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Summary

Context Animal cell cultures are targeted at the production of biopharma-
ceutical products such as vaccines (eg. rotarix, polio, smallpox), recombinant
proteins and antibodies (eg., monoclonal antibodies, interferon-γ).

The complexity of these biomolecules is such that production through
common chemistry is difficult, if not impossible. These substances can, how-
ever, sometimes be synthesised by cells programmed (eg. by transfection) to
produce them, hence the common use of the name biologicals. Sometimes
this can be done using cells with a genetic information sufficiently close to
that of humans (eg. mammals). Animal cells are cells extracted typically from
tissues of organs of animals. For example, CHO (Chinese Hamster Ovary)
are the most commonly used mammalian cells in this field, being known for
their capacity to correctly fold and post-translationally modify recombinant
proteins compatible with humans (Kildegaard et al, 2013).

As these biopharmaceutical products have a growing demand, the quest
is on to seek better production processes in terms of quality, quantity and end
user price.

For process optimization and control, these cultures can be described by
mathematical models that estimate the evolution of the concentrations of
biomass (cells), the substrates they are fed with (eg. glucose and glutamine),
the product of interest and other metabolites they produce in the course of
the culture and which may affect (eg. inhibit) their own growth (eg. lactate,
ammonia). These models allow to predict culture behaviour and to study,
monitor and control different production scenarios.

Motivation This thesis focuses on a field where much is still to discover,
namely the study of cultures of animal cells, such as CHO, HEK or hybridoma,
in suspension, common in industrial production (Zhang, 2010). Thus, cul-
tures where the cells are suspended in a culture medium capable of providing
them with the substrates that they need in order to grow, multiply and even-
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Figure 1: Illustration of the general idea behind an animal cell culture.

tually synthesise bioproducts of interest, typically around body temperature
(37°C) inside a bioreactor.

More specifically, this thesis focuses on studying an interesting and still
largely unexplored production regime called continuous perfused since a
perfusion filter is placed in an outstream. This filter is meant to retain cells
inside a bioreactor while guaranteeing that some culture medium containing
the bioproduct can be taken out and sent to a purifying downstreaming unit.
This operation regime is thought for the operation of small volumes during a
long period of time (eg. one to six months) and is already used in industrial
practice (Boedeker, 2013; Chu and Robinson, 2001), particularly for cases
when one or more of the following factors occur (Drugmand, 2011):

• cell growth is somewhat slower than average;

• bioproduct production is not completely growth-associated;

• the bioproduct stability is somewhat limited and, therefore, it is best to
send it as fast as possible to the downstreaming purifying unit1;

• another component may degrade fast and, therefore, a production regime
with a slower residence time is preferable (ie. perfusion is a better choice
than fedbatch/batch);

• inhibition phenomena are important, and, for the same reason, a smaller
residency time is preferable;
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• there is limited space in the sterile production zone;

• initial investment is bugdet-limited2.

This thesis seeks also to address the question of a management of culture
medium that is more intelligent and less expensive, that could thus allow
to perform a more efficient culture where, for example, not a lot of unused
substrates would be detected in the outstream (a medium able to provide
nutrients in a dynamical manner in function of cell’s evolving needs, for
example). If the industrial production of these biologicals is improved, then
the end-user price of precision medicine such as this can, potentially, become
more sustainable and allow market access to innovative medicines to be
broader.

Thesis organisation and contribution This thesis is organised as follows.
Animal cell cultures are introduced in Chapter 1, with a presentation of

what a cell culture looks like in terms of the timecourse of concentrations of
components and how its behaviour can be captured in a snapshot, along with
a motivation for modeling.

Chapter 2 reviews approaches for modeling. The choice of unsegregated
macroscopic models, in the scope of this thesis, is stated and reasons for doing
so are presented. Briefly, this type of models presents a good compromise
between descriptive insight and simplicity for practical purposes.

Once a model structure is chosen, the values of the parameters of these
models still need, in real practice, to be identified. One of the major con-
tributions of this thesis is to be found in Chapter 3, where, first of all, the
identification problem is presented. Starting the procedure with a good ini-
tial guess for a large set of parameters represents a challenge. In order to
tackle this challenge, a procedure is proposed. It is a step-by-step identifica-
tion approach which gradually considers more detailed models. To exemplify
it, a very simple model is first identified for a limited subset of experimental
data. This allows to roughly determine the value of one parameter. The next
step considers more states and parameters and a still limited data subset.
Hence, it is more complex but, on the other hand, a good initial guess of

1This is the case eg. of recombinant plasma-based factor VIII (a clotting factor missing from the blood of
people with hemophilia A) produced in perfusion by Baxter Belgium and Bayer Healthcare.

2A smaller bioreactor is needed, in comparison to the high initial costs of a large fedbatch/batch bioreactor.
On the other hand, the perfusion operation requires a bigger investment on workers expertise.



6

one of the parameters is already roughly known. Other steps follow, with
increasing model complexity, where the identification algorithm has grad-
ually more and more knowledge about the initial guess for the parameter
set. In the end, the identification procedure is terminated whenever the user
decides that he accepts a particular model structure and is happy with both
its descriptive quality (fit to whole dataset) and its qualitative power (phe-
nomena such as limitation or inhibition that the model is robust enough to
account for). Chapter 3 also presents the rationale supporting the proposal of
this identification procedure. The inspiration came from an analysis of how
sensitive model states are when a value of a model parameter is changed.
A simulation case study using a well known animal cell culture model from
the literature is used to illustrate this in the beginning of the chapter. It is
then that real data from experimental campaigns performed at the University
of Mons is used to illustrate the step-by-step identification proposal in two
experimental practical case studies.

Once a model is identified and available for use in a real scenario, the ques-
tion of observability is then looked into. Chapter 4 illustrates how such type of
models can be used by sofware sensors (observers) that allow to estimate the
timecourse of concentrations not being measured in reality. More precisely,
in a practical scenario, the equipment available may not allow to measure all
the concentrations needed to solve the model. An observer will, however,
allow to estimate online how unmeasured concentrations evolve. This is
done given both the knowledge of the model and the information about the
variables being measured. The property dealing with this being mathemati-
cally possible is called observability. The most common approaches to study
this property may sometimes not be very helpful with this type of animal
cell culture models. In this chapter, a contribution on a manner of studying
the observability of animal cell culture models is also presented. It is based
on recent works of Moreno et al (2014) that address the indistinguishability
properties of the system.

Chapter 5 focuses on control, starting off with a study of a control scheme
already presented in the literature for a very simple biomass-substrate model
describing animal cell cultures in continuous perfused operation. Its adap-
tive backstepping control strategy is compared to one that can be achieved
by a nonlinear model predictive controller (NMPC). NMPC is found to be
a promising control strategy. Next, an illustration of how NMPC can be
applied to a model of higher complexity (5 to 7 states, such as the ones cho-
sen in the scope of this thesis) is shown3. Finally, the question of model
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choice is tackled: how complex should a model be in a continuous perfused
production scenario. Model-plant mismatch is studied in a case study with
different models identified for the same databank of interferon-γ producing
CHO-320 cell cultures performed at the University of Mons (and previously
listed in Chapter 3). The importance of having kinetics correctly captured is
highlighted.

Finally, a global round-up of the thesis contributions and some future
prospects are presented in Chapter 6.

3This study is further developed in Sbarciog et al (2013) with a study that addresses controller tuning and
robustness analysis.
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Nomenclature
Acronyms and abbreviations used (components)
AA Amino acids
Ala Alanine
Amm Ammonia
Arg Arginine
Asp Aspartic acid
Cys Cysteine
Glc Glucose
Gln Glutamine
Glu Glutamic acid
Gly Glycine
His Histidine
IFN − γ Interferon-gamma
Ile Isoleucine
Lac Lactate
Leu Leucine
Lys Lysine
MAb Monoclonal antibodies
Met Methionine
Phe Phenylalanine
Pro Proline
Prot Generic protein (product)
Ser Serine
Thr Threonine
Tyr Tyrosine
Val Valine
Xd Dead biomass
Xv Viable living biomass
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Acronyms and abbreviations used (others)
CHO Chinese hamster ovary (cells)
DMEM Dulbecco’s Modified Eagle Medium
EKF Extended Kalman filter
FBS Fetal bovine serum
FMI Fisher information matrix
GMP Good manufacturing practices
IgG Immunoglobulin G
IgM Immunoglobulin M
LB Lower bound
NMPC Nonlinear model predictive control
UB Upper bound
UMons University of Mons
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Variables
ai, j generic element of a matrix
Amm ammonium concentration
bi, j generic element of a matrix
ci logistic equation parameter
D dilution ratio
f (t) generic function
Fi flowrate
Glc glucose concentration
Gln glutamine concentration
J cost function
kSi limitation constant of substrate Si

kd,Pi limitation constant of product Pi

kPi inhibition constant of product Pi

Lac lactate concentration
MAb monoclonal antibodies concentration
mGlc specific cell maintenance rate for glucose
O observability matrix
p prediction horizon
Pi product i concentration
q observability map (in the observability chapter)
q prediction horizon (in the control chapter)
Qi j measurement covariance vector
Si substrate i concentration1

Sxi,θ j sensitivity of state xi to parameter θi

t time
t95% t-student value for a level of 95%
tpeak switch time between cell growth and cell death in batch
u j manipulated variable
V volume
Vi Lyapunov function
wi weighting factors of the cost function
x state variable
xmeas measured state variable
Xd dead cell concentration
Xv viable cell concentration
y(x) generic function
Ya/b b-to-a yield coefficient
zi homologue variables

1on subsection 2.1.2.6 on p.61 it is used for "Serum" instead of "Substrate"
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µg specific growth rate
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σ standard deviation
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Hi hypothesis i



Chapter 1

Introduction

Animal cell cultures are introduced in this chapter, with a
presentation of what a cell culture looks like in terms of

the timecourse of concentrations of components and how its
behaviour can be captured in a snapshot, along with a

motivation for modeling.

Models are of great importance in the study of better manners of performing
animal cell cultures. In order to establish a model some steps are necessary:

• Formulation of kinetic relations;

• Establishment of balances;

• Parameter identification (fitting);

• Model validation;

Through observation of dominant kinetic phenomena taking place, the
conversion of substrates into products and how they affect the evolution of
living cell concentration throughout a culture can be better understood. Cell
growth can typically be limited by some substrates, when they become scarce,
and by some products, when they build up excessively. Some substrate
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consumption can also be sometimes attributed not to cell growth but to cell
maintenance purposes.

This knowledge, coming partially from theoretical background and from
observation, is summed up into balance equations (mass balances: component-
wise and total). The values of the parameters present in these equations still
need to be identified, such that the model structure chosen fits well enough
with experimental data and provides a validated prediction performance in
different culture scenarios.

The purpose of suspending cells in a culture medium is in some way to
replicate the environment that they would naturally have before having been
extracted from the animal, such that they will stay alive for the duration of
the culture. Typical candidates for system states are, thus, the concentration
of the bioproduct excreted if one is produced (usually measured offline after
filtration), cell concentration (biomass), substrates consumed and metabolites
produced.

With regard to kinetics, typical states are, thus, the concentration of living
and dead biomass, major substrates such as glucose and glutamine, and
metabolites such as lactate and ammonia, aminoacids and the bioproduct.

According to the production regime chosen, the model also describes
fluid dynamics phenomena by considering variables such as the flowrates of
streams being fed or taken out of the bioreactor.

Figure 1.1: Layout according to operation regime.

Figure 1.1 shows different production regimes. When operating in batch
mode, besides the culture medium initially placed in the bioreactor where
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cells are inoculated, no stream is fed or taken out. Cell concentration grows
and, after some time, it decreases mostly because substrates become scarce
and/or some inhibiting metabolites have built up.

In fedbatch mode, cell growth is accompanied by an input of fresh medium,
such that the duration of the culture can be extended.

When an outstream is added, a continuous regime can be operated, gen-
erally with a smaller volume. In order to keep the culture volume constant,
the incoming flow equals the outgoing flow, with the constraint that cell con-
centration must at least be maintained (otherwise the biomass is washed out
of the bioreactor simply because medium renewal is too fast for the speed
with which biomass is actually growing).

Longer cultures are generally operated in continuous perfused regime.
In this case, the main outstream lets out all components apart from living
biomass that is kept inside by means of a perfusion filter. A small bleed
outstream allows a better control of the desired cell concentration.

Figure 1.2 provides an example of concentration profiles obtained for a
batch culture of CHO-S performed at the UMons. Biomass concentration
initially rises in an approximately exponential manner while the major sub-
strates glucose and glutamine are consumed. At a given moment around
t = 90h, glutamine is extinguished and biomass begins to decrease. While
cells were consuming glucose, they were also producing lactate. In parallel,
consumption of glutamine is associated with ammonia production.

Figure 1.3 shows how during the same culture several other species are
either consumed or produced, albeit in a smaller scale. Metabolic studies
often focus on finding out more insight about the role that these aminoacids
may have in a culture.
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Figure 1.2: CHO-S batch culture performed at the UMons cell laboratory:
concentrations of major components.

Figure 1.4 illustrates different ranges of variation regarding the concen-
trations of substrates and products in a culture. Those denominated major
substrates and metabolites have concentration ranges of several dozen mM
(here about 0-40mM for the pair glucose/lactate and 0-10mM for the pair glu-
tamine/ammonia). Minor scale components, such as the aminoacids depicted
in Figure 1.3, are typically detected below 3mM. For living cell concentration,
usual operation involves some millions per mL, depending mostly on if boost-
ers such as serum are present or not. Time-wise, a common batch duration
may be one or two weeks, a fedbatch may last a week longer, and continuous
or continuous perfused cultures may last some months (in theory, longer).
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Figure 1.3: CHO-S batch culture performed at the UMons cell culture labora-
tory: concentration of smaller-scale components.

Figure 1.4: CHO-S culture: different ranges of concentrations of components.
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Typically, cell concentration is estimated offline by sample counting under
the microscope using a colour indicator (trypan blue exclusion) in order to
distinguish between those living from dead. Major substrates and metabo-
lites can be measured offline by assay kits using a spectrophotometer. The
product of interest, the biopharmaceutical (eg. with concentrations between
0-100mg/L), can usually be measured offline with an ELISA kit.

1.1 Purpose of modelling

Models come both from biological prior knowledge and from observation
of reality. Biology proposes several possible reaction pathways taking place
inside a cell. This list can be quite extensive, with several hundred reactions
proposed, such as those described in Zamorano et al (2010) and Zamorano
(2012). Thus a choice to be made is the degree of complexity one wishes
to include while modeling. This leads to the consideration of the various
purposes of the model. One possible purpose is the description of a simple
data set planned for tasks such as prediction. Optimization, control and
monitoring can be others. The following subsections will provide illustrations
of these purposes.

1.1.1 Description and prediction

A model describing a data set such as in Figure 1.4 can be meant to simulate
hypothetical scenarios. For example, what would happen if the culture were
to be initiated with half the amount of glutamine present on the medium (in
this case, overall growth would be lower) or half as much (higher).

1.1.2 Optimization

Optimization is another motivation for modeling. For example, estimating
which particular operating conditions would correspond to the best value
for a certain criterion, such as the maximum biomass/product produced or
concentration attained.
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Figure 1.5: Model predictions and data for a CHO-S batch culture performed
at the UMons cell laboratory: concentrations of living cells (Xv), glucose
(Glc), lactate (Lac), glutamine (Gln), ammonia (Amm) and volume (V). On
top: use of the model for descriptive purposes. Bottom: use of the model for
prediction purposes (what would happen with half or twice that glutamine
medium concentration.)
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Figure 1.6 illustrates one such example: given about 2 weeks and around
2L of medium, examining which operation regime could seem more appeal-
ing.1

Figure 1.6: Model predictions: concentrations of living cells (Xv), glucose
(Glc), lactate (Lac), glutamine (Gln), ammonia (Amm), monoclonal antibodies
(MAb) and volume (V). Model used: de Tremblay et al (1992), 15-day time
window comparison.

One could place the medium inside a bioreactor, inoculate it with cells
and perform a batch, obtaining the orange profiles and, after 2 weeks, hav-
ing collected 135g of antibodies for 1.8L of medium used. One could also
consider using the available medium for a fedbatch where 200mL are gradu-

1Values used in the simulation: V0 = 200mL for batch, [V0 FIN]T = [200mL 100mL/d]T for
fedbatch, [V0 FIN Fbleed]T = [200mL 100mL/d 100mL/d]T for continuous, [V0 FIN Fbleed Fper f ]T =
[200mL 100mL/d 10mL/d 90mL/d]T for continuous perfused considering the nomenclature used in Fig. 1.1
on p. 31.
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ally supplemented with additional medium as cells start growing. The total
amount of antibodies collected would be 285g, for 1.7L of medium used. A
pure continuous regime would lead to 181g collected, and if a perfusion filter
were to be placed, a bigger quantity would be obtained: 429g.

In this example, the model was used for insight for the early choice of the
operation regime to implement in the future.

1.1.3 Monitoring and control

Thirdly, another example of a motivation for modeling relates to its use for
control and monitoring of the system. Let us consider that at a given mo-
ment the desired setpoint for biomass concentration in a continuous perfused
culture needs to be changed while keeping the substrate concentration un-
changed. In Saraiva et al (2010) the model presented in Deschenes et al
(2006b) was used with this goal. A model predictive controller was imple-
mented as in Santos et al (2010, 2012) and proposed a set of manipulations in
the inflow and outflow rates such that the setpoint concentrations of biomass
and substrate would be attained, as can be seen in Figure 1.7.

1.2 Aspects of animal cell behaviour

As mentioned previously, biology lists an incredible number of possible reac-
tion pathways taking place in a cell or a bacteria. Figure 1.8 is an illustration
of how intricate this network can be. In the case of CHO cell metabolism,
for example, Zamorano (2012) considers around 100 intracellular reactions.
Nevertheless, global metabolism can be significantly simplified for modeling
purposes. Figure 1.9 presents an abridged overview of the metabolism of
animal cells.
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Figure 1.7: Model predictive controller set on a constant volume continuous
perfused culture: setpoint and measured concentrations for biomass and
substrate, manipulations of inflow rate Fin and outflow rate F1. Source:
Saraiva et al (2010). Model used: Deschenes et al (2006b).
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Figure 1.8: Metabolic pathways for Bacillus anthracis (strain A0248). Source:
Kyoto Encyclopedia of Genes and Genomes (KEGG) Database.

Figure 1.9: General simplified metabolism of animal cells. Adapted from Batt
and Kompala (1989).

Concerning substrates, at least two are vital. One is usually glucose, a
carbon source, entering the cell and following five types of pathways: pentose
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pathway, lipid formation, lactate, amino acids and Krebs cycle. Another vital
substrate is a source of nitrogen, typically glutamine, which contributes to
the formation of amino acids nucleotides, proteins and lipids.

A particular feature of animal cells in comparison to microorganisms
such as bacteria and yeast is the fact that, because, from an evolutionary
perspective, they are not autonomous living beings, they are not able to
produce all the amino acids that they need. These must then necessarily be
fed through the culture medium.

1.2.1 Glucose

Regarding glucose consumption, it is known that the rate of glycolysis is
usually much faster than the rate of utilisation of glycolytic intermediates.
Therefore, most glucose is metabolised to lactate, a product that may inhibit
cell growth (Batt and Kompala, 1989; Glacken et al, 1986; Kovacevic et al,
1991; Ljunggren and Lena, 1992; Miller et al, 1988a; Reitzer et al, 1979; Zielke
et al, 1976).

This seems to indicate that a state of overflow is happening frequently
during cell cultures, ie, the incomplete oxidation under aerobic conditions
of an abundant energy source resulting in the excretion of often inhibitory
metabolic byproducts. Since glucose is a cheap substrate, one would then
question the risks of the associated lactate production being inhibitory to cell
growth. Miller et al (1988a) state that lactate is less inhibitory than ammonia
to cells at constant pH. They add that human hybridoma in batch culture have
been found not to be affected by the addition of 4.9mM lactate, and that no
lactate inhibition was detected at 40mM. A mouse hybridoma line has been
found to suffer no inhibition from added lactate up to 22mM but to suffer
from it above 28mM. Critical levels for myeloma cell growth inhibition have
been indicated to be 40mM for lactate by Simpson et al (1998) and Zhou et al
(2006). Researchers like Provost et al (2006) and Ljunggren and Lena (1994)
observed that produced lactate can be reconsumed by cells when glucose is
extinguished.

The scale of phenomena such as lactate inhibition varies from cell line
to cell line. But globally, it seems that levels above 40mM lactate can be
undesired. In reality this seldom happens in cultures. Additionally, it seems
also that lactate can provide an in extremis carbon source if needed.
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1.2.2 Glutamine

Glutamine, the more common nitrogen source in the medium, is also subject
to overflow. In this case, leading to the formation of ammonia (and eventually
also some extra lactate and amino acids such as alanine, proline, aspartic acid,
glutamic acid, serine and glycine) as described by several authors (Amribt,
2014; Batt and Kompala, 1989; Glacken et al, 1986; Kovacevic et al, 1991; Lee
et al, 2003; Ljunggren and Lena, 1992; Miller et al, 1988a; Reitzer et al, 1979;
Zielke et al, 1976).

In fact, glutamine is usually added to the medium just before starting the
culture since it is an unstable molecule that degrades spontaneously, par-
ticularly at culture temperature (37°C). Some authors have estimated this
spontaneous decomposition to be as high as 11% per day at room tempera-
ture.

In most batch cultures, glutamine is the first major substrate extinguish-
ing and triggering cell death. Fedbatchs extend culture time by sporadic
supplement of glutamine concentrate.

Since glutamine is a more expensive substrate and more delicate to store
than glucose, one can then ask how risky this inhibition effect of cell growth
can be. Miller et al (1988b) state that the inhibitory ammonia concentration
varies substantially among types of animal cell lines and it depends also
on whether serum is used. They report ammonia inhibition at 5mM for
human hybridoma in batch. Other authors indicate the same concentration
(Simpson et al, 1998; Zhou et al, 2006). Indeed, ammonia can easily reach
a 5mM concentration in common batch and fedbatch cultures. It is thus an
important metabolic aspect to consider while modeling.

1.2.3 Amino acids

Amino acids, present on a smaller scale, can be divided into 3 categories. Non-
essential are those that cells can synthesise, while conditionally essential are
those that may be produced in certain circumstances (for example, CHO used
in Provost (2006) have been programmed to produce a protein, and during
the transfection, the cell line became auxotrophic with respect to proline,
ie. lost the proline production path and became dependant on its external
supply (Zamorano et al, 2009). Finally, essential amino acids are those that
cells cannot produce and must thus forcibly be present in the culture medium.
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1.2.4 Snapshot

On the whole, essential phenomena for modeling can be captured by the
snapshot provided in Figure 1.10.

Figure 1.10: Snapshot of global cell metabolism. Adapted from Ghoul et al
(1991)

It can be said that cell growth is associated with the presence of substrates
glucose, glutamine and serum or other growth factors1. Cell death is mostly
connected to the presence of ammonia, lactate and lack of glutamine. It is
known that glucose can partially be used, not for growth purposes, but for cell
maintenance purposes. It is also known that glutamine decomposes spon-
taneously. The production of the biopharmaceutical product can be, in part,
growth-associated and, in part, non-growth-associated (dos Reis Castilho,
2008).

1More information about the composition of serum and other growth factors and the rationale for avoiding
their use in the production of biologicals is given in Brunner et al (2010), for example. A more recent scientific
discussion is to be seen in EMA (2013). The European GMP guidelines are provided in Eudralex (2003).



Chapter 2

Modeling

This chapter reviews approaches for modeling. The choice of
unsegregated macroscopic models, in the scope of this thesis,
is stated and reasons for doing so are presented. Briefly, this

type of models presents a good compromise between descriptive
insight and simplicity for practical purposes.

A large variety of modeling approaches can be categorised into four types
as shown in Figure 2.1. Non-segregated unstructured models are the most
simple since they suppose that all cells are equal to an average cell which
processes extracellular components measured in the surrounding medium.
Another class, non-segregated structured models, hypothesizes a network of
reaction pathways inside the cell relaying products and substrates measured
outside. Furthermore, if instead of an average cell, a population of different
cells is considered, then an additional layer of complexity is gained. This is
the case of models considering cells in different phases of their life cycle.

In the following subsections, some examples will be given.

2.1 Non-segregated unstructured models

These are macroscopic models since they account for more abundant sub-
strates and products measured outside the cell. Typically, measurements are
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Figure 2.1: Classification of modeling approaches. Adapted from Fredrickson
et al (1970) and Bailey (1998).

made outline and samples analysed with enzymatic kits or an HPLC/UPLC
with a PDA/ELSD detector.

2.1.1 Logistic equations

In this model class, probably one of the most simple modeling approaches
are logistic equations, whose inspiration comes from differential equations
developed for population models. In what concerns animal cell cultures, the
literature commonly proposes, not equations for the derivatives, but rather
equations that directly and explicitly express concentrations over time.

It is very simple to fit these equations into a data set. For example, Figure
2.2 shows a quick fit of ammonia from culture data obtained at the UMons,
and the values found for logistic equation (2.1).
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
f (t) = c1 +

c2

c3 + c4e−c5t

{c1; c2; c3; c4; c5} = {−2.22; 10; 1; 3.5; 0.02}
(2.1)

Goudar et al (2005a) propose a four-parameter generalized logistic equa-
tion that can be used to describe three types of concentration variables: cell
concentration, substrate consumption and product formation. We have il-
lustrated it with generic profiles in Figure 2.2 generated with values in eq.
(2.2).



f (t) =
1

c1et/c2 + c3e−t/c4

{c1; c2; c3; c4} = {0.01; 1; 0.01; 1000} for biomass
or = {0.1; 1; 0.1; 1} for substrate
or = {0.1; 1000; 10; 1} for product

(2.2)

Figure 2.2: Modeling culture data with logistic equations. Top: fit to ammonia
data for a culture performed at UMons. Bottom: qualitative examples of
profiles generated for biomass, substrate and product.

These very simple equations for batches can be easily analytically differ-
entiated and integrated even if the available multitude of possible shapes
with exponentials may lack some biological meaning.
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More recently, asymmetric logistic equations (ALE) have been proposed
in order to correctly explain the asymmetric evolution of cell concentration
and substrate consumption for a batch (Goudar et al, 2005a,b, 2007). For
example:

Xv(t) = c1 + c2e−
t+c3 ln c4−c5

c3

(
1 + e−

t+c3 ln c4−c5
c3

)−c4−1
c−c4

4 + (c4 + 1)c4+1 (2.3)

S(t) = c6 +
c71 + e

(
− t−c8 ln(21/c9−1)−c5

c8

)
c9

(2.4)

The equations are highly nonlinear, but since the states x(t) are explicitly
time-dependant, differentiation can be easily done analytically. This allows
for the estimation of some parameters for that batch. For example, for a par-
ticular batch, the specific cell growth µ can either be estimated from experi-
mental biomass concentration data, Xv(t), via eq. (2.5) or by differentiation
via eq. (2.6).

dXv(t)
dt

= µ(t)Xv(t) =⇒ µ(t) =
dXv(t)/dt

Xv(t)
(2.5)

dXv(t)
dt

=
−c2

c3
e
(
− t+c3 ln c4−c5

c3

)

c−c4
4 (c4 + 1)(c4+1)

(
1 + e

(
− t+c3 ln c4−c5

c3

))(−c4−1)

×

×
1 + e

(
− t+c3 ln c4−c5

c3

)
(−c4 − 1)

(
1 + e

(
− t+c3 ln c4−c5

c3

))−1 (2.6)

A limitation of this type of equations deals with its application: they are
valid for one specific batch (descriptive purpose), not expressing conveniently
the link between substrate presence and biomass (predictive purpose). Some
models possess common parameters. For example, equations (2.3) and (2.4),
for biomass and substrate respectively, have a common parameter c5 provid-
ing a link. However, the equations cannot be used to predict a scenario where
the evolution of substrate concentration would be different (eg. for control
purposes). Another weaker point is that they can have many parameters and
take many shapes. It is thus difficult to compare parameter values coming
from different logistic equations.
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However, these models may be useful if the focus is not on the predictive
power but rather on topics such as batch-to-batch repeatability (eg. a repeated
industrial batch operation always performed under the same conditions,
where it is interesting for regulatory reasons to show that the value of some
parameters has not varied much and therefore potentially neither has the
quality of the pharmaceutical product).

2.1.2 ODE-based models

The model class that seems to be of more common use is based on ordinary
differential equations (ODE) describing mass balances by means of terms
for kinetic phenomena (reactions) and terms for fluid dynamics (flowrates
entering or leaving the bioreactor).

The kinetic terms comprise stoichiometric coefficients and reaction rates.
Due to the high nonlinearity of these terms, the analytical integration of the
equations is difficult. It it thus common to use numerical integration in order
to obtain the time profiles for biomass, substrates and products.

The general equations can be written in a canonical form well described in
Bastin and Dochain (1990). In equations (2.7) and (2.8)1, ξi are the concentra-
tions of the i components considered, υi j the pseudo-stoichiometric coefficient
of component i in reaction j, ϕ j the reaction rate of reaction j, FIN the instream
flowrate with substrate concentration ξIN

i , V the volume, and Fper f and Fbleed
the outstream flowrates for perfused output and bleed output, respectively.

dξi

dt
=

M∑

j=1

νi jϕ j +
FIN

V
ξIN

i −
FIN

V
ξi

(
+

Fper f

V
ξi for ξi ≡ biomass

)
(2.7)

dV
dt

= FIN − Fbleed − Fper f (2.8)

Notice that biological knowledge is incorporated through the set of reac-
tions considered. Inspiration often comes from enzyme kinetics. Equations
(2.9) to (2.10) show an example of 3 reactions to consider in a simple ODE-
based model for a cell culture. The first reaction indicates that growth, ie, the
formation of living cells (Xv), involves the uptake of substrates glucose (Glc)
and glutamine (Gln) while metabolites lactate (Lac) and ammonia (Amm) are
formed at the same time as an interesting biopharmaceutical: monoclonal

1The corresponding layout is in Fig. 1.1, p. 31.
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antibodies (MAb). The second reaction indicates that part of the glucose
consumption is due to cell maintenance activities. Finally, the third reac-
tion states that part of the living cells in the system will become dead cells
(Xd). This is an important feature of an animal cell model. Whilst for mi-
croorganisms models often do not incorporate death, for animal cells the
phenomenon is considered, in vue of their fragility to multiple outside con-
ditions (dos Reis Castilho, 2008) and because the model can be intended for
use outside a pure-exponential growth initial phase of the culture.

An example of an ODE-based model for animal cell cultures is presented
below:

(−ν11)Glc + (−ν21)Gln
ϕ1−→ xXv + (ν41)Lac + (ν51)Amm + (ν61)MAb (2.9)

(−1)Xv
ϕ2−→ (1)Xd (2.10)

(−1)Glc + (−ν32)Xv
ϕ3−→ (ν32)Xv (2.11)

For batch operation:

d
dt



Xv
Glc
Lac
Gln

Amm


=



1 −1 0
−ν11 0 −1
ν41 0 0
−ν21 0 0
ν51 0 0




ϕ1
ϕ2
ϕ3

 (2.12)

ϕ1 = µg × Xv (cell growth) (2.13)

ϕ2 = µd × Xv (cell death) (2.14)

ϕ3 = µS × Xv (cell maintenance) (2.15)

ν11 =
1

YXv/Glc
; ν21 =

1
YXv/Gln

; ν41 =
YLac/Glc

YXv/Glc
; ν51 =

YAmm/Gln

YXv/Glc
(2.16)

The arrow in xXv denotes that the cell culture behaves like an autocat-
alytic reaction, since it takes the division of one cell to obtain more and thus
the rate of growth is proportional to the biomass that is present. Notice also
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that one variable, biomass concentration, Xv, affects all dynamic equations
(2.13)-(2.15). The quality of its modeling is, thus, of utmost importance.

While observing animal cell batch cultures, it can be noticed that a plot of
the logarithms of concentrations indicates regions with roughly straight lines,
implying that some approximately exponential-type phases can be identified.
This is shown in Figure 2.3 as portrayed in the textbook Dunn et al (2003).

1. A short (sometimes negligible) lag phase where cells are thought to
be adapting to the culture medium where they are suspended. Cell
concentration remains constant;

2. A period of exponential growth for cells (ln(Xv) is thus a line with positive
slope) and exponentially proportional substrate consumption meanwhile
(ln(S) is constant);

3. A short moment when (for substrate depletion reasons or others) cell
growth becomes limited (ln(Xv) is more or less constant);

4. Eventually, a later period where cell growth is outweighed by cell death
(ln(Xv) becomes a line with negative slope);

Figure 2.3: Estimation of some ODE-based model parameters. Log profiles
as shown in (Dunn et al, 2003).

A practical illustration where some of these aspects are present is provided
in Fig. 2.4, where the model of de Tremblay et al (1992) was used to generate
biomass and substrate profiles in batch mode.
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Figure 2.4: Left: numerical simulation of biomass and substrate (glutamline)
profiles using the model of de Tremblay et al (1992) in batch mode. Right:
corresponding log profiles.

2.1.2.1 Cell growth and death rates

To sum up, the slope of the exponential phase allows to estimate a baseline
maximum growth rate µmax based on cell concentration and the slope of the
death phase to estimate a baseline death rate µd,max. Since it is well known
that limitation and inhibition phenomena take place during a culture, the
maximum growth rate can be multiplied by terms taking values from 0 and
1. For example, factor (2.21) becomes zero after substrate depletion implying
zero cell growth when multiplied to µmax. For cell death, similarly. Some
common examples are provided below an an illustration of the form taken
provided in Figure 3.47.

ϕgrowth = µXv (2.17)

where µ = µmax × phenomena lowering maximal growth

ϕdeath = µdXv (2.18)

where µd = µd,base × phenomena enhancing baseline cell death

ϕmaintenance = mGlcXv (2.19)

product inhibition:
kPi

Pi + kPi

(2.20)

substrate limitation:
Si

Si + kSi

(2.21)
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product limitation:
Pi

Pi + kd,Pi

(2.22)

Figure 2.5: Mathematical forms commonly used do describe inhibition and
limitation phenomena.

Literally hundreds of forms have been proposed for different cell lines
cultured in different media. Some of the most referenced are listed in dos
Reis Castilho (2008) and sampled in Tables 2.1 and 2.2.

Globally, most hypotheses used in practice are that glucose and glutamine
limit cell growth (µg) and that death (µd) is accentuated with ammonia and
lactate build-up. The combination of the terms chosen for the description of
µg and µd depend strongly on the cell line and conditions for which the model
is intended. It is thus necessary to evaluate whether our culture medium pos-
sesses alternative carbon and nitrogen sources other than common glucose
and glutamine that cells may use (eg. Batt and Kompala (1989) and Dunn
et al (2003)). In that case, it should be observed that cell growth is not null af-
ter simultaneous glucose and glutamine depletion because other substitutes
are still being uptaken. Another important hypothesis is whether substrate
limitation is considered additive or multiplicative, ie., if the presence of one
substrate is sufficient or if cell growth needs the the simultaneous presence
of glucose and glutamine.
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Table 2.1: Growth terms (dos Reis Castilho, 2008).

Terms Source

µg = µg,max
Gln

kGln+Gln Portner et al (1996)

µg = µg,max
Glc

kGlc+Glc
Gln

kGln+Gln de Tremblay et al (1992)

µg = µg,max
Glc

kGlc+Glc
ki,Lac

ki,Lac+Lac Kurokawa et al (1994)

µg = µg,max
Gln

kGln+Gln
ki,Amm

ki,Amm+Amm
ki,Lac

ki,Lac+Lac Bree et al (1988)

µg = µg,max
Glc

kGlc+Glc
Gln

kGln+Gln
ki,Amm

ki,Amm+Amm
ki,Lac

ki,Lac+Lac Miller et al (1988a)

µg = µg,max + (µg,max − µg,min) Glc−Glcthres
kGlc+(Glc−Glcthres)

Frame and Hu (1991a)

µg = µg,maxSerum Glc
kGlc+Glc Dalili et al (1990)

µg = µg,max
Serum

Serum+kSerum,0Xv−β∗
Gln

kGln+Gln
ki,Amm

ki,Amm+Amm Glacken et al (1989)

µg = a1
B−a2

B Gaertner and Dhurjati (1993)
µg = D + d0ed1/µg Linardos et al (1991)
µg = µg,max(1 − a1

Xv
D ) Glc

kGlc+Glc
Gln

kGln+Gln Zeng et al (1998)

Table 2.2: Death terms (dos Reis Castilho, 2008).

Terms Source
µd = µd,max

Amm
kd,Amm+Amm

Lac
kd,Lac+Lac Batt and Kompala (1989)

µd = µd,max
Amm

kd,Amm+Amm
Lac

kd,Lac+Lac
kd,i,Gln

kd,i,Gln+Gln Bree et al (1988)

µd = µd,max
1

(µg,max−kd,LacLac)(µg,max−kd,AmmAmm)
kd,i,Gln

kd,i,Gln+Gln de Tremblay et al (1992)

µd = µd,min + (kd,max − kd,min) kd,i,Gln

kd,i,Gln+Gln Dalili et al (1990)

µd = (µg,min −Dmin) − µd,max
Glc−Glcthres

kd,Glc+(Glc−Glcthres)
Frame and Hu (1991a)

µd = b1 + b2
Gln+b3

Portner et al (1996)

µd = c1ec2µg Glacken et al (1989)
µd = d0e(d1/µg) Linardos et al (1991)
µd = (β0 + β1µg)Xv+Xd

D Zeng et al (1998)

For example, in a medium where two alternative substrates such as glu-
cose and another hexose are present a multiplicative form would not be valid.
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However, an additive form such as double-Monod or a diauxic-Monod could
be employed (Batt and Kompala, 1989; Dunn et al, 2003):

• Double Monod
Each substrate allows a different maximal growth.;

µg = µg,max

(
k1S1

k1 + S1
+

k2S2

k2 + S2

) ( 1
k1 + k2

)
(2.23)

• Diauxic Monod
The consumption of substrate S2 is inhibited until S1 is exhausted (eg, for
bacteria E.Coli the uptake of lactose is repressed while glucose is present.;

µg = µg,max,1
S1

k1 + S1
+ µg,max,2

S2

k2 + S2 + S2
1/k1

(2.24)

Again, model application must be thought of before complicating it. If it
is meant to be applied in situations where certain phenomena will not occur,
then it is unnecessary to include terms for these phenomena. For example, the
culture presented in Figure 1.5 (p. 36) has abundant glucose. It may, thus, not
be necessary to model glucose limitation at all, just glutamine limitation, since
the term Glc/(kGlc+Glc) would always be approximately 1 in those conditions.

2.1.2.2 Substrate consumption

In ODE-based models, the evolution of substrate concentrations is usually
either related to its use for cell growth or to cell maintenance purposes. The
later is a phenomenon sometimes observed when, during the death phase,
the substrate concentration is still diminishing. Table 2.3 presents the more
common simple terms and some less used and more complicated expressions,
as listed in dos Reis Castilho (2008). µg is present in growth-related terms
and maintenance related ones are typically noted by a mS parameter.
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Table 2.3: Substrate consumption (dos Reis Castilho, 2008).

Terms Source
µS = 1

Ymax
Xv/S
µg de Tremblay et al (1992);

Hiller et al (1991)
µS = 1

Ymax
Xv/S
µg + mS Harigae et al (1994);

Hiller et al (1991);
Miller et al (1988a);
Kurokawa et al (1994)

µS = 1
Ymax

Xv/S
µg + mS − eµd Linardos et al (1991)

µS = 1
Ymax

Xv/S

(
µg − µmin

)
Frame and Hu (1991a)

µS = 1
1

YXv/S
− λ

YP/S

µg + α2
YP/S
− 1

YXv/S
µg,min Frame and Hu (1991b)

µS = 1
Ymax

Xv/S
µg + mS

S
kS

S+S de Tremblay et al (1992)

µS = h1S
h2+S Portner et al (1996);

Gaertner and Dhurjati (1993)

µS =
(

1
Ymax

Xv/S
µg + mS

)
+ ∆µm

S
S

S+Xv×kS
Zeng (1996b)

2.1.2.3 Product production

Byproduct formation is related to substrate consumption. For instance, the
formation of byproduct lactate is related to glucose variation (consumption,
if in batch mode) and can be modeled by equation (2.25).

dLac
dt

= −YLac/Glc
dGlc

dt
(2.25)

For the more special case of the biopharmaceutical product of interest, it
is generally assumed that its synthesis is partially related to cell growth µg
and partially independent, as stated in the general Luedeking-Piret equation
(Dunn et al, 2003):

dP
dt

=

(
1

YXv/P
µg + b

)
Xv (2.26)

Tables 2.4 and 2.5 present some other possible forms.
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Table 2.4: Byproduct formation (dos Reis Castilho, 2008).

Terms Source

µLac = µLac,max
Glc

kLac
Glc+Glc Gaertner and Dhurjati (1993)

µLac = YLac/Xvµg + mLac + ∆µmax
Lac,Glc

Glc−Glc∗
Glc−Glc∗+kLac

Glc
Zeng (1995)

µLac = YLac/Xvµg + mLac + ∆µmax
Lac,Glc

Glc
Glc+kLac#

Glc Xv + . . .+ Zeng (1996b)

+∆µmax
Lac,Gln

Gln
Gln+kLac#

Gln Xv

µAmm = E1+E2Glc
E3+Glc Gaertner and Dhurjati (1993)

µLac = G1+G2Lac
G3+Lac Gaertner and Dhurjati (1993)

µAmm = YAmm/Xvµg + mAmm + ∆µmax
Amm,Gln

Gln
Gln+kAmm

Gln
+ Zeng (1995)

+ . . . + ∆µmax
Amm,Glc

Glc
Glc+kAmm

Glc

µAmm = YAmm/Xvµg + mAmm + ∆µmax
Amm,Gln

Gln
Gln+kAmm#

Gln Xv Zeng (1996b)

Table 2.5: Product formation (monoclonal antibodies) (dos Reis Castilho,
2008).

Terms Source
µMAb = β Portner et al (1996)

Hiller et al (1991)
µMAb = αµg + β Frame and Hu (1991b)
µMAb = α0

kµ+µg
µg + β de Tremblay et al (1992)

µMAb = α1µd + β1 Linardos et al (1991)
µMAb = β2Serum Gln

kMAb
Gln +Gln Dalili et al (1990)

µMAb = (α1µd + β1) Gln
kMAb

Gln +Gln

kMAb
i,Glc

Glc−Glc∗+kMAb
i,Gln

(F1 + e−F2∆t) Zeng (1996a)

µMAb = (α1µd + β1) Gln
kMAb#

Gln Xv+Gln

kMAb#
i,Glc Nv

Glc+kMAb#
i,Glc Xv Zeng (1996b)

µMAb = δ DPer

DPer+kMAb
DPer

kMAb
i,Glc

Glc+kMAb
i,Glc

Zeng (1996b)
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2.1.2.4 Example of a simple model

A simple example of an ODE-based model is the one used in Deschenes (2007)
to describe mammalian cell line HEK 293-SF cultivated in NSFM13 medium in
continuous perfused regime. The kinetics assumed by the author to describe
3 states (glucose, living biomass and dead biomass) can be transposed into
the following equations:

(−ν11)Glc
ϕ1−→ xXv (cell growth reaction) (2.27)

(−1)Xv
ϕ2−→ (1)Xd (cell death reaction) (2.28)

dξi

dt
= νi jϕ j + · · · → d

dt


Glc
Xv
Xd

 =


−ν11 0

1 −1
0 1


[
ϕ1
ϕ2

]
+ · · · (2.29)

ϕ1 = µ1Xv with µ1 = µmax
Glc

kCXv + Glc
(2.30)

ϕ2 = µ2Xv with µ2 = Xv + Xd (2.31)

The choice of a Contois (over a Monod) form limiting cell growth relates to
the use of the model for high cell concentrations typical of perfusion regimes:
real substrate availability may become limited when many cells surround
one cell. The data presented do not include important states such as limiting
glutamine or inhibiting ammonia, which are thus not comprised in the model.
Regarding cell death rate, is it simply assumed to be proportional to the total
cell concentration. This means that Xd, a variable which in reality is difficult
to measure (dead cells eventually break down), was used. The author bases
his choice on the fact that, among several models tried, this was the sole
model he could find to reproduce an overshoot visible on the biomass profile
data presented to him. Actually, this phenomenon can also be reproduced
in some conditions for perfused cultures using more descriptive models. In
Figure 2.6 this is illustrated with a comparison of Deschenes (2007)’s results
(in black) with a simulation of de Tremblay et al (1992)’s model (in green).

The model used in Deschenes (2007) is meant to simulate well an available
set of data so that some control strategies for perfusion may be studied. It is,
thus, very simple and may lack some predictive power for different culture
conditions since it was identified with limited data. The risk of using it would
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Figure 2.6: Continuous perfused cultures presenting an overshoot in the
biomass profile: (Deschenes et al, 2006b)’s results in black and simulation of
de Tremblay et al (1992)’s model in green.

be that phenomena not considered in the model (limitation, inhibition) would
occur and the controller would not be able to overcome them (eg. not properly
adjust flowrates in order to maintain a good setpoint compliance).

2.1.2.5 Example of a reasonably comprehensive model: De Tremblay

An example of a more comprehensive, yet still reasonably simple, model is
the one developed and identified by de Tremblay (1991) for mouse-mouse
CBM-P2C hybridoma cell line producing IgM monoclonal antibodies in a
customised DMEM base medium with 1% FBS.

It comprises 6 states variables (7 if volume is considered) which are
the major component concentrations: living biomass, glucose/lactate, glu-
tamine/ammonia and the product of interest, monoclonal antibodies. The
model structure comprises the possible occurrence of typical cell culture phe-
nomena and may thus be considered of fairly general applicability. The
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reasonable biological assumptions considered are that cell growth is limited
by glucose and glutamine availability, cell death is promoted by accumu-
lation of lactate and ammonia and glutamine exhaustion, a part of glucose
is spent in cell maintenance, and the production of the product of interest,
monoclonal antibodies, is partially growth-related and partially not.

De Tremblay considered several batch and fedbatch runs in order to de-
velop and identify a model structure. She used it to study the optimal static1

media feeding trajectories in fedbatch mode and, at this point, significantly
simplified it.2

The model can be translated into the following set of reactions and
canonical-form equations:

(−ν11)Glc + (−ν21)Gln
ϕ1−→ xXv + ν41Lac + ν51Amm

(cell growth)
(2.32)

(−1)Glc + (−ν32)Xv
ϕ2−→ (ν32)Xv + (ν42)Lac

(maintenance)
(2.33)

(−1)Xv
ϕ3−→ (1)Xd

(cell death)
(2.34)

(−ν34)Xv
ϕ4−→ (1)Xv + (1)MAb

(product formation)
(2.35)

dξi

dt
= νi jϕ j + · · · → d

dt



Glc
Gln
Xv
Lac

Amm
MAb



=



−ν11 −1 0 0
−ν21 0 0 0

1 0 −1 0
ν41 ν42 0 0
ν51 0 0 0
0 0 0 ν64





ϕ1
ϕ2
ϕ3
ϕ4


+ · · · (2.36)

ϕ1 = µ1Xv with µ1 = µmax
Glc

kGlc + Glc
Gln

kGln + Gln
(2.37)

1its composition remains constant throughout the culture, unlike a dynamic composition medium
2see (de Tremblay et al, 1993)
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ϕ2 = µ2Xv with µ2 = mGlc

(
Glc

km,Glc + Glc

)

︸                ︷︷                ︸
( 1 )

(2.38)

ϕ3 = µ3Xv with

µ3 = µd,max

(
1

µmax − kd,LacLac

) (
1

µmax − kd,AmmAmm

)

︸                                            ︷︷                                            ︸
( 1 )

(
kd,Gln

kd,Gln + Gln

)
(2.39)

ϕ4 = µ4Xv with µ4 =
α

kµ + µ1
µ1 + β︸︷︷︸

( 1 )

(2.40)

Where ν11 = 1/YXv/Glc; ν21 = 1/YXv/Gln; ν41 = YLac/Glc/YXv/Glc; ν42 =
YLac/Glc;ν51 = YAmm/Gln/YXv/Gln; ν64 = 1 and the parameter values are those
in Table 3.2.

Simulations of what the model predicts for different operating modes are
provided in Figure 1.6 on page 37.

It should be noticed that the phenomena considered are generic and may
not happen with all combinations of animal cell lines, medium and operating
conditions. But it is precisely its generic character that makes it an interesting
model to work with. For example, in Saraiva et al (2012) the model was used
to study a situation that may often occur: a limited capability of measuring
all components at the laboratory. An extended Kalman filter (EKF) served as
a software sensor to reconstruct all system states from limited measurements,
as illustrated in Figure 2.7.

In Sbarciog et al (2013) the model was integrated in a nonlinear model
predictive controller used in a continuous perfused culture.

Several other authors have also considered this model, such as Aehle
et al (2011); Chen et al (2002); Franco-Lara and Weuster-Botz (2005); Nguang
et al (2001); Portner and Schafer (1996); Roubos et al (1997, 1999); Sarkar and
Modak (2004).

1Terms later dropped out in de Tremblay et al (1993) where the authors, for the purpose of another study,
did not consider glucose maintenance nor lactate or ammonia inhibition.
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Table 2.6: De Tremblay’s model parameter values (de Tremblay, 1991;
de Tremblay et al, 1992, 1993).

Parameter Value Units
µmax 1.09 d−1

kGlc 1.0 mM
kGln 0.3 mM
µd,max 0.09 d−1

kd,Lac 0.01 mM−1d−1

kd,Amm 0.06 mM−1d−1

kd,Gln 0.02 mM
YXv/Glc 1.09 × 10−1 109cell mmol−1

YLac/Glc 1.8 mmol mmol−1

mGlc 0.17 × 10+1 mmol (109cell)−1 d−1

km,Glc 19.0 mM
YXv/Gln 3.80 × 10−1 109cell mmol−1

YAmm/Gln 0.85 mmol mmol−1

β 0.35 × 10+1 mg (109cell)−1 d−1

α 2.57 × 10+1 mg (109cell)−1 d−1

kµ 0.02 d−1

2.1.2.6 Example of a more complex model

An example of a model that is very complex regarding practical applications
such as control and monitoring is that of Silva et al (1996), developed for a
6H2 murine cell line cultured in DMEM/HamF12 custom medium and pro-
ducing a IgG2a monoclonal antibody directed against a melanoma-associated
antigen. It can be transposed into the following reactions and equations:

(−ν11)Glc + (−ν21)Gln + (−ν31)S + (−ν41)Met + (−ν51)02
ϕ1−→

ϕ1−→ x(ν61)Xv + (ν71)Lac + (ν81)Amm + (ν91)MAb
(cell growth)

(2.41)

(−1)Xv
ϕ2−→ (1)Xd

(cell death)
(2.42)
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Figure 2.7: Extended Kalman filter estimating concentrations of biomass,
lactate, ammonia and monoclonal antibodies from knowledge of initial con-
ditions and measurements of glucose and glutamine. Model (blue), noisy
model-generated measurements (red), filter predictions (magenta). Model
used: de Tremblay et al (1992). Source: Saraiva et al (2012).

dξi

dt
= νi jϕ j + · · · → d

dt



Glc
Gln

S
Met
O2
Xv
Lac

Amm
MAb



=



−ν11 0
−ν21 0
−ν31 0
−ν41 0
−ν51 0

1 −1
ν71 0
ν81 0
ν91 0



[
ϕ1
ϕ2

]
+ · · · (2.43)

The model considers several factors varying between 0 and 1 that can
affect growth rate: glucose Glc, glutamine Gln, methionine Met, serum S, an
amino acids pool AA, oxygen O2, lactate Lac and ammonia Amm. Since terms
are multiplied, a null term is sufficient to cease cell growth:
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ϕ1 = µ1Xv with

µ1 = µmax

(
Glc

Glc+kGlc

) (
Gln

Gln+kGln

) (
S

S+kS

) (
AA

AA+kAA

) (
O2

O2+kO2

) (
kLac

Lac+kLac

) (
kAmm

Amm+kAmm

) (2.44)

Cell death, presenting additive terms, cannot be null:

ϕ2 = µ2Xv with
µ2 = µd,max

[(
1

1+βGlc

)
+

(
1

1+βGln

)
+

(
1

1+αS2

)
+ (k1Lac) + (k2Amm) +

(
1

1+γO2

)]

(2.45)
It is a model with many states and parameters which makes the task of

identifying the parameter values difficult. In fact, the authors do not provide
them fully. Furthermore, the use of serum is not practical either, since it
is by definition a mixture of composition not entirely known and whose
concentration in the culture is only known at the initial condition, t0, once the
medium has been prepared.

2.2 Non-segregated unstructured models

Another class of models considers hypotheses regarding the existence of
intracellular components and the network of reaction paths connecting ex-
tracellular components (substrates and products) measured outside the cell,
in the surrounding medium. In these models, a pseudo-stationary state is
presumed, meaning that internal metabolites hardly accumulate inside the
cell, since reaction rates inside the cell are by far higher than those outside.
Thus, for a culture phase where a pseudo-stationary state can be assumed
valid, metabolism can be represented by a reaction network with some con-
stant values for fluxes. This is typical when considering the growth phase of
a culture, for example, when reaction rates are at their highest since plenty
of substrate is still available. There is a limited ability to predict dynamic
cell responses to changes on the whole though, since the model only holds
during certain limited time intervals of the culture.

2.2.1 Metabolic flux analysis (MFA)

On the whole, two scenarios are possible, according to the number of reactions
and the number of fluxes (in Figure 2.8 measured fluxes are green and fluxes
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to be determined are red). The system is either determined or overdetermined
and can be solved through least squares methods, or it is underdetermined.
For this case1, the use of a toolbox such as Metatool is helpful (Pfeiffer et al,
1999; Schuster et al, 1999).

Figure 2.8: Left: metabolic flux analysis: the overdetermined and underde-
termined case. Right: example of a metabolic network adapted from Goudar
et al (2007).

Two notations exist (eq. (2.46) and eq. (2.49)) and are equivalent. The first
is that used in Stephanopoulos et al (1998):

GTυ = 0 ⇐⇒
[

GT
m GT

c

]
×

[
υm
υc

]
= 0 (2.46)

For example, for a metabolic network of a size similar to the one in Figure
2.8, the system to solve could be something like Goudar et al (2007):

1Metatool does not solve exclusively underdetermined systems.
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
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(2.47)
Four species with extracellular exchanges are measured and another 4

species are considered intracellular since they undergo no exchange with
the outside medium and are, therefore, not measured in the medium. The
metabolic network inside the cell consists of 6 reactions whose fluxes υci we
wish to compute. This system is overdetermined by 2 degrees of freedom. In
order to have a perfectly determined system with zero degrees of freedom, 2
equations could be taken out.

The rank and condition number of matrix GT can be computed with soft-
ware tools such as Matlab. In this case, the rank is 8 and the condition number
is 7,6. Thus, matrix GT is full rank: its rank is equal to min(rows, columns), ie.,
all eight metabolites have independent mass balances. The matrix also has
a condition number of 7.6, not very far from its rank 8 which suggests low
sensitivity of the calculated fluxes υci to the measured rates υmi.

The result can be computed with Matlab by least squares resolution of the
overdetermined system, yielding the following result for the unknown fluxes
within the cell:
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A common tool used in metabolic flux analysis is the Metatool algorithm,
which deals with the case of underdetermined networks by computing the
extreme rays of the polyhedral cone of solutions (Pfeiffer et al, 1999; Schuster
et al, 1999). This software uses, however, another arrangement of the mass
balance equations which represents a second nomenclature, used by Bastin,
for example in Bastin (2008); Fernandes et al (2015); Provost and Bastin (2004);
Provost et al (2006); Zamorano et al (2010, 2013). For the same system it would
be:

Metatool matrix M︷         ︸︸         ︷[
N 0

Nm −υm

]
×

[
υ
1

]
= 0 ⇐⇒ (2.49)
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2.2.2 Reduction of a bigger network

An example of this type of modeling approach is the thesis of Agnès Provost
(Provost, 2006). She divided a batch data set into 3 different phases (expo-
nential growth, transition, and death, as illustrated in Figure 2.3 on page 50).
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She attributed a reduced metabolic network to each phase, hoping to capture
a general picture of what happens at sequential moments of the culture. Fi-
nally, in order to have an expression valid for any time t, the 3 models were
united by means of continuous functions φi that vary from 0 to 1 at precise
moments ti chosen by her to represent the switches between culture phases.
This is illustrated in Figure 2.9 .

Provost’s data represents a batch culture (with 2 replicas) responding to
one set of initial conditions. In the course of the culture, two phenomena,
glucose and glutamine extinction, happen more or less simultaneously, which
makes the relative importance of each hard to understand. It would be
interesting if the model would allow to predict the switch time tpeak where
biomass reaches its maximum concentration, but here it is imposed. As for
lactate re-consumption, once glucose is exhausted, this is predicted by the
model since the metabolic network considers the reaction to be direct for
phases 1 and 2, and reverse for phase 3. It is, therefore, the user’s choice
of the switch time that determines the beginning of lactate re-consumption.
Since it is based on one data set, it is hard to insure its validity for other
conditions.

A very interesting point of Provost’s thesis is the proposition of a method
to reduce bigger pathways to simpler sets of reactions with the intention of
facilitating model purposes such as control and optimization.

In fact, Provost’s data set could also be quickly modeled with simple
macroscopic reactions and an ODE-based model. We have qualitatively il-
lustrated this in Figure 2.10, where Provost’s data and model predictions
(left) stand side by side with profiles predicted with the following illustrative
ODE-based model and presumptions:

1. Glutamine limits growth;

2. ammonia enhances death;

3. Lactate reconsumption is triggered by low growth rate.



CHAPTER 2. MODELING 68

Figure 2.9: The idea behind Provost’s model. Adapted from Provost (2006)
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Φgrowth = µgrowthXv (2.51)

where µgrowth = µmax
Gln

kGln + Gln

Φdeath = µdeathXv (2.52)

where µdeath = µd,max
Amm

kAmm + Amm

Φreconsumption = µreconsumptionXv (2.53)

where µreconsumptionth = α
kµ

kµ + µgrowth

Figure 2.10: Left: Provost’s model (Provost, 2006). Right: Illustrative model
predictions for the same batch initial conditions.

Globally, models that consider intracellular components, such as Provost’s,
often give insight into cell metabolic states that may be useful mostly to biolo-
gists. Hopefully, when developing one, a reduced-order form may be found
and used for a period of the culture when the balanced-growth condition
holds. Hopefully also, this type of model will still be simple enough to use
in a real scenario or be useful and informative in the development of regular
macroscopic ODE-based models.
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2.3 Segregated structured models

One classical example of not supposing, while modeling, that the culture is
composed of an average cell is to consider a population of cells at different
stages of their life cycle. The section below describes one such model.

2.3.1 Cell population distributed in different phases

The fact that cells in a culture may be at different phases of their life cycle is
considered in Faraday et al (2001) as illustrated in Figure 2.11.

Figure 2.11: Cell life cycles considered in Faraday et al (2001)

A consequence is that the system becomes mathematically more complex.
The authors suggest a procedure to approximately solve the set of first order
differential equations and first order quasi linear hyperbolic partial differen-
tial equations.

The change in population density at any point of a generic phase X is
given by:

∂nX(t, τX)
∂t

=
F(t)
V(t)

nX(t, τX)−
GX∑

J=1

rJX (τX, nX(t, τX),CC(t, τX),C(t, τX))− ∂nX(t, τX)
∂τ

(2.54)
where τ is the biological age (h), C is the medium state vector containing

the concentrations of all the medium components of interest (kg.m−3), CC
is the cytological state vector containing the concentrations of intra-cellular
components of interest (kg.cell−3), F is the flow rate (m3h−1), GX is the number
of transition rules in a phase, J is a transition rule, nX is the population density
function, ie. the number of cells per volume per biological age in an arbitrary
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phase X (cell.m−3), rJX is the rate of transition (cell.m3h−1), t is time (h) and V
the volume (m3).

Some biological hypotheses are used to express the rates at which cells
undergo transitions between phases. Below are the change in population
density at any point of a generic phase X and the boundary conditions:

r1X (τX, nX(t, τX),CC(t, τX),C(t)) =


0 if τX ∈ [0; TX[

nX(t,TX) if τX = TX
(2.55)

r2G1b (τG1b, nG1b(t, τX),CC(t, τX),C(t)) =
2nG1b

CC,Gln − Smax

∂CGln

∂t
(2.56)

r2D (τD,nD(t, τX),CC(t, τX),C(t)) = kAmmC1.5
AmmnD (2.57)

Boundary Conditions:

nG1a(t, 0) =


2nM(t,TM) when CGln(t) > 0

0 when CGln(t) = 0
(2.58)

nG1b(t, 0) = nG1a(t,TG1a) + nG1′(t,TG1′) (2.59)

nS(t, 0) =

∫ TG1b

0

2nG1b(t, τG1b)
CC,Gln(t, τG1b) − Smax

∂CC,Gln(t, τG1b)
∂t

dτG1b (2.60)

nG2(t, 0) = nS(t,TS) (2.61)

nM(t, 0) = nG2(t,TG2) (2.62)

nD(t, 0) =


nG1b(t,TG1b) for CGln > 0

nG1b(t,TG1b) + 2nM(t,TM) for CGln(t) = 0
(2.63)

More hypotheses are made regarding other state variables. For instance,
substrates are consumed during certains phases (5 phases for glucose, 2
phases for glutamine). Consumption and production are expressed by:
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• Glucose
consumed during G1a, G1b, S, G2, M with first order kinetics;

dGlc
dt

=
(
CIN

Glc(t) − CGlc(t)
) F(t)

V(t)
− RGlc

[∫ TG1a

0
nG1a(t, τG1a)dτ+

+

∫ TG1b

0
nG1b(t, τG1b)dτ +

∫ TS

0
nS(t, τS)dτ +

∫ TG2

0
nG2(t, τG2)dτ+

+

∫ TM

0
nM(t, τG1b)dτ

]
(2.64)

RGlc = kGlcCGlc (2.65)

• Lactate
produced proportionally to glucose consumed;

dLac
dt

=
(
CIN

Lac(t) − CLac(t)
) F(t)

V(t)
+ YLac/GlcRGlc

[∫ TG1a

0
nG1a(t, τG1a)dτ+

+

∫ TG1b

0
nG1b(t, τG1b)dτ +

∫ TS

0
nS(t, τS)dτ +

∫ TG2

0
nG2(t, τG2)dτ+

+

∫ TM

0
nM(t, τG1b)dτ

]
(2.66)

• Glutamine
consumed during G1a, G1b with zero order kinetics;

dGln
dt

=
(
CIN

Gln(t) − CGln(t)
) F(t)

V(t)
− RGln

[∫ TG1a

0
nG1a(t, τG1a)dτ+

+

∫ TG1b

0
nG1b(t, τG1b)dτ

]
(2.67)

RGlc = kGlcCGlc (2.68)
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• ammonia
produced proportionally to glutamine consumed;

dAmm
dt

=
(
CIN

Amm(t) − CAmm(t)
) F(t)

V(t)
− YAmm/GlnRGln

[∫ TG1a

0
nG1a(t, τG1a)dτ+

+

∫ TG1b

0
nG1b(t, τG1b)dτ

]
(2.69)

• Monoclonal Antibodies
produced during G1b, S with fixed rate.

dMAb
dt

= (0 − CMAb(t))
F(t)
V(t)

+ RMAb

[∫ TG1b

0
nG1b(t, τG1b)dτ+

+

∫ TS

0
nS(t, τS)dτ

]
(2.70)

The model takes the form of a system with a large list of parameters that
are also difficult to estimate. The authors propose some values for a few of
them:

Table 2.7: Faraday’s model parameter values (Faraday et al, 2001).

Parameter Value Units
kAmm 6.2 × 10−5 mL1.5mg−1.5h−1

kGln 3.6 × 10−8 mL cell−1h−1

YAmm/Gln 0.1 mg Amm/mg Gln
YLac/Glc 0.79 mg Lac/mg Glc
RGln 1.5 × 10−8 mg cell−1h−1

Smax 2.6 × 10−7 mg cell−1

RAnti 1.1 × 10−8 mg cell−1h−1

Globally the vector of model states is rather big:
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dξi

dt
=



nG1a
nG1′

nG1b
nS
nG2
nM
Gln
Glc
Lac

Amm
MAb



=



cells in phase G1a
cells in phase G1′

cells in phase G1b
cells in phase S

cells in phase G2
cells in phase M

glutamine
glucose
lactate

ammonia
monoclonal antibodies



(2.71)

The model comprises 11 states, several of which are not measurable, and
more than 13 parameters. The system is of complex resolution, let alone the
difficulty of identifying all its parameters. For example, in order to assess
the cycle phase where a cell currently is, flow cytometry was employed -
however, the method technically only differentiates phases G1, S and G2+M,
meaning that the cell phase distribution and the phase length are hardly
identifiable. It is also an expensive technology that is difficult to transpose
to online implementation. On the whole, it is an interesting model for bio-
logical exploratory research (it could provide insight, eg. into finding out an
interesting antibody production pattern, and then one could try and arrest
more cells in that phase). This is unlikely to be useful in a context of real
control application and, for this purpose, the data could be better modeled
with a much simpler macroscopic model.

2.4 Round-up

There are many models in the literature. Some review articles such as Boghi-
gian et al (2010); Portner and Schafer (1996); Sidoli et al (2004); Tziampazis
and Sambanis (1994) shortlist some of them.

The book dos Reis Castilho (2008) provides a comprehensive outlook.
Others, such as Dunn et al (2003); Torres and Voit (2002), do so as well.

More recently, further models have been proposed. For example, Nolan
and Lee (2011) consider that some outer intracellular reactions have kinetic
rate expressions based on extracellular metabolites and applies this hypoth-
esis to the growth and transition phase. Another example is Amribt (2014)
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who bases his modeling approach on the overflow phenomenon notorious
in the growth-phase modeling of bacterial cultures.

In the scope of this thesis, the choice has fallen upon simple phenomeno-
logical macroscopic ODE-based models as the best compromise between
descriptive quality, predictive power and practicality with regard to real-
scenario control, monitoring and optimisation applications in view of an on-
line continuous implementation of perfused high-cell-density cultures. We
believe that they can provide enough information regarding phenomena that
we consider important (eg. limitation, inhibition) and are yet simple enough
to use for the intended purposes.

This ODE-based macroscopic model with the best joint performance and
simplicity for practical control implementation will most likely consider 6
states besides volume: living biomass, glucose/lactate, glutamine/ammonia
and the product of interest, if one is produced by cells.

The model will thus most likely take the following general form:

dξi

dt
= νi jϕ j + · · · → d

dt



Glc
Gln
Xv
Lac

Amm
P



=



−ν11 0 0
−ν21 0 0

1 −1 0
ν41 0 0
ν51 0 0
0 0 ν63




ϕ1
ϕ2
ϕ3

 + · · · (2.72)

(−ν11)Glc + (−ν21)Gln
ϕ1−→ xXv + ν41Lac + ν51Amm

(cell growth)
(2.73)

(−1)Xv
ϕ2−→ (1)Xd

(cell death)
(2.74)

(−1)Xv
ϕ3−→ (1)Xv + (ν63)P

(product formation)
(2.75)

A data bank was built from cultures performed at the new cell laboratory
of Chemistry and Applied Chemistry department of the Biosystems Pole
at the University of Mons. Initially, the cultures were performed with hy-
bridoma cells, but these proved delicate to cultivate. A more robust type of
animal cells, CHO (chinese hamster ovary cells), was then used to accomplish
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enough cultures to build the data bank. In the following chapter, the issue of
identifying a model for these cultures will be addressed and a model suitable
for control will be presented.



Chapter 3

Animal cell culture model
identification

Once a model structure is chosen, the values of the
parameters still need to be identified. This chapter

presents one of the major contributions of this thesis.
First, the identification problem is presented. In order to

tackle the challenge of starting the procedure with a good
initial guess for a large set of parameters, a procedure is

proposed: a step-by-step identification approach that
gradually considers more detailed models. This chapter
presents the rationale supporting it. It is then that real

data from experimental campaigns serves to illustrate it in
two experimental practical case studies.

3.1 Introduction

The ultimate goal of the identification procedure is to estimate the values of
parameters θ j in the mathematical model describing the evolution of states xi
(the concentrations of biomass (living cells), the substrates that the cells are
fed with, the product of interest and other metabolites that the cells produce
in the course of the culture and which may affect their own growth). The

77
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model, let’s recall, is a set of equations that allows to predict culture behavior
and can be used to study and control different production scenarios.

Briefly, identification considers the following steps:

• Propose a model structure;

• Propose a set of possible values for parameters θ j;

• Simulate model predictions x based on that initial guess;

• Estimate how far this simulation is from real experimental data xmeas by
computing a cost J;

• Implement an optimization algorithm that searches for other values for
the parameters leading to a lower cost;

• The final optimal set of values θ∗ for model parameters will be the one
having led to the lowest value of J.

3.2 Step-by-step identification

To correctly identify parameter values from experimental data, one should
firstly plan to perform experiments that are informative enough to investigate
the phenomena that the model intends to describe.

Due to financial and resource constraints1, experimental data is often
limited. Many parameters are thus to be drawn from this limited data bank,
which renders the procedure quite complex. One of the first hurdles is, in
fact, the initialization of the algorithm aiming at minimizing the distance of
model predictions to real data.

In order to overcome this, a step-by-step reduced order model identifi-
cation procedure is proposed in this chapter. It is based on the analysis of
the sensitivities of model outputs to changes in parameter values. Simpli-
fying the identification problem is thus possible thanks to helpful insight
brought by the analysis of these sensitivity functions Sxi,θ j (for example, Sx1,θ2
describes the evolution of how sensitive model state x1 is to changes in the
value of parameter θ2).

On the whole, the procedure aims at being more efficient with less data
by laying its foundations on one of the keys to a good performance of an

1Besides the culture medium, sample analysis of the concentrations can be expensive and time-consuming.
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identification algorithm: to have an initial guess that is close enough to the
optimal values. In order to do so, box constraints (based on some a priori
biological knowledge) can sometimes be imposed in order to limit the space
from where the random initial guess used to initialize the algorithm will
be drawn. However, the search space remains very vast: in the case of De
Tremblay’s model, it is at least a 16-parameter combination set.

Initialization of the identification procedure has already been addressed
in several ways. For instance Mairet et al (2011) proposed a semi-analytic
procedure to estimate the parameters of Droop model (a classical model
describing substrate limitation in micro-algal cultures), that can be used as a
starting point for a numerical procedure. Besides analytic or semi-analytic
approaches (which are restricted to relatively modest-sized models), another
strategy is to use models that are linear in the parameters, or that can be
linearized, such as for instance the model proposed by Grosfils et al (2007).

In this chapter, a systematic identification procedure will be proposed,
based on the examination of the parametric sensitivities Sxi,θ j. Indeed, these
functions allow to distinguish specific conditions or periods of the culture
during which the model states are mostly influenced by a subset of param-
eters. Therefore, simpler models are likely to fit the experimental data in
these specific periods, and a divide and conquer approach to the identifi-
cation problem can be imagined on this basis. The procedure consists in
several identification steps. The parameters estimated in a previous step can
be used as initial guess in the next. Step-by-step, the model is refined and the
parameter set becomes more consistent. Finally, the full parameter set can
be re-estimated from the estimated parameters (which hopefully are now in
close distance from the optimum).

For example, given several models Ωi:

Ωi : ẋΩi = fΩi(θΩi, xΩi) (3.1)

the sequence of identification steps to take, culminating in the identifi-
cation of the original 6-states 16-parameters full model ΩF, could be, for
example, the one given in Table 3.1.

Globally, the chapter is organised as follows. The next section states and
explains the identification problem. Section 3.4 introduces the sensitivity
concept. In Section 3.5 the rationale behind the proposal of the step-by-step
approach is presented with a sensitivity study using De Tremblay’s model.
This model is then further used in a practical simulation example that illus-
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Table 3.1: Illustrative sequence of identification steps.

Step Model States Parameters Based on Culture
considered to identify initial guess phase

1 Ω1 xΩ1 =
[
x1

]
θΩ1 =

[
θ1

]
θ0

Ω1
=

[
θ1, random

]
A

2 Ω2 xΩ2 =


x1
x2
x4

 θΩ2 =


θ1
θ8
θ12

 θ0
Ω2

=


θ1, found in step 1
θ8, random
θ12, random

 A

3 Ω3 xΩ3 =



x1
x2
x3
x4
x5


θΩ3 =



θ1
θ8
θ9
θ12
θ13


θ0

Ω3
=



θ1, found in step 2
θ8, found in step 2
θ9, found in step 2
θ12, random
θ13, random


A

...
...

...
...

...
...

F ΩF xΩF =


x1
...

x6

 θΩF =


θ1
...
θ16

 θ0
ΩF

=



θ1, found previously
...

θ13, found previously
θ14, random
θ15, random
θ16, random



all

trates the potential of the step-by-step identification procedure. Finally, data
gathered from real animal cell cultures performed at the UMons is used in two
experimental practical case studies where the proposed procedure is applied
and some conclusions are drawn. The first experimental case study deals
with CHO-S cells (Section 3.6) and the second experimental case study with
CHO-320 cells producing a well known therapeutic biological: interferon-γ
recombinant protein (Section 3.7). The particularity of the second experimen-
tal campaign (with CHO-320) is that this cell line is transfected to produce a
bioproduct of pharmaceutical interest (unlike the CHO-S campaign). There-
fore, the final model has in this case an additional state variable, the bioprod-
uct concentration, and this may be interesting in the study of observability
and control strategies which are subjects dealt with in the following chapters.
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3.3 The identification problem

As already mentioned, given a certain mathematical model structure with
the power of qualitatively describing cell culture behaviour, the identification
problem consists of finding the values of parameters θ such that the model
predictions x are close enough to experimental data xmeas. This is typically
done by solving an optimization problem where the optimal set θ∗ found is
the one leading to the lowest value of J, a cost that depicts how far predictions
are from data. A common approach is to minimize the least-squares criterion
(sum of squared differences between model predictions and measurements).
The algorithm can be implemented with Matlab®’s function fminsearch and
ode15s solver. The states, having different physical units, can be normalised
in order to vary between 0 and 1.

J(θ) =

nm×ne∑

i=1

ns∑

j=1

(
xi j(θ) − xmeas,i j(θ)

)T ·Q−1
i j

(
xi j(θ) − xmeas,i j(θ)

)
, (3.2)

where θ is the vector of parameters to be identified, xi j is the value of
state j for timepoint i (nm measurements along ne experiments), xmeas,i j are
the measurements of these states, Q−1

i j is the measurement covariance error, a
symmetric positive-definite weighting matrix. This matrix can either defined
by equation (3.4) if, for example, various measuring accuracies are consid-
ered, or by equation (3.3) if not (since minimizing J or J/σ would in this case
lead to the same results).

Qi j = diag ([1 . . . 1]) , (3.3)

Qi j = diag
(
[σ(x1)2 . . . σ(x j)2]

)
. (3.4)

If the curvature of the hyper area at the minimum is small in the direction
of a certain parameter, then that parameter is not being very well estimated
since a change in its value does not greatly affect the cost. This curvature can
be computed with the eigenvalues of the Fisher Information matrix (FIM)
(Lindner and Hitzmann, 2006). The bigger they are, the bigger the curvature
and, thus, the more accurate the parameter estimation. The inverse of the
FIM is the Cramer-Rao lower bound that indicates the minimal variance of
the parameter values which can be obtained from the selected measurements.
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3.4 Sensitivity analysis

3.4.1 Introduction

As mentioned previously, one must firstly be sure that the chosen model
equations are structurally able to reproduce the shape of the concentration
plots observed in real data and, on a more general view, some aspects of
culture behavior (eg. biomass growth decrease when the substrate is lim-
ited). The next consideration focuses on the importance of exploring how
sensitive model response is to a variation of the values of the parameters.
Parametric sensitivities are particularly important to assess the influence of
the parameters on the model states, depending on the operating conditions.
Sensitivity analysis allows either to propose more informative experiments
(i.e. experiments in which parametric sensitivities take larger values and are
linearly independent), or on the contrary, when the experimental conditions
are imposed, to simplify the model by eliminating (or fixing at specific val-
ues) parameters that have little influence. As a byproduct, sensitivities can
also be exploited in gradient-based optimization algorithms that can be used
to minimize the cost function measuring the deviation between the model
outputs and the experimental data.

3.4.2 Definitions

Let y(t, θ) be the response of a certain variable of the model. If parameter θ
were to vary slightly, then the new response would be (Murray-Smith, 2013):

y(t, θ + ∆θ) = y(t, θ) +
∂y
∂θ

∆θ +
1
2!
∂2y
∂θ2

(∆θ)2 + . . . (3.5)

For a ∆θ small enough, the contribution of higher order terms is ignored
and equation (3.5) becomes:

y(t, θ + ∆θ) ' y(t, θ) +
∂y
∂θ

∆θ, (3.6)

where ∂y/∂θ is the first order sensitivity of y(t, θ). This linearisation
allows the use of the superposition principle to find the effect of simultaneous
changes of parameters (Murray-Smith, 2013).
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For a state space vector, the (first order) sensitivity matrix S for i = 1, . . . , n
states and j = 1, . . . , p parameters is thus defined by the elements (Keesman,
2011):

Sxi,θ j =
∂xi(t)
∂θ j

(3.7)

For example, Sx1θ2(t) describes the evolution of how sensitive model state
x1 is to changes in the value of parameter θ2.

Possible practical approaches to evaluate sensitivities include finite dif-
ference approximations (with some rounding errors), internal differentiation
(using the chain rule and Clairaut’s theorem), and use of the Taylor series for
higher order sensitivities (Murray-Smith, 2013; Zivari, 2009). In this thesis
internal differentiation will be used.

For common cell culture models, however, explicit expressions x(t) are not
available. The state dynamics are available, thus a joint numerical integration
of state and sensitivity dynamics is possible:

Model:
dxi

dt
= fi(x, θ), (3.8)

Sensitivities:
dSxi,θ j

dt
= ∂ fi(x, θ)

n∑

i=1

1
∂xi

Sxi,θ j +
∂ fi(x, θ)
∂θ j

=

=



∂ f1
∂x1

. . .
∂ f1
∂xn... . . . ...

∂ fn
∂x1

. . .
∂ fn
∂xn




Sx1,θ1 . . . Sx1,θp
... . . . ...

Sxn,θ1 . . . Sxn,θp

 +



∂ f1
∂θ1

. . .
∂ f1
∂θp

... . . . ...
∂ fn
∂θ1

. . .
∂ fn
∂θp


. (3.9)

Given the physical nature of the system in study, we have chosen to
work with dimensionless sensitivities. These are, thus, normalised because
parameter values assume different numerical amplitudes and states have
different ranges of variation during their open-loop response. The procedure
consists of dividing parameters θ j by nominal values θ j,nom and states xi by
the maximum values assumed during the set of experiments considered (the
minimum value is always zero, since we are dealing with concentrations and
volume). Thus sensitivities will have a range of variation around [−1; 1]:

Snatural
i, j =

∂xi

∂θ j

normalization−−−−−−−−→ Si, j =
∂(xi/xi,max)
∂(θ j/θ j,nom)

= Snatural
i, j

θ j,nom

xi,max
. (3.10)
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3.5 Case study: De Tremblay’s model

In order to lay out the fundamentals of the step-by-step model identification
procedure, let us firstly consider a real dynamic model of hybridoma cells
producing monoclonal antibodies (de Tremblay et al, 1992). It comprises
7 states (concentrations of biomass, glucose, lactate, glutamine, ammonia,
monoclonal antibodies and volume), 16 parameters and describes typical
animal cell culture phenomena.

Four biological macroreactions are considered1:

(−ν21)Glc + (−ν41)Gln
ϕ1−→ xXv + (ν31)Lac + (ν51)Amm, (3.11)

(−1)Xv
ϕ2−→ Xd, (3.12)

(−1)Glc + (−ν13)Xv
ϕ3−→ ν13Xv + ν33Lac, (3.13)

(−ν14)Xv
ϕ4−→ ν14Xv + MAb, (3.14)

Mass balance equations are given by:

d
dt



x1
x2
x3
x4
x5
x6



=



1 −1 0 0
−1/θ8 0 −1 0
θ9/θ8 0 θ9 0
−1/θ12 0 0 0
θ13/θ12 0 0 0

0 0 0 1





ϕ1
ϕ2
ϕ3
ϕ4


+



−x1 x1
(−x2 + k1) 0
−x3 0

(−x4 + k2) 0
−x5 0
−x6 0



[
u1
u2

]
. (3.15)

For the sake of simplicity, the following symbols represent states, kinetic
parameters, constants and inputs: x1 = Xv; x2 = Glc; x3 = Lac; x4 = Gln;
x5 = Amm; x6 = MAb; θ1 = µmax; θ2 = kGlc; θ3 = kGln; θ4 = µd,max; θ5 = kd,Lac;
θ6 = kd,Amm; θ7 = kd,Gln; θ8 = YXv/Glc = 1/ν21; θ9 = YLac/Glc = ν31θ8; θ10 = mGlc;
θ11 = km,Glc; θ12 = YXv/Gln = 1/ν41; θ13 = YAmm/Gln = ν51θ12; θ14 = β; θ15 = α;
θ16 = kµ; k1 = GlcIN; k2 = GlnIN; u10 = FIN; u20 = Fper f ; u30 = Fbleed; u1 = D =
FIN/V; u2 = Dper f = Fper f/V.

1These describe cell growth, cell death, cell maintenance and bioproduct production, respectively.



CHAPTER 3. ANIMAL CELL CULTURE MODEL IDENTIFICATION 85

The reaction rates are given by:

ϕi = µix1, (3.16)

µ1 = θ1 · x2

(θ2 + x2)
· x4

(θ3 + x4)
, (3.17)

µ2 = θ4 · 1
(θ1 − θ5x3)

· 1
(θ1 − θ6x5)

· θ7

(θ7 + x4)
, (3.18)

µ3 = θ10 · x2

(θ11 + x2)
, (3.19)

µ4 = θ14 + θ15 ·
µ1

θ16 + µ1
. (3.20)

If volume is not constant then it needs to be included in the model (V = x7).
In this case, besides the reaction terms νϕ, the flow dynamics terms are to be
considered:

dx7

dt
=



0 , batch
u10 , f edbatch
u10 − u30 , continuous
u10 − u30 − u20 , continous per f used

(3.21)

A schematic illustration is provided in Fig. 1.1 on p. 31 for different
operation regimes. Parameter values are listed below.

De Tremblay’s model proposes the interdependencies of system dynam-
ics described in Table 3.3. Biomass dynamics are influenced by almost all
states (itself, substrates consumed and metabolites produced). However,
the production of the product of interest (x6, monoclonal antibodies) does
not dynamically influence any of the other states. Therefore, parameters re-
lated to the dynamics of x1 to x5 could be identified firstly without any prior
knowledge of the antibodies being required.

As for the dynamics of the sensitivities, they are obtained by differentia-
tion. The terms ∂ fi/∂xi and ∂ fi/∂θi defined in equation (3.9)) were computed
and are listed in Appendix A, equations (A.1) to (A.99).
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Table 3.2: De Tremblay’s model parameter values (de Tremblay, 1991;
de Tremblay et al, 1992, 1993).

Parameter Value Units
µmax 1.09 d−1

kGlc 1.0 mM
kGln 0.3 mM
µd,max 0.09 d−1

kd,Lac 0.01 mM−1d−1

kd,Amm 0.06 mM−1d−1

kd,Gln 0.02 mM
YXv/Glc 1.09 × 10−1 109cell mmol−1

YLac/Glc 1.8 mmol mmol−1

mGlc 0.17 × 10+1 mmol (109cell)−1 d−1

km,Glc 19.0 mM
YXv/Gln 3.80 × 10−1 109cell mmol−1

YAmm/Gln 0.85 mmol mmol−1

β 0.35 × 10+1 mg (109cell)−1 d−1

α 2.57 × 10+1 mg (109cell)−1 d−1

kµ 0.02 d−1

Table 3.3: Dependency of state dynamics on system states for De Tremblay’s
model.

dynamics x1 x2 x3 x4 x5 x6 state type
ẋ1 • • • • • biomass ©
ẋ2 • • • • • glucose �
ẋ3 • • • • • lactate 4
ẋ4 • • • • • glutamine �
ẋ5 • • • • • ammonia 4
ẋ6 • • • • • • antibodies 4

Legend: ©=biomass; �=substrate; 4=metabolite/product.
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3.5.1 The experimental data bank

As already mentioned, one of the purposes of modeling is to predict be-
haviour that is observed in reality. In the case of animal cell cultures, it is
usually expected from the model that it predicts real phenomena such as
substrate limiting cell growth when it becomes scarce, metabolites building
up and negatively affecting cell growth, etc. Therefore, when setting out to
identify a model it is of utmost importance that these phenomena are present
in the experimental data bank that will be considered.

Figure 3.1 exemplifies the predictions of De Tremblay’s model for 2 dif-
ferent initial culture conditions. In the pink experiment, there is plenty of
substrate glucose, but at t = 2d the other substrate, glutamine, runs out
(µ2 (t > 2) = 0, no growth). On the other hand, there is plenty of glucose
and its associated metabolite, lactate, builds up throughout the experiment
during a second phase where the net cell growth is negative (µ1 − µ2 < 0,
thus, Xv decreases on this second phase). The blue experiment illustrates the
opposite: the substrate limiting growth is glucose and the excess glutamine
contributes to more ammonia.

The two phases of the culture are easily identifiable on Figure 3.1. There
is an initial cell growth phase (depicted as "A") where substrates are initially
abundant and become gradually scarce, and a subsequent cell death phase
("B") when Xv(t) begins to decrease because a vital substrate is no longer
available and/or inhibiting metabolites have built up. In essence, Xv(t) starts
to decrease after tpeak (time when Xv(t) reaches its maximum) because overall
net cell growth µ1 − µ2 has suddenly become negative.

Net cell growth is composed of several terms fi. The biomass balance
equation (for batch operation) is given by:

dXv
dt

= (µ1 − µ2)Xv =


µmax

f 1︷     ︸︸     ︷
Glc

kGlc + Glc

f 2︷      ︸︸      ︷
Gln

kGln + Gln


Xv−

−


µd,max

f 3︷             ︸︸             ︷
1

µmax − kd,LacLac

f 4︷                 ︸︸                 ︷
1

µmax − kd,AmmAmm

f 5︷        ︸︸        ︷
kd,Gln

kd,Gln + Gln


Xv (3.22)
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Figure 3.1: Open-loop response of the system for 2 batch cultures: in the pink
culture the substrate that firstly runs out is glucose; in the blue culture, the
substrate that runs out first is glutamine.

If a parameter is not very active throughout an experiment, then model
states should not be greatly influenced by small changes in its value. This
will be dealt further on with the sensitivity analysis.

Regarding animal cell cultures, given the phenomena involved and a pair
of major substrates considered, it is recommended, whenever possible, the
strategic inclusion of at least the following 4 experiments in the data bank:

• #1: both substrates never run out, death is triggered by inhibiting metabo-
lites;

• #2: substrate S1 runs out, metabolite M2 accumulates;

• #3: substrate S2 runs out, metabolite M1 accumulates;

• #4: experiment at the expected operating conditions, used for cross-
validation.
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Figure 3.2: Two cultures: evolution of terms fi for glucose-limited experiment
(blue) and glutamine-limited experiment (pink).

Figure 3.2 shows that these terms are not always active. For example, in
the pink experiment there is always enough glucose throughout the culture,
thus the term dealing with glucose limitation of growth, f1, is naturally not
active and remains close to 1 for all t.

This minimum experimental set will allow, in principle, to capture the lim-
itation of both substrates and the inhibition by associated metabolites. The
parameters found with data sets 1-3 could then ideally be cross-validated
against data set 4, close to the desired daily operating conditions. Given
common culture media composition, typically S1/M1 will be the pair glu-
cose/lactate and S2/M2 glutamine/ammonia.

3.5.2 Sensitivity analysis

The sensitivities for De Tremblay’s 16-parameter model have been computed
(equation terms in Appendix A.1, p. 220-227) for several experimental condi-
tions. An example of their evolution throughout culture time is plotted in Fig.
3.3 up to Fig. 3.9, for batch initial condition x(t0) = [0.3 25 4 0 0 0 0.7]T. The
grey vertical line separates phase A from phase B when t = tpeak (maximum
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of biomass concentration).

Figure 3.3: Sx1,θi(t) for batch initial condition x(t0) = [0.3 25 4 0 0 0 0.7]T.
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Figure 3.4: Sx2,θi(t) for batch initial condition x(t0) = [0.3 25 4 0 0 0 0.7]T.

Figure 3.5: Sx3,θi(t) for batch initial condition x(t0) = [0.3 25 4 0 0 0 0.7]T.
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Figure 3.6: Sx4,θi(t) for batch initial condition x(t0) = [0.3 25 4 0 0 0 0.7]T.

Figure 3.7: Sx5,θi(t) for batch initial condition x(t0) = [0.3 25 4 0 0 0 0.7]T.



CHAPTER 3. ANIMAL CELL CULTURE MODEL IDENTIFICATION 93

Figure 3.8: Sx6,θi(t) for batch initial condition x(t0) = [0.3 25 4 0 0 0 0.7]T.

Figure 3.9: Sx7,θi(t) for batch initial condition x(t0) = [0.3 25 4 0 0 0 0.7]T.
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Several observations can be drawn from these figures. Firstly, a trivial
observation: volume is obviously independent of any parameter value (its
dynamics do not depend on kinetics). This can be seen in Figure 3.9.

Secondly, generally speaking, there is clearly a difference of sensitivities
during phase A and phase B. In fact, if one analyses model equations, it is
evident that during the initial growth phase, system dynamics is much more
simple. During this phase A, stretching from t0 till tpeak, biomass growth is ap-
proximately exponential and substrate consumption and product production
follow proportionally. The simplest way of modeling phase A is thus:



dx1

dt
= θ1x1,

dx2

dt
=
−1
θ8
θ1x1,

dx3

dt
=
θ9

θ8
θ1x1,

dx4

dt
=
−1
θ12

θ1x1,
dx5

dt
=
θ13

θ12
θ1x1,

(3.23)

This reduced model can be decomposed into smaller ones if one analyses
the dependencies of system dynamics to state variables:



dx1

dt
= f (x1);

dx2

dt
= constant × dx1

dt
;

dx3

dt
= constant × dx2

dt
;

(3.24)



dx1

dt
= f (x1)

dx4

dt
= constant × dx1

dt
;

dx5

dt
= constant × dx4

dt
;

(3.25)

Namely, apart from the 5-variable model (equations (3.23)), a smaller
3-variable (biomass and substrates) model could be considered or a just 1-
variable (biomass) one:
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

dx1

dt
= θ1x1

dx2

dt
=
−1
θ8
θ1x1

dx4

dt
=
−1
θ12

θ1x1

(3.26)

{
dx1

dt
= θ1x1 (3.27)

Sensitivity analysis specifically supports this model reduction since it is
clear from Fig. 3.3 up to Fig. 3.9 that state variables are only significantly
influenced by a few parameters during phase A: noticeably the maximum
growth rate θ1 = µmax and substrate/product coefficients θ8 = YXv/Glc, θ9 =
YLac/Glc, θ12 = YXv/Gln, θ13 = YAmm/Gln.

However, growth is not infinite. There is a moment in the culture, tpeak,
where biomass Xv(t) reaches it peak and begins to decrease. This is what
makes animal cell models more complicated than, for example, bacterial
culture models: they are usually meant to predict also the death phase,
meaning that the term µgrowth − µdeath is allowed to become negative so that
Xv(t) can decrease:

dXv
dt

=
(
µgrowth − µdeath

)
Xv (batch regime) (3.28)

The term can become null or negative when phenomena such as substrate
limitation or metabolite inhibition take place.

As for limitation, its constants, θ2 = kGlc and θ3 = kGln, are of more impact
around tpeak. In order to identify them, at least two experiments should be
considered: one where cell death is triggered by glucose running out, and
the other by glutamine doing so. Although sensitivities to these parameters
are much smaller than the sensitivities to θ1 = µmax (the parameter with
the biggest impact on states), the sensitivity of θ2 = kGlc is higher when
glucose limitation occurs and the sensitivity for θ3 = kGln is higher when it is
glutamine.

In fact, sensitivity analysis could be used to optimise the experiments to
perform such that the impact of a specific parameter will be maximal. Table
3.4 exemplifies briefly some interesting initial concentrations of glucose and
glutamine in the medium of a 10-day batch such that model sensitivity to
θ2 = kGlc, θ3 = kGln, ... would be maximised.
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Table 3.4: De Tremblay’s model: initial medium conditions favouring high
sensitivities to specific parameters.

Parameter Glc0(mM) Gln0(mM) Cost J obtained
θ1 = µmax 23 6.2 18
θ2 = kGlc 8.8 2.4 14
θ3 = kGln 24 6.5 18
θ4 = µd,max 23 6.3 18
θ5 = kd,Lac 21 5.5 17

Note: optimization initiated with randomly generated initial medium concentration within
plausible bounds. The cost maximized is the positive area (trapeze rule) of all the sensitivities
for a given parameter i:

∑
x1,...,x5

∫
‖Sxi‖dt.

The optimization algorithm needs, however, to use parameter values in
order to make model predictions and compute the cost. Yet, at the beginning
of the identification task, there may be no prior certain knowledge of these
values: the goal of the identification lays precisely in finding them out. But
once some estimates are found, then performing this optimization could in
reverse validate the experimental planning that was carried out.

Figure 3.3 up to Figure 3.9 also reveal that most other model parameters
have a significantly lower impact on system states, but their action spreads
out throughout both phases, A and B. Overall, these parameters may be
helpful in fine-tuning the data to the form provided by the mathematical
model.

If the model is over-parameterized, then it will be hard to identify some
of these lesser-impact parameters. But hopefully all major impact parame-
ters will be identified following a carefully planned sequential identification
procedure.

This sequential strategy was tried out to identify some of De Tremblay’s
model parameters with promising results. The submodels Ωi considered and
the fits obtained are illustrated below.

• Step #1 (phase A):

Ω1 :
{

dx1

dt
= θ1x1 (3.29)
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Figure 3.10: Step 1: data (green) and model predictions (blue) for submodel
Ω1 during initial phase A.

• Step #2 (phase A):

Ω2 :



dx1

dt
= θ1x1,

dx2

dt
=
−1
θ8
θ1x1,

dx3

dt
=
θ9

θ8
θ1x1,

dx4

dt
=
−1
θ12

θ1x1,
dx5

dt
=
θ13

θ12
θ1x1,

(3.30)

Figure 3.11: Step 2: data (green) and model predictions (blue) for submodel
Ω2 during initial phase A.

• Step #3 (phases A and B):

Ω3 :



dx1

dt
=

(
θ1 · x2

(θ2 + x2)
· x4

(θ3 + x4)

)
x1 − θ4x1,

dx2

dt
=
−1
θ8
θ1x1,

dx3

dt
=
θ9

θ8
θ1x1,

dx4

dt
=
−1
θ12

θ1x1,
dx5

dt
=
θ13

θ12
θ1x1,

(3.31)
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Figure 3.12: Step 3: data (green) and model predictions (blue) for submodel
Ω3 throughout the culture (phases A and B).

By the end of step 3, the 8 most significant parameters in terms of
impact on system states have already been roughly identified. The next
step would then be, from this knowledge, to identify the remaining ones
(θ5 = kd,Lac, θ6 = kd,Amm, θ7 = kd,Gln, θ11 = mGlc, θ12 = km,Glc) if the available data
bank is sufficiently informative. As for the parameters concerning antibody
production, θ14 = β, θ15 = α, θ16 = kµ, they can be identified a posteriori, since
the dynamics are decoupled as previously shown on Table 3.3 from page 86.

3.6 Step-by-step identification: CHO-S cells

The step-by-step approach will now be applied to the identification of models
for animal cell cultures performed at the University of Mons in a newly set-
up cell culture laboratory. A brief presentation of the site can be found in
Appendix D on p. 253-254.

3.6.1 Materials and methods

Two CHO cell lines were kindly provided by Dr Emmanuelle Adam (Institute
of Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles,
Belgium)1: CHO-S and CHO-S clone 4922-69 transfected to produce hypoal-
lergenic ProDer p 1 FC (a precursor of Der p 1, a major dust mite allergen).
CHO-S cells derive from CHO-K1 and have been adapted to grow in sus-
pension. The first successful cultures performed at the new laboratory with
this cell line in shake flasks and bioreactor are described in (Zamorano, 2012),
but do not provide enough informative richness for the model identification
intended for this chapter.

1Further details about this laboratory, the OCPAM project and the collaboration with the ULB are given in
Appendix D on page 253.
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Therefore, a new set of experiments was designed in which initial condi-
tions varied such that different phenomena could take place and be captured
by a more comprehensive dynamical model. The new experiments were
carried out with CHO-S cultivated with serum-free glucose-free chemically
defined PowerCHO medium (Lonza, cat. nr. BE02-042Q) supplemented with
glucose (AppliChem, cat. nr. 3666) and glutamine (Sigma, cat. nr. G7513) so
as to obtain a data bank with different initial concentrations:

Table 3.5: Experimental planning for 4 batch CHO-S cultures.

Code B1 B2 B3 B4
Glc0 (mM) 33 25 8 16
Gln0 (mM) 7 4 8 4

B1 was meant as an experiment where glucose and glutamine are over-
abundant, thus, metabolite inhibition phenomena may be particularly im-
portant in explaining how the µg − µd term becomes negative during the cell
concentration decrease phase; B2 was meant as an experiment at presumably
good operational conditions (those used also in de Tremblay et al (1993)’s
examples); B3 as an experiment where there may be a shortage of glucose
(limitation); and B4 a shortage of glutamine (limitation).

Each experiment was performed in triplicate (flasks A, B, C) in order to
discard possible contamination effects or unusual behaviour and to account
for the inherent biological variability: in biomedical statistical sciences the
true value of a variable is added to measurement errors, in addition to intrinsic
biological variability which is generally bigger (De Maertelaer, 2014)1. The
sampling took place once per day with a schedule that allowed the gathering
of the necessary information whilst not losing more than 15% of the initial
volume through sampling:

The twelve 120mL culture flasks, each with 60mL of medium, were inocu-
lated with a cell density around 0.2 to 0.3× 109cell/L and kept in an incubator
at 37°C under 5% of CO2. To prevent contamination, 2mL of antibiotics
(Sigma, cat. nr. P4333) were added to each 200mL custom medium bottle.

1Not all cells behave like an "average cell", there is biological variability. When measuring biomass con-
centration, for example, it is sensible to estimate this biological variability as a more important cause of data
dispersion than errors related to the measurement probes.
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Table 3.6: Sampling planning for the triplicate flasks of each experiment.

Day 1 2 3 4 5 6 7 8 9 10 11
flask A • • • • • • • •
flask B • • • • • • • •
flask C • • • • • • •
Note: first sample is taken one hour after inoculating.

Each sample was measured offline for the concentrations of biomass, glu-
cose, lactate, glutamine and ammonia. From each 1.5mL sample, 20µL was
used for viability and cell density counting via Trypan blue dye exclusion
method (the dye penetrates dead cell membranes, discriminating them from
live viable ones, and making microscopic counting possible with a Bürker
hemocytometer). The remaining sample was filtrated and then assayed with
Megazyme enzymatic kits K-GLNAM, K-GLUC and K-LATE and a spec-
trophotometer (Shimadzu UVmini-1240) at 340nm. Glucose was also as-
sayed by DNS (Dinitrosalicylic Colorimetric) method and absorbances read
at 540nm. The DNS data was chosen since the method proved to be better in
terms of precision and much better in terms of trueness.

3.6.2 Data bank

The data bank built from experiments performed with CHO-S cells is plotted
in Figure 3.13. If the intrinsic variability of the triplicate flasks in each exper-
iment is considered, the average values can be plotted with the confidence
intervals of Figure 3.14.

In terms of cell growth, it can be seen that both the first and the second ex-
periments (B1 and B2) present similar achievements (ie, B2’s initial glutamine
concentration of 5mM seems enough to achieve that biomass profile). It can
also be seen that experiment B3 presents an early switch to the death phase
associated with a very quick glucose disappearance. A glucose limitation
phenomena can, therefore, be assumed. No noticeable lactate reconsumption
is observed. As for experiment B4, it was meant to be the glutamine-limited
one, but, in fact, it seems that glucose is the substrate disappearing faster
from the culture.
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Figure 3.13: CHO-S cultures: 4 experimental conditions, each with triplicate
flasks A,B,C (green, orange, blue). Averages are plotted in pink.
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Figure 3.14: CHO-S cultures: average values for triplicate flasks with confi-
dence intervals (2σ). Metabolites lactate and ammonia are plotted in grey.

There is obviously no prior knowing of which precise initial conditions
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will lead to the phenomena we intend to check. On the whole, there is
presumably potentially enough information to try and check several model
structures assuming different phenomena.

3.6.3 Model identification

3.6.3.1 Confidence intervals on parameters

The values for the model parameters that one wishes to identify will have
some uncertainty for many reasons: some experiments may not be informa-
tive enough, there is noise associated with the measurements, the algorithm
implementation has limitations, or the model isn’t obviously perfect, among
others.

One way of assessing some uncertainty in parameter values is to consider
confidence intervals and to compute them under certain hypotheses.

In order to compute confidence intervals, the elements of the Fisher infor-
mation matrix F are computed:

Fi j =

n states∑

k=1

1
σ2

kk

∂xk

∂θi

∂xk

∂θ j
=

n states∑

k=1

1
σ2

kk

Sxk,θiSxk,θ j (3.32)

This matrix predicts how well the experiments are able to constrain the
parameters and needs a prior knowledge of the measurement uncertainties
via σkk. Under certain assumptions (identifiability), the Fisher matrix can be
inverted to compute the covariance matrix that informs on the uncertainties
on model parameters. The Fisher matrix thus assesses how informative
the experimental set is (when multiple experiments are available, the Fisher
matrix is the sum of the matrix for each experiment). We will use it to compute
a lower and upper bound on parameter values.

3.6.3.2 Step #1: model Ω1 (phase A)

Let us firstly consider data from the initial cell growth phase and reduced
order model Ω1 (1-state, 1-parameter) to identify the parameter maximum
growth rate θ1 = µmax. The sensitivity terms (for batch) were computed and
are listed in Appendix A, p. 227.

Ω1 :
{

dx1

dt
= θ1x1, (3.33)



CHAPTER 3. ANIMAL CELL CULTURE MODEL IDENTIFICATION 104

where x1 = Xv and θ1 = µmax.
A random initial estimate of the parameter value is generated between the

following bounds (these are related to biological significance: we suppose
that animal cells take at least 6h to divide):

[
θ1

]
0

= random(0 − 2.8 d−1). (3.34)

The algorithm then goes on to compute an estimate of θ1 according to the
procedure described on page 81. Although the generation of a θ0

1 is bounded,
the algorithm is free to investigate values of θ1 outside this interval. Even if it
is not necessary with this simple model, a best practice is followed: in order
to avoid being trapped in a local minimum of the cost function, a multistart
procedure is used (10 random initial values are tested). The following value
was proposed as the best:

[
θ1

]∗
= 0.49d−1. (3.35)

Figures 3.15 up to 3.18 show the results: a simulation of the identified
model (in blue) with upper and lower bounds relating to a 95%-confidence
interval (in green) of the simulated concentrations. Measurements (circles)
are also plotted with error bars relating to the intrinsic biological variability
(this information is available for time points where the number of measure-
ments was enough).

Figure 3.15: Model Ω1, experiment 1, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 2σ) .
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Figure 3.16: Model Ω1, experiment 2, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 2σ) .

Figure 3.17: Model Ω1, experiment 3, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 2σ) .

Figure 3.18: Model Ω1, experiment 4, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 2σ) .

For the fourth experiment it can be noticed that the real tpeak (highest value
of Xv attained) is maybe a bit higher. Overall the results are good, even
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if this is not for the moment very important. In fact, the goal of this first
identification step is to find out a good estimate of the value of θ1 that could
later on be used with a more complex model. It is, thus, not very relevant if
the fit is excellent or not since there is an obvious model-plant mismatch (ie.
this reduced model is too simple to capture the behaviour of the biological
system being considered).

All the initial estimates tested in the multistart led to basically the same
final value for µmax. In fact, there can only be one value describing this ex-
ponential early phase of biomass concentration and the algorithm converges
quite quickly given that the model is mathematically very simple so far.

3.6.3.3 Step #2: model Ω2 (phase A)

Let us now further expand the model by considering also the substrates. The
initial growth phase can be described by reduced order model Ω2 (3-states,
3-parameters) to identify the maximum growth rate (again) and parameters
θ8 and θ12 related to the stoichiometry of the consumption of the substrates:

Ω2 :



dx1

dt
= θ1x1,

dx2

dt
=
−1
θ8
θ1x1,

dx4

dt
=
−1
θ12

θ1x1,

(3.36)

where x1 = Xv; x2 = Glc; x4 = Gln; θ1 = µmax; θ8 = YXv/Glc; θ12 = YXv/Gln;
The sensitivity terms (for batch) were computed and are listed in Ap-

pendix A on p. 227.
As for the initial estimate, one value is already available from the previous

step. For the other parameters, a random initial guessθ0 is generated between
the following plausible bounds (where a large safety margin was put on
typical literature values1 for θ8 and θ12):


θ1
θ8
θ12


0

=


0.49 d−1

random(0 − 10) 109cell mmol−1

random(0 − 10) 109cell mmol−1

 . (3.37)

Again, despite the fact that the generation of the initial guess θ0 is con-
strained, the identification algorithm is still free to search elsewhere. After a

1See, for example, (dos Reis Castilho, 2008), (Xing et al, 2010), (de Tremblay et al, 1992), (Dunn et al, 2003).
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multistart with 10 initial guesses, the optimal vector θ∗ found was:

θ1
θ8
θ12



∗

=


0.30 d−1

0.03 109cell mmol−1

0.12 109cell mmol−1

 . (3.38)

This corresponds to a model that is able to describe the data as plotted in
Figure 3.20 to 3.22.

Figure 3.19: Model Ω2, experiment 1, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 2σ) .

Figure 3.20: Model Ω2, experiment 2, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 2σ) .
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Figure 3.21: Model Ω2, experiment 3, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 2σ) .

Figure 3.22: Model Ω2, experiment 4, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 2σ) .

It can be seen that the estimates found for θ1, θ8 and θ12 are overall
acceptable.

3.6.3.4 Step #3: model Ω3 (phase A)

Let us now include also the production of metabolites associated with the
two major substrates. The initial growth phase can be described by reduced
order model Ω3 (5-states, 5-parameters) to identify not only θ1, θ8 and θ12
(again) but also new parameters θ9 and θ13 related to the stoichiometry of
the production of metabolites:
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Ω3 :



dx1

dt
= θ1x1,

dx2

dt
=
−1
θ8
θ1x1,

dx3

dt
=
θ9

θ8
θ1x1,

dx4

dt
=
−1
θ12

θ1x1,
dx5

dt
=
θ13

θ12
θ1x1,

(3.39)

where x1 = Xv; x2 = Glc; x3 = Gln; x4 = Gln; x5 = Gln; θ1 = µmax;
θ8 = YXv/Glc; θ9 = YXv/Glc; θ12 = YXv/Gln; θ13 = YXv/Gln;

The sensitivity terms (for batch) were computed and are listed in Ap-
pendix A on p. 228.

Three parameter estimates are available from the previous step. We have
made use of this information by including them in the initial estimate vector
θ0 whilst the remaining values were randomly generated within bounds
(again, a large safety margin was put on typical literature values for θ9 and
θ13):



θ1
θ8
θ9
θ12
θ13


0

=



0.30 d−1

0.03 109cell mmol−1

random(0 − 10 000) mmol mmol−1

0.12 109cell mmol−1

random(0 − 10 000) mmol mmol−1


. (3.40)

The model to be identified has now more states and is more complex. Fur-
thermore, time vectors are various, not all timepoints were actually measured
and sometimes variance information is lacking for a given state, timepoint
and experiment. It is thus more important to look in further detail at the form
of the cost function Jnorm. Up to now, an intuitive form of the cost function in
terms of normalized variables, Jnorm, has been used:

Jnorm =

nE∑

j=1

nS∑

i=1

nti j∑

k=1

kt,i, j

(
x̄ j

i,k,sim − x̄ j
i,k,meas

)2

n j
i,k

(3.41)

where nE is the number of experiments, nS is the number of states, nti, j is
the number of measured timepoints for state i in experiment j, kt,i, j is either
1 if state i in experiment j in timepoint tki, j was measured or 0 if not, x̄ j

i,k,sim
is the simulated normalised value of state i in experiment j and timepoint
tki, j, x̄ j

i,k,measured is the measured normalised value of state i in experiment j
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and timepoint tki, j and n j
i,k is the number of times a quadratic deviation was

computed (ie, the number of timepoints where measurements were available,
all experiments of the data bank and all state variables comprised).

Firstly, for each experiment, states x were normalised with respect to
the maximum measured value attained by the state. The reason for doing
so is the fact that scales and units are quite different1. By doing this, all
normalised states x̄ will now vary between 0 and 1 (if measured) or around
it (if simulated).

Secondly, for some timepoints, some concentrations were not measured
and it is, thus, not possible to evaluate the quadratic deviation between
measured and simulated values. Furthermore, some experiments last more
than others. Since we intend to have a cost that treats all experiments with the
same importance irrespective of the amount of timepoints available, we have,
therefore, chosen to compute the average quadratic distance per timepoint.

Cost Jnorm illustrates thus how distant model simulations are to measured
values, on an average timepoint for all normalised states and all experiments.

However, more information can be used in the construction of the cost
function J. Namely, if a measurement is more certain than another, then
ideally it should weigh less on the cost that we intend to minimise, while
more uncertain values should weigh more. This weighting can be done by
introducing the variance matrix, the general formula being:

J = Q × V−1 ×Q (3.42)
where Q is the matrix of quadratic deviations and V a diagonal matrix

with the variances of the states, σ2.
A consequence of dividing by the variance is that (while not exactly nor-

malising with respect to the highest measured value) we attenuate the dif-
ferent scales of values assumed by different physical states of the system
since each state deviation is divided by the standard deviation, yielding also,
obviously, in this case, a dimensionless value:

dim
(
(xsim − xmeas)2

σ2

)
= dim

(
(xsim − xmeas)

σ

)
× dim

(
(xsim − xmeas)

σ

)
= 1 (3.43)

Typically, when variance is accounted for in the cost function, a hypothesis
is made that measuring probes will have a certain ε% error associated and this

1For example, while typical open loop values for biomass can vary between 0 and 106cell/mL, glutamine
concentrations can fluctuate between 0 and 8mM, a much smaller span.
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will be the error behind the dispersion observed throughout one experiment.
This is usually an optimistic estimate of the real dispersion of data since it is
frequently based on equipment supplier technical sheets (if at all available2)
or a common sense free guess of its absolute/relative numerical magnitude.
In this case, one could, for example, for one curve of biomass over time, add
confidence intervals corresponding to a constant 10% error.

In our case, since each experiment was done in triplicate3, sample variance
σ2 can be computed in timepoints tk where a concentration was measured
more than once (n times, as shown in Figure 3.14) with its definition:

σ2
tk

=
∑

i

(xi − xaverage)2

n − 1
(3.44)

We have thus a better measure of the real dispersion of data. Not only
do we have more information on dispersion over time, over different experi-
ments and over different states, we also have real information that embodies
the natural biological variability which really has the bigger weight in animal
cell cultures, ie. the different behaviour of cells in the culture has more impact
in data dispersion than probe related errors.

One can thus consider another form for the cost function J:

Jvar =

nE∑

j=1

nS∑

i=1

nti j∑

k=1

kt,i, j

(
x j

i,k,sim − x j
i,k,meas

)2
/σ2

i j

n j
i,k

(3.45)

where x j
i,k,sim is the simulated value of state i in experiment j and timepoint

tki, j, x j
i,k,measured is the measured value of state i in experiment j and timepoint

tki, j, σ
2
i, j is the time-average4 variance for state i in experiment j, and the other

variables are defined as previously in equation (3.41).

2For instance, cell counting under the microscope (for the determination of biomass concentration) has not
only errors associated with pipettes and general equipment but also a user error that can be bigger or smaller,
depending on the user counting, his/her way of counting, attention, etc. It is common practice to suppose a
value between 5% and 20%.

3Ideally, a good practice is to consider a sample size around 10 for a good estimate of dispersion or 30 for a
very good one, if it is to be used in hypothesis tests leading to critical consequences (eg. patients undergoing
a treatment). However, with respect to animal cell cultures, performing the same measurement/experiment 10
times is really too much given financial, time and resource constraints.

4For example, σ2
2,4 refers to state 2 (Glc) in experiment 4. It is the average of variances in the timepoints of

experiment 4 where variance could be computed since state x2 was measured more than once.



CHAPTER 3. ANIMAL CELL CULTURE MODEL IDENTIFICATION 112

Both cost functions were trialed for 10 multistarts departing from initial
estimate as defined in equation (3.40). With the variance-based cost function
Jvar the simulation resulted in:



θ1
θ8
θ9
θ12
θ13



∗

=



0.24 d−1

0.73 109cell mmol−1

1.39 mmol mmol−1

0.07 109cell mmol−1

0.02 mmol mmol−1


. (3.46)

Using Jnorm the results were:


θ1
θ8
θ9
θ12
θ13



∗

=



0.29 d−1

0.84 109cell mmol−1

1.34 mmol mmol−1

0.04 109cell mmol−1

0.007 mmol mmol−1


. (3.47)

Both results are acceptable upon a visual inspection (Figures 3.23 to 3.26,
where results obtained with Jnorm are plotted in blue and those obtained using
Jvar are in green).

Figure 3.23: Model Ω3, experiment 1, CHO-S: model simulation using Jnorm
(blue), using Jvar (green), measurements (circles).
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Figure 3.24: Model Ω3, experiment 2, CHO-S: model simulation using Jnorm
(blue), using Jvar (green), measurements (circles).

Figure 3.25: Model Ω3, experiment 3, CHO-S: model simulation using Jnorm
(blue), using Jvar (green), measurements (circles).

Figure 3.26: Model Ω3, experiment 4, CHO-S: model simulation using Jnorm
(blue), using Jvar (green), measurements (circles).

It seems that, compared to Jnorm, if Jvar is used, more emphasis is put on
glutamine model-data compliance and less on biomass compliance. The final
decision of which is more important remains with the final user, of course,
but both results are acceptable. We will proceed using Jnorm in the following
steps since it seems to be slightly faster.
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3.6.3.5 Step #4: model Ω4 (phases A and B)

The following step is a critical one since all of the culture data will now be
included, namely growth phase A (period when cell concentration rises) and
death phase B (when cell concentration starts to decrease). It is critical to
correctly chose a mathematical form that allows the net growth rate µnet to
become negative whenever biomass concentration Xv decreases.

dXv
dt

= µnetXv (3.48)

The simplest approach is to firstly try out very simple sub-models for the
whole culture (growth phase and death phase) based on some hypothesis on
phenomena that can put an end to the rise of biomass concentration.

Some basic hypotheses are:

• H4a: growth is limited by glucose disappearance

Ω4a :
{

dx1

dt
= θ1

x2

θ2 + x2
x1 ≡ dXv

dt
= µmax

Glc
kGlc + Glc

Xv (3.49)

• H4b: growth is limited by glutamine disappearance

Ω4b :
{

dx1

dt
= θ1

x4

θ3 + x4
x1 ≡ dXv

dt
= µmax

Gln
kGln + Gln

Xv (3.50)

• H4c: growth is limited both by glucose and glutamine disappearance

Ω4c :
{

dx1

dt
= θ1

x2

θ2 + x2

x4

θ3 + x4
x1 ≡ dXv

dt
= µmax

Glc
kGlc + Glc

Gln
kGln + Gln

Xv

(3.51)

Sub-models Ω4a to Ω4c provide typical forms of expressing substrate lim-
itation. They are, however, not eligible since they only allow µnet to be either
positive (in that case Xv will increase) or null (Xv will remain constant).

In order to allow µnet to become negative, a baseline death rate θ4 will be
introduced:1

1Notice also that a sub-model where simply µnet = µmax−µd,max = constant is not eligible either since it would
not allow both a growth and a death phase. It would allow only a growth phase (µnet > 0), only null growth
(µnet = 0) or only a death phase (µnet < 0).
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• H4d: growth is limited by glucose disappearance and there is a baseline
death rate

Ω4d :
{

dx1

dt
=

(
θ1

x2

θ2 + x2
− θ4

)
x1 (3.52)

• H4e: growth is limited by glutamine disappearance and there is a baseline
death rate

Ω4e :
{

dx1

dt
=

(
θ1

x4

θ3 + x4
− θ4

)
x1 (3.53)

• H4 f : growth is limited both by glucose and glutamine disappearance
and there is a baseline death rate

Ω4 f :
{

dx1

dt
=

(
θ1

x2

θ2 + x2

x4

θ3 + x4
− θ4

)
x1 (3.54)

All of these will now be tested. Note that these sub-models cannot be
solved autonomously. The system is multivariable and the evolution of states
x is done by simultaneous integration of all the various differential equations.
More precisely, how other components are modeled will also have an impact
on Xv(t) since dXv/dt depends on other states (the substrates). In order to
test all submodels Ω4d to Ω4 f , these will be coupled to the other following
differential equations where µgrowth is defined in each submodel:

Ω4,rest :



dx2

dt
= − 1

θ8
µgrowthx1 ,

dx4

dt
= − 1

θ12
µgrowthx1 ,

(3.55)

The following initial guesses were considered:

[θ4d]0 :



θ1
θ2
θ4
θ8
θ12


0

=



0.24 d−1

random(0 − 11) mM
random(0 − 24) d−1

0.73 109cell mmol−1

0.07 109cell mmol−1


. (3.56)
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[θ4e]0 :



θ1
θ3
θ4
θ8
θ12


0

=



0.24 d−1

random(0 − 11) mM
random(0 − 2.8) d−1

0.73 109cell mmol−1

0.07 109cell mmol−1


. (3.57)

[θ4 f ]0 :



θ1
θ2
θ3
θ4
θ8
θ12


0

=



0.24 d−1

random(0 − 11) mM
random(0 − 11) mM
random(0 − 2.8) d−1

0.73 109cell mmol−1

0.07 109cell mmol−1



. (3.58)

The upper bounds for the random generation of a guess value of new
parameters θ2 = kGlc, θ3 = kGln, θ4 = µd,max were set by choosing values much
bigger than those provided in the literature. As for θ4 = µd,max, it needs to be
smaller than θ1 = µmax so that there will be an initial growth phase and a later
death phase (otherwise µnet would always be negative and biomass would
always decrease throughout the culture). The value found in the previous
step was, thus, used as an upper bound for this random generation.

The algorithm was run using Jvar and Jnorm as cost functions (with similar
results). The identified values were added to Table 3.7 that summarises all
results gathered so far.

Note that at this stage some extra information from system dynamics
could be useful in this identification step: we expect from the sensitivity
analysis that parameters such as kGlc will be more influential throughout
a glucose-poor experiment (in this CHO-S case study, experiments 3 and
4), and parameters such as kGln will be more influential in glutamine-poor
experiments (experiments 2 and 4).1 Since the cost function is a sum of the
costs for the different experiments, some weighting factors wi could be used
to put special emphasis on more informative experiments:

J = w1JExp1 + w2JExp2 + w3JExp3 + w4JExp4 (3.59)

One can thus expect the algorithm’s convergence to be faster if w3 and w4
are bigger while identifying option {Ω4d + Ω4rest}.2, and, likewise, if greater

1This is illustrated in Figure 3.2 on page 89, for example.
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w2 and w4 are used while identifying {Ω4e + Ω4rest}. However, it is impor-
tant to consider the informative richness of all experiments. In fact, as an
extreme example, if only one experiment is accounted for by the algorithm
as the "training dataset", then most likely the identified model will offer a
reasonably good fit for that particular experiment and yet be inadequate
for the remaining experiments (which are the independent "cross-validation
datasets"). This is illustrated in Figures 3.27 to 3.30: model {Ω4d + Ω4rest}
was firstly identified considering only data from experiment 1: the identified
model unsurprisingly describes experiment 1 (red solid lines in Figure 3.30)
well, but does not predict the outcome of the culture for the conditions of
the other experiments (red dashed lines in Figures 3.28-3.30) well. The same
happens when the algorithm considers only data from experiment 2 (blue), 3
(green) and 4 (black): they can only describe well the experiment from which
the parameters were identified.

Figure 3.27: Model {Ω4d + Ω4rest}, experiment 1, CHO-S: model simulation
using parameters identified (direct validation) with experiment 1 (red) or
(cross-validation) using only experiment 2 (blue) or 3 (green) or 4 (black).
Circles represent experiment 1’s dataset.

2Since this model considers the existence of a kGlc, ie. a limitation of growth by progressive glucose depletion.
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Figure 3.28: Model {Ω4d + Ω4rest}, experiment 2, CHO-S: model simulation
using parameters identified (direct validation) with experiment 2 (blue) or
(cross-validation) using only experiment 1 (red) or 3 (green) or 4 (black).
Circles represent experiment 2’s dataset.

Figure 3.29: Model {Ω4d + Ω4rest}, experiment 3, CHO-S: model simulation
using parameters identified (direct validation) with experiment 3 (green) or
(cross-validation) using only experiment 1 (red), 2 (blue) or 4 (black). Circles
represent experiment 3’s dataset.

Figure 3.30: Model {Ω4d + Ω4rest}, experiment 4, CHO-S: model simulation
using parameters identified (direct validation) with experiment 4 (black) or
(cross-validation) using only experiment 1 (red), 2 (blue) or 3 (green). Circles
represent experiment 4’s dataset.
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This model is simple enough to be able to adjust itself and describe (only)
one experimental set of conditions but not powerful enough to capture culture
behaviour and to predict how it would react to other different conditions.

It is, thus, important at this stage to consider all datasets since our purpose
is to have a rough idea of good starting values for some parameters that will
be used later in more complex models. All experimental datasets considered,
the best fits are presented in Figures 3.31 to 3.34 for the three simple submodels
(Ω4d, Ω4e, Ω4 f ) proposed to estimate the substrate limitation phenomena:

Figure 3.31: Models {Ω4d + Ω4rest}, {Ω4e + Ω4rest}, {Ω4 f + Ω4rest}, experiment
1, CHO-S: simulations with models identified using the complete databank.
Circles represent experiment 1’s dataset.

Figure 3.32: Models {Ω4d + Ω4rest}, {Ω4e + Ω4rest}, {Ω4 f + Ω4rest}, experiment
2, CHO-S: simulations with models identified using the complete databank.
Circles represent experiment 2’s dataset.
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Figure 3.33: Models {Ω4d + Ω4rest}, {Ω4e + Ω4rest}, {Ω4 f + Ω4rest}, experiment
3, CHO-S: simulations with models identified using the complete databank.
Circles represent experiment 3’s dataset.

Figure 3.34: Models {Ω4d + Ω4rest}, {Ω4e + Ω4rest}, {Ω4 f + Ω4rest}, experiment
4, CHO-S: simulations with models identified using the complete databank.
Circles represent experiment 4’s dataset.

In Table 3.7, it can be seen that although the best cost value was obtained
with model Ω4 f+rest (both glucose and glutamine limitation are assumed),
different runs of the algorithm converge, in this case, to different values for
some of the parameters. In fact, it seems that the available data may not be
informative enough to estimate glutamine limitation and, therefore, different
combinations of values for {kGln;µmax; kGlc} lead to similar curves.

On the other hand, for glucose, another substrate, limitation is a phe-
nomenon well present in the data. Therefore, kGlc can be easily estimated
using model Ω4d+rest: multiple runs of the algorithm all lead to a similar final
value.
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Table 3.7: Identification results for steps #1 to #4f.

Parameter / Step Ω1 Ω2 Ω3 Ω4d Ω4e Ω4 f

θ1 ≡ µmax 0.49 0.30 0.24 0.69 (∗) (∗)

(0.49) (0.30) (0.24) (0.24) (0.24)

θ2 ≡ kGlc 0.14 (∗)

θ3 ≡ kGln
(∗) (∗)

θ4 ≡ µd,max 0.053 0.36 0.41
θ8 ≡ YXv/Glc 0.03 0.02 0.053 0.042 0.082

(0.03) (0.02) (0.73) (0.73)

θ9 ≡ YLac/Glc 1.39
θ12 ≡ YXv/Gln 0.12 0.08 0.38 0.17 0.31

(0.12) (0.07) (0.07) (0.07)

θ13 ≡ YAmm/Gln 0.74
Cost J 0.677 0.535 0.472

Note: for each column (step/model), the initial parameter guess, whenever not randomly
generated, is shown in parentheses. Cells shaded in grey indicate parameters considered
in that model. Remarks: (∗) means results are inconclusive because, despite convergence
obtained in each run, the identified values are very different, they have different orders of
magnitude, eg. they range from 10 to 107.

In any case, the main purpose of this step is to check whether an idea of the
amplitude of the substrate limitation constants can be found. In this reduced
simplistic model, these are the parameters responsible for the moment when
cell growth switches to a cell death phase. But it is clear from Figures 3.31 to
3.34 that the phenomenon alone is not able to fully describe the death phase.
We will consider some other hypotheses.

3.6.3.6 Step #5: model Ω5 (phases A and B)

Let us presume that another phenomenon can occur also in the culture:
metabolite inhibition, namely, the fact that ammonia and lactate may inhibit
cell growth and contribute to the negativeness of term µnet during the death
phase.

The terms proposed below in models Ω5a −Ω5d are inspired by (de Trem-
blay, 1991)’s model. Taking into consideration the parameter values of this
model (for hybridoma cells) and the range of concentrations of our data bank
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(similar but with CHO cells), these terms assume the curves described in
Figure 3.35.

Figure 3.35: How terms used in models {Ω5a, · · · ,Ω5d} vary for our range of
concentrations (mM) when given De Tremblay’s parameter values. Green
triangles indicate initial value at t0 and red squares indicate final value at t f .

To start with, very simple hypotheses will be considered:

• H5a: growth is limited by glucose disappearance, death is enhanced by
lactate accumulation (ie, the pair substrate/metabolite Glc/Lac plays a
major role)

Ω5a :
{

dx1

dt
=

(
θ1

x2

θ2 + x2
− θ4

1
θ1 − θ5x3

)
x1 ≡

dXv
dt

=

(
µmax

Glc
kGlc + Glc

− µd,max
1

µmax − kd,LacLac

)
Xv (3.60)

• H5b: growth is limited by glutamine disappearance, death is enhanced
by ammonia accumulation (ie, the pair Gln/Amm plays a major role)

Ω5b :
{

dx1

dt
=

(
θ1

x4

θ3 + x4
− θ4

1
θ1 − θ6x5

)
x1 ≡
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dXv
dt

=

(
µmax

Gln
kGln + Gln

− µd,max
1

µmax − kd,AmmAmm

)
Xv (3.61)

• H5c: growth is limited by glucose and glutamine disappearance, death is
enhanced by lactate and ammonia accumulation (ie, both pairs Glc/Lac
and Gln/Amm play a major role)

Ω5c :
{

dx1

dt
=

(
θ1

x2

θ2 + x2

x4

θ3 + x4
− θ4

1
θ1 − θ5x3

1
θ1 − θ6x5

)
x1 ≡

dXv
dt

=

(
µmax

Glc
kGlc + Glc

Gln
kGln + Gln

−

−µd,max
1

µmax − kd,LacLac
1

µmax − kd,AmmAmm

)
Xv (3.62)

• H5d: (de Tremblay, 1991)’s model structure, ie. growth limited by glucose
and glutamine disappearance, death enhanced by lactate and ammonia
accumulation, insignificant death as long as glutamine abundant, glucose
consumption partially explained by cell maintenance activities

Ω5d :
{

dx1

dt
=

(
θ1

x2

θ2 + x2

x4

θ3 + x4
− θ4

1
θ1 − θ5x3

1
θ1 − θ6x5

θ7

θ7 + x4

)
x1 ≡

dXv
dt

=

(
µmax

Glc
kGlc + Glc

Gln
kGln + Gln

−

−µd,max
1

µmax − kd,LacLac
1

µmax − kd,AmmAmm
kd,Gln

kd,Gln + Gln

)
Xv (3.63)

Again, notice that Ω5a, ... are submodels and need to be coupled with the
remaining differential equations that further define relations with the other
states so that the model is complete:

Ω5,rest :



dx2

dt
=
−1
θ8
µgrowthx1,

dx3

dt
=
θ9

θ8
µgrowthx1,

dx4

dt
=
−1
θ12

µgrowthx1,
dx5

dt
=
θ13

θ12
µgrowthx1,

(3.64)
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except for submodel Ω5d where glucose, while abundant, is partially used
for maintenance purposes and thus:

Ω5d,rest :



dx2

dt
= −

( 1
θ8
µgrowth + θ10

x2

θ11 + x2

)
x1,

dx3

dt
=
θ9

θ8
µgrowthx1,

dx4

dt
=
−1
θ12

µgrowthx1,
dx5

dt
=
θ13

θ12
µgrowthx1,

(3.65)

where : θ10
x2

θ11 + x2
≡ mGlc

Glc
km,Glc + Glc

The following initial values were considered for the parameters present
overall in the four models:

[θM5abcd]0 :



θ1
θ2
θ3
θ4
θ5
θ6
θ7
θ8
θ9
θ10
θ11
θ12
θ13


0

=



0.69 d−1

0.14 mM
random(0 − 11) mM

0.35 d−1

random(0 − 14) mM−1 d−1

random(0 − 28) mM−1 d−1

random(0 − 900) mM
0.02 109cell mmol−1

1.39 mmol mmol−1

random(0 − 2.5 × 103) mmol 10−9cell d−1

random(0 − 11) mM
0.08 109cell mmol−1

0.74 mmol mmol−1



. (3.66)

Since the complexity of the models is now greater, starting from a bad ini-
tial guess has a bigger impact on the duration of the identification procedure.
Therefore, an additional step was added where many random θ0 are initially
generated (eg. 20,000) and trialled (their cost is computed) so as to scan the
area of possibilities, and then the algorithm goes on to be launched for the k
most promising ones (the best 10 sets of values for θ0, for example).

In order to improve the speed of the identification procedure, an extra
constraint was added, as well: in the initial guess, µmax needs to be bigger
thanµd,max (otherwise, no initial cell growth would be observed, which would
be a waste of time).
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There are now also more states (5, instead of 3 in step 4), thus the weight of
biomass compliance is smaller in the total cost account, J. In order to balance
this out and keep a similar weighting to that used in the previous step, the
following weighting of the cost function was introduced:

J = (1/3) Jx1 +

[
(1/3)

2
Jx2 +

(1/3)
2

Jx3

]
+

[
(1/3)

2
Jx4 +

(1/3)
2

Jx5

]
(3.67)

This means that, for any experiment, 1/3 of the total cost comes from
biomass compliance, another 1/3 from Glc/Lac compliance and the remain-
ing 1/3 from Gln/Amm compliance. In fact, for the final user of the model, the
compliance of model predictions to real data is often more important when it
comes to biomass for several reasons: one of the culture’s purposes may be to
culture cells, it may also be to produce a protein (and their submodels are usu-
ally rather a function of biomass concentration and not substrate/metabolite
concentrations), or simply because mathematically the most important state
is biomass as the dynamics of other states are usually based on its dynamics
(see equation (3.64) on page 123, for instance).

Table 3.8 presents the results obtained for models defined in equations
(3.60) to (3.64).

Figures 3.36 to 3.39 present the corresponding plots for the 4 experiments.
It can be seen that with this type of models, towards the end of the culture,
when cells are dying out, final lactate and ammonia concentrations present
constant profiles. Real data, however, is more "round". This can be attributed
possibly to measurement noise and possibly to other phenomena, such as
some glucose being partially used for maintenance purposes and glutamine
spontaneously decomposing into ammonia. The switch time tpeak from the
growth phase to the death phase is sometimes not correctly predicted by the
models (eg. for experiment 1, models Ω5a and Ω5b). If the biomass curve
is not correctly predicted, then the substrate and metabolite curves are also
arguable.
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Table 3.8: Identification results for step #5.

Parameter / Step Ω5a Ω5b Ω5c Ω5d
θ1 ≡ µmax 1.37 0.80 1.04 1.37

(0.69) (0.69) (0.69) (0.69)

θ2 ≡ kGlc 0.0014 0.0009 0.0246
(0.14) (0.14) (0.14)

θ3 ≡ kGln 1.19 2.11 1.21

θ4 ≡ µd,max 1.33 0.22 0.39 1.37
(0.35) (0.35) (0.35) (0.35)

θ5 ≡ kd,Lac 0.022 0.019 0.019

θ6 ≡ kd,Amm 0.133 0.037 0.000

θ7 ≡ kd,Gln 155

θ8 ≡ YXv/Glc 0.212 0.059 0.097 0.165
(0.021) (0.021) (0.021) (0.021)

θ9 ≡ YLac/Glc 1.54 1.23 1.54 1.67
(1.39) (1.39) (1.39) (1.39)

θ10 ≡ mGlc 1.31

θ11 ≡ km,Glc 189

θ12 ≡ YXv/Gln 0.43 0.26 0.42 0.27
(0.08) (0.08) (0.08) (0.08)

θ13 ≡ YAmm/Gln 0.40 0.88 0.83 0.80
(0.74) (0.74) (0.74) (0.74)

Cost J 48.3 63.9 39.1 41.6
Note: for each column (step/model), the initial parameter guess, whenever not randomly
generated, is shown in parentheses. Cells shaded in grey indicate parameters considered in
that model. Remarks: (∗) inconclusive results since, despite convergence obtained in several
runs, identified values range from 10 to 107 in amplitude.
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Figure 3.36: Models {Ω5a + Ω5,rest} in blue, {Ω5b + Ω5,rest} in red, {Ω5c + Ω5,rest}
in green, {Ω5d + Ω5d,rest} in purple, experiment 1, CHO-S: simulations with
models identified using the complete databank. Circles represent experiment
1’s dataset.

Figure 3.37: Models {Ω5a + Ω5,rest} in blue, {Ω5b + Ω5,rest} in red, {Ω5c + Ω5,rest}
in green, {Ω5d + Ω5d,rest} in purple, experiment 2, CHO-S: simulations with
models identified using the complete databank. Circles represent experiment
2’s dataset.

Figure 3.38: Models {Ω5a + Ω5,rest} in blue, {Ω5b + Ω5,rest} in red, {Ω5c + Ω5,rest}
in green, {Ω5d + Ω5d,rest} in purple, experiment 3, CHO-S: simulations with
models identified using the complete databank. Circles represent experiment
3’s dataset.
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Figure 3.39: Models {Ω5a + Ω5,rest} in blue, {Ω5b + Ω5,rest} in red, {Ω5c + Ω5,rest}
in green, {Ω5d + Ω5d,rest} in purple, experiment 4, CHO-S: simulations with
models identified using the complete databank. Circles represent experiment
4’s dataset.

Models are imperfect, but it is important that, whatever the model-plant
mismatch may be, at least the switch time between the growth and the death
phase is more or less correctly identified. In fact, this will help us analyse
fitted curves and decide if other phenomena should be considered in the
model form. A better estimate of the switch time translates into a bigger
compliance around tpeak. This wish has been expressed by introducing a
timewise weighting wi in the cost function that accounts for all i points of a
component’s concentration during any particular experiment:

J =
∑

i

wiJi (3.68)

It was also considered that the compliance of points around tpeak should be
greatly weighted. The values chosen are w(t0) = 10, w(tpeak) = 100, w(t f ) = 1
as shown in Figure 3.40 which can in some way be interpreted as an oversim-
plification of a typical Xv(t) curve.

Figure 3.40: Timewise weighting.
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The algorithm was run again for these models using timewise weight-
ing and achieved better results. Figure 3.41 exemplifies how these can be
improved when the switch time tpeak is correctly estimated.1

Figure 3.41: Model {Ω5b + Ω5,rest} without timeweighting the cost function
(light red) and timeweighting it (dark red). Circles represent experiment 4’s
dataset.

Whilst without timeweighting, the biomass concentration is, in this case,
underestimated (and thus the identified values for the stoichiometric co-
efficients should be further from the real values),2 when timeweighting is
introduced, compliance for points around tpeak gains more importance. The
curve in bold presents a more interesting fit for biomass concentration. It
is thus expected that the stoichiometric coefficients will be better estimated
with this cost function. With regard to better or worse compliance around the
last points of each experiment, this will allow us to investigate whether other
phenomena (eg. spontaneous glutamine degradation) are still unexplained
and need to be included in the model.

The new identified values (now with timeweighting) are comparable and
fits better, as shown on Table 3.9 and Figures 3.42 to 3.45.

1Notice that the cost function value is not comparable anymore to the previous values, since the function is
built differently. A visual check was thus used to inspect the identification results.

2Since substrate consumption and metabolite production per cell are, in this case, based on a bad fit for
Xt(t).
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Table 3.9: Identification results for step #5 using timeweighting.

Parameter / Step Ω5a Ω5b Ω5c Ω5d
θ1 ≡ µmax 1.41 0.76 1.26 0.97

(0.69) (0.69) (0.69) (0.69)

θ2 ≡ kGlc 0.0970 0.0425 0.0001
(0.14) (0.14) (0.14)

θ3 ≡ kGln 1.00 2.35 2.82

θ4 ≡ µd,max 1.41 0.21 0.74 0.23
(0.35) (0.35) (0.35) (0.35)

θ5 ≡ kd,Lac 0.020 0.015 0.016

θ6 ≡ kd,Amm 0.125 0.000 0.037

θ7 ≡ kd,Gln 7.64 × 108

θ8 ≡ YXv/Glc 0.225 0.059 0.111 0.078
(0.021) (0.021) (0.021) (0.021)

θ9 ≡ YLac/Glc 1.68 1.22 1.66 1.57
(1.39) (1.39) (1.39) (1.39)

θ10 ≡ mGlc 0.747

θ11 ≡ km,Glc 0.287

θ12 ≡ YXv/Gln 0.43 0.26 0.42 0.27
(0.08) (0.08) (0.08) (0.08)

θ13 ≡ YAmm/Gln 0.40 0.88 0.83 0.80
(0.74) (0.74) (0.74) (0.74)

Cost J 48.3 63.2 39.2 41.6
Note: for each column (step/model), the initial parameter guess, whenever not randomly
generated, is shown in parentheses. Cells shaded in grey indicate parameters considered in
that model.
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Figure 3.42: Models {Ω5a + Ω5,rest} in blue, {Ω5b + Ω5,rest} in red, {Ω5c + Ω5,rest}
in green, {Ω5d + Ω5d,rest} in purple, experiment 1 (circles), CHO-S: simulations
with models identified using the complete databank. Timeweighting of the
cost function was used as described in eq. (3.68), p. 128.

Figure 3.43: Models {Ω5a + Ω5,rest} in blue, {Ω5b + Ω5,rest} in red, {Ω5c + Ω5,rest}
in green, {Ω5d + Ω5d,rest} in purple, experiment 2 (circles), CHO-S: simulations
with models identified using the complete databank. Timeweighting of the
cost function was used as described in eq. (3.68), p. 128.

Figure 3.44: Models {Ω5a + Ω5,rest} in blue, {Ω5b + Ω5,rest} in red, {Ω5c + Ω5,rest}
in green, {Ω5d + Ω5d,rest} in purple, experiment 3 (circles), CHO-S: simulations
with models identified using the complete databank. Timeweighting of the
cost function was used as described in eq. (3.68), p. 128.
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Figure 3.45: Models {Ω5a + Ω5,rest} in blue, {Ω5b + Ω5,rest} in red, {Ω5c + Ω5,rest}
in green, {Ω5d + Ω5d,rest} in purple, experiment 4 (circles), CHO-S: simulations
with models identified using the complete databank. Timeweighting of the
cost function was used as described in eq. (3.68), p. 128.

Now that some parameter values were identified for our CHO cell culture,
we can re-plot Figure 3.35 (terms in De Tremblay’s model) for our models
Ω5a to Ω5d in order to check if and how they vary within the ranges of
concentrations of our cultures. This is done in Figure 3.46.

Figure 3.46: How terms used in models Ω5a (blue), Ω5b (red), Ω5c (green), Ω5d
(magenta) vary for our range of concentrations. In black, using De Tremblay’s
values for another type of animal cells. Green triangles indicate initial value
at t0 and red squares indicate final value at t f .

It can be seen globally that terms are varying within the ranges of concen-
tration of the culture. One exception is kd,Gln/(kd,Gln + Gln) which is always
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roughly equal to 1 in model Ω5d (eq. (3.63) on p. 123). This means that this
model could actually be reduced (the term in question is being multiplied
and could be discarded).

The term 1/(µmax − kd,AmmAmm) presents a problem though (eq. (3.61), p.
123): the denominator has a zero that accounts for unusual behavior. Using
(de Tremblay, 1991)’s model values, this behaviour happens well above the
range of ammonia concentrations (black line in Figure 3.46). However, with
the values identified for Ω5b, this happens within the range. A different ex-
pression to describe this phenomenon (ammonia inhibition) could therefore
be used.

On the whole, the best model so far seems to be Ω5c since it reached the
lowest value for the cost function. Model Ω5d (De Tremblay) is not very
far, with the remarks that the term kd,Gln/(kd,Gln + Gln) could in this case be
discarded (as discussed above) and that it might not be necessary to introduce
term Glc/(km,Glc + Glc) to express limitation of the partial use of glucose in cell
maintenance purposes (eq. (3.65), p. 124).

Let us now try to improve the very simple model forms considered pre-
viously by considering either new structures or changes to their structures.
One of the improvements will be the choice of other forms for representing
ammonia and lactate inhibition phenomena.

• H5e: growth is limited by glucose and glutamine disappearance and
inhibited by lactate and ammonia accumulation)

Ω5e :



dx1

dt
=



µgrowth︷                                    ︸︸                                    ︷
θ1

x2

θ2 + x2

x4

θ3 + x4

θ5

θ5 + x3

θ6

θ6 + x5
−

µdeath︷︸︸︷
θ4


x1 ≡

dXv
dt

=

(
µmax

Glc
kGlc + Glc

Gln
kGln + Gln

ki,Lac

ki,Lac + Lac
ki,Amm

ki,Amm + Amm
− µd,max

)
Xv

(3.69)

In comparison to model Ω5c which presumes the same set of phenomena,
we have now chosen to test an alternative classic form of expressing
it (from the list of forms available in Tables 2.1 and 2.2). Before, it
was presumed that baseline death was enhanced by accumulation of
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metabolites, here the baseline death is constant and it is growth that
decreases with it. Let us recall the shape of the mathematical forms used:

Figure 3.47: Typical model forms used to express inhibition or limitation in
cell cultures.

As a side note, let us mention that, in order to be sure that the search space
is being well covered (when x random guesses are generated so that the best
ones can be chosen to initialize the algorithm), we have increased them from
20.000 to 100.000 and checked the results. An example is provided in Figure
3.48. No great improvement was found and, therefore, it was considered that
20.000 is a number big enough to scrutinize the space of possible θ0 for the
amount of parameters with which we are dealing1.

Figure 3.48: Model {Ω5e + Ω5e,rest} identified using the best θ0 values out of
20.000 random ones (in yellow) and out of 100.000 random ones (in blue).
Experiment 1, CHO-S.

• H5 f : equal to Ω5e but the possibility of extra phenomena happening is
added, namely that some glutamine may disappear due to spontaneous

1Throughout this case study, on an Intel(R) Core(TM)2 Duo CPU P8400 @2.26GHz Memory (RAM) 4GB
32-bit Windows operating system, this procedure lasted a duration of a couple of minutes to a couple of hours,
depending on the complexity of the model structure and number of parameters considered in the step.
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degradation (rate θ7) and that some glucose may be used also for cell
maintenance purposes (rate θ10).

We would also like to test another way of expressing the limitation/inhibition
of net growth:

• H5g: growth is limited by glucose and glutamine disappearance, death
is null if lactate or ammonia are absent but enhanced if they are present.

Ω5g :
{

dx1

dt
=

(
θ1

x2

θ2 + x2

x4

θ3 + x4
− θ4

x3

θ5 + x3

x5

θ6 + x5

)
x1 ≡

dXv
dt

=

(
µmax

Glc
kGlc + Glc

Gln
kGln + Gln

− µd,max
Lac

ki,Lac + Lac
Amm

ki,Amm + Amm

)
Xv

(3.70)

For submodel Ω5e, as soon as one substrate concentration is null, then
there is null growth and a constant death rate (the later time period of
the culture being then largely defined by parameter µd,max). Here in Ω5g,
the assumption is that a (maximum) death rate will be low as long as
lactate and ammonia do not accumulate too much. The later period of
the culture can be largely shaped by 3 parameters µd,max, kd,Lac and kd,Amm.

• H5h: equal to Ω5g but, similarly to Ω5 f , extra phenomena are added to Ω5g:
glutamine partially decomposes spontaneously (rate θ7) and glucose is
partially used for maintenance (rate θ10).

Once more, notice that Ω5e, ... are submodels and need to be coupled with
the remaining differential equations: eq. (3.64) on p. 123 for Ω5e and Ω5g,
and, for the specific case of Ω5 f and Ω5h:

Ω5 f h,rest :



dx2

dt
= −

( 1
θ8
µgrowth + θ10

)
x1,

dx3

dt
= θ9

( 1
θ8
µgrowth + θ10

)
x1,

dx4

dt
= −

( 1
θ12

µgrowth + θ7
x4

x1

)
x1,

dx5

dt
= θ13

( 1
θ12

µgrowth + θ7
x4

x1

)
x1,

(3.71)
As for initial guesses, the standard procedure was followed, except that

models Ω5 f and Ω5h, being more complex forms of models Ω5e and Ω5 f , were
tested using the input from the identified values of their simpler forms.
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Overall, it seems that the inclusion of spontaneous glutamine degradation
and maintenance glucose is positive: the cost of model Ω5e (35.6) gets as low
as 19.8 in Ω5 f and the cost of Ω5g (39.8) is lowered to 31.2 in Ω5h. This can be
seen in Table 3.10 and Figures 3.49 to 3.52.

Table 3.10: More identification results for step #5 using timeweighting.

Parameter / Step Ω5e Ω5 f Ω5g Ω5h
θ1 ≡ µmax 1.55 1.51 1.08 1.22

(0.69) (1.55) (0.69) (1.08)

θ2 ≡ kGlc 0.022 0.003 0.093 1.005
(0.14) (0.022) (0.14) (0.093)

θ3 ≡ kGln 1.22 0.92 2.61 1.22
(1.22) (2.61)

θ4 ≡ µd,max 0.501 0.522 0.630 0.770
(0.354) (0.501) (0.354) (0.630)

θ5 ≡ kd,Lac 21.2 17.2 3.75 1.74
(21.2) (3.75)

θ6 ≡ kd,Amm 23.7 633 0.000 0.004
(23.7) (0.000)

θ7 ≡ kα,Gln 0.184 0.195

θ8 ≡ YXv/Glc 0.104 0.107 0.095 0.207
(0.021) (0.104) (0.021) (0.095)

θ9 ≡ YLac/Glc 1.66 1.58 1.69 1.53
(1.39) (1.66) (1.39) (1.69)

θ10 ≡ mGlc 0.16 2.44

θ12 ≡ YXv/Gln 0.45 6.42 0.35 1.55
(0.08) (0.45) (0.08) (0.35)

θ13 ≡ YAmm/Gln 0.93 0.80 0.81 0.66
(0.74) (0.93) (0.74) (0.81)

Cost J 35.6 19.8 39.8 31.2
Note: for each column (step/model), the initial parameter guess, whenever not randomly
generated, is shown in parentheses. Cells shaded in grey indicate parameters considered in
that model.
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Figure 3.49: Models {Ω5e + Ω5e,rest} in yellow, {Ω5 f + Ω5 f ,rest} in brown,
{Ω5g + Ω5g,rest} in cyan, {Ω5h + Ω5h,rest} in purple, experiment 1 (circles),
CHO-S: simulations with models identified using the complete databank.
Timeweighting of the cost function was used as described in eq. (3.68), p.
128.

Figure 3.50: Models {Ω5e + Ω5e,rest} in yellow, {Ω5 f + Ω5 f ,rest} in brown,
{Ω5g + Ω5g,rest} in cyan, {Ω5h + Ω5h,rest} in purple, experiment 2 (circles),
CHO-S: simulations with models identified using the complete databank.
Timeweighting of the cost function was used as described in eq. (3.68), p.
128.
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Figure 3.51: Models {Ω5e + Ω5e,rest} in yellow, {Ω5 f + Ω5 f ,rest} in brown,
{Ω5g + Ω5g,rest} in cyan, {Ω5h + Ω5h,rest} in purple, experiment 3 (circles),
CHO-S: simulations with models identified using the complete databank.
Timeweighting of the cost function was used as described in eq. (3.68), p.
128.

Figure 3.52: Models {Ω5e + Ω5e,rest} in yellow, {Ω5 f + Ω5 f ,rest} in brown,
{Ω5g + Ω5g,rest} in cyan, {Ω5h + Ω5h,rest} in purple, experiment 4 (circles),
CHO-S: simulations with models identified using the complete databank.
Timeweighting of the cost function was used as described in eq. (3.68), p.
128.

Model Ω5 f (eq. (3.83)) is apparently the best, presenting the lowest cost.
Let us now describe the procedure for computing confidence intervals on the
parameter values identified.

• For the identified set of parameters θ̂ = [1.51 0.003 · · · ]1×12 retrieve
simulated values for all experiments:

(tsim, xsim) = f (x, θ̂,u) (3.72)
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• Compute difference, throughout time, between simulated and measured
value (if measured) for all states.

exp. 1 :
{

errorx1 = x1,meas − x1,sim
...

...

(3.73)

• Compute cost per state considering available datapoints all experiments
comprised.

Jx1 =
∑

when
available

error2
x1

...
Jx5 = . . .

(3.74)

• Compute variance of the errors, ie. a measure, for each model state,
of the average data-simulation error variability per point. This average
step is important since not all timepoints are available (eg: sometimes,
in a given experiment at a given timepoint, one of the concentrations
was not measured). Therefore, for example, varx1 expresses how distant,
on average, simulated biomass concentrations are to measured values,
globally throughout all experiments and all culture phases.

varx1 =
Jx1

nr avaible datapoints−nr parameters
...
varx5 = . . .

(3.75)

• Compute time courses of sensitivities, for each state and each experiment,
using θ̂ obtained and Sxi,θ j(t0) = 0 as initial condition. The terms needed
for the simultaneous integration of equations (3.8)-(3.9) on p. 83 were
derived and are listed in Appendix A.2.4 throughout pages 230-237.

exp. 1 :



[Sx1,θ1 . . . Sx1,θ12](t) = . . .
...
[Sx5,θ1 . . . Sx1,θ12](t) = . . .

...

(3.76)
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• Compute Fisher Information Matrix (FMI).

exp. 1 :



for each tk :

dy
dθ =


Sx1,θ1 . . .Sx1,θ12
...
Sx5,θ1 . . .Sx1,θ12

 ; σ =



varx1 0 . . . 0
0 varx2 . . . 0
... . . .
0 varx5



F =
dy
dθ

T
σ−1 dy

dθ

all tk considered : F = Ft0 + Ft1 + · · · + Ft f
...

(3.77)

• Compute covariance.
cov(np×np) = F−1 (3.78)

• Compute intervals on parameters (upper and lower bounds for values
identified, considering a certain confidence level for a t-student distribu-
tion with t95% = 1.96).

θUB
i = θ̂i + t95%

√
cov(i, i) (3.79)

θLB
i = θ̂i − t95%

√
cov(i, i) (3.80)

In order to compute bounds on the prediction of the evolution of concen-
trations (ie, the system states), the procedure below was followed:

• Compute covariance, for each tk in each experiment.

exp. 1 :



Gexp1(tk) =


Sx1,θ1(tk) . . . Sx1,θ12(tk)

...
...

Sx6,θ1(tk) . . . Sx6,θ12(tk)



varexp.1(tk) = Gexp1(tk) × cov × GT
exp1(tk)

ie, for a particular tk, varexp1(tk) = [bi, j](ns×ns) such that

bi, j =
np=12∑

f =1

[
Sxi,θ f (tk)

(
np=12∑

l=1
cov f ,lSx j,θl(tk)

)]

...
(3.81)
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• Compute bounds on state estimates for each timepoint tk of each experi-
ment.

exp. 1 :



xUB
1 (tk) = x̂1(tk) + t95%

√
varx1,x1(tk)

xLB
1 (tk) = x̂1(tk) − t95%

√
varx1,x1(tk)

...
...

(3.82)

The identified values θ̂ and bounds are listed in Table 3.11. Model sim-
ulation along with their bounds can be seen in Figure 3.53. For the four
experiments, most data points (variability considered in pink) include the
range of the predicted values (the interval between lower and upper green
lines), which is good. The confidence intervals are on the whole quite large,
essentially meaning that the collected data may not be as informative as it
should ideally be, and also that the data itself may contain considerable vari-
ability (both biological and probe-related). The core parameters, however,
(maximum growth and death rate and stoichiometric coefficients) seem to
be sound for this model, Ω5 f . On the other hand, two parameters, θ2 and
θ6, were not well extracted from the databank (the experiments were not
informative enough) and will be, thus, randomly made equal to the values
0.003 and 633, respectively.

Model Ω5 f :
dx1

dt
=



µgrowth︷                                    ︸︸                                    ︷
θ1

x2

θ2 + x2

x4

θ3 + x4

θ5

θ5 + x3

θ6

θ6 + x5
−

µdeath︷︸︸︷
θ4


x1

dx2

dt
= −

( 1
θ8
µgrowth + θ10

)
x1,

dx3

dt
= θ9

( 1
θ8
µgrowth + θ10

)
x1,

dx4

dt
= −

( 1
θ12

µgrowth + θ7
x4

x1

)
x1,

dx5

dt
= θ13

( 1
θ12

µgrowth + θ7
x4

x1

)
x1,

(3.83)
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Figure 3.53: Model Ω5 f , CHO-S: model simulation (blue), 95%-confidence
interval for states (green), measurements (circles) and their variability (error
bars, 2σ) .
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Table 3.11: Confidence intervals for model Ω5 f .

Parameter LB Identified Value UB Max. Rel Error
θ1 ≡ µmax 1.23 1.51 1.79 0.19
θ2 ≡ kGlc 0 0.003 0.874 291
θ3 ≡ kGln 0 0.92 2.17 1.35
θ4 ≡ µd,max 0.167 0.522 0.877 0.680
θ5 ≡ kd,Lac 0 17.2 38.7 1.24
θ6 ≡ kd,Amm 0 633 35200 54.5
θ7 ≡ kα,Gln 0.086 0.184 0.282 0.533
θ8 ≡ YXv/Glc 0.067 0.107 0.146 0.370
θ9 ≡ YLac/Glc 1.45 1.58 1.71 0.08
θ10 ≡ mGlc 0 0.16 4.1 25
θ12 ≡ YXv/Gln 0 6.42 60.3 8.40
θ13 ≡ YAmm/Gln 0.60 0.80 0.99 0.24

Note: values for a 95% confidence level supposing a t-student distribution: θLB/UB =

θ̂ ± t95%

√
σ2 where σ2 is computed from the inverse of the Fisher matrix, all experiments

considered, as defined in eq. (3.32) on p. 103, or more explicitly in eq. (3.79)-(3.80), p. 140.

It is, thus, reasonable to say that, given the available data, model Ω5 f is
globally acceptable. The focus was put on compliance around tpeak rather than
towards the end of the culture in order to correctly capture the switch time.
Furthermore, concerning cross-validation, if, for example, only experiments
A, B and C are accounted for in the identification of parameters, then it is also
possible to reasonably predict experiment D, as exemplified in Figure 3.54.

Figure 3.54: Model Ω5 f , experiment 4, CHO-S: cross-validation of model
simulations (blue) on experiment 4, when only data from experiments 1 to 3
is considered.
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However, it should be stressed that the databank is only made out of 4
experiments, each designed to potentially capture a particular phenomenon.
Therefore, there isn’t enough redundancy to allow for other more extensive
cross-validation tests.

3.6.4 Final model

Considering any of the possible operation regimes of Fig. 1.1 (p. 31), the
model statement for this CHO-S animal cell line comprising 6 states1 and 12
parameters can be done as follows:2

Reactions:

(−ν21)Glc + (−ν41)Gln
ϕ1−→ xXv + ν31Lac + ν51Amm (3.84)

(−1)Xv
ϕ2−→ Xd (3.85)

(−1)Glc + (−ν13)Xv
ϕ3−→ ν13Xv + ν33Lac (3.86)

(−1)Gln
ϕ4−→ ν54Amm (3.87)

Mass balance equations are given by:

d
dt



x1
x2
x3
x4
x5


=



1 −1 0 0
−ν21 0 −1 0
ν31 0 ν33 0
−ν41 0 0 −1
ν51 0 0 ν54


×



ϕ1
ϕ2
ϕ3
ϕ4


+



−x1 x1
(−x2 + k1) 0
−x3 0

(−x4 + k2) 0
−x5 0



[
u1
u2

]
(3.88)

dx6

dt
=



0 , batch
u10 , f edbatch
u10 − u30 , continuous
u10 − u30 − u20 , per f used

(3.89)

1For example, eliminating the only experiment with low glutamine from the training set would very likely
prevent the identification algorithm to capture this phenomenon at all.

1Only 5 if volume is a process constant. For example: batch mode or constant volume continuous perfused
mode.

2Parameter nomenclature has been reordered for clarity’s sake.
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with the following notation:
ν21 = 1/θ8; ν31 = θ9/θ8; ν33 = θ9; ν41 = 1/θ11; ν51 = θ12/θ11;
k1 = GlcIN; k2 = GlnIN; u1 = D = FIN/V; u2 = Dper f = Fper f/V; u10 = FIN;

u20 = Fper f ; u30 = Fbleed.

Table 3.12: Model states.

State Variable Units
x1 = Xv viable biomass concentration 109cells/L
x2 = Glc glucose concentration mM
x3 = Lac lactate concentration mM
x4 = Gln glutamine concentration mM
x5 = Amm ammonia concentration mM
x6 = V volume L

The reaction rates are given by:


ϕ1 = µ1x1
ϕ2 = µ2x1
ϕ3 = µ3x1
ϕ4 = µ4x4

(3.90)

cell growth: µ1 = θ1
x2

θ2 + x2

x4

θ3 + x4

θ5

θ5 + x3

θ6

θ6 + x5
(3.91)

cell death: µ2 = θ4 (3.92)

cell maintenance: µ3 = θ10 (3.93)

spontaneous glutamine degradation: µ4 = θ7 (3.94)

Parameter values are as follows:
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Table 3.13: Model parameter values.

Parameter Value Units
θ1 = µmax 1.51 d−1

θ2 = kGlc 0.003 mM
θ3 = kGln 0.92 mM
θ4 = µd,max 0.522 d−1

θ5 = kd,Lac 17.2 mM
θ6 = kd,Amm 633 mM
θ7 = kα,Gln 0.184 d−1

θ8 = YXv/Glc 0.107 109cell mmol−1

θ9 = YLac/Glc 1.58 mmol mmol−1

θ10 = mGlc 0.16 mmol (109cell)−1 d−1

θ11 = YXv/Gln 6.42 109cell mmol−1

θ12 = YAmm/Gln 0.80 mmol mmol−1

3.6.5 Summary

To summarise, this case study started out with experimental campaigns
where data was collected: concentrations of biomass, substrates and products
during cultures of a CHO cell line. The initial experimental conditions were
planned envisioning that relevant phenomena would take place (substrate
limitation, metabolite inhibition). The truth is, it is only once the experiment
is complete and samples have been measured that it can be verified whether
these phenomena actually happened and to what extent (for instance, glu-
tamine limitation phenomena happened below expectations for this CHO
cell line at the provided initial conditions). This model is further found to be
globally identiafiable using the DAISY (Differential Algebra for Identifiability
of SYstems) software tool (Bellu et al, 2007; Saccomani et al, 2003, 2010).

A step-by-step identification procedure was proposed. It allows a better
alternative to the standard strategy of picking up a complex model and trying
to identify all parameters at once, not knowing very well with which initial
values to start. Alternatively, the proposed procedure starts off with a very
simple model, valid for a limited amount of data, but for which one global
parameter can be estimated rather well. Subsequent steps use other data
subsets and increasingly complex models, taking advantage of what was
already previously identified by using this input in the initial condition. At
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this moment, a few parameters have already been estimated. In a final step,
several more comprehensive models (complex enough to describe all states
and all culture phases) are tried.

The parameters identified in the early phases are the maximum growth
and death rate and the stroichiometric coefficients. These are high-impact
parameters (ie, if we change their value slightly, a substantial change will
be observed in the evolution of concentrations). At the moment when a full
comprehensive model is trialled, the new parameters that are added are now
of lesser impact and this results in bigger confidence intervals.

A form of improving their identification is (now that the model has been
identified) to compute another experimental planning (ie. the initial culture
conditions) so that the sensitivity of these lesser-impact parameters will be
bigger. This can be done, for instance, by solving an optimisation problem
to find out the best initial concentrations of glucose and glutamine in the
feeding medium (within admissible bounds), the length tk of the experiment,
and eventually a rate of feeding (fed-batch mode). The new experiments
have then to be performed in the laboratory and new samples measured
so that the full model can be re-identified (using as initial guess the values
already obtained) with this new data that will hopefully1 be more informative
regarding the lesser-impact parameters.

3.7 Step-by-step identification: CHO-320 cells

3.7.1 Materials and methods

Some of the many possible criteria in optimising mammalian cell culture
operation (and possibly controlling it) deal with the production of an even-
tual bioproduct of pharmaceutical interest. Therefore, in order to develop a
model where such a product is present, an additional data bank was set up
using CHO-320, a clone of CHO-K1 cells genetically modified to secrete a re-
combinant protein: human interferon-gamma (IFN-γ), used therapeutically
for its non specific antiviral activity. This cell line has been studied recently
by (Zamorano, 2012) and (Provost, 2006), namely.

1That is, hoping that these lesser-impact parameters have been sufficiently well estimated so that, while
optimising the new experimental planning, we will find out better means of seeing them have a bigger impact
on model states. If however, they have not been properly estimated, then there is no guarantee that the new
experimental planning is so optimal after all.
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The CHO-320 cells used to build this data bank were kindly provided by
Professor Annie Marc (École Nationale Supérieure d’Agronomie et des In-
dustries Alimentaires, Institut National Polytechnique de Lorraine (ENSAIA-
INPL), Université de Lorraine, Nancy, France) and its protocol by Doctor
Frédérique Balandras (ENSAIA-INPL).

The experiments were again carried out at the University of Mons in
serum-free medium: chemically defined glucose free PowerCHO supple-
mented with glucose and glutamine so as to obtain a data bank with different
initial concentrations and expected phenomena (similarly to the CHO-S cul-
tures described on page 148):

Table 3.14: Experimental planning for CHO-320.

Code B1 B2 B3 B4
Glc0 (mM) 33 25 8 16
Gln0 (mM) 9 4 9 3

Again, each experiment was performed in triplicate and sampling took
place as described in Table 3.6 on page 100.

The twelve 100mL culture flasks each with 80mL of medium were inocu-
lated with a cell density around 0.2 to 0.3× 109cell/L and kept in an incubator
at 37°C under 5% of CO2.

Each sample was measured for biomass, glucose, lactate, glutamine and
ammonia concentrations following the same procedure as in the CHO-S case.
From each 1mL sample, 20µL was used for viability and cell density counting.
The remaining sample was filtrated and then assayed: 800 µL with enzymatic
kits and 500µL in the estimation of interferon presence by ELISA testing (IFN-
γ Human Direct ELISA Kit, Life Technologies, ref. KAC1231) at 492nm.

3.7.2 Data bank

The data bank built from cultures performed with CHO-320 cells is plotted
in Figures 3.55 and 3.56.

If the intrinsic variability of the triplicate flasks in each experiment is
considered, the average values can be plotted with the following confidence
intervals (Figures 3.57 to 3.58).
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Figure 3.55: CHO-320 cultures: experiment 1 and experiment 2, each with
triplicate flasks A,B,C (green, orange, blue). Averages are plotted in pink.
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Figure 3.56: CHO-320 cultures: experiment 3 and experiment 4, each with
triplicate flasks A,B,C (green, orange, blue). Averages are plotted in pink.
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Figure 3.57: CHO-320 cultures: experiment 1 and experiment 2, average
values for triplicate flasks with confidence intervals (2σ). Metabolites lactate
and ammonia are plotted in grey.
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Figure 3.58: CHO-320 cultures: experiment 3 and experiment 4, average
values for triplicate flasks with confidence intervals (2σ). Metabolites lactate
and ammonia are plotted in grey.
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It is flagrant that a lot more variability is present in the CHO-320 data
when compared to the CHO-S case. This may be linked to the fact that,
for logistic reasons, samples were frozen for a longer period before being
assayed. Despite this fact, we will still try to identify a model for this cell line
that expresses a therapeutic biological medicine: the IFN-γ protein.

3.7.3 Model identification

The goal is now to identify a model that captures the variety of the response
behaviour of this cell line under different conditions (represented by the 4
different experiments). We have applied again the step-by-step identifica-
tion procedure previously presented in Section 3.6, starting off with simple
reduced models and gradually increasing the complexity.

Tables 3.15 and 3.16 summarise results for the sequence that led to a
final model describing all states except for IFN-γ concentration (since it is
presumed that it has no influence on other states). The equations considered
are the same as in the previous CHO-S case study, namelly: Ω1 (eq. (3.33), p.
103), Ω2 (eqs. (3.36), p. 106), Ω3 (eqs. (3.39), p. 109), Ω4d (eqs. (3.52), p. 115),
Ω5e (eqs. (3.69), p. 133), Ω5 f (eqs. (3.83), p. 141), Ω5g (eqs. (3.70), p. 135), Ω5h
(eqs. (3.70), p. 135).

This step-by-step step identification procedure has, thus, allowed us to
choose the best promising model and identify its parameter values, which
are shown in the following equations:

Model Ω5 f :
dx1

dt
=



µgrowth︷                                    ︸︸                                    ︷
θ1

x2

θ2 + x2

x4

θ3 + x4

θ5

θ5 + x3

θ6

θ6 + x5
−

µdeath︷︸︸︷
θ4


x1

dx2

dt
= −

( 1
θ8
µgrowth + θ10

)
x1,

dx3

dt
= θ9

( 1
θ8
µgrowth

)
x1,

dx4

dt
= −

( 1
θ12

µgrowth + θ7
x4

x1

)
x1,

dx5

dt
= θ13

( 1
θ12

µgrowth + θ7
x4

x1

)
x1,

(3.95)
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Table 3.15: Identification results for steps #1, #2, #3, #4.

Parameter / Step Ω1 Ω2 Ω3 Ω4d
θ1 ≡ µmax 0.364 0.351 0.352 0.581

(0.364) (0.351) (0.352)

θ2 ≡ kGlc 0.0004

θ4 ≡ µd,max 0.352

θ8 ≡ YXv/Glc 0.0474 0.0478 0.0771
(0.0474) (0.0478)

θ9 ≡ YLac/Glc 1.798

θ12 ≡ YXv/Gln 0.219 0.221 0.297
(0.219) (0.221)

θ13 ≡ YAmm/Gln 0.784

Cost J 0.06 0.37 0.44 0.83
States x1 x1, x2, x4 x1, x2, x3,

x4, x5

x1, x2, x4

Parameters θ1 θ1, θ8, θ12 θ1, θ8, θ9,
θ12, θ13

θ1, θ2, θ4,
θ8, θ12

Phases A A A A + B

These results suggest that the experiments performed were overall more
informative with respect to model parameters than in the CHO-S experimen-
tal case study (if one compares Table 3.17 to Table 3.11 on p. 143). For this
CHO-320 case study, parameter θ10 ≡ mGlc appears to be less influential (and
worse identified) and could, therefore, eventually be discarded.

One way of visually capturing the step-by-step procedure followed is
illustrated in Figures 3.59-3.62: early identification steps with reduced order
models are shown in light colours (grey, yellow and green, which superpose
for phase A, and light blue for phase A+B) and the final model is shown in
dark blue.
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Table 3.16: Identification results for step #5.

Parameter / Step Ω5e Ω5 f Ω5g Ω5h
θ1 ≡ µmax 1.69 1.60 1.176 1.121

(0.581) (1.69) (0.581) (1.176)

θ2 ≡ kGlc 0.0619 0.0196 0.0004 0.0004
(0.0004) (0.0619) (0.0004) (0.0004)

θ3 ≡ kGln 0.5387 0.6536 0.9337 0.9313
(0.5387) (0.9337)

θ4 ≡ µd,max 0.501 0.531 1.052 1.114
(0.352) (0.501) (0.352) (1.052)

θ5 ≡ kd,Lac 10.6 16.3 0.6338 0.568
(10.6) (0.6338)

θ6 ≡ kd,Amm 13144 28.0 0.333 0.516
(13144) (0.333)

θ7 ≡ kα,Gln 0.186 0.037

θ8 ≡ YXv/Glc 0.1676 0.1753 0.2230 0.215
(0.0478) (0.1676) (0.0478) (0.2230)

θ9 ≡ YLac/Glc 2.149 2.067 2.060 1.966
(1.798) (2.149) (1.798) (2.060)

θ10 ≡ mGlc 0.005 0.441

θ12 ≡ YXv/Gln 0.624 5.094 0.790 0.788
(0.221) (0.624) (0.221) (0.790)

θ13 ≡ YAmm/Gln 0.878 0.717 0.834 0.878
(0.784) (0.878) (0.784) (0.834)

Cost J 39.9 22.8 50.1 29.7
States x1, x2, x3,

x4, x5

x1, x2, x3,
x4, x5

x1, x2, x3,
x4, x5

x1, x2, x3,
x4, x5

Parameters θ1, θ2, θ3,
θ4, θ5, θ6,
θ8, θ9, θ12,
θ13

θ1, θ2, θ3,
θ4, θ5, θ6,
θ7, θ8, θ9,
θ10, θ12, θ13

θ1, θ2, θ3,
θ4, θ5, θ6,
θ8, θ9, θ12,
θ13

θ1, θ2, θ3,
θ4, θ5, θ6,
θ7, θ8, θ9,
θ10, θ12, θ13

Phases A + B A + B A + B A + B
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Table 3.17: Confidence intervals for model Ω5 f .

Parameter LB Identified Value UB Max. Rel Error
θ1 ≡ µmax 1.41 1.60 1.79 0.12
θ2 ≡ kGlc 0 0.020 0.373 18
θ3 ≡ kGln 0 0.65 1.58 1.42
θ4 ≡ µd,max 0.380 0.531 0.681 0.28
θ5 ≡ kd,Lac 0 16.3 33.7 1.07
θ6 ≡ kd,Amm 0 28.0 159 4.67
θ7 ≡ kα,Gln 0.163 0.186 0.208 0.12
θ8 ≡ YXv/Glc 0.120 0.175 0.231 0.32
θ9 ≡ YLac/Glc 1.42 2.07 2.71 0.31
θ10 ≡ mGlc 0 0.005 1.15 186
θ12 ≡ YXv/Gln 0 5.09 12.0 1.36
θ13 ≡ YAmm/Gln 0.618 0.717 0.816 0.14

Note: values for a 95% confidence level supposing a t-student distribution: θLB/UB =

θ̂ ± t95%

√
σ2 where σ2 is computed from the inverse of the Fisher matrix, all experiments

considered, as defined in equation (3.32) on p. 103, or more explicitly in eq. (3.79)-(3.80), p.
140.

Figure 3.59: Experiment 1, CHO-320: sequence of identified models, from Ω1
leading to Ω5 f .
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Figure 3.60: Experiment 2, CHO-320: sequence of identified models, from Ω1
leading to Ω5 f .

Figure 3.61: Experiment 3, CHO-320: sequence of identified models, from Ω1
leading to Ω5 f .

Figure 3.62: Experiment 4, CHO-320: sequence of identified models, from Ω1
leading to Ω5 f .

The next challenge is to incorporate in the model also the concentration
of the biologic, target protein IFN-γ, that these cells have been transfected
to express. We have tried out several typical forms from the literature (see
Table 2.5, p. 56) plus an extra one, all of them dynamic equations that were
coupled to those of model Ω5 f in order to be solved:
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• H6a: protein production is growth-associated (it is produced mostly dur-
ing phase A, of cell growth) with rate θ15.

Ω6a :
{

dx6

dt
=

(
θ15µgrowth

)
x1

dProt
dt

=
(
αµgrowth

)
Xv (3.96)

Identified (cost J = 0.3762):

dx6

dt
=

(
2632µgrowth

)
x1 (3.97)

• H6b: protein production is partially growth-associated (rate θ15) and
partially not (rate θ14).

Ω6b :
{

dx6

dt
=

(
θ15µgrowth + θ14

)
x1

dProt
dt

=
(
αµgrowth + β

)
Xv (3.98)

Identified (cost J = 0.3762):

dx6

dt
=

2632µgrowth + ©©©©*' 0
10−13

 x1 ≡ Ω6a (3.99)

• H6c: (de Tremblay et al, 1992)’s model form, where a factor θ16 is pre-
sumed to affect the growth-related production of the protein.

Ω6c :
{

dx6

dt
=

(
θ15

θ16 + µgrowth
µgrowth + θ14

)
x1

dProt
dt

=

(
α

kµ + µgrowth
µgrowth + β

)
Xv (3.100)

Identified (cost J = 0.3762):

dx6

dt
=

(
1.7977 × 10308

6.8308 × 10304 + µgrowth
µgrowth + ©©©©*' 0

10−2

)
x1 −→



CHAPTER 3. ANIMAL CELL CULTURE MODEL IDENTIFICATION 159

µgrowth<<10304

−−−−−−−−−→'
(
2632µgrowth

)
x1 ≡ Ω6a (3.101)

• H6d: protein production occurs mainly in the death phase.

Ω6d :
{

dx6

dt
=

(
θ15µdeath + θ14

)
x1

dProt
dt

=
(
αµdeath + β

)
Xv (3.102)

Identified (cost J = 0.4821):

dx6

dt
=

(
2815µdeath + 2.9392

)
x1 (3.103)

• H6e: protein production can occur anytime and be growth-related or
death-related.

Ω6e :
{

dx6

dt
=

(
θ14 + θ15µgrowth + θ16µdeath

)
x1

dProt
dt

=
(
β + αµgrowth + kµµdeath

)
Xv (3.104)

Identified (cost J = 0.3762):

dx6

dt
=

©©©©*' 0
10−19 + 2632µgrowth + ©©©©*' 0

10−13

 x1 ≡ Ω6a (3.105)

The quality of the protein concentration fit will obviously depend on the
quality of the previously identified submodel Ω5 f (and particularly the qual-
ity of the biomass fit) but, in any case, it is clear for this data bank that protein
production seems to be growth associated and that submodel Ω6a describes
it best among all submodel structures considered. The corresponding plots
are presented in Figures 3.63 to 3.66.

Table 3.18: Confidence intervals for model Ω6a.

Parameter LB Identified Value UB Max. Rel Error
θ15 ≡ α 577 2632 4686 0.78
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Figure 3.63: Final model: Ω5 f +Ω6a, experiment 1, CHO-320: model simula-
tion (blue), 95%-confidence interval for states (green), measurements (circles)
and their variability (error bars, 2σ) .

Figure 3.64: Final model: Ω5 f +Ω6a, experiment 2, CHO-320: model simula-
tion (blue), 95%-confidence interval for states (green), measurements (circles)
and their variability (error bars, 2σ) .
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Figure 3.65: Final model: Ω5 f +Ω6a, experiment 3, CHO-320: model simula-
tion (blue), 95%-confidence interval for states (green), measurements (circles)
and their variability (error bars, 2σ) .

Figure 3.66: Final model: Ω5 f +Ω6a, experiment 4, CHO-320: model simula-
tion (blue), 95%-confidence interval for states (green), measurements (circles)
and their variability (error bars, 2σ) .
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3.7.4 Final model

Overall, considering any operation regime of Fig. 1.1 (p. 31), the model for
this CHO-320 cell line producing the INF-γ protein comprises 7 states1 and
13 parameters. It can be stated as below:2

Reactions:

(−ν21)Glc + (−ν41)Gln
ϕ1−→ xXv + ν31Lac + ν51Amm + ν61Prot (3.106)

(−1)Xv
ϕ2−→ Xd (3.107)

(−1)Glc + (−ν13)Xv
ϕ3−→ ν13Xv (3.108)

(−1)Gln
ϕ4−→ ν54Amm (3.109)

Mass balance equations are given by

d
dt



x1
x2
x3
x4
x5
x6



=



1 −1 0 0
−ν21 0 −1 0
ν31 0 0 0
−ν41 0 0 −1
ν51 0 0 ν54
ν61 0 0 0



×



ϕ1
ϕ2
ϕ3
ϕ4


+



−x1 x1
(−x2 + k1) 0
−x3 0

(−x4 + k2) 0
−x5 0
−x6 0



[
u1
u2

]
(3.110)

dx7

dt
=



0 , batch
u10 , f edbatch
u10 − u30 , continuous
u10 − u30 − u20 , per f used

(3.111)

with the following notation:
ν21 = 1/θ8; ν31 = θ9/θ8; ν41 = 1/θ11; ν51 = θ12/θ11; ν54 = θ12; ν61 = θ13;
k1 = GlcIN; k2 = GlnIN; u1 = D = FIN/V; u2 = Dper f = Fper f/V; u10 = FIN;

u20 = Fper f ; u30 = Fbleed.

1Only 6 if volume is a process constant. For example: batch mode or constant volume continuous perfused
mode.

2Parameter nomenclature has been reordered for the sake of simplicity.
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Table 3.19: Model states.

State Variable Units
x1 = Xv viable biomass concentration 109cells/L
x2 = Glc glucose concentration mM
x3 = Lac lactate concentration mM
x4 = Gln glutamine concentration mM
x5 = Amm ammonia concentration mM
x6 = Prot IFN-γ protein concentration u/L
x7 = V volume L

The reaction rates are given by:

ϕi = µix1 (3.112)

cell growth: µ1 = θ1
x2

θ2 + x2

x4

θ3 + x4

θ5

θ5 + x3

θ6

θ6 + x5
(3.113)

cell death: µ2 = θ4 (3.114)

cell maintenance: µ3 = θ10 (3.115)

spontaneous glutamine degradation: µ4 = θ7
x4

x1
(3.116)

Parameter values are as follows:
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Table 3.20: Model parameter values.

Parameter Value Units
θ1 = µmax 1.60 d−1

θ2 = kGlc 0.020 mM
θ3 = kGln 0.65 mM
θ4 = µd,max 0.531 d−1

θ5 = kd,Lac 16.3 mM
θ6 = kd,Amm 28.0 mM
θ7 = kα,Gln 0.186 d−1

θ8 = YXv/Glc 0.175 109cell mmol−1

θ9 = YLac/Glc 2.07 mmol mmol−1

θ10 = mGlc 0.005 mmol (109cell)−1 d−1

θ11 = YXv/Gln 5.09 109cell mmol−1

θ12 = YAmm/Gln 0.717 mmol mmol−1

θ13 = α 2632 u (109cell)−1

3.7.5 Summary

Again, as for the CHO-S case study, the proposed sequential identification
procedure was applied, allowing for increasing model complexity. Instead of
trying to identify the many parameters of a very complex model all at once
(which can be very time-consuming and may not lead to good results), in this
step-wise procedure, there is backup information on how to choose some
initial guesses and initialize the identification algorithm. This is illustrated
in Figure 3.67 where the model identified step-by-step is represented in blue,
and the results using the usual approach of trying to identify all parameters at
once are represented in grey (several runs of the algorithm)1. The step-by-step
procedure seems to lead to better and more consistent results.

1Not all runs lead to useful results, sometimes the algorithm didn’t converge.



CHAPTER 3. ANIMAL CELL CULTURE MODEL IDENTIFICATION 165

Figure 3.67: CHO-S, experiment 1 (circles). Model {Ω5 f + Ω5 f ,rest} in blue
if identified by the step-by-step procedure and in grey if identified by the
all-at-once approach.

The final model chosen for this CHO-320 cell line has a similar structure to
that chosen for the CHO-S line. On the whole, it presumes that net cell growth
is limited whenever substrate concentration (guclose/glutamine) becomes
low and inhibited when some metabolites (lactate/ammonia) build up.

If this model was to be used in a control scheme, then it could allow,
for example, a controller to account for these phenomena when computing
which manipulations the culture should undergo (eg. more feeding) in order
to maintain a certain setpoint (eg. biomass concentration). These aspects will
be taken up in more detail in the following chapter.



Chapter 4

Animal cell culture model
observability

Once a model is identified and available for use, the
question of observability follows. This chapter deals

with sofware sensors (observers) that allow to estimate
the timecourse of concentrations that cannot be measured

in real practice. Assessing if this is possible (studying
observability) may not be an easy task. In this chapter,

a contribution on a manner of studying the observability
of animal cell culture models is presented, based on recent

works of Moreno et al (2014) that address the
indistinguishability properties of the system.

4.1 Introduction

Models such as those explored in this thesis can be used in the control of the
operation of an animal cell culture taking place in a bioreactor. However,
a model-based controller needs to have knowledge of the system states (eg.
concentrations) in order to compute the best line of action. If eventually some
system states are not being measured, they may be observed by mathematical
means, using an observer. Generally speaking, observability is a property

166
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dealing with this being possible.
Lets recall that common system states of animal cell culture models are

the concentrations of biomass (Xv, viable living cells), substrate glucose and
metabolite lactate (Glc/Lac), substrate glutamine and metabolite ammonia
(Gln/Amm), and eventually a product of biomedical interest that these cells
express such as, for example, monoclonal antibodies (MAb), as shown in
Figure 4.1.

Figure 4.1: Acting components of the animal cell culture system (left). Biore-
actor operating in a perfused regime (right).

The production regime of interest for this study is the continuous perfused.
In this regime, cultures are intended to last longer since a medium with
substrates is continuously fed to the bioreactor, while a workforce of cells is
retained by means of a perfusion filter that lets all components out except for
cells. This means that the biomolecule of interest can be extracted, purified
and stocked on a continuous basis. On the other hand, culture medium inside
the reactor is renewed to prevent the accumulation of cell growth inhibiting
metabolites (Lac, Amm). Volume is kept constant and a small bleed outflow
serves as an additional degree of freedom to adjust biomass concentration
and keep the system at steady state.

While several analyses are possible by taking samples of the culture
medium and assaying them offline in the laboratory, not many probes ex-
ist that could be coupled to the bioreactor and measure these concentrations
in a continuous online manner so that this data could be transmitted on to a
controller and the controller could then decide how to act on the system.

If the development of control strategies requires the availability of a num-
ber of on-line measurements that can be difficult to achieve in practice (avail-
ability of the probe, costs, processing time, etc), then the development of
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software sensors (observers) is of paramount importance for the implemen-
tation of these control strategies. The challenge of this chapter is to study
which concentrations can be followed online in order to study and perfect
an intelligent production strategy. The big question being asked is: "Is it
possible to build an observer that will estimate the concentrations not being
measured in the system?".

4.1.1 Probes

Up to present bioanalysers have been used in the online follow-up of con-
centrations of bioreactor animal cell cultures. Models on the market analyse
one or two substrate/metabolite pairs: either Glc/Lac, or Gln/Amm or both,
transposing the concept of a standard enzymatic reaction kit into an online
procedure (eg. YSI (2014)). Bioanalysers present high operation costs (reac-
tants) and low sampling time. The samples removed on a frequent basis also
pose sterility concerns as the system is open to a non-sterile exterior envi-
ronment.1 The error can also be considerable. In this scenario, components
of the macroscopic reaction that are being measured are those highlighted in
green below.2

Glc + Gln
ϕ−→ Xv + Lac + Amm + MAb (4.1)

More recently, capacitance probes have been put on the market, taking
advantage of the dielectric properties of living cells (Fogale-nanotech, 2013;
Logan et al, 2011). These probes measure viable living biomass concentration
with very low operation costs, an intensive sampling time (1-5min) and little
noise and error. They can be operated in a more sterility-friendly manner
since they are submergible and can be autoclaved3 along with the bioreactor
without involving any removal of culture samples. The equipment allows
thus biomass to be measured online while other components are not, as
highlighted below.

Glc + Gln
ϕ−→ Xv + Lac + Amm + MAb (4.2)

1Sterility is of utmost importance in the production of biologicals. Regulatory guidelines are provided eg.
in ICH Q5 and can be consulted in (EMA, 2014).

2Apart from bioanalysers, other alternatives on the market that could eventually be considered are online
glucose probes and the NIR.

3Autoclaving is a sterilization procedure performed prior to starting the culture by inoculating the bioreactor
with animal cells.
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4.1.2 Motivation

In this chapter, the opportunity presented by this recent probe is studied, the
final goal being to develop an observer that will provide an online follow-up
of the culture for an intelligent production strategy. An interesting sce-
nario would be to rely on biomass measurements alone or perhaps on the
knowledge of biomass and one or two substrates. Some scenarios will be
scrutinised:

Table 4.1: Online follow-up scenarios

Equipment Measured To Estimate Scenario
Bioanalyser Glc/Lac Xv current

Gln/Amm MAb practice

Fogale Xv Glc/Lac very
Gln/Amm interesting

MAb
Fogale Xv Lac interesting

+ Glc Gln/Amm (less reactants
Bioanalyser MAb needed)

For this purpose, we consider in this chapter a nonlinear dynamic model of
hybridoma cell cultures producing monoclonal antibodies, initially proposed
in de Tremblay et al (1992, 1993), and since then considered in several further
works (Aehle et al, 2011; Chen et al, 2002; Franco-Lara and Weuster-Botz,
2005; Nguang et al, 2001; Portner and Schafer, 1996; Roubos et al, 1997, 1999;
Sarkar and Modak, 2004).

We first analyse the observability/detectability properties of this model
using a method based on a natural dynamical interpretation of the observabil-
ity/detectability concepts (Moreno et al, 2012, 2014), leading to the description
of the indistinguishable dynamics of the system. Following this analysis, a
Kalman filter is designed to reconstruct on-line variables which are difficult
or expensive to measure directly with a hardware sensor. Various sensor
configurations are considered, showing promising results in simulation.

The chapter is organized as follows. The next section introduces observ-
ability analysis methods and illustrates them with an oversimplified fictitious
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model of an animal cell culture, created here with the sole purpose of helping
underpin the conceptual rationale for the method chosen and helping clear
out why other more common methods were discarded. Section 4.3 deals
with a real hybridoma cell cultivation model and the observability analysis
of this more complex system. A Kalman filter is then designed and tested in
simulation in Section 4.4. Section 4.5 is devoted to some conclusions.

4.2 Observability/detectability analysis

As it is well-known, the possibility of constructing an observer is tied to
the observability/detectability properties of the system’s model. When only
the initial conditions are unknown, observability corresponds to the (theo-
retical) possibility of estimating the state in a finite time-horizon, whereas
if the system is only detectable, the state estimation can only be attained
asymptotically.

The observability/detectability analysis proposed in Moreno et al (2012) is
based on a natural dynamical interpretation of the observability/detectability
concepts, and is introduced in the following subsection using a simple exam-
ple for the sake of illustration.

4.2.1 Definitions

In order to evaluate scenarios where some concentrations will be measured
and others estimated by means of an observer, one should first check the
observability properties of the system, which is nonlinear.

A system is observable if any state is distinguishable from any other state
in the sense that states produce a recorded output y (the measurements) that
is exclusive/unique. More precisely, a nonlinear system is observable if there
exists an input u(t) which leads to different output trajectories for different
initial conditions.

Nonlinear system:
dx(t)

dt
= f

(
x(t),u(t)

)
; x(t0) = x0 (4.3)

Measurement equation: y(t) = h
(
x(t)

)
(4.4)

Different measured trajectories for different initial conditions:
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y(t, x0,A, u) , y(t, x0,B, u) (4.5)

That is, a system is observable for an input u(t) if different initial conditions
x0,A, x0,B will lead to distinct trajectories of the measured variable y.

A non-observable example is illustrated in Figure 4.2. Two different ini-
tial states produce exactly the same recorded output y: ie, the same set of
measurements (green trajectory for biomass) can occur with the light pink
trajectories or also in association with the dark pink trajectories.

Figure 4.2: Given a certain initial biomass Xv0, departing from initial condi-
tion [Glc Gln]T

0 = [5 25]T (light pink) leads to the green trajectory of biomass.
Departing from [Glc Gln]T

0 = [25 5]T (dark pink) also leads to exactly the same
biomass trajectory. Therefore, knowledge of the green trajectory alone is not
enough to distinguish which of the two scenarios happened (light pink or
dark pink).

4.2.2 Approaches for assessing observability

This subsection intends to overview available approaches of assessing ob-
servability that could be useful in the case of animal cell culture models such
as those identified in this thesis. Firstly, a very simple fictitious toy model
will be used for illustration purposes.

A continuously perfused bioreactor operated at constant volume is con-
sidered where a culture of suspended cells takes place. Besides the feeding of
substrates, a perfusion filter allows cell retention, whilst a small bleed stream
lets all components out.

Only two biological macroreactions comprising substrates glucose (Glc)
and glutamine (Gln), living (Xv) and dead (Xd) biomass are considered:

(−ν21)Glc + (−ν31)Gln
ϕgrowth−−−−→ xXv (4.6)
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(−1)Xv
ϕdeath−−−→ (1)Xd (4.7)

This leads to a system of mass balance equations where the following
symbols represent states, kinetic parameters and inputs: x1 = Xv; x2 = Glc;
x3 = Gln; u1 = D = F/V; u2 = Dper f = Fper f/V; k1 = ν21 = 1/YXv/Glc = ν31 =
1/YXv/Gln; k2 = GlcIN; k3 = GlnIN; k4 = µmax; k5 = kGlc; k6 = kGln; k7 = µd,max.

dx1

dt
=

(
k4

x2

k5 + x2

x3

k6 + x3

)
x1 − k7x1 − u1x1 + u2x1 (4.8)

dx2

dt
= −k1

(
k4

x2

k5 + x2

x3

k6 + x3

)
x1 − u1x2 + k2u1 (4.9)

dx3

dt
= −k1

(
k4

x2

k5 + x2

x3

k6 + x3

)
x1 − u1x3 + k3u1 (4.10)

with values k = 0.6mM; µmax = 0.0318h−1; ν = 400× 106cell ·mmol−1 = ν21 =
ν31; Xv0 = 0.3× 106cell/mL. This model has already been illustrated in Figure
4.2.

Lets now assess its observability considering the case where biomass is
measured and glucose and glutamine have to be estimated. The following
approaches are available:

• The rank condition of the nonlinear observability matrix;

• Linearization;

• Canonical forms;

• Indistinguishable dynamics;

The practicality of the use of these approaches in the scope of animal cell
cultures will also be evaluated. In fact, the rank condition will prove to be
of complex application; the linearization will only allow to conclude that the
original nonlinear system is observable but not that it is unobservable (plus,
for systems with more than 3 states, expressions become very complex); the
canonical form will not be of use in this scenario; a method presented in
Moreno et al (2012), on the other hand, will prove itself useful. This can be
particularly helpful for animal cell culture models of a certain complexity such
as the ones identified in the previous Chapter 3: models that can have 5 to 7
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states and around 15 parameters describing cell growth and death. In fact, the
observability of such systems is not frequently studied in the literature. Only
very simple cases are, usually for systems up to 3 states, or with elementary
models valid for the growth phase alone and generally meant for bacterial
cultures, or in case studies where many states are measured and few need
estimation1.

4.2.2.1 Rank condition

This general method involves computing the observability map of the system
and then the observability matrix O. For example, in batch mode:

System:
dξi

dt
= νi jϕ j ⇒ d

dt


Xv
Glc
Gln

 =


1 −1
−ν21 0
−ν31 0

 ×
[
ϕgrowth
ϕdeath

]
=

=



(
µmax

Glc
k + Glc

Gln
k + Gln

)
Xv −µd,maxXv

−ν
(
µmax

Glc
k + Glc

Gln
k + Gln

)
Xv

−ν
(
µmax

Glc
k + Glc

Gln
k + Gln

)
Xv



=


f1
f2
f3

 (4.11)

If only Xv is measured the output is: y = [h1(x)] = x1 (4.12)

n = dim




x1
x2
x3




= 3 (4.13)

Observability map: q1 =


q1,1
q1,2
q1,3

 =



L0
f h1

L1
f h1

L2
f h1



in this case q1 =



x1
(1 × f1 + 0 × f2 + 0 × f3)
∂( f1)
∂x1

f1 +
∂( f1)
∂x2

f2 +
∂( f1)
∂x3

f3


(4.14)

1Some examples are provided in Dewasme et al (2011); Dochain and Chen (1992); Doyle and Henson (1996);
Goffaux (2010); Haag (2003); Hulhoven (2006); Veloso et al (2008).
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Observability matrix: O =
∂q
∂x

=



1 0 0
∂q1,2

∂x1

∂q1,2

∂x2

∂q1,2

∂x3
∂q1,3

∂x1

∂q1,3

∂x2

∂q1,3

∂x3


(4.15)

If O is full column rank, then the system is locally observable at x. The
system is globally observable if a partition of q is injective for all x (however,
this analytical solution is often difficult if not impossible to obtain).

rank(O) = rank


1 0 0

a21 a22 a23
a31 a32 a33


?
= dim(x) (4.16)

For this simple toy model with 3 states only, the equations already tend
to be quite difficult to manipulate analytically, as shown in Appendix B (p.
239-242) where they are developed. Global conclusions may be hard to prove,
but a local analysis could be performed.

It is clear that for systems of dimension bigger than 2 (the case of animal cell
culture models considered in this thesis), analytical manipulations become
rapidly more complex.

4.2.2.2 Linearization

This method involves linearizing a system around a reference state ξ∗.

Nonlinear system:
dξ(t)

dt
= νϕ −Dξ + F = f (ξ,D,F) (4.17)

Linearized system:
dx
dt

= A(ξ∗)x + B(ξ∗)u with:


A(ξ∗) =

[
∂ f
∂ξ

]

ξ∗
= v

[
∂ϕ

∂ξ

]

ξ∗
−D∗In

B(ξ∗) =

[
∂ f
∂u

]

ξ∗
and x = ξ − ξ∗

(4.18)

The linear stationary system is observable if and only if rank(O) = dim(x).
This test is a sufficient local observability condition for the original nonlinear
system: if the linearized model is observable at ξ = ξ∗, then the nonlinear
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system is observable around this point (Dochain and Chen, 1992). This
method cannot be used, however, to prove global non-observability.

y = Cx =
[

1 0 0
] [

Xv Glc Gln
]T

= Xv (4.19)

O =


C
CA
CA2

 (4.20)

Once more, it is clear that the complexity of analytically analysing the
rank for culture models with more than 3 states is considerable. This makes
global conclusions hard to achieve, but a local analysis is a quite common use
application.

4.2.2.3 Canonical forms

Some methods for the observability analysis rely on canonical forms. For
instance, the invertibility of the map is guaranteed if, among others, the
system can be put into a Lower Hessenberg triangular form (Gauthier and
Kupka, 1994; Zeitz, 1984). This has, for example, been applied to bacterial
cultures in Dewasme et al (2012). However, it is not always applicable and this
is the case of the higher order models used in the scope of this thesis since it
applies only to situations where the measurement partition is bigger or equal
in size to the following partitions of states and this is not possible here for
two reasons: we intend to measure few variables and estimate many, on one
hand, and, on the other hand, the measurements (biomass) have dynamics
that depend on too many states (two substrates and two metabolites on top
of biomass).

4.2.2.4 Indistinguishable dynamics

As shown in Moreno et al (2014), a dynamical interpretation of the concepts
of observability/detectability can be obtained considering the system and a
copy of it. For this model, lets consider state variables xi, i = 1, 2, 3 and copy
variables zi, i = 1, 2, 3. For a generic operation regime:
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System:



dx1
dt =

(
k4

x2
k5+x2

x3
k6+x3

)
x1 −k7x1 −u1x1 +u2x1

dx2
dt = −k1

(
k4

x2
k5+x2

x3
k6+x3

)
x1 −u1x2 +u1k2

dx3
dt = −k1

(
k4

x2
k5+x2

x3
k6+x3

)
x1 −u1x3 +u1k3

(4.21)

Copy:



dz1
dt =

(
k4

z2
k5+z2

z3
k6+z3

)
z1 −k7z1 −u1z1 +u2z1

dz2
dt = −k1

(
k4

z2
k5+z2

z3
k6+z3

)
z1 −u1z2 +u1k2

dz3
dt = −k1

(
k4

z2
k5+z2

z3
k6+z3

)
z1 −u1z3 +u1k3

(4.22)

The question to ask is, given two versions of the same system, can it be
proved that, by presuming some trajectories equal, others will also be equal
or tend to be so (ie., does the system allow for the mathematical possibility
of one trajectory of measurements co-existing with several trajectories of
variables to estimate)? The first step is to define the deviations εi between
the system states xi and their homologs zi:

Error:


ε1 = x1 − z1
ε2 = x2 − z2
ε3 = x3 − z3

⇔
z1 = x1 − ε1
z2 = x2 − ε2
z3 = x3 − ε3

(4.23)

The next step is to try to make indistinguishable dynamics dεi/dt appear.
This can be done by considering the original system (or alternatively, its
copy) plus a subtraction of both. Substracting equations (4.22) from (4.21)
leads thus to:



CHAPTER 4. ANIMAL CELL CULTURE MODEL OBSERVABILITY 177



dx1
dt − dz1

dt = µx1 − µz(x1 − ε1)+
+[»»»»»(−k7x1) − (»»»»»−k7(x1 − ε1))]+
+[XXXXX(−u1x1) − (XXXXX−u1(x1 − ε1))]+
+[»»»u2x1 − ©©©©u2(x1 − ε1)]

dx2
dt − dz2

dt = (−k1µx1) − (−k1µz(x1 − ε1))+
+[XXXXX(−u1x2) − (XXXXX−u1(x2 − ε2))]+
+[©©©u1k2 − ©©©u1k2 ]

dx3
dt − dz3

dt = (−k1µx1) − (−k1µz(x1 − ε1))+
+[XXXXX(−u1x3) − (XXXXX−u1(x3 − ε3))]+
+[©©©u1k3 − ©©©u1k3 ]

⇔ (4.24)

⇔


dε1
dt = µx1 − µz(x1 − ε1) − k7ε1 − u1ε1 − u2ε1

dε2
dt = −k1µx1 + k1µz(x1 − ε1) − u1ε2

dε3
dt = −k1µx1 + k1µz(x1 − ε1) − u1ε3

(4.25)

with:
{
µ = k4

x2
k5+x2

x3
k6+x3

µz = k4
(x2−ε2)

k5+(x2−ε2)
(x3−ε3)

k6+(x3−ε3)
(4.26)

The idea is, at this step, to verify the implications on εi of assuming that
some variables will be measured. More precisely, we wish to verify the
possibility of the measurements trajectories co-existing with two or more
trajectories for each of the variables that we intend to estimate/observe. If
two or more trajectories of a particular variable to estimate can co-exist with
the measurements trajectories, then it is not possible to distinguish one from
the other (since this particular variable will not be measured).

In this case, if biomass, x1 = Xv, is being measured throughout time, then
it can be presumed that ε1 = 0 throughout time. Therefore, dε1/dt = 0, as
well. Possible consequences may be that:

if, for t ≥ 0, ε1 = 0⇒
{
ε2 = 0
ε3 = 0 then

{
ε2 is observable
ε3 is observable (4.27)

if, for t ≥ 0, ε1 = 0⇒
{
ε2 → 0
ε3 → 0 then

{
ε2 is detectable
ε3 is detectable (4.28)
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if, for t ≥ 0, ε1 = 0⇒
{
ε2 , 0
ε3 , 0 then

{
ε2 is non observable
ε3 is non observable (4.29)

In order to check the consequence of measuring biomass on indistinguish-
able dynamics, lets consider that ε1 = 0 for t ≥ 0 in equations (4.25). It follows,
in this case, that:



0 = µx1 − µzx1
dε2
dt = −k1(µ − µz)x1 − u1ε2

dε3
dt = −k1(µ − µz)x1 − u1ε3

⇔ (4.30)

⇔


µ = µz (for x1 , 0)
dε2
dt = −u1ε2

dε3
dt = −u1ε3

⇔ (4.31)

⇔



k4
x2

k5+x2

x3
k6+x3

= k4
(x2−ε2)

k5+(x2−ε2)
(x3−ε3)

k6+(x3−ε3) ∧ x1 , 0
dε2
dt = −u1ε2

dε3
dt = −u1ε3

(4.32)

The analytical solutions for the second and third equations converges
asymptotically to zero when a, in the general form below, is a positive con-
stant:

d f
dt

= −a f ⇔ f (t) = f0e−at (4.33)
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Figure 4.3: Analytical solution of an equation in the form of that of dε2/dt
and dε3/dt.

We are, in this case, under conditions (4.28). This method allows us to
conclude that asymptotic convergence occurs for a dilution ratio u1 > 0. The
system is detectable (asymptotic convergence) because:

lim
t→∞

ε2(t) = 0 (4.34)

lim
t→∞

ε3(t) = 0 (4.35)

Thus, except for the batch mode, system states x2 and x3 are distinguish-
able if x1 is measured1.

To conclude, several methods are helpful in the study of the observabil-
ity/detectability properties of this simple illustrative toy model and measure-
ment configuration. In particular, the indistinguishable dynamics approach
allows, in this specific case, to reach global conclusions in a rather straigh-
forward manner. We will, therefore, apply it to a more complex animal cell
culture model in the following section.

1In batch, the initial condition is not forgotten throughout the experiment and the error is always equal to
the initial one: dεi/dt = 0 thus εi(t) = εi(t0) for i = 2, 3.
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4.3 Case study: hybridoma cell culture

If different limitation/inhibition phenomena are to be captured by a model
intended for use in a control strategy of an animal cell culture in continuous
perfused regime, then this model will undoubtedly have a higher order than
the model of the previous example: more states (concentrations) are needed to
express these phenomena, and, therefore, the complexity of the observability
analysis may rapidly increase. We will now study a higher order model by
using the indistinguishable dynamics approach to reach conclusions (global,
hopefully, if not, local) about the system. Different measurement scenarios
will be examined.

4.3.1 Process Model and Analysis

A real dynamic model of hybridoma cells producing monoclonal antibody is
considered (De Tremblay et al, 1992). It comprises 7 states (biomass, glucose,
lactate, glutamine, ammonia, monoclonal antibodies, volume), 16 parameters
and describes typical animal cell culture phenomena.

Figure 4.4: System layout for an animal cell culture performed in a bioreactor.

Four biological macroreactions are considered1:

(−ν21)Glc + (−ν41)Gln
ϕ1−→ xXv + ν31Lac + ν51Amm (4.36)

1These describe cell growth, cell death, cell maintenance and bioproduct production, respectively.
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(−1)Xv
ϕ2−→ Xd (4.37)

(−1)Glc + (−ν13)Xv
ϕ3−→ ν13Xv + ν33Lac (4.38)

(−ν14)Xv
ϕ4−→ ν14Xv + MAb (4.39)

Mass balance equations are given by

d
dt



x1
x2
x3
x4
x5
x6



=



1 −1 0 0
−k14 0 −1 0
k16 0 k17 0
−k15 0 0 0
k13 0 0 0
0 0 0 1



×



ϕ1
ϕ2
ϕ3
ϕ4


+



−x1 x1
(−x2 + k18) 0
−x3 0

(−x4 + k19) 0
−x5 0
−x6 0



[
u1
u2

]
(4.40)

with the following notation: x1 = Xv; x2 = Glc; x3 = Lac; x4 = Gln;
x5 = Amm; x6 = MAb; k1 = α; k2 = β; k3 = kµ; k4 = kd,Amm; k5 = kd,Gln;
k6 = kd,Lac; k7 = kGlc; k8 = kGln; k9 = km,Glc; k10 = mGlc; k11 = µd,max; k12 = µmax;
k13 = ν51 = YAmm/Gln/YXv/Gln; k14 = ν21 = 1/YXv/Glc; k15 = ν41 = 1/YXv/Gln;
k16 = ν31 = YLac/Glc/YXv/Glc; k17 = ν33 = YLac/Glc; k18 = GlcIN; k19 = GlnIN;
u1 = D = FIN/V; u2 = Dper f = Fper f/V; V constant. Parameter values are listed
on p. 86.

The reaction rates are given by:

ϕi = µix1 (4.41)

µ1 = k12
x2

k7 + x2

x4

k8 + x4
(4.42)

µ2 = k11
1

(k12 − k6x3)
1

(k12 − k14x5)
k5

k5 + x4
(4.43)

µ3 = k10
x2

k9 + x2
(4.44)

µ4 = k2 + k1
µ1

k3 + µ1
(4.45)
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It can be seen that biomass concentration x1 depends on all states besides
the antibodies concentration x6. The antibodies, on the other hand, have no
influence whatsoever on the dynamics of other states, meaning that they can
be excluded from the observability analysis.

Table 4.2: Dependency of state dynamics on system states for De Tremblay’s
model.

dynamics x1 x2 x3 x4 x5 x6 state type
ẋ1 • • • • • biomass ©
ẋ2 • • • • • glucose �
ẋ3 • • • • • lactate 4
ẋ4 • • • • • glutamine �
ẋ5 • • • • • ammonia 4
ẋ6 • • • • • • antibodies 4

Legend: ©=biomass; �=substrate; 4=metabolite/product.

A copy of the original system is built.

System



dx1
dt = (k12

x2
k7+x2

x4
k8+x4

)x1 − (k11
1

(k12−k6x3)
1

(k12−k14x5)
k5

k5+x4
)x1−

−x1u1 + x1u2
dx2
dt = −k14(k12

x2
k7+x2

x4
k8+x4

)x1 − (k10
x2

k9+x2
)x1

−x2u1 + k18u1
dx3
dt = k16(k12

x2
k7+x2

x4
k8+x4

)x1 + k17

(
k10

x2
k9+x2

)
x1 − x3u1

dx4
dt = −k15(k12

x2
k7+x2

x4
k8+x4

)x1 − x4u1 + k19u1
dx5
dt = k13(k12

x2
k7+x2

x4
k8+x4

)x1 − x5u1

(4.46)

Copy



dz1
dt = (k12

z2
k7+z2

z4
k8+z4

)z1 − (k11
1

(k12−k6z3)
1

(k12−k14z5)
k5

k5+z4
)z1−

−z1u1 + z1u2
dz2
dt = −k14(k12

z2
k7+z2

z4
k8+z4

)z1 − (k10
z2

k9+z2
)z1 − z2u1 + k18u1

dz3
dt = k16(k12

z2
k7+z2

z4
k8+z4

)z1 + k17

(
k10

z2
k9+z2

)
z1 − z3u1

dz4
dt = −k15(k12

z2
k7+z2

z4
k8+z4

)z1 − z4u1 + k19u1
dz5
dt = k13(k12

z2
k7+z2

z4
k8+z4

)z1 − z5u1

(4.47)
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Following the procedure introduced in the previous section, the indistin-
guishable dynamics can be expressed by subtracting (4.47) to (4.46):



dε1
dt = µ1x1 − µz

1(x1 − ε1) − µ2x1 + µz
2(x1 − ε1) − ε1u1 + ε1u2

dε2
dt = −k14µ1x1 + k14µz

1(x1 − ε1) − µ3x1 + µz
3(x1 − ε1) − ε2u1

dε3
dt = k16µ1x1 − k16µz

1(x1 − ε1) + k17µ3x1 − k17µz
3(x1 − ε1) − ε3u1

dε4
dt = −k15µ1x1 + k15µz

1(x1 − ε1) − ε4u1
dε5
dt = k13µ1x1 − k13µz

1(x1 − ε1) − ε5u1

(4.48)

where

µz
1 = k12

(x2 − ε2)
k7 + (x2 − ε2)

(x4 − ε4)
k8 + (x4 − ε4)

(4.49)

µz
2 = k11

1
k12 − k6(x3 − ε3)

1
k12 − k14(x5 − ε5)

k5

k5 + (x4 − ε4)
(4.50)

...

Two practical measurement configurations are considered:

• Case A: Living biomass and glucose are measured;

• Case B: Living biomass only is measured (eg. with a capacitance probe).

4.3.2 Case A - Biomass and glucose measurements

If we consider that biomass and glucose concentrations (x1 and x2) are being
measured, then ε1 = 0, ε2 = 0 for t ≥ 0 and it follows that dε1/dt = 0,
dε2/dt = 0, as well.

The idea is now to check whether if, by assuming this, then indistinguish-
able dynamics equations (4.48) will allow us to make global conclusions about
the observability/detectability of the system. Interesting conclusions could
be, for example:

if, for t ≥ 0,
{
ε1 = 0
ε2 = 0 ⇒


ε3 = 0
ε4 = 0
ε5 = 0

then


ε3 is observable
ε4 is observable
ε5 is observable

(4.51)
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if, for t ≥ 0,
{
ε1 = 0
ε2 = 0 ⇒


ε3 → 0
ε4 → 0
ε5 → 0

then


ε3 is detectable
ε4 is detectable
ε5 is detectable

(4.52)

After some analytical manipulations (see proof in Appendix B, p. 242-
245) we conclude that what effectively happens with this model under this
measurements strategy, is that:

if, for t ≥ 0,
{
ε1 = 0
ε2 = 0 ⇒


ε3 → 0
ε4 = 0
ε5 → 0

thus


ε3 is detectable,D > 0
ε4 is observable
ε5 is detectable,D > 0

(4.53)

It is concluded that the measurements of x1 and x2 provide sufficient
information to at least ensure detectability in any cell culture operation regime
apart from batch.

Hence, this model could be used by an observer to provide an estimation
of the concentrations of lactate, glutamine, ammonia (x3, x4, x5) based on
(non-negative) measurements sent by online probes (eg. a Fogale probe
and a bioanalyser or a glucose probe or a NIR) for biomass and glucose
concentrations (x1, x2).

Actually, it can also be proved similarly that the same is also possible by
measuring the other substrate (ie. glutamine instead of glucose):

if, for t ≥ 0,
{
ε1 = 0
ε4 = 0 ⇒


ε2 = 0
ε3 → 0
ε5 → 0

thus


ε2 is observable
ε3 is detectable,D > 0
ε5 is detectable,D > 0

(4.54)

With respect to antibodies concentration x6, up to now we have considered
a reduced form of the system since x6 has no influence on other states).
Actually, x6 is also detectable (for D > 0) if biomass and one of the substrates
are measured since ε1 = ε2 = ε4 = 0 and thus µ1 = µz

1 and it follows that
dε6/dt = −ε6u1.

Therefore, for this model, if at least biomass and one of the substrates are
measured, then an observer should have enough information to reconstruct
the full system. But could we dare to measure only biomass in order to recon-
struct the full system? We will investigate this in the following subsection.
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4.3.3 Case B - Biomass measurements

Lets now consider that only the concentration of one component (biomass)
is available and that other concentrations will need to be estimated with the
help of this model. If x1 is being measured, then ε1 = 0, dε1/dt = 0. Equations
(4.48), after the manipulations present in Appendix B, p. 245-247, lead to:

µ′1 = µ′2 (4.55)

dε2

dt
=

[
−k14µ

′
1 − µ′3

]
x1 − ε2u1 (4.56)

dε3

dt
=

[
k16µ

′
1 + k17µ

′
3

]
x1 − ε3u1 (4.57)

dε4

dt
=

[
−k15µ

′
1

]
x1 − ε4u1 (4.58)

dε5

dt
=

[
k13µ

′
1

]
x1 − ε5u1 (4.59)

where

µ′i = µi − µz
i (4.60)

Unfortunately, for this particular very extreme situation of the measure-
ment of one single variable, it is not easy to conclude in a straightforward
manner about the observability/detectability conditions.

Computation of the observability map and linearization suggests that the
system would be locally observable (Fig. 4.5) for illustrative normal operating
conditions. The evolution of normalized values attained by the determinant
is listed on the left column and plotted on the right (top) along with the states
(middle and bottom).
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Figure 4.5: Evolution of the determinant of the observability matrix and
concentrations during a normal culture.

4.3.4 Comments

We have seen several strategies for the study of observability/detectability
properties of animal cell culture models. For a reasonably complex model
describing a real hybridoma culture, we were able to achieve global conclu-
sions with the help of indistinguishable dynamics: the system is detectable if
at least biomass and one substrate are measured. In other situations, where a
global conclusion was not possible, local observability was studied for a set
of experimental conditions.

4.4 Kalman filter design

Following the observability/detectability analysis, let us now build the ob-
server by designing a Kalman filter considering the two measurement config-
urations. The implemented algorithm extends the use of the filter to nonlinear
systems by use of a linearization along the state trajectory.

System:
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ẋ(t) = f (x̂(t),u(t)) + η(t); x(t0) = x0
y(tk) = C(tk)x(tk) + ε(tk)

(4.61)

Gaussian white noises:

η(t) ∼N(0,Rη(t))
ε(t) ∼N(0,Rε(t))

(4.62)

A continuous-discrete version of the extended Kalman filter (EKF) is con-
sidered.

• Initialization
We consider a given initial condition and covariance P.

{
mt0|t0 = x0
Pt0|t0 = P0

(4.63)

• Continuous Prediction for tk−1 < t < tk:


˙̂x(t) = f (x̂(t), u(t)) x̂(tk−1) = mtk−1|tk−1

Ṗ(t) = AP(t) + P(t)AT + Rη(t); P(tk−1) = Ptk−1|tk−1

where

A = Jac(x̂(t),u(t)) =
δ f̂ (x̂(t), u(t))

δx

(4.64)

• Discrete-time correction at t = tk

{
mtk|tk−1 = x̂(tk)
Ptk|tk−1 = P(tk)

(4.65)

K(tk) = Ptk|tk−1C
T(tk)

(
C(tk)Ptk|tk−1C

T(tk) + Rε(t)
)−1

{
mtk|tk = mtk|tk−1 + K(tk)

(
y(tk) − C(tk)mtk|tk−1

)
Ptk|tk−1 = P(tk) − K(tk)C(tk)Ptk|tk−1

(4.66)

This algorithm is appropriate for bioprocesses, which can have low sam-
pling frequencies of the available probes, whereas the process models are
nonlinear mass balance equations. The state estimator can be coupled to a
model predictive controller, such as the one described in Sbarciog et al (2013).
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The convergence of the filter is illustrated in the case of biomass and
glucose measurements in Figure 4.6.

Figure 4.6: EKF based on biomass and glucose measurements. Rη=diag([0
0 0 0 0 0]); Rη=diag([0.1 0.01 30 0.1 0.01 1]); P0=diag([10 10 10 10 10 10]).
Estimation (magenta), real process variables (blue).

As for the case where only biomass measurements are available (Fig. 4.7),
the filter appears to perform sufficiently well since estimates still converge to
the real values even with an extremely poor knowledge of initial conditions.

In reality, an animal cell culture begins with initial conditions that are
relatively well known: the medium is generally prepared beforehand and its
concentrations of glucose and glutamine are fairly well known. On the other
hand, before cells are inoculated, the concentration of metabolites lactate
and ammonia are close to zero and the concentration of the synthesised
bioproduct is zero.
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Figure 4.7: EKF based on biomass measurements. Lowest IC=[12 2 Xv0
10 2 40]T; lower IC=[20 3 Xv0 1 1 10]T; perfect IC=[25 4 Xv0 0 0 0]T; higher
IC=[30 5 Xv0 1 1 10]T; highest IC=[38 6 Xv0 10 2 40]T.

Another issue to be addressed is the performance of the filter given mea-
surement noise. The figures presented assume a small level of noise, which
is, in fact, consistent with the performances of probes such as the Fogale,
illustrated in Fig. 4.8.

Figure 4.8: Biomass concentration signal given by a Fogale probe in a batch
CHO culture (Fogale-nanotech, 2013).
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4.5 Some conclusions

This application-oriented study addressed two questions. The first is the as-
sessment of observability of nonlinear dynamic models of cell cultures, in the
case of minimal measurement configurations. Given the complexity of these
systems, most available methods can be helpful for a local analysis. Reaching
global conclusions, however, involves long analytical manipulations that can
prove frustrating. Canonical forms such as those used in bacterial cultures in
Dewasme et al (2012) are also of difficult application. The indistinguishable
dynamics method proposed in Moreno et al (2014) has shown an interesting
approach, in this specific case, to come to global conclusions about observ-
ability/detectability in a straightforward manner. However, the solution of
the differential algebraic system involved in that method may be delicate in
other situations.

The second question is the design of observers for cell cultures using a few
measurement probes, and in particular the relatively recent biomass probes
which provide almost time-continuous evolution of the biomass with low
levels of noise. This has to be contrasted with bioanalyzers that automate
enzymatic kit analyses. Besides not being very frequent, these analyses have
high operation costs and can present some errors. A more attractive config-
uration could be a biomass probe coupled to another probe (NIR, glucose
sensor) in order to follow (at least) one substrate. In fact, the NIR could
potentially be interesting for the development a simultaneous procedure of
measuring online glucose, lactate, glutamine and ammonium (Didion et al,
2014).



Chapter 5

Animal cell culture control

This chapter focuses on control and begins with a study of
a control scheme from the literature for a very simple

biomass-substrate model describing animal cell cultures in
continuous perfused operation. Its adaptive backstepping

control strategy is compared to one that can be achieved by
a nonlinear model predictive controller (NMPC). NMPC is found

to be a promising control strategy. Next, an illustration of
how NMPC can be applied to a model of higher complexity (5 to

7 states, such as the ones chosen in this thesis) is shown.
Finally, the question of model choice is tackled: how complex

should a model be in a continuous perfused production scenario.
Model-plant mismatch is studied in a case study with different

models identified for the same databank of interferon-γ
producing CHO-320 cell cultures performed at the UMons (see

Chapter 3). The importance of having kinetics correctly captured
is highlighted.

5.1 Introduction

As mentioned already in Subsection 1.1 (p. 35), the purposes of modeling
can be various. One of them may be to use the model in the real-time control
of a system.

191
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Let us recall that some biomedicines (such as recombinant proteins) are
produced in cultures where animal cells, transfected in order to express these
high value proteins, are suspended. In the industry, the large scale production
of these biologicals appears to be commonly done in stirred tank reactors.
The efforts for increasing the culture productivity in these systems focus on
adjusting the media composition on the one hand, and the modes of operation
on the other hand.

The most popular operating modes in animal cell cultivation are batch,
fed-batch and perfusion modes (Fig. 1.1 on p. 31). Batch and fed-batch modes
do not offer many alternatives for control, as in these cases the feed rate FIN

is either absent or limited and the growth is inhibited by the accumulation
of toxic metabolites, which cannot be removed. In perfusion mode, fresh
medium is fed to replenish the consumed nutrients, while an equal volume of
spent medium is continuously withdrawn from it, allowing for the removal
of toxic components. Cells are retained or recycled back to the reactor by
some type of retention device, such as sonoperfusion filters. Higher cell
concentrations and higher productivity are achieved in perfusion cultures
than in conventional batch cultures. This is very clear in the example of
Figure 1.6 (p. 37), for instance.

Some goals of the control strategy may be to:

• maximise the time of operation - hence the preference for a continuous
regime in perfusion mode (see Fig. 1.5 on p.36);

• maximise the bioproduct of interest - in quantity, in easiness of purifica-
tion, ...;

• minimise substrate waste - that is, to provide each substrate in a quantity
adequate to cells’ needs instead of by default overcharging the medium
with it;

• maximise the automation of the process - to have a controller that is
robust;

• set an optimum mode for animal cells - to define a useful cost function.

An appealing concept is that of the dynamic growth medium (Fig. 5.1), in
which a multivariable controller would allow to adjust substrate availability
to cells needs, since it is well known that these vary throughout a culture.
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For example, it could act on several component concentrations simultane-
ously, according to estimated cell metabolism. Currently most cultures are
performed with static composition media. This would present a possibility of
optimizing operation by making available to a multivariable controller pools
of different substrates (eg. carbon sources, such as glucose, or carbon and
nitrogen sources, such as glutamine). The extra degrees of freedom gained
by the possibility of varying the availability of different substrates could lead
to better performances.

Figure 5.1: Static culture medium vs dynamic culture medium.

The successful operation of cultures in perfusion mode requires tight
control, and some recent developments consider the use of multivariable
control to manipulate the feed and bleed rates, FIN and Fbleed (Deschenes et al,
2006a,b), as well as the composition of the feed flow (Saraiva et al, 2010, 2011;
Sbarciog et al, 2013).

5.2 Case study: backstepping vs. NMPC

In Saraiva et al (2010), a nonlinear model predictive control (NMPC) of an
animal cell culture in perfusion mode was studied and compared to another
control strategy proposed in Deschenes et al (2006a); Deschenes (2007); De-
schenes et al (2006b) with a simple model intended for a perfused animal cell
culture (backstepping control). The same model was used in the two control
strategies. The goal was to control biomass and substrate concentrations (Xv
and S, respectively). This is a simple example of how biomass and substrate
concentrations can be controlled in a continuous perfused culture and the
nonlinearities of the system dealt with.



CHAPTER 5. ANIMAL CELL CULTURE CONTROL 194

5.2.1 Model statement

The model considered has been presented in more detail on p. 57.

Figure 5.2: Bioreactor cell culture: layout for a continuous perfused regime
operated at constant volume.

It is supposed that viable cells Xv grow on a substrate S. Some of the
viable cells die (Xd). Cell net growth presumes a dependency on substrate
and both viable and dead cells concentration.

S
ϕgrowth−−−−→ xXv (5.1)

Xv
ϕdeath−−−→ Xd (5.2)

For a continuous perfused regime operating at constant volume, as illus-
trated in Fig. 5.2:

Balances:



dXv
dt

= µXv +µdXv −FIN
V Xv +F2

V Xv

dS
dt

= −k1µXv −FIN
V S +FIN

V SIN

dXd
dt

= µdXv −FIN
V Xd

FIN = F1 +F2

(5.3)

Cell growth (Contois): µ = µmax
S

kcXv + S
(5.4)
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Cell death: µd = kd(Xv + Xd) (5.5)

Constants:


µmax = 0.0504h−1

kc = 1.87mM/(106cell/mL)
kd = 0.000758h−1/(106cell/mL)

Units: [Xv]=[Xd]=106cell/mL=109cell/L, [Si]=mM=mmol/L, [µ]=[µd]=h−1,
[Fi]=L/h, [V]=L.

5.2.2 Backstepping control

Backstepping is a technique dating from the 1990’s that relies on a recursive
method to stabilize nonlinear dynamical systems of lower triangular forms
(Zhou and Wen, 2008):



ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2, x3)
...
ẋn = f1(x1, x2, . . . , xn, u)

(5.6)

The recursive algorithm serves to design a control law in as many steps as
the relative degree of freedom of the system. Adaptive features are possible,
presuming that some parameter values may vary.

The control strategy proposed in Deschenes et al (2006b) considers a strat-
egy with two controllers where the dilution ratios are manipulated in order
to control state variables Xv and S. This is illustrated in Fig. 5.3.

The following notation is used:
{

dXv/dt = (µ − µd) Xv −FIN
V Xv + F2

V Xv
dS/dt = −k1 µ Xv + FIN

V SIN −FIN
V Xv

{ (5.7)

{
{

dx1/dt = θ1 x1 −u1x1
dx2/dt = θ2 x1 + u2xIN

2 −u2x2
(5.8)

The hypothesis that y1 = x1, y2 = x2 (no model-plant mismatch) is made.
θ1 and θ2 are parameters, u1 and u2 are the manipulated variables, and x1
and x2 are the controlled ones1.

1Notice that at constant volume −FIN + F2 = −F1.
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Figure 5.3: Backstepping control applied to a bioreactor cell culture: layout
for a continuous perfused regime operated at constant volume.

Since dx1/dt is independent of x2 and u2, then the multivariable controller
can be designed sequentially:

1. Design a law to control y1 (=Xv, biomass) by manipulation of u1 (=F1/V);

2. Design a law to control y2 (=S, substrate) by manipulation of u2 (=FIN/V).

The idea is to use Lyapunov’s theory by choosing a positive Lyapunov
function V that is in some way a measure of the error (between the state and
its setpoint yRi ) and by forcing this function to have a negative derivative. A
controller is then built where this measure of the error V is bound to decrease
and converge to zero (therefore, the state will converge to its setpoint). This
function may also include an adaptation term if parameters θi (eg. kinetic)
are presumed uncertain or time-varying. In this way, the existence of V > 0
and dV/dt < 0 will ensure the stability of the adaptive control scheme.

This case considers the following Lyapunov function:

V1 =
1
2

z2
1 +

1
2γ1

θ̃2
1 where (5.9)
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

estimation error: θ̃1 = θ1 − θ̂1
adaptation gain: γ1 ,positive

augmented error: z1 =

proportional︷︸︸︷
kP1ε1 +

integral︷     ︸︸     ︷
kI1

∫
ε1dt

closed loop error: ε1 = yR1 − y1

(5.10)

Computing the derivative of V1, after some manipulations, and presuming
a slow parameter time variation occurring in reality (θ̇1 ' 0):

V̇1 = z1[kP1(ẏR1 − θ̂1x1 + x1u1) + kI1ε1] + θ̃1[
− ˙̂θ1

γ1
− kP1z1x1] (5.11)

In order to force this derivative to be negative, one considers also that
V̇1 = −c1z2

1 where from eq. (5.11) it follows that:

−c1z2

1 = z1[kP1(ẏR1 − θ̂1x1 + x1u1) + kI1ε1]

0 = [−
˙̂θ1
γ1
− kP1z1x1]→ ˙̂θ = −γ1kP1z1x1

(5.12)

Explicitating u1 and ˙̂θ1, for controller #1:

control law
adaptation law

{
u1 = 1

x1

(
−c1z1

kP1
− kI1ε1

kP1
− ẏR1

)
+ θ̂1{ ˙̂θ1 = −γ1kP1z1x1with c1, γ1 > 0

(5.13)

The same procedure may be followed to obtain the laws for controller #2:

control law
adaptation law

{
u2 = 1

xIN
2 −x2

(
c2z2
kP2

+ kI2ε2
kP2

+ ẏR2 − θ̂2x1

)
{ ˙̂θ2 = −γ2kP2z2x1with c2, γ2 > 0

(5.14)

The controllers are tuned by choosing values for a number of control
parameters: the proportional gains kPi, integral gains kIi, adaptation gains
γi and Lyapunov function constants ci. There is no systematic procedure
for backstepping control tuning, but the following steps may be followed
(Astrom and Wittenmark, 1997):

• Step 1 Choose a small enough sampling time ∆t for the control algorithm.
Heuristics:

0.01 ≤ ∆t/τdominant ≤ 0.05 (5.15)
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• Step 2 Turn down adaptation (assume that parameters θi are perfect)
and roughly adjust the gains of the PI controller, making it very gentle
(non-aggressive). Check controller’s performance.

• Step 3 Turn on adaptation and try small values (magnitudes 10−4/10−1).

• Step 4 Increase set point changes and check response. Increase sampling
time and do the same.

Let it now be considered that the system is at steady state operating in
continuous perfused mode. Starting from this stable point a gentle setpoint
change (a 1st order trajectory) in the biomass concentration is introduced
while the substrate concentration setpoint remains unchanged:

Figure 5.4: Perfused culture: setpoint changes introduced.

If no adaptation is considered (perfect model case), the system reacts as
illustrated in Figure 5.5 for the following set of chosen values:

{
kP1 = 0.100; kI1 = 0.10
kP2 = 0.100; kI2 = 0.10 (5.16)



CHAPTER 5. ANIMAL CELL CULTURE CONTROL 199

Figure 5.5: Backstepping control: closed-loop response without adaptation
and tuning values listed in eq. (5.16).

It can be seen that the closed-loop response is rather good even if controller
#1 is initially saturated: u1 (the bleed dilution ratio) is initially meant to be
negative in order for the new higher biomass concentration setpoint to be
attained, but is, for physical reasons, forced to be null (u1 = 0, valve closed).

Let us now introduce adaptation by assuming a 90% initial parameter
estimation error (θ̂ = 90%θ). Results using the set of tuning values1 in eq.
(5.17) are represented in Figure 5.6.

{
kP1 = 0.015; kI1 = 0.01; γ1 = 0.10; c1 = 0.02
kP2 = 0.015; kI2 = 0.01; γ2 = 0.10; c2 = 0.15 (5.17)

Again, there is some saturation.
This adaptation in the control algorithm allows to deal with model-plant

mismatch. Again, despite an initial saturation of u1 (causing some oscillation),
overall response is good.

Let us consider now a more drastic scenario (for the same tuning values)
with a -60% initial parameter estimate error. The response (Figure 5.7) is now
not so good, with some oscillation introduced in the biomass concentration

1These were chosen by trial and eror.
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and in the substrate concentration (where setpoint compliance is weaker and
slower). Again, u1 is initially saturated.

Figure 5.6: Backstepping control: closed-loop response with adaptation (θ̂ =
90%θ) and tuning values listed in eq. (5.17).

Figure 5.7: Backstepping control: closed-loop response with adaptation (θ̂ =
−60%θ) and tuning values listed in eq. (5.17).
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5.2.3 Nonlinear model predictive control (NMPC)

Upon a setpoint change, a multivariable nonlinear model predictive con-
troller will use simultaneously all model equations dxi/dt = fi(xi,u j) in order
to find the best trajectory of the manipulated variables u j (Santos, 2001). It
considers lower and upper bounds that represent natural process constraints.

Figure 5.8: Model predictive controller.

Figure 5.9: MPC: prediction and control horizons.
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Figure 5.9 illustrates how, at each (discrete) timepoint tk, the controller
compares states to their setpoints and computes a sequence of control moves
u j,k that will produce an evolution of system states within a prediction horizon
leading to a better setpoint compliance.

The problem solved is open-loop (uk is assumed constant during each
interval). Therefore, the prediction horizon should be long enough to capture
open-loop dynamics. ui,re f are the reference trajectories computed in tk. Only
the first control move (first interval) is applied. The remaining intervals are
used as reference initial guesses for the algorithm in the following iteration
tk+1, where the open-loop problem will be solved again.

The optimal sequence of control moves can be computed through se-
quential quadratic programming by defining a cost function that is then
minimised. The value of the cost function expresses a measure of how far
predictions of systems states are to their setpoints and can also incorporate
penalties regarding the amplitude of control moves, aggressiveness, and so
on, through weighting factors wi.

minimize J = w1Φ1 + w2Φ2 + ... + wtΦt

subject to ymin
i ≤ yi ≤ ymax

i
umin j ≤ u j ≤ umax

j
∆umin

j ≤ ∆u j ≤ ∆umax
j

(5.18)

setpoint compliance: Φ1 ∝
∑

(y − yre f )2

control trajectory compliance: Φ2 ∝
∑

(u − ure f )2

control move rate penalty: Φ3 ∝
∑

(∆u)2 =
∑

(uk − uk−1)2
(5.19)

Some trial and error is needed to avoid computationally intensive algo-
rithms. Henson and Seborg (1997) and Agachi et al (2006) provide some rules
of thumb:

• Sampling time ∆t: small enough to capture system’s dynamics (digital
control theory can be applied) and complete open-loop computation for
the next iteration;

• Prediction Horizon p: long enough to capture the system’s natural open-
loop dynamics (eg: after a step setpoint change, the time to reach a
new steady state). Short horizons may lead to aggressive control and
overshoot.



CHAPTER 5. ANIMAL CELL CULTURE CONTROL 203

• Control Horizon m: smaller than prediction horizon. The smaller it is, the
fewer degrees of freedom it will have (less chances of being aggressive).
Example: m ≈ p/4

• Ratio Prediction/Control Horizon (p,m). Example:

(p,m) = (8, 1) gentle controller, slower response, less sensitivity to
disturbances

(p,m) = (8, 8) aggressive controller

• Cost function weight matrix: much of the above considerations for the
prediction/control horizons can also be achieved through proper weight-
ing.

In the case study, while the backstepping control scheme had two con-
trollers, each acting individually on one state variable, in the NMPC ap-
proach, one controller will compute the best way of simultaneously manipu-
lating the dilution ratios to control the two variables Xv and S, as illustrated in
Figure 5.10. This is done by simultaneously integrating all model equations.

Figure 5.10: NMPC control applied to a bioreactor cell culture: layout for a
continuous perfused regime operated at constant volume.

We have implemented the NMPC algorithm in Matlab as in (Santos et al,
2010). For the same setpoint change described previously in Figure 5.4 (p.



CHAPTER 5. ANIMAL CELL CULTURE CONTROL 204

198), the response obtained is presented in Figure 5.11 for the following
conditions:

sampling time: ∆t = 0.25h (≈ 15min)
prediction horizon: p = 8

control horizon: m = 3
constraints: u ≥ 0

cost function wy1−y1,re f = 1; wu1−u1,re f = 100; wu1,k−u1,k−1 = 10;
weighting constants: wy2−y2,re f = 10; wu2−u2,re f = 100; wu2,k−u2,k−1 = 5e4;

(5.20)

The response is good. When compared to the (best) backstepping control
response for the same setpoint change (Fig. 5.6, p. 200), the NMPC controller
uses slightly lower values of u1 and u2 (less dramatic changes of flows are
involved in the corrective action).

Figure 5.11: NMPC control: closed-loop response under conditions listed in
eq. (5.20).

5.2.4 Comparison

In this case study a very simple model for continuous perfused animal cell
cultures was used in two control approaches, backstepping and NMPC. A
few comments can be made about the first:



CHAPTER 5. ANIMAL CELL CULTURE CONTROL 205

• For given stable setpoints, the controllers can work well if the right set
of parameters is found, although a systematic tuning procedure is not
available.

• Lyapunov functions may be hard to find for more complex systems
(models comprising 2 substrates and 2 metabolites, for instance).

• The coupling of manipulated and controlled variables in larger systems
has to be chosen and imposed.

• Saturation in the manipulated variable u might cause loss of conver-
gence/stability. Inclusion of process constraints can cause disturbances
in controller performance.

The other approach tested, nonlinear model predictive control, seems to
be a strategy with a better capacity of assimilating the multivariable nature
of the process and incorporating its constraints in a very straightforward
manner.

The NMPC also incorporates, very naturally in this case, some restrictions
such as the non-negativeness of states (concentrations) and control inputs
(dilution ratios/flowrates) and the eventuality of certain bounds on concen-
trations wanted (eg. if there is a prior knowledge of an optimal region of
operation in terms of cell behavior).

It is the purpose of this thesis also to investigate the concept of the dy-
namic medium, by which the substrates that are fed to the cells would vary
dynamically in order to be adjusted to their needs. This framework requires
models where the impact of different substrates (and their metabolites) is
evaluated. And this in turn means that the model will have a higher order
and complexity. Also, we would like to incorporate several process con-
straints. Therefore, the NMPC strategy will be the one preferred in the scope
of this thesis.

5.3 Case study: NMPC with a higher order model

Let it now be considered a real dynamic model of hybridoma cells produc-
ing monoclonal antibodies (de Tremblay et al, 1992). It comprises 7 states
(biomass, glucose, lactate, glutamine, ammonia, monoclonal antibodies, vol-
ume), 16 parameters and describes typical animal cell culture phenomena.
Its full description is provided in Section 3.5 on page 84.
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The control scheme proposed is illustrated in Figure 5.12. The manipu-
lation of two flowrates (feed and bleed) is proposed to the controller, who,
with two degrees of freedom, controls two variables: biomass and glucose
concentrations.

Figure 5.12: NMPC control applied to a bioreactor cell culture: layout for a
continuous perfused regime operated at constant volume.

Figure 5.13: Continuous perfused bioreactor at constant volume: open-loop
response to step changes in the feed and bleed flowrates (orange).



CHAPTER 5. ANIMAL CELL CULTURE CONTROL 207

Let us suppose that the bioreactor is incubated and, after some time of
operation in continuous perfused regime at constant volume, a stable point
is attained. This is illustrated in green in Figure 5.13. If no further changes
are made to FIN and Fbleed, then all the concentrations will remain the same.
However, if at t = t0 step changes are introduced to the values of FIN and
Fbleed, then the system will evolve towards another equilibrium point. This
open-loop response is plotted in orange.

A closed-loop response can be obtained by turning on a NMPC controller
at t0. Every ∆tshi f t this controller is called to compute the best line of action to
drive the system to the new setpoint biomass and glucose concentration. This
action is then implemented by adjusting the flowrates u1 = FIN and u2 = Fbleed.
Gradually, after some time, compliance to the references is attained, as shown
in Figure 5.14 for the conditions listed in eq. (5.21). Therefore, even if it is
possible to compute the values of FIN and Fbleed leading to specific values of
biomass and glucose concentrations, the NMPC controller should be able to
drive the system to these values faster (and automatically).

controller called every : ∆tshi f t = 0.25d (4times/day)
sampling time: ∆t = 2d

prediction horizon: p = 6 (12d moving window)
control horizon: m = 2

constraints: u ≥ 0.001L/d
u ≤ 2L/d

cost function wy1−y1,re f = 100
weighting constants: wy2−y2,re f = 1

(5.21)

The NMPC control approach to the continuous perfused operation has
been further studied with another implementation in Sbarciog et al (2013)
and Saraiva et al (2011). Simulation studies showed better controller per-
formances whenever nutrient concentrations (x2, x4 ≡ Glc,Gln) evolved in
closed-loop nearer to the equilibrium line that relates them (equations (5.22)
state these equilibrium relationships).

More precisely, in cases where nutrients were evolving closer to this
Glc/Gln equilibrium line, the controller ended up needing less time to drive
biomass to comply with its setpoint.

Through analysis of the equilibria (see p. 248), the exact relationship
implicitly relating nutrients in equilibrium (x∗2, x

∗
4) can be found as stated

in eq. (5.23). The equation can be approximated by a quadratic explicit
description of x∗4, which is easier to incorporate in the controller.
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Figure 5.14: NMPC control: closed-loop response under conditions listed in
eq. (5.21) (black and red lines) vs. open-loop (orange).

Steady state:
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(5.22)

x∗2 − k18

x∗4 − k19
=

k14

k15
+

k10
x∗2

k9 + x∗2

k15

(
k12

x∗2
k7 + x∗2

x∗4
k8 + x∗4

) (5.23)

Therefore, this knowledge was incorporated in the control law by adding
a penalty term. This term is an assessment of how far actual glutamine con-
centration x4 is to the value x∗4 that it should have, if it was in equilibrium for
that particular value of glucose x2. Results are further discussed in Sbarciog
et al (2013) and Saraiva et al (2011).
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5.4 CHO-320 case study: which model for control?

A very interesting question is which model to use for control purposes: how
descriptive, detailed, complex or simple should it be? In order to address
this, we will consider the many models identified for the CHO-320 cultures
databank. We will presume that this cell line cultivated in this medium is
perfectly described by model Ω5 f+6a. Other (less effective1) forms of describ-
ing it are models Ω5g, Ω5e, Ω4d or Ω3 (parameter values listed on p. 155-154).
Table 5.1 lists the phenomena included in the model, its variables2, and the
phases for which they apply.

Table 5.1: Phenomena and variables included in different models identified
for the CHO-320 cell line databank.

model Glc Gln Lac Amm Glc Gln states valid for
lim. lim. inh. inh. mai. dec. phases

Ω5 f+6a • • • • • • Xv,Glc,Lac,Gln,Amm,Prot A + B
Ω3 Xv,Glc,Lac,Gln,Amm A
Ω4d • Xv,Glc,Gln A + B
Ω5e • • • • Xv,Glc,Lac,Gln,Amm A + B
Ω5g • • • • Xv,Glc,Lac,Gln,Amm A + B

Legend: lim. ≡ limitation, inh. ≡ inhibition, mai. ≡ maintenance, dec. ≡ spontaneous
decomposition. In a batch, phase A is the early cell growth phase, phase B is the latter when
cell concentration begins to decrease.

Figure 5.15 illustrates the timecourse of concentrations predicted by these
models during a batch experiment3.

Let us return now to the continuous perfused production regime where
a NMPC controller is set out to keep biomass and glucose concentrations
close to reference setpoints by manipulating the inflow and bleed outstream.
Let us suppose that there will be no model-plant mismatch if the controller
resorts to model Ω5 f+6a to compute the best line of action. On the other hand,
if it considers one of the other possible models, there will be some mismatch
since the real plant is described by Ω5 f+6a.

1In the sense that they obtained a lower score (value of the cost function used by the identification algorithm).
2Volume and bioproduct are left out of the analysis.
3Example chosen: under the exact conditions of experiment A of the databank.
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Figure 5.15: CHO-320: batch culture under conditions of experiment A of the
databank. Description through several models. Ω5 f+6a (in grey) is considered
the perfect description of the plant.

After some trial and error of tuning parameters (general procedure on p.
202), the following were chosen:

controller called every : ∆tshi f t = 0.25d (4times/day)
sampling time: ∆t = 2d

prediction horizon: p = 6 (12d moving window)
control horizon: m = 2

constraints: u ≥ 0.001L/d
u ≤ 2L/d

cost function wy1−y1,re f = 250
weighting constants: wy2−y2,re f = 1

(5.24)

The controller’s performance was tested in different circumstances (start-
ing points and setpoint changes). Figures 5.16 and 5.17 illustrate two such
examples. In all cases, the controller was able to drive states to their setpoints
in a faster time than the open-loop response.
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Figure 5.16: CHO-320 continuous perfused culture, NMPC control: closed-
loop response under conditions listed in eq. (5.24) (black lines) vs. open-loop
(lines in lilac). Setpoint changes: higher biomass with lower substrate.

Figure 5.17: CHO-320 continuous perfused culture, NMPC control: closed-
loop response under conditions listed in eq. (5.24) (black lines) vs. open-loop
(lines in pink). Setpoint changes: lower biomass with higher substrate.
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These figures express different types of setpoint changes. In fact, when-
ever a lower biomass concentration is wanted, the controller can act1 essen-
tially on the flow dynamics part of the model by adjusting the flowrates,
which is rather fast (manipulation of valves). If a higher biomass concen-
tration becomes the new setpoint, then, besides flow dynamics, the kinetic
part of the model will also be particularly important. This part has slower
dynamics (cells may need up to a day to divide, while valves can be manip-
ulated in a matter of seconds). We will see two practical examples where the
controller is asked to move from high to low biomass and the reverse (from
points B1 to B2 and then from B2 to B1, as detailed on p. 251).

5.4.1 Lower biomass point

In closed-loop, the controller was asked to drive the system from an operation
point to another operation point compliant with some biomass and glucose
setpoints. In this case the cell concentration was to become lower. The
real plant is described by model Ω5 f+6. The controller, in its optimization
algorithm, considered either this model (no model-plant mismatch) or some
other models also identified for the same experimental databank. In Figure
5.18 the no-mismatch case is represented in black and cases where model-
plant mismatch exists are represented in green, pink, blue and red.

It can be seen that a biomass compliance is more or less attained even
with the simpler models (Ω3 and Ω4d in green and pink). This is done at the
expense of the use of more feeding medium (FIN around 1.7L/d after 3 days)
than what would in reality be needed (around 1L/d), leading to significant
costs since operation in continuous perfused regime is meant to last very long
(in the industry sometimes up to 3 months). It can also be seen that after 3
days, the system gets to a new steady state in all situations.

In what regards glucose, there is, for this setpoint change, a significant
steady-state error when the plant’s model is not correctly known by the
controller (the exception being Ω5e which is very close to the real one, Ω5 f , but
doesn’t consider phenomena such as glutamine decomposition and glucose
for maintenance).

1Within operational constraints such as pump maximum allowed flowrate (ui = Fi ≤ UB), minimum
flowrate intended for downstreaming purification (eg. Fper f ≥ LB), minimum flowrate to prevent clogging in
pipes (eg. Fbleed ≥ LB), etc.
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Figure 5.18: CHO-320 continuous perfused culture, NMPC control: closed-
loop response when the controller knows the model perfectly (black) or when
it uses different models (green, pink, blue and red lines). Setpoint change to
lower biomass.

5.4.2 Higher biomass point

The reverse situation (that is, going now from low to high biomass) takes
more time (around 6 days) since on top of adjusting flow dynamics, the
kinetic part of the model (namely, cell division) plays an important role in
trying to attain setpoint compliance. This is illustrated in Fig. 5.19.

Once more, the simpler models (green and pink) involve the use of more
medium than necessary (2L/d instead of 1L/d in stationary phase). After
some time, there is even saturation (eg. Ω3, in green, predicts that a bigger
FIN would still be needed, whilst the pump is already at its maximum flowrate
capacity).
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Figure 5.19: CHO-320 continuous perfused culture, NMPC control: closed-
loop response when the controller knows the model perfectly (black) or when
it uses different models (green, pink, blue and red lines). Setpoint change to
higher biomass.

5.4.3 Some conclusions

This study has served to draw attention to the fact that knowing the kinetics
of the model well is of particular importance for the control of continuous
perfused cultures since it may lead to persistent excessive use of medium
during a long operating time.

Besides this fact, a more obvious note is that if kinetics are not properly
identified, then it is difficult to determine a priori the steady state conditions
of the plant that would be optimal. These optimal conditions would allow to
achieve, as best as possible, a certain goal, for example:

• high biomass concentration if the culture’s purpose is to produce cells;

• high bioproduct concentration if bioproduct is the focus;

• the ideal bioproduct concentration that could be processed by the down-
streaming purification unit.



Chapter 6

Conclusions and future
prospects

The purposes of the work presented in this thesis are manifold and will be
overviewed in the following sections.

6.1 Modeling and Identification

Firstly, it is to contribute to the mathematical modeling of animal cell cultures,
in particular to its parametric identification. To this purpose, a step-by-
step methodology has been proposed and illustrated in two experimental
case studies that explore data from cultures that we have performed at the
UMons, with two CHO cell lines using medium which is serum-free, a present
industrial concern (Brunner et al, 2010).

Experimental planning We have proposed a guideline for an early-stage
minimalist experimental planning where major cell behavior phenomena is
present and could be captured:

• an experiment where low levels of substrate glucose limit cell growth
while normal levels of glutamine may induce a build-up of correspond-
ing metabolite ammonia,

• an experiment where low levels of substrate glutamine limit cell growth
while normal levels of glucose may induce a build-up of corresponding
metabolite lactate,

215
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• an experiment where both substrates glucose and glutamine are over-
abundant leading to significant metabolite inhibition phenomena,

• an experiment near the desired operation conditions.

This planning serves as a first collection of data. In reality, it is only after
the experiments are performed that a better idea of the inhibition/limitation
regions is possible.

Modeling Among the many choices of modeling approaches, we have
opted for a macroscopic unstructured model capturing relevant cell be-
haviour so that the best compromise between complexity and usefulness can
be achieved in what regards its implementation in a control scheme meant
for continuous perfused cultures.

Identification: step-by-step procedure Instead of identifying the values
of the many parameters of a complex animal cell culture model all at once,
we have proposed a step-by-step methodology that allows for a gradual
complexification of the model to identify. It is based on sensitivity analysis
(namely the fact that some parameters are more influential at specific mo-
ments) and on model dynamics. Its main advantage is that, in each step,
some knowledge is available about good initial values for some sets of pa-
rameters. For example:

• During an initial culture phase (phase A, while cell concentration is
rising), parameters such as the stoichiometric coefficients and maximum
growth rate are of major influence. Thus, several reduced order models
can be easily identified.

• The knowledge of these values can serve as input for more complex
models, now relating to the whole culture (both phase A, while cell
concentration rises, and the latter phase B, while cell concentration de-
creases).

• In each of the steps, several reduced order models are possible. Looking
carefully at the dynamics of complex macroscopic models, it is possible
to reduce the number of states and/or parameters.
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• While considering the entire culture time-series (phases A and B), the fol-
lowing parameters in terms of impact are those relating to the limitation
of substrate, active around the switch time from phase A to phase B. It
is important in this stage that the data bank illustrates this phenomena.
Parameters relating to inhibition become active when phase B begins.

• Even if, globally speaking, some parameters will always tend to be more
dominant than the remaining, one way of highlighting less influential
parameters is introducing a timeweighting of the cost function. For ex-
ample, by putting more weigh around tpeak, the impact of parameters such
as the limitation constant (particularly active around tpeak) is amplified.

• Once this set of parameters is already roughly known, others can be
added to the model form, but they will have less sensitivity (system
states will be less influenced by changes in their values). So, in order to
be more confident of their values, a bigger data bank is then convenient.

This step-by-step procedure has shown promising results. An illustra-
tion of better and more consistent results obtained with it, when compared
with the traditional approach of trying to identify all parameters at once, is
provided on page 165.

6.2 Observability

In real practice, it is rare to have the opportunity of measuring with online
probes all the concentrations that represent states in the model. Therefore, in
order to gather full information about the system, an observer can be built if
observability/detectability properties can be guaranteed.

Observability/detectability study We have evaluated available approaches
of doing so and found a method that, in these cases, can be a useful tool to
reach global conclusions with a few analytical manipulations involved. This
method lays its foundation on the analysis of the indistinguishable dynamics
considering the system and a copy of it, and allows for the search of pos-
sible indistinguishable trajectories. We then applied this indistinguishable
dynamics analysis to evaluate the observability/detectability property of a
real animal cell model.



CHAPTER 6. CONCLUSIONS AND FUTURE PROSPECTS 218

Case study A case study was presented, focusing on a recently avail-
able probe on the market that provides a quasi-continuous measurement
of biomass of quality standard in what concerns cultures of animal cells
(which are quite small in size) and presents a low-noise signal. An extended
Kalman filter was then developed to observe all the other concentrations on
the model not being measured. This full system knowledge (some variables
are measured, others estimated) could be used in a control scheme where,
for example, a model predictive controller uses this information to decide on
how to act on the system.

6.3 Control

NMPC We have evidenced the usefulness of model predictive control in the
scope of animal cell cultures. In particular, through its incorporation of real
process constraints and acceptance of the multivariable nature of the process.

Higher order models The models stressed in this thesis intend to describe
a full cell culture (all phases: growth and death). NMPC is able to handle
this degree of information and we have illustrated it with case studies where
the model incorporates many states (biomass, substrates, metabolites). The
inclusion of these states is important because they help to express different
possible phenomena taking place in a cell culture. This comprehensive model
is also useful in determining interesting steady-state operation conditions of
the continuous perfused culture.

Which model for control Model-plant mismatch occurs in real practice.
We have highlighted the importance of having kinetics correctly captured
by the model used in control in a continuous perfused production scenario.
Among others, it may lead to a suboptimal use of substrate (implying waste
of resources and extra costs). To pinpoint this, a case study was shown using
different models identified for the same databank of interferon-γ producing
CHO-320 cell cultures performed at the University of Mons.
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6.4 Future prospects

It would be interesting to further continue this study with real data of con-
tinuous perfused cultures. The controller would then need to be coupled
to an observer (eg. a Kalman filter algorithm such as that described previ-
ously) for a full system knowledge. Eventually, if in real practice process
disturbances and noise prove to be limited, it may be interesting to provide
the controller with a reduced-order model. For example, if, in a sufficiently
big region around the steady state operating point, no ammonia inhibition is
consistently verified, then this term could be eliminated from the controller’s
model and, therefore, the knowledge of this concentration would no longer
be necessary in the loop. Ultimately, overlooking a phenomenon (thus, hav-
ing the benefits of a simpler model) must be balanced with the risk of losing
out in robustness.



Appendix A

Sensitivity equations terms

A.1 De Tremblay’s model

The dynamics of the sensitivities for De Tremblay’s model are obtained
through equation (3.9), with the following terms:

∂ f1
∂x1

= z23x1 − θ4z13z14z15 +
u20

x7
− u10

x7
, (A.1)

∂ f1
∂x2

= θ1z12x1z16, (A.2)

∂ f1
∂x3

= −θ4z14z15x1z17, (A.3)

∂ f1
∂x4

= θ1z11x1z18 + θ4z13z14x1z19, (A.4)

∂ f1
∂x5

= −θ4z13z15x1z20, (A.5)

∂ f1
∂x6

= 0, (A.6)

∂ f1
∂x7

= z1u10
x1

x2
7

− z3u20
x1

x2
7

, (A.7)

∂ f2
∂x1

= −
(z23

θ8
+ θ10z21

)
, (A.8)

220



APPENDIX A. SENSITIVITY EQUATIONS TERMS 221

∂ f2
∂x2

= −
(
θ1

θ8
z12x1z16 + θ10x1z22

)
− u10

x7
, (A.9)

∂ f2
∂x3

=
∂ f2
∂x5

=
∂ f2
∂x6

= 0, (A.10)

∂ f2
∂x4

= −
(
θ1

θ8
z11x1z18

)
, (A.11)

∂ f2
∂x7

= z1u10k1

(−1
x2

7

)
− z1u10x2

(−1
x2

7

)
, (A.12)

∂ f3
∂x1

=
θ9θ1

θ8
z11z12, (A.13)

∂ f3
∂x2

=
θ9θ1

θ8
z12x1z16, (A.14)

∂ f3
∂x3

= −u10

x7
, (A.15)

∂ f3
∂x4

=
θ9θ1

θ8
z11x1z18, (A.16)

∂ f3
∂x5

=
∂ f3
∂x6

= 0, (A.17)

∂ f3
∂x7

= −z1u10x3

(−1
x2

7

)
, (A.18)

∂ f4
∂x1

= − θ1

θ12
z11z12, (A.19)

∂ f4
∂x2

= − θ1

θ12
z12x1z16, (A.20)

∂ f4
∂x3

=
∂ f4
∂x5

=
∂ f4
∂x6

= 0, (A.21)

∂ f4
∂x4

= − θ1

θ12
z11x1z18 − u10

x7
, (A.22)



APPENDIX A. SENSITIVITY EQUATIONS TERMS 222

∂ f4
∂x7

= z1u10k2

(−1
x2

7

)
− z1u10x4

(−1
x2

7

)
, (A.23)

∂ f5
∂x1

=
θ13θ1

θ12
z11z12, (A.24)

∂ f5
∂x2

=
θ13θ1

θ12
z12x1z16, (A.25)

∂ f5
∂x3

=
∂ f5
∂x6

= 0, (A.26)

∂ f5
∂x4

=
θ13θ1

θ12
z11x1z18, (A.27)

∂ f5
∂x5

= −u10
x7
, (A.28)

∂ f5
∂x7

= −z1u10x5
−1
x2

7

, (A.29)

∂ f5
∂x1

=
θ13θ1

θ12
z11z12, (A.30)

∂ f6
∂x1

= θ14 + θ15
z23

θ16 + z23
, (A.31)

∂ f6
∂x2

= θ15x1
z24(θ16 + z23) − z23z24

(θ16 + z23)2 , (A.32)

∂ f6
∂x3

=
∂ f6
∂x5

= 0, (A.33)

∂ f6
∂x4

= θ15x1
z25(θ16 + z23) − z23z25

(θ16 + z23)2 , (A.34)

∂ f6
∂x6

= −u10

x7
, (A.35)

∂ f6
∂x7

= −z1u10x6

(−1
x2

7

)
, (A.36)



APPENDIX A. SENSITIVITY EQUATIONS TERMS 223

∂ f7
∂x1

=
∂ f7
∂x2

=
∂ f7
∂x3

=
∂ f7
∂x4

=
∂ f7
∂x5

=
∂ f7
∂x6

=
∂ f7
∂x7

= 0, (A.37)

∂ f1
∂θ1

= z26, (A.38)

∂ f1
∂θ2

= −θ1z12x1z27, (A.39)

∂ f1
∂θ3

= −θ1z11x1z28, (A.40)

∂ f1
∂θ4

= −z13z14z15x1, (A.41)

∂ f1
∂θ5

= −θ4z13z15x1
(θ5x3 − θ1)

(θ1 − θ5x3)2 , (A.42)

∂ f1
∂θ6

= −θ4z14z15x1
(θ6x5 − θ1)

(θ1 − θ6x5)2 , (A.43)

∂ f1
∂θ7

= −θ4z13z14x1z29, (A.44)

∂ f1
∂θc

= 0 f or c = 8, . . . , 16, (A.45)

∂ f2
∂θ1

=
−1
θ8

z26, (A.46)

∂ f2
∂θ2

=
θ1

θ8
z12x1z27, (A.47)

∂ f2
∂θ3

=
θ1

θ8
z28x1z11, (A.48)

∂ f2
∂θc

= 0 f or c = 4, . . . , 7, 9, 12, . . . 16, (A.49)

∂ f2
∂θ8

=
θ1

θ2
8

z11z12x1, (A.50)



APPENDIX A. SENSITIVITY EQUATIONS TERMS 224

∂ f2
∂θ10

= −x2
x1

θ11 + x2
, (A.51)

∂ f2
∂θ11

= θ10x1
x2

(θ11 + x2)2 , (A.52)

∂ f3
∂θ1

=
θ9

θ8
z26, (A.53)

∂ f3
∂θ2

=
θ9θ1

θ8
z12x1(−z27), (A.54)

∂ f3
∂θ3

=
θ9θ1

θ8
z11x1(−z28), (A.55)

∂ f3
∂θc

= 0 f or c = 4, . . . , 7, 10, . . . 16, (A.56)

∂ f3
∂θ8

= θ9θ1z26
−1
θ2

8

, (A.57)

∂ f3
∂θ9

=
θ1

θ8
z26, (A.58)

∂ f4
∂θ1

=
−1
θ12

z26, (A.59)

∂ f4
∂θ2

=
−θ1

θ12
z12x1(−z27), (A.60)

∂ f4
∂θ3

=
−θ1

θ12
z11x1(−z28), (A.61)

∂ f4
∂θc

= 0 f or c = 4, . . . , 11, 13, . . . 16, (A.62)

∂ f4
∂θ12

=
θ1

θ2
12

z26, (A.63)

∂ f5
∂θ1

= θ13
∂ f4
∂θ1

, (A.64)



APPENDIX A. SENSITIVITY EQUATIONS TERMS 225

∂ f5
∂θ2

= θ13
∂ f4
∂θ2

, (A.65)

∂ f5
∂θ3

= θ13
∂ f4
∂θ3

, (A.66)

∂ f5
∂θc

= 0 f or c = 4, . . . , 11, 14, . . . 16, (A.67)

∂ f5
∂θ12

= −θ13
∂ f4
∂θ12

, , (A.68)

∂ f5
∂θ13

= x1
z23

θ12
, (A.69)

∂ f6
∂θ1

=
z26θ15θ16

(θ16 + z23)2 , (A.70)

∂ f6
∂θ2

=
θ15x1θ1z12(−z27)θ16

(θ16 + z23)2 , (A.71)

∂ f6
∂θ3

=
θ15x1θ1z11(−z28)θ16

(θ16 + z23)2 , (A.72)

∂ f6
∂θc

= 0 f or c = 4, . . . , 13, (A.73)

∂ f6
∂θ14

= x1, (A.74)

∂ f6
∂θ15

=
x1z23

(θ16 + z23)
, (A.75)

∂ f6
∂θ16

=
−x1z23θ15

(θ16 + z23)2 , (A.76)

∂ f7
∂θc

= 0 f or c = 1, . . . , 16, (A.77)

with auxiliary equations:
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z1 =

{
0 for batch,
1 for fedbatch/continuous/perfused, (A.78)

z2 =

{
0 for batch/fedbatch,
1 for continuous/perfused, (A.79)

z3 =

{
0 for batch/fedbatch/continuous,
1 for perfused, (A.80)

z11 =
x2

x2 + θ2
, (A.81)

z12 =
x4

x4 + θ3
, (A.82)

z13 =
1

θ1 − θ5x3
, (A.83)

z14 =
1

θ1 − θ6x5
, (A.84)

z15 =
θ7

x4 + θ7
, (A.85)

z16 =
θ2

(θ2 + x2)2 , (A.86)

z17 = θ5z2
13, (A.87)

z18 =
θ3

(θ3 + x4)2 , (A.88)

z19 =
θ7

(θ7 + x4)2 , (A.89)

z20 = θ6z2
14, (A.90)

z21 =
x2

x2 + θ11
, (A.91)

z22 =
x2

x2 + θ2
, (A.92)
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z23 = θ1z11z12, (A.93)

z24 = θ1z12z16, (A.94)

z25 = θ1z11z18, (A.95)

z26 = θ1z11z12, (A.96)

z27 =
x2

(θ2 + x2)2 , (A.97)

z28 =
x4

(θ3 + x4)2 , (A.98)

z29 =
x4

(θ7 + x4)2 . (A.99)

A.2 CHO-S cultures

A.2.1 Model Ω1

The dynamics of the sensitivities for model Ω1 are obtained through equa-
tion (3.9), with the following terms (for batch mode):

∂ f1
∂x1

= θ1, (A.100)

∂ f1
∂θ1

= x1, (A.101)

A.2.2 Model Ω2

The dynamics of the sensitivities for model Ω2 are obtained through equa-
tion (3.9), with the following terms (for batch mode):

∂ f1
∂x1

= θ1, (A.102)
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∂ f1
∂x2

=
∂ f1
∂x4

=
∂ f2
∂x2

=
∂ f2
∂x4

=
∂ f4
∂x2

=
∂ f4
∂x4

= 0, (A.103)

∂ f2
∂x1

= − 1
θ8
θ1, (A.104)

∂ f4
∂x1

= − 1
θ12

θ1, (A.105)

∂ f1
∂θ1

= x1, (A.106)

∂ f1
∂θ8

=
∂ f1
∂θ12

=
∂ f2
∂θ12

=
∂ f4
∂θ8

= 0, (A.107)

∂ f2
∂θ1

= −x1

θ8
, (A.108)

∂ f2
∂θ8

=
θ1

θ8
x1, (A.109)

∂ f4
∂θ1

=
−x1

θ12
, (A.110)

∂ f4
∂θ12

=
θ1

θ12
x1, (A.111)

A.2.3 Model Ω3

The dynamics of the sensitivities for model Ω3 are obtained through equa-
tion (3.9), with the following terms (for batch mode):

∂ f1
∂x1

= θ1, (A.112)

∂ f1
∂x2

=
∂ f1
∂x3

=
∂ f1
∂x4

=
∂ f1
∂x5

= 0, (A.113)

∂ f2
∂x1

= −θ1

θ8
, (A.114)
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∂ f2
∂x2

=
∂ f2
∂x3

=
∂ f2
∂x4

=
∂ f2
∂x5

= 0, (A.115)

∂ f3
∂x1

=
θ1θ9

θ8
, (A.116)

∂ f3
∂x2

=
∂ f3
∂x3

=
∂ f3
∂x4

=
∂ f3
∂x5

= 0, (A.117)

∂ f4
∂x1

= − θ1

θ12
, (A.118)

∂ f4
∂x2

=
∂ f4
∂x3

=
∂ f4
∂x4

=
∂ f4
∂x5

= 0, (A.119)

∂ f5
∂x1

=
θ1θ13

θ12
, (A.120)

∂ f5
∂x2

=
∂ f5
∂x3

=
∂ f5
∂x4

=
∂ f5
∂x5

= 0, (A.121)

∂ f1
∂θ1

= x1, (A.122)

∂ f1
∂θ8

=
∂ f1
∂θ9

=
∂ f1
∂θ12

=
∂ f1
∂θ13

= 0, (A.123)

∂ f2
∂θ1

= −x1

θ8
, (A.124)

∂ f2
∂θ1

=
θ1x1

θ2
8

, (A.125)

∂ f2
∂θ9

=
∂ f2
∂θ12

=
∂ f2
∂θ13

= 0, (A.126)

∂ f3
∂θ1

=
θ9x1

θ8
, (A.127)

∂ f3
∂θ8

= −θ1θ9x1

θ2
8

, (A.128)
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∂ f3
∂θ9

=
θ1x1

θ8
, (A.129)

∂ f3
∂θ12

=
∂ f3
∂θ13

= 0, (A.130)

∂ f4
∂θ1

= − x1

θ12
, (A.131)

∂ f4
∂θ8

=
∂ f4
∂θ9

=
∂ f4
∂θ13

= 0, (A.132)

∂ f4
∂θ12

=
θ1x1

θ2
12

, (A.133)

∂ f5
∂θ1

=
θ13x1

θ12
, (A.134)

∂ f5
∂θ8

=
∂ f5
∂θ9

= 0, (A.135)

∂ f5
∂θ12

= −θ1θ13x1

θ2
12

, (A.136)

∂ f5
∂θ13

=
θ1x1

θ12
, (A.137)

A.2.4 Model Ω5 f

The dynamics of the sensitivities for model Ω5 f are obtained through equa-
tion (3.9), with the following terms (for batch mode):

∂ f1
∂x1

=
θ1θ5θ6x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
− θ4, (A.138)

∂ f1
∂x2

= x1
θ1θ5θ6x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

−x1
θ1θ5θ6x2x4

(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.139)
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∂ f1
∂x3

= − θ1θ5θ6x1x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)
, (A.140)

∂ f1
∂x4

= x1
θ1θ5θ6x2

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

−x1
θ1θ5θ6x2x4

(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)
, (A.141)

∂ f1
∂x5

= − θ1θ5θ6x1x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2 ; , (A.142)

∂ f1
∂x6

=
∂ f2
∂x6

=
∂ f3
∂x6

=
∂ f4
∂x6

=
∂ f5
∂x6

= 0, (A.143)

∂ f2
∂x1

= −θ10 − θ1θ5θ6x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.144)

∂ f2
∂x2

= −x1

(
θ1θ5θ6x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ8(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)

)
, (A.145)

∂ f2
∂x3

=
θ1θ5θ6x1x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)
, (A.146)

∂ f2
∂x4

= −x1

(
θ1θ5θ6x2

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ8(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)

)
, (A.147)

∂ f2
∂x5

=
θ1θ5θ6x1x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2 , (A.148)

∂ f3
∂x1

= θ9

[
θ10 +

θ1θ5θ6θ9x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)

]
, (A.149)

∂ f3
∂x2

= θ9x1

(
θ1θ5θ6x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−
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− θ1θ5θ6x2x4

θ8(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)

)
, (A.150)

∂ f3
∂x3

= − θ1θ5θ6θ9x1x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)
, (A.151)

∂ f3
∂x4

= θ9x1

(
θ1θ5θ6x2

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ8(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)

)
, (A.152)

∂ f3
∂x5

= − θ1θ5θ6θ9x1x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2 , (A.153)

∂ f4
∂x1

= − θ1θ5θ6x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.154)

∂ f4
∂x2

= −x1

(
θ1θ5θ6x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ12(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)

)
, (A.155)

∂ f4
∂x3

=
θ1θ5θ6x1x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)
, (A.156)

∂ f4
∂x4

= −x1

(
θ7

x1
+

θ1θ5θ6x2

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ12(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)

)
, (A.157)

∂ f4
∂x5

=
θ1θ5θ6x1x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2 , (A.158)

∂ f5
∂x1

= θ13

(
θ7x4

x1
+

θ1θ5θ6x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)

)

−θ13θ7x4

x1
, (A.159)
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∂ f5
∂x2

= θ13x1

(
θ1θ5θ6x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ12(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)

)
, (A.160)

∂ f5
∂x3

= − θ1θ5θ6θ13x1x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)
, (A.161)

∂ f5
∂x4

= θ13x1

(
θ7

x1
+

θ1θ5θ6x2

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ12(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)

)
, (A.162)

∂ f5
∂x5

= − θ1θ5θ6θ13x1x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2 , (A.163)

∂ f6
∂x1

=
∂ f6
∂x2

=
∂ f6
∂x3

=
∂ f6
∂x4

=
∂ f6
∂x5

=
∂ f6
∂x6

= 0, (A.164)

∂ f1
∂θ1

=
θ5θ6x1x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.165)

∂ f1
∂θ2

= − θ1θ5θ6x1x2x4

(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.166)

∂ f1
∂θ3

= − θ1θ5θ6x1x2x4

(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)
, (A.167)

∂ f1
∂θ4

= −x1, (A.168)

∂ f1
∂θ5

= x1

(
θ1θ6x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)

)
, (A.169)

∂ f1
∂θ6

= x1

(
θ1θ5x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−
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− θ1θ5θ6x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2

)
, (A.170)

∂ f1
∂θ7

=
∂ f1
∂θ8

=
∂ f1
∂θ9

=
∂ f1
∂θ10

=
∂ f1
∂θ12

=
∂ f1
∂θ13

= 0, (A.171)

∂ f2
∂θ1

= − θ5θ6x1x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.172)

∂ f2
∂θ2

=
θ1θ5θ6x1x2x4

θ8(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.173)

∂ f2
∂θ3

=
θ1θ5θ6x1x2x4

θ8(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)
, (A.174)

∂ f2
∂θ4

=
∂ f2
∂θ9

=
∂ f2
∂θ12

=
∂ f2
∂θ13

=
∂ f2
∂θ7

= 0, (A.175)

∂ f2
∂θ5

= −x1

(
θ1θ6x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)

)
, (A.176)

∂ f2
∂θ6

= −x1

(
θ1θ5x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

θ1θ5θ6x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2

)
, (A.177)

∂ f2
∂θ8

=
θ1θ5θ6x1x2x4

θ2
8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)

, (A.178)

∂ f2
∂θ10

= −x1, (A.179)

∂ f3
∂θ1

=
θ5θ6θ9x1x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.180)

∂ f3
∂θ2

= − θ1θ5θ6θ9x1x2x4

θ8(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.181)
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∂ f3
∂θ3

= − θ1θ5θ6θ9x1x2x4

θ8(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)
, (A.182)

∂ f3
∂θ4

=
∂ f3
∂θ12

=
∂ f3
∂θ13

=
∂ f3
∂θ7

= 0, (A.183)

∂ f3
∂θ5

= θ9x1

(
θ1θ6x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)

)
, (A.184)

∂ f3
∂θ6

= θ9x1

(
θ1θ5x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2

)
, (A.185)

∂ f3
∂θ8

= − θ1θ5θ6θ9x1x2x4

θ2
8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)

, (A.186)

∂ f3
∂θ9

= x1

[
θ10 +

θ1θ5θ6x1x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)

]
, (A.187)

∂ f3
∂θ10

= θ9x1, (A.188)

∂ f4
∂θ1

= − θ5θ6x1x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.189)

∂ f4
∂θ2

=
θ1θ5θ6x1x2x4

θ12(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.190)

∂ f4
∂θ3

=
θ1θ5θ6x1x2x4

θ12(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)
, (A.191)

∂ f4
∂θ4

=
∂ f4
∂θ8

=
∂ f4
∂θ9

=
∂ f4
∂θ10

=
∂ f4
∂θ13

= 0, (A.192)

∂ f4
∂θ5

= −x1

(
θ1θ6x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−
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− θ1θ5θ6x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)

)
, (A.193)

∂ f4
∂θ6

= −x1

(
θ1θ5x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2

)
, (A.194)

∂ f4
∂θ12

=
θ1θ5θ6x1x2x4

θ2
12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)

, (A.195)

∂ f4
∂θ7

= −x4, (A.196)

∂ f5
∂θ1

=
θ5θ6θ13x1x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.197)

∂ f5
∂θ2

= − θ1θ5θ6θ13x1x2x4

θ12(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.198)

∂ f5
∂θ3

= − θ1θ5θ6θ13x1x2x4

θ12(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)
, (A.199)

∂ f5
∂θ4

=
∂ f5
∂θ8

=
∂ f5
∂θ9

=
∂ f5
∂θ10

= 0, (A.200)

∂ f5
∂θ5

= θ13x1

(
θ1θ6x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)

)
, (A.201)

∂ f5
∂θ6

= θ13x1

(
θ1θ5x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2

)
, (A.202)

∂ f5
∂θ12

= − θ1θ5θ6θ13x1x2x4

θ2
12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)

, (A.203)
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∂ f5
∂θ13

= x1

(
θ7x4

x1
+

θ1θ5θ6x2x4

θ12(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)

)
, (A.204)

∂ f5
∂θ7

= θ13x4, (A.205)

∂ f6
∂θ1

=
∂ f6
∂θ2

=
∂ f6
∂θ3

=
∂ f6
∂θ4

=
∂ f6
∂θ5

=
∂ f6
∂θ6

= 0, (A.206)

∂ f6
∂θ8

=
∂ f6
∂θ9

=
∂ f6
∂θ10

=
∂ f6
∂θ12

=
∂ f6
∂θ13

=
∂ f6
∂θ7

= 0, (A.207)

A.3 CHO-320 cultures

A.3.1 Model Ω5 f

Equations A.138 to A.148, A.150 to A.179, A.181 to A.186, A.189 to A.205 plus:

∂ f3
∂x1

=
θ1θ5θ6θ9x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.208)

∂ f3
∂θ1

=
θ1θ5θ6θ9x1x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.209)

∂ f3
∂θ9

=
θ1θ5θ6x1x2x4

θ8(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.210)

∂ f3
∂θ10

= θ9x1, (A.211)

∂ fi
∂x7

= 0 f or i = 1, . . . , 7, (A.212)

∂ f7
∂θi

= 0 f or i = 1, . . . , 13, (A.213)
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A.3.2 Model Ω6a

∂ f6
∂x1

=
θ1θ5θ6θ15x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.214)

∂ f6
∂x2

=
θ1θ5θ6θ15x1x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6θ15x1x2x4

(θ2 + x2)2(θ3 + x4)(θ5 + x3)(θ6 + x5)
, (A.215)

∂ f6
∂x3

= − θ1θ5θ6θ15x1x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)2(θ6 + x5)
, (A.216)

∂ f6
∂x4

=
θ1θ5θ6θ15x1x2

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)
−

− θ1θ5θ6θ15x1x2x4

(θ2 + x2)(θ3 + x4)2(θ5 + x3)(θ6 + x5)
, (A.217)

∂ f6
∂x5

= − θ1θ5θ6θ15x1x2x4

(θ2 + x2)(θ3 + x4)(θ5 + x3)(θ6 + x5)2 , (A.218)

∂ f6
∂x6

=
∂ f6
∂x7

= 0, (A.219)

∂ fi
∂θ15

= 0 f or i = 1, . . . , 5, 7, (A.220)

∂ f6
∂θ15

= θ1
x2

θ2 + x2

x4

θ3 + x4

θ5

θ5 + x3

θ6

θ6 + x5
x1, (A.221)

∂ f7
∂xi

= 0, (A.222)

∂ f7
∂θ15

= 0, (A.223)



Appendix B

Observability analysis
equations

B.1 General method of proving observability (rank
condition)

B.1.1 Development of equations for a simple toy model

For the model provided in Section 4.2.2 (p. 171):

Observability map: q =


q1,1
q1,2
q1,3

 =



L0
f h1

L1
f h1

L2
f h1


(B.1)

q1,1 = L0
f hx = h(x) = x1 (B.2)

q1,2 = L f hx =
[
∂h
∂x1

. . . ∂h
∂x3

]
×


f1(x1, . . . , x3)

...
f3(x1, . . . , x3)

 =

=

¶¶
¶
¶7
= 1

∂h
∂x1

f1 +
¶

¶
¶
¶7
= 0

∂h
∂x2

f2 +
¶

¶
¶
¶7
= 0

∂h
∂x3

f3

 =

239
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=
½

½
½

½
½½>

= 1
∂

∂x1
[x1] × f1 =

=Ψ (auxiliary variable)︷                                       ︸︸                                       ︷
1 ×

[
µmax

x2

k + x2

x3

k + x3
x1 − µd,maxx1

]
=

dx1

dt
(B.3)

q1,3 = L2
f hx = L f [L f h(x)] = L f [Ψ] =

=
[
∂Ψ
∂x1

. . . ∂Ψ
∂x3

]
×


f1(x1, . . . , x3)

...
f3(x1, . . . , x3)



Since:

∂Ψ
∂x1

= µmax
x2

k + x2

x3

k + x3
× 1 − µd,max × 1 (B.4)

∂Ψ
∂x2

= µmax
x3

k + x3
x1

k
(k + x2)2 − 0 (B.5)

∂Ψ
∂x3

= µmax
x2

k + x2
x1

k
(k + x3)2 − 0 (B.6)

Then:

q1,3 =

(
∂Ψ
∂x1

f1 +
∂Ψ
∂x2

f2 +
∂Ψ
∂x3

f3

)
=

=
(
µmax

x2

k + x2

x3

k + x3
− µd,max

) (
µmax

x2

k + x2

x3

k + x3
x1 − µd,maxx1

)
+

+

(
µmax

x3

k + x3
x1

k
(k + x2)2

) (
−νµmax

x2

k + x2

x3

k + x3
x1

)
+

+

(
µmax

x2

k + x2
x1

k
(k + x3)2

) (
−νµmax

x2

k + x2

x3

k + x3
x1

)
(B.7)

To build the observability matrix:

O(x) =


a11 a12 a13
a21 a22 a23
a31 a32 a33

 (B.8)
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ones computes:

O(x) =
∂

∂x
q =


¡

¡
¡µ

=1
∂q1,1

∂x1 ¡
¡

¡µ
=0

∂q1,1

∂x2 ¡
¡

¡µ
=0

∂q1,1

∂x3
∂q1,2

∂x2

∂q1,2

∂x2

∂q1,2

∂x3
∂q1,3

∂x3

∂q1,3

∂x2

∂q1,3

∂x3


(B.9)

with:

a11 =
∂q1,1

∂x1
=

∂

∂x1
(x1) = 1 (B.10)

a12 =
∂q1,1

∂x2
=

∂
∂x2

(x1) = 0 (B.11)

a13 =
∂q1,1

∂x3
=

∂

∂x3
(x1) = 0 (B.12)

a21 =
∂q1,2

∂x1
=
∂Ψ

∂x1
=

∂

∂x1

[
µmax

x2

k + x2

x3

k + x3
x1 − µd,maxx1

]
=

= µmax
x2

k + x2

x3

k + x3
× 1 − µd,max × 1 (B.13)

a22 =
∂q1,2

∂x2
=
∂Ψ

∂x2
= µmax

x3

k + x3
x1

k
(k + x2)2 (B.14)

a23 =
∂q1,2

∂x3
=
∂Ψ
∂x3

= µmax
x2

k + x2
x1

k
(k + x3)2 (B.15)

a31 =
∂q1,3

∂x1
=

∂

∂x1

[
∂Ψ

∂x1
f1 +

∂Ψ

∂x2
f2 +

∂Ψ

∂x3
f3

]
= . . . (B.16)

a32 =
∂q1,3

∂x2
=

∂
∂x2

[
∂Ψ
∂x1

f1 +
∂Ψ
∂x2

f2 +
∂Ψ
∂x3

f3

]
= . . . (B.17)

a33 =
∂q1,3

∂x3
=

∂

∂x3

[
∂Ψ

∂x1
f1 +

∂Ψ

∂x2
f2 +

∂Ψ

∂x3
f3

]
= . . . (B.18)

It is evident that the equations will become longer and ever more complex.
It is very difficult then to enquire about the matrix rank since it involves
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working with gigantic equations. Let us then simply generically represent
the matrix by:

O =


1 0 0

a21 a22 a23
a31 a32 a33

 (B.19)

B.2 Assessment of observability/detectability

B.2.1 Development of equations for case A (real cell culture
model)

From equations (4.48) on p. 183 it follows that:

• ε1 dynamics

{
ε1 = 0
dε1/dt = 0 ⇒ 0 = µ1x1 − µz

1x1 − µ2x1 + µz
2x1 − 0 + 0⇔ (B.20)

⇔ 0 = (µ1 − µz
1 − µ2 + µz

2)x1 (B.21)

∴ x1 = 0 ∨ (µ2 − µz
2) = (µ1 − µz

1) (for x1 , 0) (B.22)

• ε2 dynamics

{
ε2 = 0
dε2/dt = 0 ⇒ 0 = −k14µ1x1 + k14µ

z
1x1 − µ3x1 + µz

3x1 − 0⇔ (B.23)

⇔ 0 = (−k14µ1 + k14µ
z
1 − µ3 + µz

3)x1 ⇔ (B.24)

Because µ3 ≡ µ3(x2) and µz
3 ≡ µz

3(x2, ε2), given that ε2 = 0, then µ3 = µz
3,

thus:

⇔ 0 = −k14(µ1 − µz
1)x1 (B.25)
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Since k14 = ν21 is a positive stoichiometric constant:

∴ x1 = 0 ∨ µ1 = µz
1 (for x1 , 0) (B.26)

Since:

µ1 = µz
1 ⇔ ½

½k12
Z

Z
Z

ZZ

x2

k7 + x2

x4

k8 + x4
= ½

½k12

HHHHHHH

x2 − 0
k7 + x2 − 0

x4 − ε4

k8 + x4 − ε4
⇔ (B.27)

⇔ x4

k8 + x4
=

x4 − ε4

k8 + x4 − ε4
(B.28)

is an equation of the generic form below:

a
b

=
a − ε
b − ε ⇒

a(b − ε) = (a − ε)b
¡¡ab − aε = ¡¡ab − εb

0 = (a − b)ε
(a − b) = 0 ∨ ε = 0

(B.29)

In this case:

[(½½x4 ) − (k8 + ½½x4 )] = 0
−k8 = 0

(impossible
since k8 = kGln)

∨ ε4 = 0 X (B.30)

In fact all model constants (as model states) have to be positive in order
to present a physical meaning.

• ε3 dynamics

dε3

dt
= k16(µ1 − µz

1)x1 + k17(µ3 − µz
3)x1 − ε3u1 (B.31)

It is known from eq. (B.23) and (B.30) that ε2 = ε4 = 0 and therefore:

{
µ1 ≡ µ1(x2, x4) = k12

x2
k7+x2

x4
k8+x4

µz
1 ≡ µz

1(x2, x4, ε2, ε4) = k12
(x2−ε2)

k7+(x2−ε2)
(x4−ε4)

k8+(x4−ε4)

ε2=ε4=0−−−−−→ µ1 = µz
1 (B.32)

{
µ3 ≡ µ3(x2) = k10

x2
k9+x2

µz
3 ≡ µz

3(x2, ε2) = k10
(x2−ε2)

k9+(x2−ε2)

ε2=0−−−→ µ3 = µz
3 (B.33)
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Equation (B.31) becomes then:

dε3

dt
= 0 + 0 − ε3u1 (B.34)

The analytical solution is, as seen in equation (4.33) on p. 178:

ε3(t) = ε3(t0)e−u1t (B.35)

ε3, the error on the estimation of lactate concentration (x3), will converge
assymptotically to zero because the dilution ratio u1 = D is positive.

lim
t→∞

ε3(t) = 0 (B.36)

This is valid for all regimes (fedbatch, continuous and continuous per-
fused) except for the particular case of batch when D = 0 and thus ε3(t) =
ε3(t0).

• ε4 dynamics

From eq. (B.30) and eq. (B.32) it follows that:

dε4

dt
=

XXXXXX−k15µ1x1 +
XXXXXXXX
k15µ

z
1(x1 − 0) − »»»»:= 0ε4u1 = 0 (B.37)

ε4(t) = 0 (B.38)

x4 can, thus, be observed from the knowledge of x1 and x2.

• ε5 dynamics

From eq. (B.32) it follows that:

dε5

dt
= XXXXXk13µ1x1 −

XXXXXXXX
k13µ

z
1(x1 − 0) − ε5u1 (B.39)

Again, the analytical solution is, as seen in equation (4.33) on p. 178:

ε5(t) = ε5(t0)e−u1t (B.40)

ε5, the error on the estimation of ammonia concentration (x5), will con-
verge assymptotically to zero because the dilution ratio u1 = D is positive.
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lim
t→∞

ε5(t) = 0 (B.41)

This is valid for all regimes (fedbatch, continuous and continuous per-
fused) except for the particular case of batch when D = 0 and, thus, ε5(t) =
ε5(t0).

B.2.2 Development of equations for case B (real cell culture
model)

From equations (4.48) on p. 183 it follows that:

• ε1 dynamics

{
ε1 = 0
dε1/dt = 0 ⇒ 0 = µ1x1 − µz

1x1 − µ2x1 + µz
2x1 − 0 + 0⇔ (B.42)

⇔∴ x1 = 0 ∨ (µ1 − µz
1) = (µ2 − µz

2) (for x1 , 0) (B.43)

• ε2 dynamics

dε2

dt
=

[
−k14(µ1 − µz

1) − (µ3 − µz
3)
]

x1 − ε2u1 (B.44)

• ε3 dynamics

dε3

dt
=

[
k16(µ1 − µz

1) + k17(µ3 − µz
3)
]

x1 − ε3u1 (B.45)

• ε4 dynamics

dε4

dt
=

[
−k15(µ1 − µz

1)
]

x1 − ε4u1 (B.46)

• ε5 dynamics
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dε5

dt
=

[
k13(µ1 − µz

1)
]

x1 − ε5u1 (B.47)

If the system is detectable or observable then this means that the following
is the only attractive equilibrium point:



ε2
ε3
ε4
ε5


=



0
0
0
0


(B.48)

Let us check then the equilibrium points of the system:


dε2/dt = f2(ε)
dε3/dt = f3(ε)
dε4/dt = f4(ε)
dε5/dt = f5(ε)

(B.49)

When dεi/dt = 0, it follows that:



µ′1 = µ′2
0 =

(
−k14µ′1 − µ′3

)
x1 − ε2u1

0 =
(
k16µ′1 + k17µ′3

)
x1 − ε3u1

0 =
(
−k15µ′1

)
x1 − ε4u1

0 =
(
k13µ′1

)
x1 − ε5u1

where, for simplicity, µ′i = µi − µz
i . (B.50)

It is not straightforward anymore, in this case, to apply the procedure
described previously.

One might argue that, if µ′1 , 0, then:



ε2u1
−k14µ′1−µ′3

= x1

ε3u1
k16µ′1+k17µ′3

= x1


→ ε2

(−k14µ′1 − µ′3)
=

ε3

(k16µ′1 + k17µ′3)
(for u1 , 0)

ε4u1
−k15µ′1

= x1

ε5u1
k13µ′1

= x1


→ ε4

−k15µ′1
=

ε5

k13µ′1
(for u1 , 0)

(B.51)
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This means that actually there might be certain specific possible combina-
tions of the errors leading to dεi/dt = 0, meaning that there are indistinguish-
able trajectories possible for the variables to estimate that co-exist with the
same trajectory of the measured variable x1 = Xv:

ε2

ε3
=
−k14µ′1 − µ′3

k16µ′1 + k17µ′3
(B.52)

ε4

ε5
=
−k15

k13
(B.53)

In real practice the question to consider now is how often a case might
occur where the observer’s predictions at a given moment tk would be such
that, compared to values measured, εi(tk)/ε j(tk) would be exactly equal to the
values described by equations (B.52) and (B.53). Throughout a culture, these
situations might not even happen (at least persistently) since real measure-
ments will have random errors, sometimes positive, others negative, with
different amplitudes throughout time.



Appendix C

Additional information for
control

C.1 Equilibrium equations for De Tremblay’s mo-
del

Equilibrium points1 x∗ for a continuous perfused regime operated at constant
volume can be computed using the equations on p. 208:

Steady state:



0 = (k12
x∗2

k7+x∗2

x∗4
k8+x∗4

)x∗1 − (k11
1

(k12−k6x∗3)
1

(k12−k14x∗5)
k5

k5+x∗4
)x∗1−

−x∗1u1 + x∗1u2

0 = −k14(k12
x∗2

k7+x∗2

x∗4
k8+x∗4

)x∗1 − (k10
x∗2

k9+x∗2
)x∗1

−x∗2u1 + k18u1

0 = k16(k12
x∗2

k7+x∗2

x∗4
k8+x∗4

)x∗1 + k17

(
k10

x∗2
k9+x∗2

)
x∗1 − x∗3u1

0 = −k15(k12
x∗2

k7+x∗2

x∗4
k8+x∗4

)x∗1 − x∗4u1 + k19u1

0 = k13(k12
x∗2

k7+x∗2

x∗4
k8+x∗4

)x∗1 − x∗5u1

(C.1)

One equilibrium point is the washout point. This solution corresponds to
the absence of biomass in the bioreactor at steady state and is not interesting:

1Antibodies concentration was excluded from the analysis. It does not impact on the dynamics of other
states.

248
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Washout:



x∗1 = 0
x∗2 = k18
x∗3 = 0
x∗4 = k19
x∗5 = 0
∀u1,u2 ≥ 0

(C.2)

If biomass is existant at steady state (x1 > 0), then the system will have
equilibrium points defined by eq. (C.3) where:



x∗1 > 0
0 < x∗2 < k18
x∗3 ≥ 0
0 < x∗4 < k19
x∗5 ≥ 0

(C.3)

The kinetics are quite complex and it will generally not be possible to
derive explicit analytical expressions of steady states. Nevertheless, some
relationships can be found which could be interesting (eg. for the design of
a controller).

One such expression relates the concentrations of substrates glucose and
glutamine in equilibrium. Explicitating x∗1 in the second and fourth equations
of system (C.1)2:


0 =

(
−k14µ∗1 − µ3(x)

)
x∗1 − x∗2u1 + k18u1

0 =
(
−k15µ∗1

)
x∗1 − x∗4u1 + k19u1

⇔ (C.4)

⇔



x∗1 =
x∗2u1 − k18u1

−k14µ∗1 − µ∗3
x∗1 =

x∗4u1 − k19u1

−k15µ∗1

(C.5)

Therefore:

u1
(x∗2 − k18)
−k14µ∗1 − µ∗3

= u1
(x∗4 − k19)
−k15µ∗1

⇒ (C.6)

2Note that µi(x) are defined in equations (3.17)-(3.20) on p. 85.
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x∗2 − k18

x∗4 − k19
=
−k14µ∗1 − µ∗3
−k15µ∗1

(C.7)

This is thus the exact relationship relating glucose and glutamine concen-
tration at steady state:

x∗2 − k18

x∗4 − k19
=

k14

k15
+

k10
x∗2

k9 + x∗2

k15

(
k12

x∗2
k7 + x∗2

x∗4
k8 + x∗4

) (C.8)

C.2 CHO-320 Ω5 f+6a model

Several stable operating points have been computed for a constant volume
continuous perfused culture of a CHO-320 cell line described by model Ω5 f+6a
(identification results on p. 162). Figure C.1 illustrates some. The initial
condition chosen corresponds to that of experiment A of the databank.

Figure C.1: CHO-320 culture described by model Ω5 f +6a in open-loop: several
operation points departing from the initial condition of experiment A and
using different values for the inflow rate FIN and bleed outflow rate Fbleed.
Regime: continuous perfused at constant volume.
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For these simulations, the impact of various phenomena considered by
the model is illustrated in Figure C.2. Different terms are listed on Table
C.1. Lactate inhibition shows to be the most overwhelming phenomenon
decreasing the potential maximum growth rate situation (µgrowth = µmax × 1×
1 × 1 × 1).

Table C.1: Terms in model Ω5 f+6a.

Term Expression Meaning
f1 Glc

kGlc+Glc glucose limitation

f2 Gln
kGln+Gln glutamine limitation

f3 kLac
kLac+Lac lactate inhibition

f4 kAmm
kAmm+Amm ammonia inhibition

µgrowth µmax f1 f2 f3 f4 growth rate
µnet µgrowth − µd,max net growth rate

Figure C.2: CHO-320 culture described by model Ω5 f +6a in open-loop: im-
pact of different phenomena considered by the model. Regime: continuous
perfused at constant volume.

The two following points were chosen for the analysis of model-plant
mismatch on page 212:
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• Point B1 (lower biomass): obtained with FIN = 0.95 and Fbleed = 0.03FIN;

• Point B2 (higher biomass): obtained with FIN = 0.95 and Fbleed = 0.15FIN;

In Section 5.4.1 (p. 212) the system is driven in closed-loop from B1 to B2
(thus to a lower biomass concentration point) and in Section 5.4.2 (p. 213)
from B2 to B1 (thus to a higher biomass concentration point).



Appendix D

Cell culture laboratory

The cell cultures used in the scope of this thesis were performed at the Uni-
versity of Mons in a newly set-up cell culture laboratory.

This laboratory is the joint effort of the Chemical and Biochemical Process
Engineering Department and the Automatic Control Department of the En-
gineering Faculty of the University of Mons and was made possible through
investment of the Engineering Faculty in overall laboratory equipment (Sar-
torius B-Plus Exclusive Flow 2-L bioreactor, ESCO reverse horizontal flow
cabinet, Fedegari Autoklaven sterilizer, Beckman Coulter Allega X-15R cen-
trifuge, Thermo Scientific Forma Series II incubator, Taylor-Wharton Liquid
Nitrogen cryogenic freezer, furniture, refrigerators, water pre-treatment unit,
gas and electrical emergency line installations, gas exhaust analyser, ...) and
through support of the European Regional Development Fund (ERDF) for the
2007 to 2013 programming and the Belgian Walloon Region (for specific ana-
lysers such as the Waters UPLC-ELS/PDA, Flownamics Seg-flow automated
online sterile sample collector, Bruker FT-NIR online spectrometer, Fogale
Nanotech high resolution capacitive online probe, multifeed pump system,
switch/link data management, daily laboratory material, etc). Other equip-
ment such as spectrophotometers, HPLCs and RMN are available at other
laboratories within the Chemical and Biochemical Process Engineering De-
partment and at the General, Organic and Biomedical Chemistry Department
of the University of Mons.

More detailed information on the set-up of this laboratory, its equipment
and cultures performed can be found in Zamorano (2012).

253
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Figure D.1: Animal cell culture laboratory at the University of Mons.

First row: UPLC, sample collector, bioreactor, Flownamics, pump system, Fogale probe,
NIR, flow cabinet (with spinner flask culture); second row: centrifuge, fridge, incubator
(with shake flask and t-flask cultures); third row: microscope, cell counter, cryogenic freezer;
fourth row: autoclave sterilizer, bioreactor culture.
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