autre droite

Rechercher un plan passant par une droite d1 et paralléle & une droite d2 passe par ’établissement
de la fonction vectorielle du plan. Soit R un point quelconque de d1, V; le vecteur directeur de d1
et 72 le vecteur directeur de d2. La fonction vectorielle du plan s’établit simplement par :

V =0k +\V, + uVh (C.83)
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C.7.2 Plan passant par une droite et par un point extérieur a cette
droite

Soit S le point donné et R un point quelconque de la droite d. Le vecteur }% peut étre pris comme
deuxiéme vecteur permettant de définir I’équation vectorielle du plan.

Figure C.20 — Plan passant par une droite et un point.

C.7.3 Plan passant par trois points

Soient les trois points R(zg,yr, 2r), S(zs,ys, zs) et T(zr,yr, zr). En considérant les vecteurs

_>
V1= ]?9‘ et ﬁ = ST, I'expression vectorielle peut étre obtenue. Par développement, on obtient
la forme implicite cartésienne qui est équivalente a :

—TR Y—YrR < —ZR
Ts—Zr Ys—Yr 2s—2r | =0 (C.84)
T —TR Yr —YrR RT — 2R

Il faut noter que cette méthode n’est pas la plus rapide en pratique pour obtenir I’équation d’un
plan.

C.7.4 Plan passant par une droite et perpendiculaire & un plan donné

Pour rappel, deux plans sont perpendiculaires si I'un contient une droite perpendiculaire a 'autre.
Ce probléme se résoud donc en employant le vecteur normal au plan donné comme deuxiéme
vecteur utilisé dans I’équation vectorielle du plan recherché.

C.7.5 Plan perpendiculaire & deux plans donnés et passant par un point
donné

- | =
Les vecteurs normaux N; et Ny des deux plans donnés peuvent étre employés pour obtenir
I’expression vectorielle du plan :

V = Ok + AN, + N (C.85)
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Comme le plan recherché est perpendiculaire a la fois aux deux plans donnés, ce plan est donc

. N . . ~ R .
perpendiculaire a leur intersection. Le vecteur Ny A Ny peut donc étre employé comme vecteur
normal au plan, permettant de retrouver directement 1’équation implicite du plan.
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Annexe D

Formulaire

Géomeétrie vectorielle

n

Norme d’un vecteur dans un repére orthonormé : ||@|| = Z a?
i=1
Vecteur unitaire paralléle a qd U=+ ng

Combinaison linéaire de deux vecteurs : @ =k -a@+1-b = c=Fk-a;+1-b

— — “
Produit scalaire : @ - b = ||| H b H cosf = Zaibi
=1

— =
Produit vectoriel : @ A b = ¢ = ||?|| = H?H H b H sin 6
EEX:
E} AN b = ay ag asz | = (agbg — agbg) U—>x + (&3[)1 — albg) ?T:Z + (a1b2 — agbl) ?7:
by by b3
Coniques

Forme implicite F(x,y) = az’+bry+cy?*+dr+ey+f = 0. Déterminant caractéristique A = b*—4ac
(A <0 :ellipse; A =0 : parabole; A > 0 : hyperbole).
Pour la réduction :
—sia#c 0= 0,5arctana%c;
—sia=c¢, 0 =m7/4
Forme réduite F(2'y') = d'2? + Vy? + 2/ +d'y + ¢ =0

ad = acos?f+bcosfsinh + csin® 6
¥ = asin?6 —bcosfsinh + ccos® b
d = dcosf + esinf

d = —dsinf +ecosf

e = f
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tangente et normale & une courbe

d
Tangente : y = ya, + (_y) (x — xg,)
dx Mo

Normale :y = ypy, — ﬁ (x — )
@),

dz
OF (z,y)
d —_—
— Forme implicite : d—i — _%;
y
dy
L ‘ dy B d_p '
— Forme paramétrique : o= dr
dp

Forme polaire dy  r'(0)sinf + r(0)cosd
o 1 L — = .
PORIKE : 2 = (@) cosf— r(@)sind

Points singuliers

Tangente & une courbe sous forme vectorielle :

Tt (to) # [if
? (A) = 7 (to) + )\ﬁ (to) avec§ p e N*

p est minimum

si p=1 on parle de point régulier, dans le cas contraire, le point est singulier.

Asymptotes

Asymptote horizontale lirin y(x) = a. Asymptote verticale lim y(x) = +oo.
r—+00 T—a

Asymptote oblique y = mz +p : m = lim @ ;p= lim [y(z) —mz].

T—+00 T—+00

Longueur

u 2 2 2 : " y(t) ’
s = [, ds avec ds® = dx? + dy?. Forme explicite : 1+ 5 dt
to

Forme polaire : § = /: \/(d’;—(j)y + (f(8))*-db;

(D.1)
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Courbure

;

d?y
-5 - 2
p Asso|As| |\ds),| 2\ 3/2
/ @)
() oy oror o (or
2 2
En équation implicite : % = ) Oz 8&%83; 8:1(; % 7 Oy \0u
F\* F\*
op O _on O
1_ Ot Ot2 0ot 0Ot?

En équation paramétrique : = =

GEO)

dr\?
2 2 -
1 ‘r + (d@)

d*r

—r—

do?

En équation polaire : = =

Géométrie spatiale

Distance entre un point (zg, Yo, 20) et un plan Az + By+Cz—D =0:

dr 2+ 9
o "

3
2

3
2

Matrice de transformation homogéne

Rotation autour des axes de coordonnées

10 0 0
0 cosf —sinf O
R(X,0) = 0 sinf cosf 0
00 0 1
R(Z,0) =

cos 0
sin 6
0
0

R(Y,6) =

—sinf 0
cos
0
0

o = O

_— o O O 1

cos 6

—sinf

|Azg + Byo + Czy — D|

O O = O

VA2 + B2+ (2

sin 6

cos 0

_ o O O

(D.2)

(D.3)
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Rotation autour d’un axe quelconque

Ip =

Translation

o O O

o O = O

o= OO
EEERERe

Symétrie orthogonale par rapport aux plans coordonnés

Roxy =

o O O+

O O = O

_ o O O

Roxz =

S O O

o = O O
_ o O O

Royz =

Symétrie orthogonale par rapport a4 un plan quelconque

Scaling

R.,=1-2-7

o o o=

o O > O
<

oO>=o o

T

_ o O O

o O O

S O = O

R(ﬁ,@) =1 +sinf-J, + (1 —cosh) - J?

O = OO

_ o O O

(D.4)

(D.5)

(D.6)

(D.8)
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Quadriques

Forme générale
F(z,y,2) = Av* + By> + C2* + 2Dxy +2Ex2 + 2Fyz + G + Hy + Iz + J =0 (D.9)

Forme réduite

F(z,y,2) =A2* + By + 022+ Do+ Ey+Fz:+G =0 (D.10)
Formes propres :
2 2
— Ulellipsoide F(z,y,z) = (v jd + (v = yc) + (2= 20) —1=0;
a b? c?
(z — xc)2 (y — yc)2 (z - 20)2
— P’hyperboloide a une nappe F(z,y,z) = 5 + 2 — 5 —1=0;
a c
(z — Ic)z (y — yc)2 (= — 20)2
— P’hyperboloide a deux nappes F(x,y, z) = 5 + — +1=0;
a b? c?
2 2
— le paraboloide hyperbolique F(x,y, z) = (@ 2350) — (y beC) —(z2—=20)=0;
a
2 2
— le paraboloide elliptique F(z,y,z) = ( :S) + y bzys) —(z—25)=0;
(2 —al‘s)Q (y — Z/s)2 (z — 25)2
— le cone a base elliptique F(z,y,z2) = 5 + — =0;
a b? c?

Figure D.2 — hyperboloide a Figure D.3 — hyperboloide a
une nappe. deux nappes.

(177
S5
S 5777

i

S

Figure D.4 — Paraboloide Figure D.5 — Paraboloide
hyperbolique. elliptique. Figure D.6 — Cone elliptique.

Surface de révolution autour de ’'axe z

F(y/2?2+y?,2)=0 (D.11)
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Paramétrisations classiques

Figure D.7 — Coordonnées sphériques. Figure D.8 — Coordonnées cylindriques.

Equation paramétrique des quadriques

Ellipsoide Hyperboloide a une nappe
T =2Zc+a-cosu - Ccosv r=2xc+a-coshu-cosv
Yy=19yc+0b-cosu-sinv y=1yc +b-coshu-sinv
z=2zc+c-sinu z2=2zc+c-sinhu

Paraboloide hyperbolique  Paraboloide elliptique
r=zxc+a-u T =25+ a-\/ucosv
y=vyc+b-v y=ys+b-y/usinv

z=z2c+c- (u* —v?) z=2zs+u

Géomeétrie différentielle de surfaces
Forme cartésienne

point singulier surface :

Hyperboloide a deux nappes
r=2xc+a-sinhu-cosv
Yy =19Yc +b-sinhu-sinv
z=zcxc-coshu

Cone a base elliptique
r=2xg+ a-ucosv
Yy=ys+b -usinv
Z=zZzg+cC-Uu

oF oF oF
— — — = D.12
<ax)P+ (ay>P+’(aZ>P ’ ( )
Plan tangent a une surface en un point régulier :
oF oF oF
(%)P (x —ap) + (8_y>P (y —yp) + (5) N (z—2p) = (D.13)
En forme explicite :
af af _
_(ax>P(x—xp)— (ay)P(y—yp)+(z—2p)— (D.14)

Forme vectorielle

Plan tangent :

O\

T (a,8) =V (Ap,pp) + - <i> +8- (%) (D.15)
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