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Abstract

Modern computer vision models achieve high accuracy when trained
on large-scale annotated datasets. In critical domains such as con-
struction safety monitoring, data collection is costly, hazardous, and
ethically constrained. This paper presents a systematic study com-
paring two complementary data generation paradigms, (1) Unity
Simulation-based rendering and (2) Controllable Diffusion-based
generation (CIA), for object detection under real data-scarce condi-
tions. A unified experimental framework enables controlled dataset
mixing across real, simulated, and generative sources, while main-
taining identical model and training settings. Quantitative evalua-
tion using Precision, Recall, mAP, and custom A-metrics, reveals
that neither simulation nor generative augmentation alone achieves
optimal transferability. Unity-only training yields an mAP@0.5
drop of —50% relative to real data, while CIA-only training shows
a milder —16.5% degradation. Hybrid compositions significantly
improve performance, with the 90% real + 10% Unity configura-
tion achieving the best overall mAP@0.5 of 62.68% (+7.64% over
baseline), and the 90% real + 10% CIA configuration maximizing
precision at 74.45%. Results demonstrate that limited synthetic inclu-
sion enhances generalization, while excessive substitution induces
domain drift.

CCS Concepts

« Computing methodologies — Object detection; Scene un-
derstanding; Supervised learning; Simulation environments.
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1 Introduction

Modern deep object detectors such as YOLO [16] achieve remark-
able accuracy when trained on large-scale datasets. However, in
industrial or safety critical contexts (e.g., construction sites or rail-
way environments) obtaining labeled data is logistically difficult,
costly, and often unsafe [9]. Scenes are dynamic, lighting varies,
and safety incidents cannot ethically be staged for data capture.
Consequently, these systems are limited by data scarcity rather
than by model capacity.

Data scarcity prompted a wide spectrum of strategies aimed at
reducing reliance on large annotated datasets. few-shot [18, 22] and
zero-shot learning [15], exploit transfer learning and language—vision
alignment to generalize from limited examples. Semi-supervised and
self-supervised approaches [10] leverage unlabeled data to learn
robust feature representations. Domain adaptation [20] aligns dis-
tributions between source and target domains to mitigate the so
called sim-to-real gap.

(1) Simulation-based data generation, where game/virtual
environments platforms render photorealistic and precisely
annotated scenes with controllable geometry, lighting, and
occlusion patterns. Popular platforms include Unity [6, 21],
Unreal Engine [5], or the more research focused CARLA [4].
Generative data augmentation, where modern diffusion
models such as Stable Diffusion [17] or ControlNet [25] syn-
thesize realistic visual variations conditioned on structure,
pose, semantics, etc.

The recently introduced Controllable Image Augmentation (CIA)
framework [2] unifies and standardizes the second paradigm. This
is done by offering modular stages for control condition extrac-
tion, conditioned diffusion-based generation, image quality filtering,
dataset integration, and parallelized model training.
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Figure 1: Overview of the proposed hybrid data pipeline. CIA generates photorealistic augmentations from real images using
Diffusion, while Unity3D renders synthetic scenes with automatic annotations. The fused dataset D,,,;x balances realism and
diversity, reducing the sim-to-real gap, and improving model robustness.

Despite their popularity, these paradigms have not been system-
atically compared under controlled conditions, nor studied jointly
in a real-world object detection task. This work fills that gap by
making the following key contributions:

(1) We present a benchmarking between Unity-based simulation
and diffusion-based augmentation (CIA) for object detection,
under controlled data volume and model settings.

(2) We quantify the separate and combined impact of differ-
ent real, simulated, and generated data, on detection perfor-
mance across multiple dataset mixtures. That is done through
a joint analysis of simulation domain gap, generative bias,
and dataset composition synergy.

(3) We provide a unified, reproducible pipeline built entirely
with open-source tools, designed for broader adoption in
industrial and academic contexts where synthetic and gen-
erative data must be jointly leveraged.

2 Related Work

Synthetic rendering has been adopted for vision tasks training, due
to its controllability, cost-efficiency, and ability to simulate rare
objects or scenarios. CARLA for example, published by Dosovit-
skiy et al. (2014) [4], enabled simulation based autonomous vehicle
training and research when real world data capture was dangerous.
Zhang et al. (2016) [26] systematically studied synthetic rendering
for indoor scene understanding, generating 500K synthetic images
from 45K realistic 3D scenes. They showed that more realistic ren-
dering improves performance on tasks like semantic segmentation
and surface normal prediction.

Many game engines such as Unity3D, offer the ability to develop
community plugins. In addition to providing an asset stores where
plugins ca be published and sold. Borkman et al. (2021) [3] published
the Unity Perception plugin, which provides a modular framework
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for large-scale synthetic dataset generation with automatic ground-
truth annotations. It is able to generate object bounding boxes,
instance segmentation masks, depth maps, and keypoints. The
toolkit integrates domain randomization capabilities.

Domain randomization [19] improves transferability by deliber-
ately varying visual factors such as lighting, textures, object colors,
camera poses, and backgrounds during rendering. It forces models
to rely on invariant structural cues rather than low-level appear-
ance statistics. Hence, this strategy reduces overfitting to specific
synthetic textures and narrows the sim-to-real gap.

Despite these advances, purely randomized rendering often fails
to reproduce the complex photometric and material properties of
real environments. For example, global illumination effects, fine-
grained surface roughness, or realistic motion blur. As a result,
models trained solely on domain randomized synthetic data typi-
cally under-perform when evaluated on real world imagery [1]. This
limitation motivates hybrid approaches that integrate physically
grounded simulation with data-driven generative augmentation,
as explored in this work through the combination of Unity-based
rendering and diffusion-based synthesis.

Diffusion models [7, 17] and ControlNet [25] have revolutionized
controllable image generation, enabling generative conditioning on
edges, poses, or semantic maps. Thus, allowing task specific syn-
thesis. CIA [2] leverages diffusion models for data augmentation
via extraction of structural features and conditions, controlled syn-
thesis, and quality filtering. This type of augmentation has proven
effective, but pretrained diffusion models can introduce semantic
bias from internet scale training corpora [11, 13, 24].

Bridging the sim-to-real gap has been a longstanding challenge [12,
19]. Recent data-centric Al paradigms [8] emphasize dataset quality,
balance, and representativeness over model complexity. Our work
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aligns with this direction by empirically quantifying how synthetic
and generative data affect generalization in real-world evaluation.

3 Methodology

We aim to systematically analyze how synthetic simulation and
generative diffusion, influence object detection robustness under
data-scarce industrial scenarios.

The proposed pipeline, illustrated in Figure 1, is divided into four
components. (1) Controllable Diffusion-based (CIA) data generation,
(2) Unity Simulation-based data generation, (3) dataset composition
and balancing, and (4) Model training and evaluation.

3.1 Data Baseline and Augmentation Strategies

Let Dyeq1 denote the real baseline dataset, consisting of RGB images
I;, and their corresponding labels y; (object class and bounding box
annotations). This dataset represents the operational target domain
but is inherently limited in scale and variability.

Dreal = {is yi)}ﬁ\il (1)

In Diffusion-based augmentation, the Controllable Image
Augmentation (CIA) framework [2] enhances data diversity by gen-
erating photorealistic variants of existing samples while preserving
their structural semantics.

Given an image [; € Dy, a configurable encoder & extracts
structural control features. F; can represent edge maps, depth pro-
jections, or semantic segmentation masks depending on the selected
control mode.

Fi = &I, ()

A controlled diffusion generator G (e.g., Stable Diffusion [17]
augmented with ControlNet [25]) is conditioned on F; and a textual
prompt C to synthesize a new image I;.

I = G(F;,0). ®3)

The generated image I; inherits the annotation y; from its real
counterpart I;, yielding the diffusion-augmented dataset.

Deia = {T y1) Y. )

To ensure photometric realism and semantic fidelity, each gener-
ated image is evaluated through a composite quality control function
q(I;), where different metrics like FID, NIMA and CLIP ensure high-
quality, label-consistent augmentation.

This process results in a generative dataset D, that comple-
ments Dy, by expanding its visual diversity while maintaining
semantic alignment with real-world conditions.

In Unity-based simulation augmentation, synthetic datasets
are procedurally generated using the Unity Perception toolkit [3].
Each sample is produced by rendering a fully controllable 3D envi-
ronment with randomized parameters governing lighting, camera
pose, surface materials, and object placement, following the domain
randomization principle [19]. This approach enables systematic ex-
ploration of geometric and photometric variations that are difficult
or unsafe to capture in the real world. Formally, the simulated
dataset is defined as Dypjty where each I}.‘ represents a rendered
RGB image and y}‘ its corresponding ground-truth label set (object
bounding boxes, segmentation masks, and class identifiers). All
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annotations are automatically generated at render time through the
Unity Perception API, eliminating manual labeling cost and errors.

Dunity = {1, y)H, )

Unity provides fine-grained control over environmental parame-
ters 0, = {illumination, materials, occlusion, camera pose, scene
layout, etc} allowing domain randomization across a high dimen-
sional visual parameter space. By varying 60, across render iter-
ations, the simulator yields a diverse, densely annotated dataset
that enhances geometric and contextual coverage. However, despite
this controllability, synthetic images often diverge from real-world
visual statistics. This is due to limited photometric realism. For ex-
ample, global illumination, micro-texture, and noise characteristics
are hard to reproduce.

This discrepancy constitutes the well-known simulation-to-reality
(sim-to-real) gap, which can impair generalization when models
trained on Dyyity are evaluated on Dy, To mitigate this gap,
the subsequent CIA-based generative augmentation stage injects
learned visual priors from real imagery. Hence, blending the strengths
of procedural-based simulation with the strengths of diffusion-
based realism.

To compose balanced datasets mixes, we consider a real
dataset Dyey) of N labeled samples. We also consider a Unity-
rendered dataset Dypity and CIA-augmented dataset De;,. Since
each CIA-generated image I; originates from a real sample I; through
a one-to-one generation strategy (Eq. 3), all datasets should share
identical cardinality.

|Dreall = |Dunity| = |Deial = N. (6)

To study how the substitution of real images with synthetic or
generative ones affects model robustness, we construct a mixed
dataset Dyyix by replacing a proportion of Dy, with samples from
Dhunity and Dej,. Formally, the dataset mixture is parameterized by
ratios (a, f, y) such that :

Dmix (4, B, y) = & Dyeq U ﬁDunity Uy Dejas a+p+y=1. (7)

This formulation enables isolating the individual and joint ef-
fects of simulation and diffusion on generalization, under identical
training volumes. In practice, we evaluate configurations such as
(1,0,0), (0,1,0), (0,0, 1), and mixes like (0.8, 0.15,0.05) to quantify
trade-offs between realism, diversity, and performance.

3.2 Model Training and Evaluation Metrics

All experiments employ a consistent detection architecture My
trained under identical optimization and scheduling conditions to
ensure that performance variations stem solely from data compo-
sition. All trained models are evaluated on a held-out real-world
test set Dﬁzi ensuring that no synthetic or generative images are
seen during evaluation. Performance is reported in terms of mean
Average Precision (mAP), Precision, and Recall. For consistency, all
metrics are computed at IoU thresholds of 0.5 and 0.5:0.95 following
COCO evaluation standards.

To quantify the influence of dataset origin on detection robust-
ness, we define two comparative metrics that characterize the rel-
ative performance gap between real, simulated, and generative
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data :
Asim—real (@, f) = MAP(Dpix(a, B,0)) = mAP(Dyeq)),
Agen—»real(aa ¥) = mAP(Dpix (a, 0, 7)) — mAP(Dreq))

®
©

Agim—sreal quantifies the simulation domain gap, reflecting the
loss in realism induced by photometric, geometric, and material
discrepancies, between Unity-rendered and real images. Agen—real
captures the generative bias introduced by Diffusion-based aug-
mentation, encompassing both the visual realism and the semantic
priors inherited from pretrained generative models.

Together, these ratio-dependent metrics form a rigorous frame-
work for assessing how simulation and generative synthesis con-
tribute to real-world object detection robustness.

In summary, our methodology provides a reproducible protocol
for isolating and quantifying the effects of data origin. By con-
trolling data mixture ratios, and maintaining identical training
pipelines, we explicitly measure the trade-off between realism, con-
trollability, and semantic bias. Thus, yielding actionable insights for
data centric model design in computer vision applications.

4 Experimental Setup

All experiments are conducted on the MOCS dataset [23], a con-
struction site dataset designed for safety and activity monitoring. It
contains diverse outdoor scenes with workers, helmets, machinery,
and equipment. These scenes were captured under varying illumi-
nation, occlusion, and weather conditions. Each image is annotated
with bounding boxes and class identifiers corresponding to safety
related entities (e.g. helmet). The real subset Dy, used in this study
contains N = 3000 labeled images sampled to maximize contextual
diversity across recording conditions.

To complement real data, a synthetic dataset Dypity was gen-
erated using the Unity game engine. The simulated environment
replicates a construction site populated with human avatars, cranes,
and vehicles, rendered with physically based textures [14]. Random-
ization was applied to environmental parameters 6,,. Each rendered
frame automatically includes 2D bounding boxes, instance masks,
and class annotations exported by the Unity Perception API. The
resulting dataset maintains parity in size with Dy, to ensure bal-
anced comparison.

The generative dataset D, was produced using the Controllable
Image Augmentation (CIA) framework using the canny edge extrac-
tion method, which was shown to produce the most improvement
in model performance, out of all the extractor-generator couples
introduced in the original paper.

As aresult, we produced three datasets where | Dyeal | = |Dunity| =
[Deial = N. Qualitative examples of Unity-rendered, CIA-generated,
and real-world samples are shown in Figure 2. We used a test dataset
of 300 real images for evaluation.

Training and evaluation were performed using YOLOv11n!. All
experiments ran on Google Colab Pro environments with NVIDIA
L4 GPUs, Python 3.10, and PyTorch 2.3. Each model was trained
for 20 epochs with a batch size of 64, image resolution of 640x640.
Adam was used for optimization, with a learning rate @ = 1 x 1073
and cosine decay scheduling. Standard data augmentations (flips,

I The Ultralytics v8.3 implementation of YOLOv11 was used for experimentation
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scaling, hue-saturation jitter) were applied identically across all
runs.

Real

CIA

Unity

Figure 2: Representative samples from the three dataset
sources used in this study. Top: real construction-site images
from MOCS. Middle: CIA-generated variants using diffusion-
based controllable augmentation. Bottom: Unity-rendered
synthetic scenes produced through domain randomization.

For each experiment, a mixed dataset Dyp,;y was constructed,
varying the ratios of real, synthetic, and generative data. Evaluated
configurations included both pure and hybrid compositions such
as (1,0,0), (0,1,0), (0,0,1), (0.75,0.25,0), (0.33,0.33,0.33), etc. All
models were tested on a held-out real validation set Z);‘::& unseen
during training.

Performance is reported using mean Average Precision (mAP) at
ToU thresholds 0.5 (mAP@0.5) and 0.5:0.95 (mAP@0.5:0.95), along
with Precision, Recall, and Fitness. To quantify the influence of
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data composition, the metrics Agim—real and Agen—sreal (Eqs. 8-9)
are computed for all configurations, capturing how simulation and
diffusion influence generalization performance on real-world test
data.

5 Results

Table 1 reports the detection performance across all dataset compo-
sitions. The 100% real configuration (1, 0,0) serves as the baseline.
CIA-only (0, 1, 0) and Unity-only (0, 0, 1) variants isolate the effects
of generative and simulated data respectively. Intermediate mix-
tures quantify how controlled substitution of real samples affects
generalization when evaluated on Dﬁ:;}. The results confirm three
main observations:

(1) Simulation-only training suffers from severe domain mis-
match, yielding an mAP@0.5 drop of over 50% compared to
the real baseline.

ClIS °2025, November 21-23, 2025, Okayama, Japan

(2) Pure diffusion-based augmentation performs moderately bet-
ter, but remains below real-only training.

(3) Controlled hybrid ratios, particularly 90% real with 10% Unity
or CIA, achieve superior generalization, improving up to
+0.076 mAP@0.5 relative to the baseline.

A closer inspection of Table 1 reveals a consistent divergence
between precision-oriented and recall-oriented trends across the
two hybrid regimes. The Real-CIA mixtures exhibit the highest
precision values, peaking at 0.7445 for the 90%/10% configuration.
That is slightly above the 100% Real baseline at 0.7266. This indicates
that diffusion-based augmentation enhances the detector’s ability
to produce low False-Positive predictions.

Conversely, the Real-Unity mixtures outperform all other groups
in recall, mAP@0.5, mAP@0.5:0.95, and Fitness, reaching their peak
at the 90%/10% configuration. Overall, these complementary effects
underline the trade-off between precision-oriented realism (from
CIA) and recall-oriented diversity (from Unity).

Table 1: Comprehensive performance comparison across all dataset composition experiments. Each configuration reports
Precision, Recall, mAP@0.5, mAP@0.5:0.95, and Fitness, evaluated on a held-out real test set. Groups correspond to different
mixing regimes between Real, Unity-simulated, and CIA-generated data. Green-highlighted row indicates the best overall
result, while Blue-highlighted rows indicate the best results within each group. Purple-bordered cells mark the overall best

value per metric, across all configurations.

Group Real CIA Unity Precision Recall mAP@0.5 mAP@0.5:0.95 Fitness
Baselines
Real only 100 0 0 0.7266 0.4828 0.5504 0.3873 0.4036
CIA only 0 100 0 0.5923 0.3566 0.3851 0.2551 0.2681
Unity only 0 0 100 0.3004 0.0558 0.0447 0.0260 0.0279
Real-CIA Mixes
90 10 0 0.7445 0.5063 0.5792 0.4076 0.4248
75 25 0 0.6530 0.4591 0.4998 0.3345 0.3582
50 50 0 0.6543 0.4449 0.4940 0.3427 0.3578
25 75 0 0.6518 0.4584 0.4965 0.3342 0.3504
10 90 0 0.6423 0.4118 0.4567 0.3088 0.3236
Real-Unity Mixes
90 0 10 0.7400 0.5739 0.6268 0.4481 0.4660
75 0 25 0.5551 0.3811 0.4079 0.2766 0.2898
50 0 50 0.4876 0.3392 0.3354 0.2196 0.2312
25 0 75 0.3528 0.2206 0.1993 0.1214 0.1293
10 0 90 0.3527 0.2205 0.1993 0.1215 0.1293
Tri-Source Mixes
50 25 25 0.6192 0.4362 0.4712 0.3229 0.3377
33 33 33 0.6166 0.4333 0.4665 0.3201 0.3347
25 25 50 0.5997 0.3890 0.4282 0.2905 0.3043
CIA-Unity Mixes
0 90 10 0.5395 0.3523 0.3678 0.2455 0.2577
0 75 25 0.5202 0.3326 0.3569 0.2408 0.2524
0 50 50 0.5173 0.3141 0.3324 0.2217 0.2328
0 25 75 0.4385 0.2693 0.2705 0.1737 0.1834
0 10 90 0.3081 0.2087 0.1802 0.1086 0.1158
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Figure 3: Non-normalized confusion matrices with a shared color scale. Raw counts expose the dominant error mode
(FN—background) and the reduction achieved by small Unity/CIA mixes.

The qualitative results visualized in Figure 3 corroborate the
quantitative trends observed in Table 1. Because the MOCS dataset
is highly imbalanced, we report non-normalized matrices to pre-
serve the true distribution of errors. The 100% Real baseline (Fig-
ure 3a) exhibits a strong diagonal across frequent classes (Worker,
Static crane, Excavator), with most residual errors corresponding to
false negatives assigned to the background.

In contrast, the 100% Unity model (Figure 3c) collapses toward
background predictions, revealing severe domain shift and explain-
ing its sharp mAP degradation. The 100% CIA configuration (Fig-
ure 3b) retains photometric realism, but shows weaker diagonal-
ity on structural and spatially complex classes, reflecting limited

geometric variability. Introducing a limited amount of synthetic
data restores class-specific diagonality. CIA mixing (Figure 3d) sup-
presses off-diagonal confusions between visually similar categories.
Hence, leading to higher precision. Unity mixing Figure 3e visibly
strengthens the main diagonal, by increasing true positives, even
though the off-diagonal mass remains.

To quantify domain and generative effects independently of ab-
solute scores, Figure 4 summarizes the relative A metrics as defined
in Egs. 8-9. Positive values indicate performance improvement over
the real-only baseline, while negative values denote degradation.

We notice that both A —sreal and Agen—sreal follow an inverted-
U trend. Moderate substitution (10%) yields positive gains, while
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A sim-real (Unity mix)
A gen-real (CIA mix)
Baseline (Real-only mAP@0.5:0.95 = 0.387)

)

10 25
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75 90 100

Synthetic / Generative proportion (%)

Figure 4: Comparison of Ag,_,rea1 and Agen—sreal aCross increasing synthetic data ratios

higher proportions cause overfitting. This behavior empirically val-
idates the controlled augmentation hypothesis which states that
synthetic data is beneficial only when constrained to limited ratios.
the Agen—real curve decays more slowly than Agy-real, indicat-
ing that CIA-based generative data maintains transferability under
higher substitution ratios. In contrast, Unity-rendered data exhibits
faster degradation, reflecting stronger domain divergence as syn-
thetic content increases.

6 Discussion

The results presented in Table 1 and Figure 4 reveal a nuanced
interplay between dataset realism, diversity, and controllability in
shaping generalization performance. Neither purely synthetic nor
purely generative augmentation alone achieves optimal transfer-
ability. 10% CIA substitution insures the highest precision, while
10% Unity based substitution insures the highest recall. This pre-
cision-recall asymmetry is visually supported by the confusion
matrices (Figure 3).

The degradation observed for the Unity-only configuration (a
drop of over 50% in mAP@0.5:0.95 relative to the real baseline)
reflects the well-documented simulation-to-reality gap. Despite ex-
tensive domain randomization, Unity-rendered scenes diverge from
real photometric distributions. Global illumination, specular reflec-
tions, and fine-grained textures remain simplified. This induces a
representational bias where detectors overfit to synthetic regular-
ities, such as unrealistic sharp edges. Nonetheless, introducing a
limited fraction of simulated samples (10%) substantially improves
recall and overall mAP. This improvement indicates that simulated
data acts as a diversity regularizer. It plays a role in expanding geo-
metric coverage and reducing overfitting to the narrow appearance
manifold of the real subset.
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The CIA-only configuration exhibits a milder degradation, con-
firming that diffusion-based augmentation better preserves real-
world statistics. Diffusion models inherit strong natural priors from
large-scale image corpora. This knowledge allows for realistic illu-
mination and texture reproduction. Hence, explaining the higher
precision in Real-CIA mixtures. Particularly at 90%/10% ratios,
where the model achieves the lowest recorded false-positive rate.
The improvement suggests that CIA reinforces the photometric
discriminability of the detector. However, recall remains compara-
tively limited, implying that generative augmentation introduces
less geometric diversity. Diffusion-based synthesis primarily per-
turbs textures and lighting while maintaining similar spatial layouts,
leading to photometric realism but limited structural novelty. More-
over, pretrained diffusion models can embed latent semantic biases
from their internet-scale training corpora. Thus, favoring familiar
object configurations and backgrounds over rare domain specific
contexts.

The superior performance of the 90% Real + 10% Unity con-
figuration demonstrates that a small synthetic contribution can
enhance generalization without overwhelming the real data distri-
bution. This composition combines Unity’s geometric variability
with the contextual grounding of real data, offering complementary
bias compensation. Yet, as mixing ratios increase, the divergence
between simulation and reality grows, ultimately harming con-
vergence and stability. Interestingly, tri-source compositions (e.g.,
50/25/25) perform worse than their dual counterparts, suggesting
that mixing simulation and generative domains simultaneously can
introduce conflicting statistical cues. While Unity images broaden
geometric space, CIA images densify photometric space. Excessive
blending of both may confuse the model’s internal domain bound-
aries, leading to representational interference. These observations
imply that hybrid training could benefit from progressive curriculum
mixing. This is done starting with simulation-heavy training for
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structural generalization. Then, gradually transitioning toward CIA
and real data for photometric alignment.

Aggregating Agim sreal and Agen—sreal across all configurations
highlights distinct decay patterns. Generative data maintains posi-
tive deltas for broader substitution ratios, whereas simulated data
exhibits faster degradation. From a bias-variance perspective,
Unity samples introduce high-variance perturbations that
initially aid generalization, but quickly destabilize learning
when the variance exceeds the model’s tolerance. CIA on
the other hand induces low-variance, low-bias perturbations.
Thus, maintaining domain alignment longer, albeit with lim-
ited geometric expansion. This asymmetry underscores the com-
plementary nature of both data sources. Simulation drives diversity,
while generative diffusion drives realism. Their joint utility lies in
controlled proportionality, not volume.

Several avenues exist to further understand and enhance these ef-
fects. Feature-level analysis could reveal which network layers ben-
efit most from each modality. As a result, distinguishing whether im-
provements occur at low-level edge encoding or high-level semantic
abstraction. Evaluating models on out-of-domain real datasets (e.g.,
construction sites under novel lighting, culture, geography, etc.)
would test whether the observed gains extend beyond intra-domain
realism. Adaptive data selection strategies could also be explored,
where Unity and CIA samples are dynamically sampled according
to model uncertainty or feature-space coverage. Finally, integrating
domain adaptation objectives such as adversarial feature alignment,
or perceptual loss minimization, could mitigate residual distribu-
tional drift between mixed domains and the target real domain.

7 Conclusion

In conclusion, this study provides a principled framework for quanti-
fying the relative contributions of simulated and generative data, in
real-world object detection. The empirical results demonstrate that
small, well-calibrated proportions of synthetic or generative data,
can significantly enhance generalization. On the other hand, ex-
cessive inclusion induces domain drift. Unity data offers geometric
variability, CIA offers photometric fidelity, and Real data provides
semantic grounding. Their optimal combination maximizes perfor-
mance without compromising realism. Future work will explore
adaptive mixing schedules and cross-domain fine-tuning strategies,
to dynamically balance these complementary effects. Grounding
dataset composition in quantitative A metrics enables systematic,
data-driven evaluation of how synthetic and generative sources
influence model robustness and generalization.
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