Animal cell culture: macroscopic modeling,
estimation and control

Animal cell cultures are targeted namely at the production of
biopharmaceutical products such as vaccines, recombinant proteins and antibodies.
The industrial production of these promising target-specific drugs is fairly recent.
There are largely unexplored aspects that could be improved on so that a lower end-
user price can be sustainable, namely, a more rational use of the culture medium.

In order to explore this, a model needs to be considered. In this thesis, we
propose a practical approach of identifying model parameters with two
experimental case studies (CHO-S and interferon-gamma producing CHO-320
cultures): a step-by-step parameter identification procedure that uses gradually
more complex models and takes its inspiration from the analysis of the sensitivity
functions.

The model is then useful for the control of a bioreactor. A focus is put on the
continuous perfused production regime that allows a small volume to be cultured for
a longer period and allows for a faster downstreaming. A controller can generate a
manipulation of flowrates such that concentrations remain close to setpoints.

This research work then addresses the mathematical possibility of
estimating some concentrations that cannot be measured in real life from the
knowledge of other concentrations that can be measured online through probes
currently available on the market. An illustration is provided via an implementation of
the extended Kalman filter algorithm.

Finally, model-based automatic control is studied and the usefulness of
nonlinear model predictive control highlighted. A model-plant mismatch case study
serves to pinpoint the importance of how well biochemical kinetics are captured by
the model in order to prevent persistent waste of culture medium.
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Summary

Context Animal cell cultures are targeted at the production of biopharma-
ceutical products such as vaccines (eg. rotarix, polio, smallpox), recombinant
proteins and antibodies (eg., monoclonal antibodies, interferon-y).

The complexity of these biomolecules is such that production through
common chemistry is difficult, if not impossible. These substances can, how-
ever, sometimes be synthesised by cells programmed (eg. by transfection) to
produce them, hence the common use of the name biologicals. Sometimes
this can be done using cells with a genetic information sufficiently close to
that of humans (eg. mammals). Animal cells are cells extracted typically from
tissues of organs of animals. For example, CHO (Chinese Hamster Ovary)
are the most commonly used mammalian cells in this field, being known for
their capacity to correctly fold and post-translationally modify recombinant
proteins compatible with humans (Kildegaard et al, 2013).

As these biopharmaceutical products have a growing demand, the quest
is on to seek better production processes in terms of quality, quantity and end
user price.

For process optimization and control, these cultures can be described by
mathematical models that estimate the evolution of the concentrations of
biomass (cells), the substrates they are fed with (eg. glucose and glutamine),
the product of interest and other metabolites they produce in the course of
the culture and which may affect (eg. inhibit) their own growth (eg. lactate,
ammonia). These models allow to predict culture behaviour and to study,
monitor and control different production scenarios.

Motivation This thesis focuses on a field where much is still to discover,
namely the study of cultures of animal cells, such as CHO, HEK or hybridoma,
in suspension, common in industrial production (Zhang, 2010). Thus, cul-
tures where the cells are suspended in a culture medium capable of providing
them with the substrates that they need in order to grow, multiply and even-
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Figure 1: Illustration of the general idea behind an animal cell culture.

tually synthesise bioproducts of interest, typically around body temperature
(37°C) inside a bioreactor.

More specifically, this thesis focuses on studying an interesting and still
largely unexplored production regime called continuous perfused since a
perfusion filter is placed in an outstream. This filter is meant to retain cells
inside a bioreactor while guaranteeing that some culture medium containing
the bioproduct can be taken out and sent to a purifying downstreaming unit.
This operation regime is thought for the operation of small volumes during a
long period of time (eg. one to six months) and is already used in industrial
practice (Boedeker, 2013; Chu and Robinson, 2001), particularly for cases
when one or more of the following factors occur (Drugmand, 2011):

e cell growth is somewhat slower than average;
e bioproduct production is not completely growth-associated;

e the bioproduct stability is somewhat limited and, therefore, it is best to
send it as fast as possible to the downstreaming purifying unit!;

e another component may degrade fast and, therefore, a production regime
with a slower residence time is preferable (ie. perfusion is a better choice

than fedbatch/batch);

e inhibition phenomena are important, and, for the same reason, a smaller
residency time is preferable;



e there is limited space in the sterile production zone;

e initial investment is bugdet-limitedz.

This thesis seeks also to address the question of a management of culture
medium that is more intelligent and less expensive, that could thus allow
to perform a more efficient culture where, for example, not a lot of unused
substrates would be detected in the outstream (a medium able to provide
nutrients in a dynamical manner in function of cell’s evolving needs, for
example). If the industrial production of these biologicals is improved, then
the end-user price of precision medicine such as this can, potentially, become
more sustainable and allow market access to innovative medicines to be
broader.

Thesis organisation and contribution This thesis is organised as follows.

Animal cell cultures are introduced in Chapter 1, with a presentation of
what a cell culture looks like in terms of the timecourse of concentrations of
components and how its behaviour can be captured in a snapshot, along with
a motivation for modeling.

Chapter 2 reviews approaches for modeling. The choice of unsegregated
macroscopic models, in the scope of this thesis, is stated and reasons for doing
so are presented. Briefly, this type of models presents a good compromise
between descriptive insight and simplicity for practical purposes.

Once a model structure is chosen, the values of the parameters of these
models still need, in real practice, to be identified. One of the major con-
tributions of this thesis is to be found in Chapter 3, where, first of all, the
identification problem is presented. Starting the procedure with a good ini-
tial guess for a large set of parameters represents a challenge. In order to
tackle this challenge, a procedure is proposed. It is a step-by-step identifica-
tion approach which gradually considers more detailed models. To exemplify
it, a very simple model is first identified for a limited subset of experimental
data. This allows to roughly determine the value of one parameter. The next
step considers more states and parameters and a still limited data subset.
Hence, it is more complex but, on the other hand, a good initial guess of

!This is the case eg. of recombinant plasma-based factor VIII (a clotting factor missing from the blood of
people with hemophilia A) produced in perfusion by Baxter Belgium and Bayer Healthcare.

2A smaller bioreactor is needed, in comparison to the high initial costs of a large fedbatch/batch bioreactor.
On the other hand, the perfusion operation requires a bigger investment on workers expertise.
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one of the parameters is already roughly known. Other steps follow, with
increasing model complexity, where the identification algorithm has grad-
ually more and more knowledge about the initial guess for the parameter
set. In the end, the identification procedure is terminated whenever the user
decides that he accepts a particular model structure and is happy with both
its descriptive quality (fit to whole dataset) and its qualitative power (phe-
nomena such as limitation or inhibition that the model is robust enough to
account for). Chapter 3 also presents the rationale supporting the proposal of
this identification procedure. The inspiration came from an analysis of how
sensitive model states are when a value of a model parameter is changed.
A simulation case study using a well known animal cell culture model from
the literature is used to illustrate this in the beginning of the chapter. It is
then that real data from experimental campaigns performed at the University
of Mons is used to illustrate the step-by-step identification proposal in two
experimental practical case studies.

Once a model is identified and available for use in a real scenario, the ques-
tion of observability is then looked into. Chapter 4 illustrates how such type of
models can be used by sofware sensors (observers) that allow to estimate the
timecourse of concentrations not being measured in reality. More precisely,
in a practical scenario, the equipment available may not allow to measure all
the concentrations needed to solve the model. An observer will, however,
allow to estimate online how unmeasured concentrations evolve. This is
done given both the knowledge of the model and the information about the
variables being measured. The property dealing with this being mathemati-
cally possible is called observability. The most common approaches to study
this property may sometimes not be very helpful with this type of animal
cell culture models. In this chapter, a contribution on a manner of studying
the observability of animal cell culture models is also presented. It is based
on recent works of Moreno et al (2014) that address the indistinguishability
properties of the system.

Chapter 5 focuses on control, starting off with a study of a control scheme
already presented in the literature for a very simple biomass-substrate model
describing animal cell cultures in continuous perfused operation. Its adap-
tive backstepping control strategy is compared to one that can be achieved
by a nonlinear model predictive controller (NMPC). NMPC is found to be
a promising control strategy. Next, an illustration of how NMPC can be
applied to a model of higher complexity (5 to 7 states, such as the ones cho-
sen in the scope of this thesis) is shown®. Finally, the question of model
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choice is tackled: how complex should a model be in a continuous perfused
production scenario. Model-plant mismatch is studied in a case study with
different models identified for the same databank of interferon-y producing
CHO-320 cell cultures performed at the University of Mons (and previously
listed in Chapter 3). The importance of having kinetics correctly captured is
highlighted.

Finally, a global round-up of the thesis contributions and some future
prospects are presented in Chapter 6.

3This study is further developed in Sbarciog et al (2013) with a study that addresses controller tuning and
robustness analysis.
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Chapter 1

Introduction

Animal cell cultures are introduced in this chapter, with a
presentation of what a cell culture looks like in terms of
the timecourse of concentrations of components and how its
behaviour can be captured in a snapshot, along with a
motivation for modeling.

Models are of great importance in the study of better manners of performing
animal cell cultures. In order to establish a model some steps are necessary:

e Formulation of kinetic relations;
e Establishment of balances;

e Parameter identification (fitting);
e Model validation;

Through observation of dominant kinetic phenomena taking place, the
conversion of substrates into products and how they affect the evolution of
living cell concentration throughout a culture can be better understood. Cell
growth can typically be limited by some substrates, when they become scarce,
and by some products, when they build up excessively. Some substrate
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consumption can also be sometimes attributed not to cell growth but to cell
maintenance purposes.

This knowledge, coming partially from theoretical background and from
observation, is summed up into balance equations (mass balances: component-
wise and total). The values of the parameters present in these equations still
need to be identified, such that the model structure chosen fits well enough
with experimental data and provides a validated prediction performance in
different culture scenarios.

The purpose of suspending cells in a culture medium is in some way to
replicate the environment that they would naturally have before having been
extracted from the animal, such that they will stay alive for the duration of
the culture. Typical candidates for system states are, thus, the concentration
of the bioproduct excreted if one is produced (usually measured offline after
filtration), cell concentration (biomass), substrates consumed and metabolites
produced.

With regard to kinetics, typical states are, thus, the concentration of living
and dead biomass, major substrates such as glucose and glutamine, and
metabolites such as lactate and ammonia, aminoacids and the bioproduct.

According to the production regime chosen, the model also describes
fluid dynamics phenomena by considering variables such as the flowrates of
streams being fed or taken out of the bioreactor.

—>a>)
F]I\'
fe o) Gl | b
GIn™
BATCH FED-BATCH
FIN FIN perf
Gl F GIc™l oo
GIn™ ® ﬂm} GIn™ —>>
Vi e 1 F ee
CONTINUOUS CONTINUOUS = bleed
PERFUSED

Figure 1.1: Layout according to operation regime.

Figure 1.1 shows different production regimes. When operating in batch
mode, besides the culture medium initially placed in the bioreactor where
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cells are inoculated, no stream is fed or taken out. Cell concentration grows
and, after some time, it decreases mostly because substrates become scarce
and/or some inhibiting metabolites have built up.

In fedbatch mode, cell growth is accompanied by an input of fresh medium,
such that the duration of the culture can be extended.

When an outstream is added, a continuous regime can be operated, gen-
erally with a smaller volume. In order to keep the culture volume constant,
the incoming flow equals the outgoing flow, with the constraint that cell con-
centration must at least be maintained (otherwise the biomass is washed out
of the bioreactor simply because medium renewal is too fast for the speed
with which biomass is actually growing).

Longer cultures are generally operated in continuous perfused regime.
In this case, the main outstream lets out all components apart from living
biomass that is kept inside by means of a perfusion filter. A small bleed
outstream allows a better control of the desired cell concentration.

Figure 1.2 provides an example of concentration profiles obtained for a
batch culture of CHO-S performed at the UMons. Biomass concentration
initially rises in an approximately exponential manner while the major sub-
strates glucose and glutamine are consumed. At a given moment around
t = 90h, glutamine is extinguished and biomass begins to decrease. While
cells were consuming glucose, they were also producing lactate. In parallel,
consumption of glutamine is associated with ammonia production.

Figure 1.3 shows how during the same culture several other species are
either consumed or produced, albeit in a smaller scale. Metabolic studies
often focus on finding out more insight about the role that these aminoacids
may have in a culture.
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Figure 1.2: CHO-S batch culture performed at the UMons cell laboratory:
concentrations of major components.

Figure 1.4 illustrates different ranges of variation regarding the concen-
trations of substrates and products in a culture. Those denominated major
substrates and metabolites have concentration ranges of several dozen mM
(here about 0-40mM for the pair glucose/lactate and 0-10mM for the pair glu-
tamine/ammonia). Minor scale components, such as the aminoacids depicted
in Figure 1.3, are typically detected below 3mM. For living cell concentration,
usual operation involves some millions per mL, depending mostly on if boost-
ers such as serum are present or not. Time-wise, a common batch duration
may be one or two weeks, a fedbatch may last a week longer, and continuous
or continuous perfused cultures may last some months (in theory, longer).
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Typically, cell concentration is estimated offline by sample counting under
the microscope using a colour indicator (trypan blue exclusion) in order to
distinguish between those living from dead. Major substrates and metabo-
lites can be measured offline by assay kits using a spectrophotometer. The
product of interest, the biopharmaceutical (eg. with concentrations between
0-100mg/L), can usually be measured offline with an ELISA kit.

1.1 Purpose of modelling

Models come both from biological prior knowledge and from observation
of reality. Biology proposes several possible reaction pathways taking place
inside a cell. This list can be quite extensive, with several hundred reactions
proposed, such as those described in Zamorano et al (2010) and Zamorano
(2012). Thus a choice to be made is the degree of complexity one wishes
to include while modeling. This leads to the consideration of the various
purposes of the model. One possible purpose is the description of a simple
data set planned for tasks such as prediction. Optimization, control and
monitoring can be others. The following subsections will provide illustrations
of these purposes.

1.1.1 Description and prediction

A model describing a data set such as in Figure 1.4 can be meant to simulate
hypothetical scenarios. For example, what would happen if the culture were
to be initiated with half the amount of glutamine present on the medium (in
this case, overall growth would be lower) or half as much (higher).

1.1.2 Optimization

Optimization is another motivation for modeling. For example, estimating
which particular operating conditions would correspond to the best value
for a certain criterion, such as the maximum biomass/product produced or
concentration attained.
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Figure 1.5: Model predictions and data for a CHO-S batch culture performed
at the UMons cell laboratory: concentrations of living cells (Xv), glucose
(Glc), lactate (Lac), glutamine (GIn), ammonia (Amm) and volume (V). On
top: use of the model for descriptive purposes. Bottom: use of the model for
prediction purposes (what would happen with half or twice that glutamine
medium concentration.)



CHAPTER 1. INTRODUCTION 37

Figure 1.6 illustrates one such example: given about 2 weeks and around
2L of medium, examining which operation regime could seem more appeal-
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Figure 1.6: Model predictions: concentrations of living cells (Xv), glucose
(Glc), lactate (Lac), glutamine (Gln), ammonia (Amm), monoclonal antibodies
(MAD) and volume (V). Model used: de Tremblay et al (1992), 15-day time
window comparison.

One could place the medium inside a bioreactor, inoculate it with cells
and perform a batch, obtaining the orange profiles and, after 2 weeks, hav-
ing collected 135¢g of antibodies for 1.8L of medium used. One could also
consider using the available medium for a fedbatch where 200mL are gradu-

Walues used in the simulation: V, = 200mL for batch, [V, FN]T = [200mL 100mL/d]" for
fedbatch, [Vo F™ Fueql” = [200mL 100mL/d 100mL/d]" for continuous, [Vo FN Fyeeq Fpofl” =

[200mL 100mL/d 10mL/d 90mL/d]* for continuous perfused considering the nomenclature used in Fig. 1.1
on p. 31.
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ally supplemented with additional medium as cells start growing. The total
amount of antibodies collected would be 285¢g, for 1.7L of medium used. A
pure continuous regime would lead to 181g collected, and if a perfusion filter
were to be placed, a bigger quantity would be obtained: 429¢.

In this example, the model was used for insight for the early choice of the
operation regime to implement in the future.

1.1.3 Monitoring and control

Thirdly, another example of a motivation for modeling relates to its use for
control and monitoring of the system. Let us consider that at a given mo-
ment the desired setpoint for biomass concentration in a continuous perfused
culture needs to be changed while keeping the substrate concentration un-
changed. In Saraiva et al (2010) the model presented in Deschenes et al
(2006b) was used with this goal. A model predictive controller was imple-
mented as in Santos et al (2010, 2012) and proposed a set of manipulations in
the inflow and outflow rates such that the setpoint concentrations of biomass
and substrate would be attained, as can be seen in Figure 1.7.

1.2 Aspects of animal cell behaviour

As mentioned previously, biology lists an incredible number of possible reac-
tion pathways taking place in a cell or a bacteria. Figure 1.8 is an illustration
of how intricate this network can be. In the case of CHO cell metabolism,
for example, Zamorano (2012) considers around 100 intracellular reactions.
Nevertheless, global metabolism can be significantly simplified for modeling
purposes. Figure 1.9 presents an abridged overview of the metabolism of
animal cells.
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perfused culture: setpoint and measured concentrations for biomass and
substrate, manipulations of inflow rate F;, and outflow rate F;.

Saraiva et al (2010). Model used: Deschenes et al (2006b).

Source:
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.......

Figure 1.8: Metabolic pathways for Bacillus anthracis (strain A0248). Source:
Kyoto Encyclopedia of Genes and Genomes (KEGG) Database.
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Figure 1.9: General simplified metabolism of animal cells. Adapted from Batt
and Kompala (1989).

Concerning substrates, at least two are vital. One is usually glucose, a
carbon source, entering the cell and following five types of pathways: pentose



CHAPTER 1. INTRODUCTION 41

pathway, lipid formation, lactate, amino acids and Krebs cycle. Another vital
substrate is a source of nitrogen, typically glutamine, which contributes to
the formation of amino acids nucleotides, proteins and lipids.

A particular feature of animal cells in comparison to microorganisms
such as bacteria and yeast is the fact that, because, from an evolutionary
perspective, they are not autonomous living beings, they are not able to
produce all the amino acids that they need. These must then necessarily be
fed through the culture medium.

1.2.1 Glucose

Regarding glucose consumption, it is known that the rate of glycolysis is
usually much faster than the rate of utilisation of glycolytic intermediates.
Therefore, most glucose is metabolised to lactate, a product that may inhibit
cell growth (Batt and Kompala, 1989; Glacken et al, 1986, Kovacevic et al,
1991; Ljunggren and Lena, 1992; Miller et al, 1988a; Reitzer et al, 1979; Zielke
et al, 1976).

This seems to indicate that a state of overflow is happening frequently
during cell cultures, ie, the incomplete oxidation under aerobic conditions
of an abundant energy source resulting in the excretion of often inhibitory
metabolic byproducts. Since glucose is a cheap substrate, one would then
question the risks of the associated lactate production being inhibitory to cell
growth. Miller et al (1988a) state that lactate is less inhibitory than ammonia
to cells at constant pH. They add that human hybridoma in batch culture have
been found not to be affected by the addition of 4.9mM lactate, and that no
lactate inhibition was detected at 40mM. A mouse hybridoma line has been
found to suffer no inhibition from added lactate up to 22mM but to suffer
from it above 28mM. Critical levels for myeloma cell growth inhibition have
been indicated to be 40mM for lactate by Simpson et al (1998) and Zhou et al
(2006). Researchers like Provost et al (2006) and Ljunggren and Lena (1994)
observed that produced lactate can be reconsumed by cells when glucose is
extinguished.

The scale of phenomena such as lactate inhibition varies from cell line
to cell line. But globally, it seems that levels above 40mM lactate can be
undesired. In reality this seldom happens in cultures. Additionally, it seems
also that lactate can provide an in extremis carbon source if needed.
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1.2.2 Glutamine

Glutamine, the more common nitrogen source in the medium, is also subject
to overflow. In this case, leading to the formation of ammonia (and eventually
also some extra lactate and amino acids such as alanine, proline, aspartic acid,
glutamic acid, serine and glycine) as described by several authors (Amribt,
2014; Batt and Kompala, 1989; Glacken et al, 1986; Kovacevic et al, 1991; Lee
et al, 2003; Ljunggren and Lena, 1992; Miller et al, 1988a; Reitzer et al, 1979;
Zielke et al, 1976).

In fact, glutamine is usually added to the medium just before starting the
culture since it is an unstable molecule that degrades spontaneously, par-
ticularly at culture temperature (37°C). Some authors have estimated this
spontaneous decomposition to be as high as 11% per day at room tempera-
ture.

In most batch cultures, glutamine is the first major substrate extinguish-
ing and triggering cell death. Fedbatchs extend culture time by sporadic
supplement of glutamine concentrate.

Since glutamine is a more expensive substrate and more delicate to store
than glucose, one can then ask how risky this inhibition effect of cell growth
can be. Miller et al (1988b) state that the inhibitory ammonia concentration
varies substantially among types of animal cell lines and it depends also
on whether serum is used. They report ammonia inhibition at 5mM for
human hybridoma in batch. Other authors indicate the same concentration
(Simpson et al, 1998; Zhou et al, 2006). Indeed, ammonia can easily reach
a 5mM concentration in common batch and fedbatch cultures. It is thus an
important metabolic aspect to consider while modeling.

1.2.3 Amino acids

Amino acids, present on a smaller scale, can be divided into 3 categories. Non-
essential are those that cells can synthesise, while conditionally essential are
those that may be produced in certain circumstances (for example, CHO used
in Provost (2006) have been programmed to produce a protein, and during
the transfection, the cell line became auxotrophic with respect to proline,
ie. lost the proline production path and became dependant on its external
supply (Zamorano et al, 2009). Finally, essential amino acids are those that
cells cannot produce and must thus forcibly be present in the culture medium.
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1.2.4 Snapshot

On the whole, essential phenomena for modeling can be captured by the
snapshot provided in Figure 1.10.

MAINTENANCE

\ Glucose
< VY Y _ds1ac Glutamine
AA <— Serum
T Lactate
A—=> Amm Ammonia
Product of / I "
Interest v l/
(ex1~'1 nnnnnnnnnnn ) < GROWTH Gln
o < assocATED Y \ /
\ NON-GROWTH \
ASSQCIATED SPONTANEOUS
DEGRADATION

Figure 1.10: Snapshot of global cell metabolism. Adapted from Ghoul et al
(1991)

It can be said that cell growth is associated with the presence of substrates
glucose, glutamine and serum or other growth factors!. Cell death is mostly
connected to the presence of ammonia, lactate and lack of glutamine. It is
known that glucose can partially be used, not for growth purposes, but for cell
maintenance purposes. It is also known that glutamine decomposes spon-
taneously. The production of the biopharmaceutical product can be, in part,
growth-associated and, in part, non-growth-associated (dos Reis Castilho,
2008).

!More information about the composition of serum and other growth factors and the rationale for avoiding
their use in the production of biologicals is given in Brunner et al (2010), for example. A more recent scientific
discussion is to be seen in EMA (2013). The European GMP guidelines are provided in Eudralex (2003).



Chapter 2
Modeling

This chapter reviews approaches for modeling. The choice of
unsegregated macroscopic models, in the scope of this thesis,
is stated and reasons for doing so are presented. Briefly, this
type of models presents a good compromise between descriptive
insight and simplicity for practical purposes.

A large variety of modeling approaches can be categorised into four types
as shown in Figure 2.1. Non-segregated unstructured models are the most
simple since they suppose that all cells are equal to an average cell which
processes extracellular components measured in the surrounding medium.
Another class, non-segregated structured models, hypothesizes a network of
reaction pathways inside the cell relaying products and substrates measured
outside. Furthermore, if instead of an average cell, a population of different
cells is considered, then an additional layer of complexity is gained. This is
the case of models considering cells in different phases of their life cycle.
In the following subsections, some examples will be given.

2.1 Non-segregated unstructured models

These are macroscopic models since they account for more abundant sub-
strates and products measured outside the cell. Typically, measurements are

44
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Figure 2.1: Classification of modeling approaches. Adapted from Fredrickson
et al (1970) and Bailey (1998).

made outline and samples analysed with enzymatic kits or an HPLC/UPLC
with a PDA/ELSD detector.

2.1.1 Logistic equations

In this model class, probably one of the most simple modeling approaches
are logistic equations, whose inspiration comes from differential equations
developed for population models. In what concerns animal cell cultures, the
literature commonly proposes, not equations for the derivatives, but rather
equations that directly and explicitly express concentrations over time.

It is very simple to fit these equations into a data set. For example, Figure
2.2 shows a quick fit of ammonia from culture data obtained at the UMons,
and the values found for logistic equation (2.1).
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C2

H=c+ ————
flt) =a C3 + cye 55t (2.1)
{C1,‘ Cp,C3,C4, C5} = {—2.22,‘ 10; 1;3.5,‘ 0.02}

Goudar et al (2005a) propose a four-parameter generalized logistic equa-
tion that can be used to describe three types of concentration variables: cell
concentration, substrate consumption and product formation. We have il-

lustrated it with generic profiles in Figure 2.2 generated with values in eq.
(2.2).

1
f6) = c1et/e2 + cze~t/a
 {cy; 0050354} = {0.01;1;0.01; 1000}  for biomass (2.2)
or ={0.1;1;0.1;1} for substrate
or =1{0.1;1000;10;1} for product

Amm - Ammonia

il g °

©  Amm (mM)

o f(t)=c1+c2/{c3+cA*exph-(c5*))

0 50 100 150 200 250
Time [h]

Xv -profile generated S- profilegenerated with Logistic P -profilegenerated
with Logistic Equation Equation with Logistic Equation
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Figure 2.2: Modeling culture data with logisticequations. Top: fit to ammonia
data for a culture performed at UMons. Bottom: qualitative examples of
profiles generated for biomass, substrate and product.

These very simple equations for batches can be easily analytically differ-
entiated and integrated even if the available multitude of possible shapes
with exponentials may lack some biological meaning.
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More recently, asymmetric logistic equations (ALE) have been proposed
in order to correctly explain the asymmetric evolution of cell concentration
and substrate consumption for a batch (Goudar et al, 2005a,b, 2007). For
example:

t+c3Incy—c5 t+cgIncy—c5

—C4—1
Xo(t) = ¢y + o 6 (1+e 5 ) G e+ (@23)

C7

(_ t—cg In(21/°9_1)—cs ) €
1+e ®

The equations are highly nonlinear, but since the states x(t) are explicitly
time-dependant, differentiation can be easily done analytically. This allows
for the estimation of some parameters for that batch. For example, for a par-
ticular batch, the specific cell growth u can either be estimated from experi-
mental biomass concentration data, Xv(t), via eq. (2.5) or by differentiation
via eq. (2.6).

S(f) = ce + (2.4)

dXo(t)
dt

dXo(t)/dt
Xo(t)

= u(HXo(t) = p(t) = (2.5)

- —ee\\ (—Cca=1)
dX’Z) t —C _teginey—cs _ _ treglngg—cs
dt( - 2e( ? )C4C4 (cg + 1)V (1 + e( g )) X
C3

t+czIncy—c t+czIncy—c -1
x[1+e(_ 5)(—04—1)(1+e(_ 5)) J (2.6)

A limitation of this type of equations deals with its application: they are
valid for one specificbatch (descriptive purpose), not expressing conveniently
the link between substrate presence and biomass (predictive purpose). Some
models possess common parameters. For example, equations (2.3) and (2.4),
for biomass and substrate respectively, have a common parameter c¢5 provid-
ing a link. However, the equations cannot be used to predict a scenario where
the evolution of substrate concentration would be different (eg. for control
purposes). Another weaker point is that they can have many parameters and
take many shapes. It is thus difficult to compare parameter values coming
from different logistic equations.
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However, these models may be useful if the focus is not on the predictive
power but rather on topics such as batch-to-batch repeatability (eg. a repeated
industrial batch operation always performed under the same conditions,
where it is interesting for regulatory reasons to show that the value of some
parameters has not varied much and therefore potentially neither has the
quality of the pharmaceutical product).

2.1.2 ODE-based models

The model class that seems to be of more common use is based on ordinary
differential equations (ODE) describing mass balances by means of terms
for kinetic phenomena (reactions) and terms for fluid dynamics (flowrates
entering or leaving the bioreactor).

The kinetic terms comprise stoichiometric coefficients and reaction rates.
Due to the high nonlinearity of these terms, the analytical integration of the
equations is difficult. It it thus common to use numerical integration in order
to obtain the time profiles for biomass, substrates and products.

The general equations can be written in a canonical form well described in
Bastin and Dochain (1990). In equations (2.7) and (2.8)!, &; are the concentra-
tions of the i components considered, v;; the pseudo-stoichiometric coefficient
of component i in reaction j, ¢; the reaction rate of reaction j, F'N the instream
flowrate with substrate concentration EfN , V the volume, and F,,r and Fyjeeq
the outstream flowrates for perfused output and bleed output, respectively.

A&+ FN v FN_( Fu
d_ét = VijQj + 75?7 a7 &i (+ ?/f& for &; = biomass) (2.7)
j=1
av
E =FN - Fpleed — Fperf (28)

Notice that biological knowledge is incorporated through the set of reac-
tions considered. Inspiration often comes from enzyme kinetics. Equations
(2.9) to (2.10) show an example of 3 reactions to consider in a simple ODE-
based model for a cell culture. The first reaction indicates that growth, ie, the
formation of living cells (Xv), involves the uptake of substrates glucose (Glic)
and glutamine (GIn) while metabolites lactate (Lac) and ammonia (Amm) are
formed at the same time as an interesting biopharmaceutical: monoclonal

'The corresponding layout is in Fig. 1.1, p. 31.
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antibodies (MAb). The second reaction indicates that part of the glucose
consumption is due to cell maintenance activities. Finally, the third reac-
tion states that part of the living cells in the system will become dead cells
(X4). This is an important feature of an animal cell model. Whilst for mi-
croorganisms models often do not incorporate death, for animal cells the
phenomenon is considered, in vue of their fragility to multiple outside con-
ditions (dos Reis Castilho, 2008) and because the model can be intended for
use outside a pure-exponential growth initial phase of the culture.

An example of an ODE-based model for animal cell cultures is presented
below:

(—V11)G1C + (_V21)Gln ipl_’ XV + (1/41)Lac + (V51)Amm + (V61)MAb (29)

-D)Xv 3 (1)Xd (2.10)
(-1)Glc + (—vi)Xv 5> (vg)Xv (2.11)
For batch operation:
Xo 1 [ 1 -1 0]
q Glc -1 0 =1 [ ¢1
d_ Lac = V41 0 0 P2 (2.12)
Bl Gin v 0 0 (O
| Amm | [ vs1 0 O
1= g X Xv  (cell growth) (2.13)
@2 =g X Xv  (cell death) (2.14)
@3 = us X Xv  (cell maintenance) (2.15)
1 1 YLac/ Glc YAmm/ Gln
V1 = sV = V4l = — V51 = ——— 2.16
H YXU/GZC 2t YXv/Gln 4 YXv/Glc ! YXv/Glc ( )

The arrow in “Xv denotes that the cell culture behaves like an autocat-
alytic reaction, since it takes the division of one cell to obtain more and thus
the rate of growth is proportional to the biomass that is present. Notice also
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that one variable, biomass concentration, Xv, affects all dynamic equations
(2.13)-(2.15). The quality of its modeling is, thus, of utmost importance.
While observing animal cell batch cultures, it can be noticed that a plot of
the logarithms of concentrations indicates regions with roughly straight lines,
implying that some approximately exponential-type phases can be identified.
This is shown in Figure 2.3 as portrayed in the textbook Dunn et al (2003).

1. A short (sometimes negligible) lag phase where cells are thought to
be adapting to the culture medium where they are suspended. Cell
concentration remains constant;

2. A period of exponential growth for cells (In(Xv) is thus a line with positive
slope) and exponentially proportional substrate consumption meanwhile
(In(S) is constant);

3. A short moment when (for substrate depletion reasons or others) cell
growth becomes limited (In(Xv) is more or less constant);

4. Eventually, a later period where cell growth is outweighed by cell death
(In(Xv) becomes a line with negative slope);

Estimate baseline

s <4 growth rate: .,
InS
Limitation ) Stationary dinX, 1dX

v
:l,l =constant
InX Death dt X dt max

\—\

Lag

Estimate baseline
death rate: ..,

Figure 2.3: Estimation of some ODE-based model parameters. Log profiles
as shown in (Dunn et al, 2003).

A practical illustration where some of these aspects are present is provided
in Fig. 2.4, where the model of de Tremblay et al (1992) was used to generate
biomass and substrate profiles in batch mode.
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Figure 2.4: Left: numerical simulation of biomass and substrate (glutamline)
profiles using the model of de Tremblay et al (1992) in batch mode. Right:
corresponding log profiles.

2.1.2.1 Cell growth and death rates

To sum up, the slope of the exponential phase allows to estimate a baseline
maximum growth rate i, based on cell concentration and the slope of the
death phase to estimate a baseline death rate ;.. Since it is well known
that limitation and inhibition phenomena take place during a culture, the
maximum growth rate can be multiplied by terms taking values from 0 and
1. For example, factor (2.21) becomes zero after substrate depletion implying
zero cell growth when multiplied to pu.. For cell death, similarly. Some
common examples are provided below an an illustration of the form taken
provided in Figure 3.47.

P growth = [JXU (217)

where u = U X phenomena lowering maximal growth

Pdeath = Ua X0 (2.18)

where 11y = Ugpse X phenomena enhancing baseline cell death

O maintenance = mGchU (219)
duct inhibition: — (2.20)
pro UucCt mnipition: Pi-i-kp, .

1

substrate limitation: (2.21)

1
S+ kSA

1
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P.
product limitation: o ;{d’Pi (2.22)

x/(k+x)
—— k/(k+x)

X

Figure 2.5: Mathematical forms commonly used do describe inhibition and
limitation phenomena.

Literally hundreds of forms have been proposed for different cell lines
cultured in different media. Some of the most referenced are listed in dos
Reis Castilho (2008) and sampled in Tables 2.1 and 2.2.

Globally, most hypotheses used in practice are that glucose and glutamine
limit cell growth (u,) and that death (u,) is accentuated with ammonia and
lactate build-up. The combination of the terms chosen for the description of
g and p; depend strongly on the cell line and conditions for which the model
is intended. It is thus necessary to evaluate whether our culture medium pos-
sesses alternative carbon and nitrogen sources other than common glucose
and glutamine that cells may use (eg. Batt and Kompala (1989) and Dunn
et al (2003)). In that case, it should be observed that cell growth is not null af-
ter simultaneous glucose and glutamine depletion because other substitutes
are still being uptaken. Another important hypothesis is whether substrate
limitation is considered additive or multiplicative, ie., if the presence of one
substrate is sufficient or if cell growth needs the the simultaneous presence
of glucose and glutamine.
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Table 2.1: Growth terms (dos Reis Castilho, 2008).

Terms Source
— Gl
He = g,maxm Portner et al (1996)
— Gl Gl
Hg = Ugmaxi, +CGl o +’Z;l - de Tremblay et al (1992)
— Glc ki,Lac
tg = Hgmaxi  +akc Rt L0 Kurokawa et al (1994)
— Gln ki,Amm ki,Lac
(ug - ‘Ug,max kGln+Gli’l ki,Amm+Amm k,',L,;C-‘rLaC Bree et al (1988)
— Glc Gln i,Amm i,Lac .
‘ng - #g,max kGlC+GlC kG1n+Gll’l ki,Amm+Amm k,‘,LaC+L€lC Mlller et al (19883.)
— . Glc—GlCthrﬁs
He = Ugmax + (,Ug,max - Hg’mln)kclc T (Gle=Gleme) Frame and Hu (1991a)
— Serum Gln ki, Amm
Hg = Hgmax Serum-+kserum,o X0 P kg +GIn ki gpm+Amm Glacken et al (1989)
He = a1 % Gaertner and Dhurjati (1993)
ue =D+ doett/ s Linardos et al (1991)
— _ . Xvy_ Gl Gln
(ug _ lugrmax(l M D )kGZC+GlC kg +Gln Zeng etal (1998)

Table 2.2: Death terms (dos Reis Castilho, 2008).

Terms Source

ta = Udmax i ﬁ:ﬂ; p—— kd,LﬂL;iLCL — Batt and Kompala (1989)
Hd = tdmax kd,A,i:Tme kd,LiTLac kd,,i'f,’f;’il”czn Bree et al (1988)

M = tdmax = —F 7 Tac) :lg,mx_kdﬂmm ) kd,f;',l;?éln de Tremblay et al (1992)
Ha = tamin + Kamax = Ka in) pr e Dalili et al (1990)

U = (Hg,min — Dyin) — Ud,max T dlcgfégl_céﬁhres) Frame and Hu (1991a)
Ua = b, + #@3 Portner et al (1996)

Ua = c1eHs Glacken et al (1989)

U = doe /i) Linardos et al (1991)

ta = (Bo + ﬁhug)x%xci Zeng et al (1998)

53

For example, in a medium where two alternative substrates such as glu-
cose and another hexose are present a multiplicative form would not be valid.
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However, an additive form such as double-Monod or a diauxic-Monod could
be employed (Batt and Kompala, 1989; Dunn et al, 2003):

e Double Monod
Each substrate allows a different maximal growth.;

. k151 + k252 ( 1 )
He = Hgmax k1 + Sl k2 + Sz kl + k2

(2.23)

e Diauxic Monod
The consumption of substrate S; is inhibited until 5; is exhausted (eg, for
bacteria E.Coli the uptake of lactose is repressed while glucose is present.;

B 51 N So
He = Bgmax 1y =g T Hgmax2y =70 ) $2/ky

(2.24)

Again, model application must be thought of before complicating it. If it
is meant to be applied in situations where certain phenomena will not occur,
then it is unnecessary to include terms for these phenomena. For example, the
culture presented in Figure 1.5 (p. 36) has abundant glucose. It may, thus, not
be necessary to model glucose limitation at all, just glutamine limitation, since
the term Glc/(kgi.+ Glc) would always be approximately 1 in those conditions.

2.1.2.2 Substrate consumption

In ODE-based models, the evolution of substrate concentrations is usually
either related to its use for cell growth or to cell maintenance purposes. The
later is a phenomenon sometimes observed when, during the death phase,
the substrate concentration is still diminishing. Table 2.3 presents the more
common simple terms and some less used and more complicated expressions,
as listed in dos Reis Castilho (2008). p, is present in growth-related terms
and maintenance related ones are typically noted by a mgs parameter.
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Table 2.3: Substrate consumption (dos Reis Castilho, 2008).

Terms Source
Us = ﬁ% g de Tremblay et al (1992);
Hiller et al (1991)
ls = —YS’(}Z’/‘S Uq + Mg Harigae et al (1994);
Hiller et al (1991);
Miller et al (1988a);
Kurokawa et al (1994)
ls = ﬁ“g + mg — et Linardos et al (1991)
Us = —Yéf/(s (llg — #min) Frame and Hu (1991a)
Us = ﬁ”g + }f‘—z — %yg,mm Frame and Hu (1991b)
YXU/S YP/S P/S Xv/S
Us = ﬁz’,‘sug + mskg%s de Tremblay et al (1992)
S
Us = h21+S Portner et al (1996);
Gaertner and Dhurjati (1993)
S
ls = (ﬁ%‘ug + mS) + Ay?m Zeng (1996b)

2.1.2.3 Product production

Byproduct formation is related to substrate consumption. For instance, the
formation of byproduct lactate is related to glucose variation (consumption,
if in batch mode) and can be modeled by equation (2.25).

% = _YLCIC/GZC% (225)

For the more special case of the biopharmaceutical product of interest, it

is generally assumed that its synthesis is partially related to cell growth u,
and partially independent, as stated in the general Luedeking-Piret equation

(Dunn et al, 2003):
aP (1
dt

Tables 2.4 and 2.5 present some other possible forms.

— U, +b|Xv 2.26
YXv/Pyg ) ( )
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Table 2.4: Byproduct formation (dos Reis Castilho, 2008).
Terms Source
ULae = yLaC’max#fGlc Gaertner and Dhurjati (1993)
— Glc-Glc*
ULac = YLac/Xv(Ug + Mpge + AernzchfGchC*f% Zeng (1995)
— Gl
(Ll'LﬂC —_ YLac/leLl-g + ngC + AP[T;:TGZCW%){U + ...+ Zeng (1996b)
max __Gln___
+ AU e Gin Tl ki Ko
_ E1+E2GZC ..
HAmm = “Excle Gaertner and Dhurjati (1993)
ULae = % Gaertner and Dhurjati (1993)
max Gln

+o o+ A Gle

Lamm =Y amm/Xolly + Mamm + Ap Amm,GlnGlTkél’Z’”—l_

Amm,Glc Glc+ké;g’”

max Gln

Bamm = Y Amm/xolly + Mamm + Ap Amm,Gln Glns k"o

Zeng (1995)

Zeng (1996b)

Table 2.5: Product formation (monoclonal antibodies) (dos Reis Castilho,

2008).
Terms Source
Unmay = P Portner et al (1996)
Hiller et al (1991)
Umap = aplg + B Frame and Hu (1991b)
— _ %
HmAb = £ lg +p de Tremblay et al (1992)
Unmap = d1plg + P1 Linardos et al (1991)
1 ..
UMAb = BaSerum kéﬁﬁ(b; fGl - Dalili et al (1990)
s
_ Gl i,Glc —FHAt
Hmap = (@i + pr) g p, cu-czfﬁ@gg (F1 + e7"%) | Zeng (1996a)
Gl K No
—_ n 1,Glc
Hmap = (@rfta + 1)k](‘;/[l‘2b#Xv+Gln Gle+ kM2 Xy Zeng (1996b)
MAb ’
D er i,Glc
Uniap = O Do fk’g;b Glc+(;<lﬁ’g?f Zeng (1996b)
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2.1.2.4 Example of a simple model

A simple example of an ODE-based model is the one used in Deschenes (2007)
to describe mammalian cell line HEK 293-SF cultivated in NSFM13 medium in
continuous perfused regime. The kinetics assumed by the author to describe
3 states (glucose, living biomass and dead biomass) can be transposed into
the following equations:

(—v11)Glc 2 Xy (cell growth reaction) (2.27)
(-DXv REN (1)Xd  (cell death reaction) (2.28)

’ Glc 111 0
%:VU(P]'-F'”—)GI— Xv | = 1 -1 {(P1]+ (229)

t Fl xd 0o 1 [L¥

: Glc
1= ‘Ll1XU with Hi = ‘leaxm (230)
@2 = upXv with up = Xv + Xd (2.31)

The choice of a Contois (over a Monod) form limiting cell growth relates to
the use of the model for high cell concentrations typical of perfusion regimes:
real substrate availability may become limited when many cells surround
one cell. The data presented do not include important states such as limiting
glutamine or inhibiting ammonia, which are thus not comprised in the model.
Regarding cell death rate, is it simply assumed to be proportional to the total
cell concentration. This means that Xd, a variable which in reality is difficult
to measure (dead cells eventually break down), was used. The author bases
his choice on the fact that, among several models tried, this was the sole
model he could find to reproduce an overshoot visible on the biomass profile
data presented to him. Actually, this phenomenon can also be reproduced
in some conditions for perfused cultures using more descriptive models. In
Figure 2.6 this is illustrated with a comparison of Deschenes (2007)’s results
(in black) with a simulation of de Tremblay et al (1992)’s model (in green).

The model used in Deschenes (2007) is meant to simulate well an available
set of data so that some control strategies for perfusion may be studied. It is,
thus, very simple and may lack some predictive power for different culture
conditions since it was identified with limited data. The risk of using it would
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Figure 2.6: Continuous perfused cultures presenting an overshoot in the

biomass profile: (Deschenes et al, 2006b)’s results in black and simulation of

de Tremblay et al (1992)’s model in green.

be that phenomena not considered in the model (limitation, inhibition) would
occur and the controller would not be able to overcome them (eg. not properly
adjust flowrates in order to maintain a good setpoint compliance).

2.1.2.5 Example of a reasonably comprehensive model: De Tremblay

An example of a more comprehensive, yet still reasonably simple, model is
the one developed and identified by de Tremblay (1991) for mouse-mouse
CBM-P2C hybridoma cell line producing IgM monoclonal antibodies in a
customised DMEM base medium with 1% FBS.

It comprises 6 states variables (7 if volume is considered) which are
the major component concentrations: living biomass, glucose/lactate, glu-
tamine/ammonia and the product of interest, monoclonal antibodies. The
model structure comprises the possible occurrence of typical cell culture phe-
nomena and may thus be considered of fairly general applicability. The
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reasonable biological assumptions considered are that cell growth is limited
by glucose and glutamine availability, cell death is promoted by accumu-
lation of lactate and ammonia and glutamine exhaustion, a part of glucose
is spent in cell maintenance, and the production of the product of interest,
monoclonal antibodies, is partially growth-related and partially not.

De Tremblay considered several batch and fedbatch runs in order to de-
velop and identify a model structure. She used it to study the optimal static?
media feeding trajectories in fedbatch mode and, at this point, significantly
simplified it.>

The model can be translated into the following set of reactions and
canonical-form equations:

(—v11)Gle + (=12)GIn 25 ©Xv + vy Lac + vs; Amm (2.32)
(cell growth) '
(=1)Glc + (=v3)Xv RN (v32)Xv + (v42)Lac (2.33)
(maintenance)

-D)Xv S (1)Xd

(2.34)
(cell death)
(—vs)Xv 25 (1)Xv + (1)MAb (2.35)
(product formation)
[ Glc | [ —111 -1 0 0 |
Gln —V21 0 0 0 (Pl
d&; o d Xv | _ 1 0O -1 0 ()]
e Vijj+ > Tl Lae [T vy ve 00 s +--- (2.36)
Amm vs7. 0 0 O P4
| MAb | | O 0 0 ve |
Glc Gln
= 11y Xo with (11 = iy 2.37
Pr= mATWIERL = Hiaxg - " Gle ke + Gln (2.37)

lits composition remains constant throughout the culture, unlike a dynamic composition medium
2see (de Tremblay et al, 1993)
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@2 = uaXv with up = mgj, ( p Gle ) (2.38)

m,Glc + Glc

(h

@3 = uzXov with

B 1 1 ka,Gin
He = Hd,max Hmax — kd,LacLaC Wimax — kd,AmmAmm kd,Gln + Gln (239)

(h)

o

@4 = usXo with py = p— + B (2.40)
pu T ——
H

Where vi1 = 1/Yxo61; V21 = 1/ Yxo/Gins Va1 = Yracjcie/ Yxo/Gles Va2 =
Y1ac/GieVst = Yamm/Ginl Yxvjcin; Vea = 1 and the parameter values are those
in Table 3.2.

Simulations of what the model predicts for different operating modes are
provided in Figure 1.6 on page 37.

It should be noticed that the phenomena considered are generic and may
not happen with all combinations of animal cell lines, medium and operating
conditions. Butitis precisely its generic character that makes it an interesting
model to work with. For example, in Saraiva et al (2012) the model was used
to study a situation that may often occur: a limited capability of measuring
all components at the laboratory. An extended Kalman filter (EKF) served as
a software sensor to reconstruct all system states from limited measurements,
as illustrated in Figure 2.7.

In Sbarciog et al (2013) the model was integrated in a nonlinear model
predictive controller used in a continuous perfused culture.

Several other authors have also considered this model, such as Aehle
et al (2011); Chen et al (2002); Franco-Lara and Weuster-Botz (2005); Nguang
et al (2001); Portner and Schafer (1996); Roubos et al (1997, 1999); Sarkar and
Modak (2004).

!Terms later dropped out in de Tremblay et al (1993) where the authors, for the purpose of another study,
did not consider glucose maintenance nor lactate or ammonia inhibition.
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Table 2.6: De Tremblay’s model parameter values (de Tremblay, 1991;
de Tremblay et al, 1992, 1993).

Parameter | Value Units

Limax 1.09 d!

kcic 1.0 mM

kcn, 0.3 mM

i 0.09 d-!

K tac 0.01 mM-1d-1

kiamm | 0.06 mM-1d-1

kd,Gln 0.02 mM

Y xo/Glc 1.09 x 107! | 10%cell mmol ™"

Y Lac/Gle 1.8 mmol mmol~!
ey 0.17 x 10" | mmol (10%cell)~* d~1
Ko G 19.0 mM

Y Xo/GIn 3.80 x 107! | 10%cell mmol ™

Y ammicin | 0.85 mmol mmol ™!

B 0.35x 10™ | mg (10%cell) 1 d!
o 257 x 10™ | mg (10%cell) ™1 d~!
K, 0.02 d-!

2.1.2.6 Example of a more complex model

An example of a model that is very complex regarding practical applications
such as control and monitoring is that of Silva et al (1996), developed for a
6H2 murine cell line cultured in DMEM/HamF12 custom medium and pro-
ducing a IgG2a monoclonal antibody directed against a melanoma-associated
antigen. It can be transposed into the following reactions and equations:

1

(=v11)Gle + (=v21)GIn + (=v31)S + (=va)Met + (—v51)0; —
Py ANwe)XV + (vr1)Lac + (vg1)Amm + (ve1)MAb (2.41)
(cell growth)
-Dxv 5 (1)Xd 042

(cell death)



CHAPTER 2. MODELING 62

[
e
&=

vantoc onal Arfibod
= 2 B Z B I

hlAb « Man

(=3
=
=
H '
T - & B
3 5 - &
gk
L2
-
L2
e
-

Figure 2.7: Extended Kalman filter estimating concentrations of biomass,
lactate, ammonia and monoclonal antibodies from knowledge of initial con-
ditions and measurements of glucose and glutamine. Model (blue), noisy
model-generated measurements (red), filter predictions (magenta). Model
used: de Tremblay et al (1992). Source: Saraiva et al (2012).

Glc | [ —V11 0 |
Gln —V721 0
S —V31 0
Met —V11 0

% = Vij(Pj e R % Oz =| —Vs1 0 [ g; ] + - (243)

Xv 1 -1
Lac V71 0
Amm ver O
| MAb | | Vo1 0

The model considers several factors varying between 0 and 1 that can
affect growth rate: glucose Glc, glutamine Gln, methionine Met, serum S, an
amino acids pool AA, oxygen O,, lactate Lac and ammonia Amm. Since terms
are multiplied, a null term is sufficient to cease cell growth:



CHAPTER 2. MODELING 63

1 = y1XU with
‘Lll - lllmax GlC+kG[C Gl?’l-i—kcln S+k5 AA+kAA Oz-i—ko2 Lac+kLaC Amm+kAmm

Cell death, presenting additive terms, cannot be null:

@2 = U Xv with

2 = i |(vcr) + (vogem) + () + (aLac) + (pAmm) + (17|

(2.45)

It is a model with many states and parameters which makes the task of

identifying the parameter values difficult. In fact, the authors do not provide

them fully. Furthermore, the use of serum is not practical either, since it

is by definition a mixture of composition not entirely known and whose

concentration in the culture is only known at the initial condition, ¢y, once the
medium has been prepared.

2.2 Non-segregated unstructured models

Another class of models considers hypotheses regarding the existence of
intracellular components and the network of reaction paths connecting ex-
tracellular components (substrates and products) measured outside the cell,
in the surrounding medium. In these models, a pseudo-stationary state is
presumed, meaning that internal metabolites hardly accumulate inside the
cell, since reaction rates inside the cell are by far higher than those outside.
Thus, for a culture phase where a pseudo-stationary state can be assumed
valid, metabolism can be represented by a reaction network with some con-
stant values for fluxes. This is typical when considering the growth phase of
a culture, for example, when reaction rates are at their highest since plenty
of substrate is still available. There is a limited ability to predict dynamic
cell responses to changes on the whole though, since the model only holds
during certain limited time intervals of the culture.

2.2.1 Metabolic flux analysis (MFA)

On the whole, two scenarios are possible, according to the number of reactions
and the number of fluxes (in Figure 2.8 measured fluxes are green and fluxes
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tobe determined are red). The system is either determined or overdetermined
and can be solved through least squares methods, or it is underdetermined.
For this case!, the use of a toolbox such as Metatool is helpful (Pfeiffer et al,
1999; Schuster et al, 1999).

measurements calculated
extracellular fluxes intracellular fluxes
Via Method Va
As, (t) /Xv > | o _ Y,
% edas squares e
APi (t) /xv > Vi (over/determined system) Vs
Vupl vc4
VC!5
vr:ﬁ
least squares StOZCh 10?’” etT’ZC S 1
overdetermined matrix lvj

Vo1
Vi

underdetermined

Vos Vo l
P, € P, € m, € m,
Metatool - EFM l
2 _———Nw=0 Vs Ves Vs

.\ S, ——5, —a3m, P

Figure 2.8: Left: metabolic flux analysis: the overdetermined and underde-
termined case. Right: example of a metabolic network adapted from Goudar
et al (2007).

Vea
Vo

P,

Two notations exist (eq. (2.46) and eq. (2.49)) and are equivalent. The first
is that used in Stephanopoulos et al (1998):

Glv=0 < |G}, GZ]xl’j}m]zo (2.46)

For example, for a metabolic network of a size similar to the one in Figure
2.8, the system to solve could be something like Goudar et al (2007):

'Metatool does not solve exclusively underdetermined systems.
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a = 4 measured rates n = 6 internal fluxes to calculate

¢(-10 00 100 0 o0 of [M] o)
Jo-100 010 0 0 0 s 0
o 0 -1 0 003 0 0 0 o 0
c1ilo o 0 2 0 00 -05-050 . 0
va | |y
; (0000 2-1-10 0 0 Ves 0
o000 2 -1 4 -1 0 0 Vet 0
Y0000 00 1 0 -1 0 505 0

g - C6 S410x1 i e

loooo 2 0 1 2515 -1
(2.47)

Four species with extracellular exchanges are measured and another 4
species are considered intracellular since they undergo no exchange with
the outside medium and are, therefore, not measured in the medium. The
metabolic network inside the cell consists of 6 reactions whose fluxes v, we
wish to compute. This system is overdetermined by 2 degrees of freedom. In
order to have a perfectly determined system with zero degrees of freedom, 2
equations could be taken out.

The rank and condition number of matrix G can be computed with soft-
ware tools such as Matlab. In this case, the rank is 8 and the condition number
is 7,6. Thus, matrix G! is full rank: its rank is equal to min(rows, columns), ie.,
all eight metabolites have independent mass balances. The matrix also has
a condition number of 7.6, not very far from its rank 8 which suggests low
sensitivity of the calculated fluxes v,; to the measured rates v,,;.

The result can be computed with Matlab by least squares resolution of the
overdetermined system, yielding the following result for the unknown fluxes
within the cell:
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L

1.65 |

1.64
1.86
8.98
1.75
30.2

U2
Uc3
VUc4
Uc5
Uc6

Vel

66

(2.48)

A common tool used in metabolic flux analysis is the Metatool algorithm,
which deals with the case of underdetermined networks by computing the
extreme rays of the polyhedral cone of solutions (Pfeiffer et al, 1999; Schuster
et al, 1999). This software uses, however, another arrangement of the mass
balance equations which represents a second nomenclature, used by Bastin,
for example in Bastin (2008); Fernandes et al (2015); Provost and Bastin (2004);
Provost et al (2006); Zamorano et al (2010, 2013). For the same system it would

be:
{N 0
N,, —vy,
(2-1-10 0 0
12-14 -1 0 0
¢lfo0 1 0 -1 0
Flil2 0 1 25 15 -1
“l-100 0 0 o0
%0100 0 0
o033 0 o0 0
10 00 -05-050

2.2.2 Reduction of a bigger network

OO O

—-1.48
1.74
5.83

-5.14

A8x7

U1

Ue2
U3
VUc4
Ucs
Uc6

o O OO

o O OO

(2.49)

(2.50)

An example of this type of modeling approach is the thesis of Agnes Provost
(Provost, 2006). She divided a batch data set into 3 different phases (expo-
nential growth, transition, and death, as illustrated in Figure 2.3 on page 50).
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She attributed a reduced metabolic network to each phase, hoping to capture
a general picture of what happens at sequential moments of the culture. Fi-
nally, in order to have an expression valid for any time ¢, the 3 models were
united by means of continuous functions ¢; that vary from 0 to 1 at precise
moments t; chosen by her to represent the switches between culture phases.
This is illustrated in Figure 2.9 .

Provost’s data represents a batch culture (with 2 replicas) responding to
one set of initial conditions. In the course of the culture, two phenomena,
glucose and glutamine extinction, happen more or less simultaneously, which
makes the relative importance of each hard to understand. It would be
interesting if the model would allow to predict the switch time t,.,;x where
biomass reaches its maximum concentration, but here it is imposed. As for
lactate re-consumption, once glucose is exhausted, this is predicted by the
model since the metabolic network considers the reaction to be direct for
phases 1 and 2, and reverse for phase 3. It is, therefore, the user’s choice
of the switch time that determines the beginning of lactate re-consumption.
Since it is based on one data set, it is hard to insure its validity for other
conditions.

A very interesting point of Provost’s thesis is the proposition of a method
to reduce bigger pathways to simpler sets of reactions with the intention of
facilitating model purposes such as control and optimization.

In fact, Provost’s data set could also be quickly modeled with simple
macroscopic reactions and an ODE-based model. We have qualitatively il-
lustrated this in Figure 2.10, where Provost’s data and model predictions
(left) stand side by side with profiles predicted with the following illustrative
ODE-based model and presumptions:

1. Glutamine limits growth;
2. ammonia enhances death;

3. Lactate reconsumption is triggered by low growth rate.
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Figure 2.9: The idea behind Provost’s model. Adapted from Provost (2006)



CHAPTER 2. MODELING

q)growth = [Jgrowtth

Gln
where Hgrowth = ‘umaxm
Dty = ‘Udeutth

Amm

where Ugesn = Ud max o+ Amm
Amm

q)reconsumption = ‘Ureconsumptionxv

ku

where Hreconsumptionth = &

ensty [10° cals/i
o
9 o ¥
23 o 8
/' &

Lactte
wk\ N o ’\ .

B4 o\ £ . \\:\-.J .

g s ]

b v £ . 3

3 3, /

B N B e e T e e s e

fa—

o

N w

Xv (10%celimL)

50 100 150 200
t(h)

e

o

@
|

£ | L
§ O\ £
3 < 4
R =S e e e e e e e
—n

GIn, Amm (mM)
IS

o N

ky + Ugrowth

(mM)

Glc, Lac

Interferon (10‘3mg/mL)

w
8

- »N
3 S

o

50 100 150
t(h

~ w

69

(2.51)

(2.52)

(2.53)

200

o

50 100 150
t(h)

n
3
8

o
o

50 100 150
t(h)

200

Figure 2.10: Left: Provost’s model (Provost, 2006). Right: Illustrative model

predictions for the same batch initial conditions.

Globally, models that consider intracellular components, such as Provost’s,
often give insight into cell metabolic states that may be useful mostly to biolo-
gists. Hopefully, when developing one, a reduced-order form may be found
and used for a period of the culture when the balanced-growth condition
holds. Hopefully also, this type of model will still be simple enough to use
in a real scenario or be useful and informative in the development of regular

macroscopic ODE-based models.
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2.3 Segregated structured models
One classical example of not supposing, while modeling, that the culture is

composed of an average cell is to consider a population of cells at different
stages of their life cycle. The section below describes one such model.

2.3.1 Cell population distributed in different phases

The fact that cells in a culture may be at different phases of their life cycle is
considered in Faraday et al (2001) as illustrated in Figure 2.11.

Yo

Figure 2.11: Cell life cycles considered in Faraday et al (2001)

?

A consequence is that the system becomes mathematically more complex.
The authors suggest a procedure to approximately solve the set of first order
differential equations and first order quasi linear hyperbolic partial differen-
tial equations.

The change in population density at any point of a generic phase X is
given by:

Gx

) (e, ) - 3 e 1), Cely 1, €0, 1)~ Pl )
(2.54)

where 7 is the biological age (1), C is the medium state vector containing
the concentrations of all the medium components of interest (kg.m™>), Cc
is the cytological state vector containing the concentrations of intra-cellular
components of interest (kg.cell™), F is the flow rate (m?h™1), Gx is the number
of transition rules in a phase, | is a transition rule, ny is the population density
function, ie. the number of cells per volume per biological age in an arbitrary
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phase X (cell.m™3), rjx is the rate of transition (cell.m®h™1), t is time (h) and V
the volume (m°).

Some biological hypotheses are used to express the rates at which cells
undergo transitions between phases. Below are the change in population
density at any point of a generic phase X and the boundary conditions:

0 if 7x € [0; Tx[
4 t/ /C tl 4 C t = 255
rix (tx, nx(t, tx), Cc(t, Tx), C(t)) { nx(t, Ty) if  1x =T ( )

2n dC
12616 (TG, nein(t, 7x), Ce(t, tx), C(t) = c Glbs &Gln (2.56)
CGln — Omax Ot
2D (TD/ nD(t/ TX)/ CC(tl TX)/ C(t)) = kAmmC}L{,imnD (257)
Boundary Conditions:
2np(t, Tpr) when Cgp(t) > 0
J(t,0) = 2.58
1G1a(t, 0) { 0 when Cg,(t) =0 (258)
ncip(t, 0) = ngia(t, Tcia) + ngr(t, Ter) (2.59)

TG
2 t dC t,
ns(t,0) = f new(t, Te1p) c.cint, Tc1p) e (2.60)
0

CC,Gln(t/ TGlb) - Smax ot
nea(t,0) = ns(t, Ts) (2.61)
npm(t, 0) = nea(t, Tez) (2.62)
nci(t, Tcip) for Cgp >0
t,0) = 2.63
"o(t;0) { nciw(t, Tew) + 2nm(t, Ty) for Cer(t) =0 (2.63)

More hypotheses are made regarding other state variables. For instance,
substrates are consumed during certains phases (5 phases for glucose, 2
phases for glutamine). Consumption and production are expressed by:
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e Glucose
consumed during Gla, G1b, S, G2, M with first order kinetics;

F(t)
V()

Tc1p Ts T
+ f now(t, To)dt + f no(t, To)dt + f nes(t, Tox)dr
0 0 0

dGlc (

— = (CEL0 ~ Cor®) 7

TGla
— Rgie [f nGlu(t/ TGla)dT+
0

Ty
+f nM(t, TGlb)dT] (264)
0
Rgie = kGlcCGlc (265)
e Lactate
produced proportionally to glucose consumed,;
dLac Tota
T (CILI;IC(f) - CLac(t)) V(()) + Y1ac/cieRaie [ f nci1a(t, TG1a)dT+
Tcw Ts Tca
+f nei(t, Te1p)dT + f ns(t, ts)dt + f nea(t, te2)dt+
0 0 0

Tm
+ v[Ov TlM(t, TGlb)dT] (266)

e Glutamine
consumed during Gla, G1b with zero order kinetics;

dGlIn E(t) Tow
I (CZYn(t) CGln(t)) V) — Raim [ ‘fo ncia(t, TGra)dT+
To1b
+ f ”Glb(t/TGlb)dT] (2.67)
0

RGlc = kGlcCGlc (268)
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e ammonia
produced proportionally to glutamine consumed;
dAmm E(t) To
= (CN (1) = Camm (D)) == = YammscimRam { f nGia(t, TGra)dT+
dt (A ) V(t) i 0 el
TG
+f ncu(t, Tclb)dT] (2.69)
0
e Monoclonal Antibodies
produced during G1b, S with fixed rate.
dMAb F(t) Ta
= (0 = Cyap(t)) =~ + Rvap [f nc(t, Tep)dT+
dt v M, ! !
Ts
+f ns(t, Ts)dT] (2.70)
0

The model takes the form of a system with a large list of parameters that
are also difficult to estimate. The authors propose some values for a few of
them:

Table 2.7: Faraday’s model parameter values (Faraday et al, 2001).

Parameter | Value Units

K pmm 6.2 x 107 | mL>mg 1>h!
kcin 3.6 1078 | mL cell 1h7!

Y ammicim | 0.1 mg Amm/mg Gln
Y1ac/Gle 0.79 mg Lac/mg Glc
Rein 1.5x 1078 | mgcell th™!

S 2.6 %1077 | mgcell™*

Ranti 1.1x 1078 | mgcell th™!

Globally the vector of model states is rather big:
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(nc1, ] [ cellsin phase Gla
ner cells in phase G1’
nGip cells in phase G1b

ns cells in phase S
dE, neo cells in phase G2
= ny | = cells in phase M (2.71)
dt Gln glutamine
Glc glucose
Lac lactate
Amm ammonia
| MAb|  |monoclonal antibodies}|

The model comprises 11 states, several of which are not measurable, and
more than 13 parameters. The system is of complex resolution, let alone the
difficulty of identifying all its parameters. For example, in order to assess
the cycle phase where a cell currently is, flow cytometry was employed -
however, the method technically only differentiates phases G1, S and G2+ M,
meaning that the cell phase distribution and the phase length are hardly
identifiable. It is also an expensive technology that is difficult to transpose
to online implementation. On the whole, it is an interesting model for bio-
logical exploratory research (it could provide insight, eg. into finding out an
interesting antibody production pattern, and then one could try and arrest
more cells in that phase). This is unlikely to be useful in a context of real
control application and, for this purpose, the data could be better modeled
with a much simpler macroscopic model.

24 Round-up

There are many models in the literature. Some review articles such as Boghi-
gian et al (2010); Portner and Schafer (1996); Sidoli et al (2004); Tziampazis
and Sambanis (1994) shortlist some of them.

The book dos Reis Castilho (2008) provides a comprehensive outlook.
Others, such as Dunn et al (2003); Torres and Voit (2002), do so as well.

More recently, further models have been proposed. For example, Nolan
and Lee (2011) consider that some outer intracellular reactions have kinetic
rate expressions based on extracellular metabolites and applies this hypoth-
esis to the growth and transition phase. Another example is Amribt (2014)
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who bases his modeling approach on the overflow phenomenon notorious
in the growth-phase modeling of bacterial cultures.

In the scope of this thesis, the choice has fallen upon simple phenomeno-
logical macroscopic ODE-based models as the best compromise between
descriptive quality, predictive power and practicality with regard to real-
scenario control, monitoring and optimisation applications in view of an on-
line continuous implementation of perfused high-cell-density cultures. We
believe that they can provide enough information regarding phenomena that
we consider important (eg. limitation, inhibition) and are yet simple enough
to use for the intended purposes.

This ODE-based macroscopic model with the best joint performance and
simplicity for practical control implementation will most likely consider 6
states besides volume: living biomass, glucose/lactate, glutamine/ammonia
and the product of interest, if one is produced by cells.

The model will thus most likely take the following general form:

[ Glc | [ V11 0 0
Gln —V21 0 0 @
d&; d| Xv 1 -1 0 !
T = Vi o= il Lac |T| v 0 0 Q2 |+ (2.72)
Amm v 0 O Ps3
P ] | 0 0 V63 |
(—v11)Glc + (—v21)GIn 25 “Xv + vy Lac + vs; Amm 2.73)
(cell growth) '
-D)Xv S (1)Xd 2.74)
(cell death)
(~DXv > (DX + (ves)P 2.75)

(product formation)

A data bank was built from cultures performed at the new cell laboratory
of Chemistry and Applied Chemistry department of the Biosystems Pole
at the University of Mons. Initially, the cultures were performed with hy-
bridoma cells, but these proved delicate to cultivate. A more robust type of
animal cells, CHO (chinese hamster ovary cells), was then used to accomplish
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enough cultures to build the data bank. In the following chapter, the issue of
identifying a model for these cultures will be addressed and a model suitable

for control will be presented.



Chapter 3

Animal cell culture model
identification

Once a model structure is chosen, the values of the
parameters still need to be identified. This chapter
presents one of the major contributions of this thesis.
First, the identification problem is presented. In order to
tackle the challenge of starting the procedure with a good
initial guess for a large set of parameters, a procedure is
proposed: a step-by-step identification approach that
gradually considers more detailed models. This chapter
presents the rationale supporting it. It is then that real
data from experimental campaigns serves to illustrate it in
two experimental practical case studies.

3.1 Introduction

The ultimate goal of the identification procedure is to estimate the values of
parameters 0, in the mathematical model describing the evolution of states x;
(the concentrations of biomass (living cells), the substrates that the cells are
fed with, the product of interest and other metabolites that the cells produce
in the course of the culture and which may affect their own growth). The

77
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model, let’s recall, is a set of equations that allows to predict culture behavior
and can be used to study and control different production scenarios.
Briefly, identification considers the following steps:

e Propose a model structure;
e Propose a set of possible values for parameters 0;;
e Simulate model predictions x based on that initial guess;

e Estimate how far this simulation is from real experimental data xe.s by
computing a cost J;

e Implement an optimization algorithm that searches for other values for
the parameters leading to a lower cost;

e The final optimal set of values 0" for model parameters will be the one
having led to the lowest value of J.

3.2 Step-by-step identification

To correctly identify parameter values from experimental data, one should
firstly plan to perform experiments that are informative enough to investigate
the phenomena that the model intends to describe.

Due to financial and resource constraints!, experimental data is often
limited. Many parameters are thus to be drawn from this limited data bank,
which renders the procedure quite complex. One of the first hurdles is, in
fact, the initialization of the algorithm aiming at minimizing the distance of
model predictions to real data.

In order to overcome this, a step-by-step reduced order model identifi-
cation procedure is proposed in this chapter. It is based on the analysis of
the sensitivities of model outputs to changes in parameter values. Simpli-
tying the identification problem is thus possible thanks to helpful insight
brought by the analysis of these sensitivity functions Sy; ¢; (for example, 511 62
describes the evolution of how sensitive model state x; is to changes in the
value of parameter 0,).

On the whole, the procedure aims at being more efficient with less data
by laying its foundations on one of the keys to a good performance of an

!Besides the culture medium, sample analysis of the concentrations can be expensive and time-consuming.
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identification algorithm: to have an initial guess that is close enough to the
optimal values. In order to do so, box constraints (based on some a priori
biological knowledge) can sometimes be imposed in order to limit the space
from where the random initial guess used to initialize the algorithm will
be drawn. However, the search space remains very vast: in the case of De
Tremblay’s model, it is at least a 16-parameter combination set.

Initialization of the identification procedure has already been addressed
in several ways. For instance Mairet et al (2011) proposed a semi-analytic
procedure to estimate the parameters of Droop model (a classical model
describing substrate limitation in micro-algal cultures), that can be used as a
starting point for a numerical procedure. Besides analytic or semi-analytic
approaches (which are restricted to relatively modest-sized models), another
strategy is to use models that are linear in the parameters, or that can be
linearized, such as for instance the model proposed by Grosfils et al (2007).

In this chapter, a systematic identification procedure will be proposed,
based on the examination of the parametric sensitivities S,; 6;. Indeed, these
functions allow to distinguish specific conditions or periods of the culture
during which the model states are mostly influenced by a subset of param-
eters. Therefore, simpler models are likely to fit the experimental data in
these specific periods, and a divide and conquer approach to the identifi-
cation problem can be imagined on this basis. The procedure consists in
several identification steps. The parameters estimated in a previous step can
be used as initial guess in the next. Step-by-step, the model is refined and the
parameter set becomes more consistent. Finally, the full parameter set can
be re-estimated from the estimated parameters (which hopefully are now in
close distance from the optimum).

For example, given several models €);:

Qi : XQI. = fQi(GQj, XQi) (31)

the sequence of identification steps to take, culminating in the identifi-
cation of the original 6-states 16-parameters full model Qpr, could be, for
example, the one given in Table 3.1.

Globally, the chapter is organised as follows. The next section states and
explains the identification problem. Section 3.4 introduces the sensitivity
concept. In Section 3.5 the rationale behind the proposal of the step-by-step
approach is presented with a sensitivity study using De Tremblay’s model.
This model is then further used in a practical simulation example that illus-
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Table 3.1: Illustrative sequence of identification steps.

Step | Model | States Parameters | Based on Culture
considered | to identify | initial guess phase

1 O Xq, = |X1 O, = |01 68)1 = |01, random A
[x1 | [ O ] [0, found in step 1]

2 @) X, = | X2 Oa, = | Os 9822 = Og, random A
| X4 | _912_ i 01, random |
E [ O, ] 01, found in step 2|
X Os Os, found in step 2

3 ()3 X, = |X3 O, =| B9 9?)3 = |09, found in step 2 A
X4 61> 01, random
X5 013 013, random

[ 61, found previously |

F Qr |xo. =|: Oq, = | : 00 — 013, found previously -
' ' O 614, random
X6 O16
015, random

016, random

trates the potential of the step-by-step identification procedure. Finally, data
gathered from real animal cell cultures performed at the UMons is used in two
experimental practical case studies where the proposed procedure is applied
and some conclusions are drawn. The first experimental case study deals
with CHO-S cells (Section 3.6) and the second experimental case study with
CHO-320 cells producing a well known therapeutic biological: interferon-y
recombinant protein (Section 3.7). The particularity of the second experimen-
tal campaign (with CHO-320) is that this cell line is transfected to produce a
bioproduct of pharmaceutical interest (unlike the CHO-S campaign). There-
fore, the final model has in this case an additional state variable, the bioprod-
uct concentration, and this may be interesting in the study of observability
and control strategies which are subjects dealt with in the following chapters.
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3.3 The identification problem

As already mentioned, given a certain mathematical model structure with
the power of qualitatively describing cell culture behaviour, the identification
problem consists of finding the values of parameters 0 such that the model
predictions x are close enough to experimental data xX,es. This is typically
done by solving an optimization problem where the optimal set 0" found is
the one leading to the lowest value of ], a cost that depicts how far predictions
are from data. A common approach is to minimize the least-squares criterion
(sum of squared differences between model predictions and measurements).
The algorithm can be implemented with Matlab®’s function fminsearch and
odel5s solver. The states, having different physical units, can be normalised
in order to vary between 0 and 1.

nmxne mns

10 = Y Y (x5(0) ~ Xesii(©) - Q5 (x(0) ~ Xersii (), (32)
=1 j=1

where 0 is the vector of parameters to be identified, x;; is the value of
state j for timepoint i (nm measurements along ne experiments), Xy j are
the measurements of these states, Qi‘jl is the measurement covariance error, a
symmetric positive-definite weighting matrix. This matrix can either defined
by equation (3.4) if, for example, various measuring accuracies are consid-
ered, or by equation (3.3) if not (since minimizing | or J/o would in this case
lead to the same results).

Qij = diag ([o(x1)* ... 0(x))*]). (3.4)

If the curvature of the hyper area at the minimum is small in the direction
of a certain parameter, then that parameter is not being very well estimated
since a change in its value does not greatly affect the cost. This curvature can
be computed with the eigenvalues of the Fisher Information matrix (FIM)
(Lindner and Hitzmann, 2006). The bigger they are, the bigger the curvature
and, thus, the more accurate the parameter estimation. The inverse of the
FIM is the Cramer-Rao lower bound that indicates the minimal variance of
the parameter values which can be obtained from the selected measurements.
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3.4 Sensitivity analysis

3.4.1 Introduction

As mentioned previously, one must firstly be sure that the chosen model
equations are structurally able to reproduce the shape of the concentration
plots observed in real data and, on a more general view, some aspects of
culture behavior (eg. biomass growth decrease when the substrate is lim-
ited). The next consideration focuses on the importance of exploring how
sensitive model response is to a variation of the values of the parameters.
Parametric sensitivities are particularly important to assess the influence of
the parameters on the model states, depending on the operating conditions.
Sensitivity analysis allows either to propose more informative experiments
(i.e. experiments in which parametric sensitivities take larger values and are
linearly independent), or on the contrary, when the experimental conditions
are imposed, to simplify the model by eliminating (or fixing at specific val-
ues) parameters that have little influence. As a byproduct, sensitivities can
also be exploited in gradient-based optimization algorithms that can be used
to minimize the cost function measuring the deviation between the model
outputs and the experimental data.

3.4.2 Definitions

Let y(t, 0) be the response of a certain variable of the model. If parameter O
were to vary slightly, then the new response would be (Murray-Smith, 2013):
dy 1 0%y

y(t,0 + AO) = y(t,0) + %AQ + 213902

For a AO small enough, the contribution of higher order terms is ignored
and equation (3.5) becomes:

(AO) + ... (3.5)

Iy
90

where dy/d0 is the first order sensitivity of y(t,0). This linearisation
allows the use of the superposition principle to find the effect of simultaneous
changes of parameters (Murray-Smith, 2013).

y(t, 0 + AO) = y(t, 0) + == A0, (3.6)
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For a state space vector, the (first order) sensitivity matrix Sfori =1,...,n
statesand j = 1,...,p parameters is thus defined by the elements (Keesman,
2011):

Ix;(t)
ox6 = g
j

For example, S,,¢,(t) describes the evolution of how sensitive model state
x1 is to changes in the value of parameter 0,.

Possible practical approaches to evaluate sensitivities include finite dif-
ference approximations (with some rounding errors), internal differentiation
(using the chain rule and Clairaut’s theorem), and use of the Taylor series for
higher order sensitivities (Murray-Smith, 2013; Zivari, 2009). In this thesis
internal differentiation will be used.

For common cell culture models, however, explicit expressions x(t) are not
available. The state dynamics are available, thus a joint numerical integration
of state and sensitivity dynamics is possible:

(3.7)

Model: % = fi(x, 0), (3.8)

e e Sxi,Qj - 1 8fi(x’ 6)
Sensitivities: Fre dfi(x, 6) ; &_xisxi’gj T 0; )

% g S h o
ox; " dx, x1,01 o+ 9x,0, 20, " 90,
=+ - SO IS IR (3.9)
% %S ... S of o
axl LY axn xn/91 xnrep 361 DY aep

Given the physical nature of the system in study, we have chosen to
work with dimensionless sensitivities. These are, thus, normalised because
parameter values assume different numerical amplitudes and states have
different ranges of variation during their open-loop response. The procedure
consists of dividing parameters 0; by nominal values 6 ,,, and states x; by
the maximum values assumed during the set of experiments considered (the
minimum value is always zero, since we are dealing with concentrations and
volume). Thus sensitivities will have a range of variation around [-1; 1]:

Sm?tuml _ 8xi normalization _ 8(xi/xi,max) B naturalejrnom

> Sy = o I g :
b &8] g (9(6]/6],110171) i Xi,max

(3.10)
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3.5 Case study: De Tremblay’s model

In order to lay out the fundamentals of the step-by-step model identification
procedure, let us firstly consider a real dynamic model of hybridoma cells
producing monoclonal antibodies (de Tremblay et al, 1992). It comprises
7 states (concentrations of biomass, glucose, lactate, glutamine, ammonia,
monoclonal antibodies and volume), 16 parameters and describes typical
animal cell culture phenomena.

Four biological macroreactions are considered!:

(=v21)Glc + (=v41)GIn 2 Xy + (vs1)Lac + (vs1)Amm, (3.11)
-DXv B Xd, (3.12)

(=1)Glc + (=vi3)Xv = 113XV + vaslac, (3.13)

(—1)Xv 25 114XV + MAD, (3.14)

Mass balance equations are given by:

[ X1 | [ 1 -1 0 0] —X1 X1 ]
Xo —1/98 0O -1 0 P1 (—X2 + kl) 0
d X3 69/68 0 69 0 @2 —X3 0 [Z51
el — . 3.15
dt | x4 /6, 0 0 0| s || (~ru+k) 0 || m (315
X5 013/012 0 0 O || a4 —X5 0
| X6 | | 0 0 0 1 | —Xe 0 |

For the sake of simplicity, the following symbols represent states, kinetic
parameters, constants and inputs: x; = Xv; x» = Glc; x3 = Lac; x4 = Gln;
x5 = Amm; x¢ = MAb; 0, = HUimaxs 02 = kgic; 03 = kgi; 04 = Hd maxs 05 = kd,Lac;
Os = ka,amm; 07 = kacin; O3 = Yxojcic = 1/v21; 09 = Yiacjcic = v310s; O10 = mgye;
011 = kicic; 612 = Yxoscin = 1/va1; 013 = Yamm/in = V51012; O1a = B; O15 =
016 = ky; ki = GIc™N; ky = GIn™; w19 = FN; ung = Fperf; Uz0 = Fpjeeas 1 = D =
FIN/V) Uy = Dperf = Fperf/v-

!These describe cell growth, cell death, cell maintenance and bioproduct production, respectively.
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The reaction rates are given by:

Qi = iX1, (3.16)
X2 X4
=0 - . , 3.17
= (02 +x2) (O3 + x4) (3.17)
1 1 0,
=0, - . . , 3.18
Ho = 08 (o ors) (01— Ooxs) (07 + 1) (3.18)
X2

=0 ———, 3.19
U3 10 (611 + x2) ( )
— 014 + 05 - — (3.20)

Ha = U14 15 Orc + Hl. .

If volume is not constant then it needs to be included in the model (V = xy).
In this case, besides the reaction terms v, the flow dynamics terms are to be
considered:

0 ,batch
dx; | uig , fedbatch
At T ) g — usp ,continuous (3.21)

Uio — U3 — Upo , continous perfused

A schematic illustration is provided in Fig. 1.1 on p. 31 for different
operation regimes. Parameter values are listed below.

De Tremblay’s model proposes the interdependencies of system dynam-
ics described in Table 3.3. Biomass dynamics are influenced by almost all
states (itself, substrates consumed and metabolites produced). However,
the production of the product of interest (xs, monoclonal antibodies) does
not dynamically influence any of the other states. Therefore, parameters re-
lated to the dynamics of x; to x5 could be identified firstly without any prior
knowledge of the antibodies being required.

As for the dynamics of the sensitivities, they are obtained by differentia-
tion. The terms df;/dx; and df;/d0O; defined in equation (3.9)) were computed
and are listed in Appendix A, equations (A.1) to (A.99).
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Table 3.2: De Tremblay’s model parameter values (de Tremblay, 1991;
de Tremblay et al, 1992, 1993).

Parameter | Value Units

T 1.09 il

ke 1.0 mM

kcin 0.3 mM

i 0.09 d!

kd,Lac 0.01 mM—1d1

Kiamm | 0.06 mM-1d-1

kd,Gln 0.02 mM

Yxo/Glc 1.09 x 107! | 10%cell mmol ™"
Y1ac/Glc 1.8 mmol mmol ™!
mMgic 0.17 x 10*! | mmol (10%cell)™* d~1
Ko G 19.0 mM

Y Xo/Gin 3.80 x 1071 | 10%cell mmol~!

Y Apmjcin | 0.85 mmol mmol~!

B 0.35x 10" | mg (10%cell) 1 d~!
! 257 x 10M | mg (10%cell) ™1 d!
k, 0.02 d-!

Table 3.3: Dependency of state dynamics on system states for De Tremblay’s
model.

dynamics | x1 | X2 | X3 | X4 | X5 | X¢ state type
X1 e o | 0o 0o o biomass O
X e o o o oo glucose O
X3 e o o o o lactate A
X4 e o o o o glutamine | O
X5 o | o | o | o | o ammonia A
X e o e | e e e antibodies| A

Legend: O=biomass; O=substrate; A=metabolite/product.
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3.5.1 The experimental data bank

As already mentioned, one of the purposes of modeling is to predict be-
haviour that is observed in reality. In the case of animal cell cultures, it is
usually expected from the model that it predicts real phenomena such as
substrate limiting cell growth when it becomes scarce, metabolites building
up and negatively affecting cell growth, etc. Therefore, when setting out to
identify a model it is of utmost importance that these phenomena are present
in the experimental data bank that will be considered.

Figure 3.1 exemplifies the predictions of De Tremblay’s model for 2 dif-
ferent initial culture conditions. In the pink experiment, there is plenty of
substrate glucose, but at t = 2d the other substrate, glutamine, runs out
(42 (t > 2) = 0, no growth). On the other hand, there is plenty of glucose
and its associated metabolite, lactate, builds up throughout the experiment
during a second phase where the net cell growth is negative (11 — y2 < 0,
thus, Xv decreases on this second phase). The blue experiment illustrates the
opposite: the substrate limiting growth is glucose and the excess glutamine
contributes to more ammonia.

The two phases of the culture are easily identifiable on Figure 3.1. There
is an initial cell growth phase (depicted as "A") where substrates are initially
abundant and become gradually scarce, and a subsequent cell death phase
("B") when Xov(t) begins to decrease because a vital substrate is no longer
available and/or inhibiting metabolites have built up. In essence, Xov(t) starts
to decrease after t,.; (time when Xov(t) reaches its maximum) because overall
net cell growth p1 — o has suddenly become negative.

Net cell growth is composed of several terms f;. The biomass balance
equation (for batch operation) is given by:

Il 2
% = (1 = H2)X0 = | e kGlCGJfCGlc kGlnGinGln X0
13 f4 f5
| Hdmax Lmax — Ilcd,LacLac Lmax — kdllAmmAmm kd,GI:’(j-lnGln Xo (3:22)




CHAPTER 3. ANIMAL CELL CULTURE MODEL IDENTIFICATION 88

Evolution of Concentrations for 2 Cultures
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Figure 3.1: Open-loop response of the system for 2 batch cultures: in the pink
culture the substrate that firstly runs out is glucose; in the blue culture, the
substrate that runs out first is glutamine.

If a parameter is not very active throughout an experiment, then model
states should not be greatly influenced by small changes in its value. This
will be dealt further on with the sensitivity analysis.

Regarding animal cell cultures, given the phenomena involved and a pair
of major substrates considered, it is recommended, whenever possible, the
strategic inclusion of at least the following 4 experiments in the data bank:

e #1: both substrates never run out, death is triggered by inhibiting metabo-
lites;

e #2: substrate S; runs out, metabolite M, accumulates;
e #3: substrate S, runs out, metabolite M; accumulates;

o #4: experiment at the expected operating conditions, used for cross-
validation.
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Evolution of Terms throughout Culture
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Figure 3.2: Two cultures: evolution of terms f; for glucose-limited experiment
(blue) and glutamine-limited experiment (pink).

Figure 3.2 shows that these terms are not always active. For example, in
the pink experiment there is always enough glucose throughout the culture,
thus the term dealing with glucose limitation of growth, f;, is naturally not
active and remains close to 1 for all £.

This minimum experimental set will allow, in principle, to capture the lim-
itation of both substrates and the inhibition by associated metabolites. The
parameters found with data sets 1-3 could then ideally be cross-validated
against data set 4, close to the desired daily operating conditions. Given
common culture media composition, typically S;/M; will be the pair glu-
cose/lactate and S,/M; glutamine/ammonia.

3.5.2 Sensitivity analysis

The sensitivities for De Tremblay’s 16-parameter model have been computed
(equation terms in Appendix A.1, p. 220-227) for several experimental condi-
tions. An example of their evolution throughout culture time is plotted in Fig.
3.3 up to Fig. 3.9, for batch initial condition x(to) = [0.3254 000 0.7]". The
grey vertical line separates phase A from phase B when t = t,,; (maximum
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of biomass concentration).

Evolution of Sensitivity of Biomass Concentration to parameters ei
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Figure 3.3: Sy, o.(t) for batch initial condition x(to) = [0.3254 000 0.7]".
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Figure 3.4: S,, o.(t) for batch initial condition x(to) = [0.3254 000 0.7]".
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Evolution of Sensitivity of Lactate Concentration to parameters Oi
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S»,,6.(t) for batch initial condition x(tp) = [0.3254 000 0.7]".
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Evolution of Sensitivity of Glutamine Concentration to parameters ei
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Figure 3.6: Sy, o.(t) for batch initial condition x(to) = [0.3254 000 0.7]".

Evolution of Sensitivity of Ammonium Concentration to parameters ei
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Figure 3.7: S,. ¢,(t) for batch initial condition x(tp) = [0.3254 000 0.7]".
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Evolution of Sensitivity of Antibodies Concentration to parameters ei
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Figure 3.8: Sy, o.(t) for batch initial condition x(to) = [0.3254 000 0.7]".
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Figure 3.9: S, ¢,(t) for batch initial condition x(tp) = [0.3254 000 0.7]".
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Several observations can be drawn from these figures. Firstly, a trivial
observation: volume is obviously independent of any parameter value (its
dynamics do not depend on kinetics). This can be seen in Figure 3.9.

Secondly, generally speaking, there is clearly a difference of sensitivities
during phase A and phase B. In fact, if one analyses model equations, it is
evident that during the initial growth phase, system dynamics is much more
simple. During this phase A, stretching from t till .., biomass growth is ap-
proximately exponential and substrate consumption and product production
follow proportionally. The simplest way of modeling phase A is thus:

d
a2 01x1,
d%ct 1 dx 6
2 - 3 9
_ = —6 —_— —6 .
T, 05 1X1, T Os 1X1, (3.23)
dxg 1y s _Ouy

This reduced model can be decomposed into smaller ones if one analyses
the dependencies of system dynamics to state variables:

dx
d_tl = f(x1);
% = constant X %; (3.24)
% = constant X @
dar dt’
dx
— = f)
4 % = constant X %; (3.25)
% = constant X %'
ar dt’

Namely, apart from the 5-variable model (equations (3.23)), a smaller
3-variable (biomass and substrates) model could be considered or a just 1-
variable (biomass) one:
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% = O01x1
de -1
X E = 6—861x1 (3-26)
da _ -1y
it 0p
dx
{d—tl = 0111 (3.27)

Sensitivity analysis specifically supports this model reduction since it is
clear from Fig. 3.3 up to Fig. 3.9 that state variables are only significantly
influenced by a few parameters during phase A: noticeably the maximum
growth rate 01 = U, and substrate/product coefficients 0 = Yxy/61c, O =
Y1ac/cier 612 = Yxo/Gins 013 = Y Amm/Gin-

However, growth is not infinite. There is a moment in the culture, tye4,
where biomass Xv(t) reaches it peak and begins to decrease. This is what
makes animal cell models more complicated than, for example, bacterial
culture models: they are usually meant to predict also the death phase,
meaning that the term pgoum — Laearn is allowed to become negative so that
Xv(t) can decrease:

dXv
dt

The term can become null or negative when phenomena such as substrate
limitation or metabolite inhibition take place.

As for limitation, its constants, 0, = kg and 03 = kg, are of more impact
around te. In order to identify them, at least two experiments should be
considered: one where cell death is triggered by glucose running out, and
the other by glutamine doing so. Although sensitivities to these parameters
are much smaller than the sensitivities to 0; = pyu (the parameter with
the biggest impact on states), the sensitivity of 0, = kg is higher when
glucose limitation occurs and the sensitivity for 03 = kgj,, is higher when it is
glutamine.

In fact, sensitivity analysis could be used to optimise the experiments to
perform such that the impact of a specific parameter will be maximal. Table
3.4 exemplifies briefly some interesting initial concentrations of glucose and
glutamine in the medium of a 10-day batch such that model sensitivity to
0, = kgie, 03 = kg, ... would be maximised.

= (ngowth - ‘udeath) Xv  (batch regime) (3.28)
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Table 3.4: De Tremblay’s model: initial medium conditions favouring high
sensitivities to specific parameters.

Parameter | Glcy(mM) | Glng(mM) | Cost J obtained
61 = fmax 23 6.2 18
02 = kgic 8.8 24 14
03 = kg 24 6.5 18
04 = Ud max 23 6.3 18
Os = ki Lac 21 5.5 17

Note: optimization initiated with randomly generated initial medium concentration within
plausible bounds. The cost maximized is the positive area (trapeze rule) of all the sensitivities

for a given parameter i: )| f ISy lldt.

X1, X5

The optimization algorithm needs, however, to use parameter values in
order to make model predictions and compute the cost. Yet, at the beginning
of the identification task, there may be no prior certain knowledge of these
values: the goal of the identification lays precisely in finding them out. But
once some estimates are found, then performing this optimization could in
reverse validate the experimental planning that was carried out.

Figure 3.3 up to Figure 3.9 also reveal that most other model parameters
have a significantly lower impact on system states, but their action spreads
out throughout both phases, A and B. Overall, these parameters may be
helpful in fine-tuning the data to the form provided by the mathematical
model.

If the model is over-parameterized, then it will be hard to identify some
of these lesser-impact parameters. But hopefully all major impact parame-
ters will be identified following a carefully planned sequential identification
procedure.

This sequential strategy was tried out to identifty some of De Tremblay’s
model parameters with promising results. The submodels Q; considered and
the fits obtained are illustrated below.

e Step #1 (phase A):

Q1 . {— = 91.%'1 (329)
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Figure 3.10: Step 1: data (green) and model predictions (blue) for submodel
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e Step #2 (phase A):
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Figure 3.11: Step 2: data (green) and model predictions (blue) for submodel

(), during initial phase A.

e Step #3 (phases A and B):

v _ (o X2 X X1 — O4x
dt N (Oa+x) (O3+x))t TFY
dx, — dxs  Og
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Figure 3.12: Step 3: data (green) and model predictions (blue) for submodel
()3 throughout the culture (phases A and B).

By the end of step 3, the 8 most significant parameters in terms of
impact on system states have already been roughly identified. The next
step would then be, from this knowledge, to identify the remaining ones
(05 = kg rac, O6 = ka, amm, O7 = kagin, O11 = mgie, 012 = ki,Gic) if the available data
bank is sufficiently informative. As for the parameters concerning antibody
production, 014 = §, 015 = @, 016 = k;, they can be identified a posteriori, since
the dynamics are decoupled as previously shown on Table 3.3 from page 86.

3.6 Step-by-step identification: CHO-S cells

The step-by-step approach will now be applied to the identification of models
for animal cell cultures performed at the University of Mons in a newly set-
up cell culture laboratory. A brief presentation of the site can be found in
Appendix D on p. 253-254.

3.6.1 Materials and methods

Two CHO cell lines were kindly provided by Dr Emmanuelle Adam (Institute
of Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles,
Belgium)!: CHO-S and CHO-S clone 4922-69 transfected to produce hypoal-
lergenic ProDer p 1 FC (a precursor of Der p 1, a major dust mite allergen).
CHO-S cells derive from CHO-K1 and have been adapted to grow in sus-
pension. The first successful cultures performed at the new laboratory with
this cell line in shake flasks and bioreactor are described in (Zamorano, 2012),
but do not provide enough informative richness for the model identification
intended for this chapter.

!Further details about this laboratory, the OCPAM project and the collaboration with the ULB are given in
Appendix D on page 253.
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Therefore, a new set of experiments was designed in which initial condi-
tions varied such that different phenomena could take place and be captured
by a more comprehensive dynamical model. The new experiments were
carried out with CHO-S cultivated with serum-free glucose-free chemically
defined PowerCHO medium (Lonza, cat. nr. BE02-042Q) supplemented with
glucose (AppliChem, cat. nr. 3666) and glutamine (Sigma, cat. nr. G7513) so
as to obtain a data bank with different initial concentrations:

Table 3.5: Experimental planning for 4 batch CHO-S cultures.

Code Bl | B2 | B3| B4
Glco(mM) |33 /25| 8 | 16
Glnp(mM) | 7 | 4 | 8 | 4

Bl was meant as an experiment where glucose and glutamine are over-
abundant, thus, metabolite inhibition phenomena may be particularly im-
portant in explaining how the p, — 117 term becomes negative during the cell
concentration decrease phase; B2 was meant as an experiment at presumably
good operational conditions (those used also in de Tremblay et al (1993)’s
examples); B3 as an experiment where there may be a shortage of glucose
(limitation); and B4 a shortage of glutamine (limitation).

Each experiment was performed in triplicate (flasks A, B, C) in order to
discard possible contamination effects or unusual behaviour and to account
for the inherent biological variability: in biomedical statistical sciences the
true value of a variable is added to measurement errors, in addition to intrinsic
biological variability which is generally bigger (De Maertelaer, 2014)!. The
sampling took place once per day with a schedule that allowed the gathering
of the necessary information whilst not losing more than 15% of the initial
volume through sampling:

The twelve 120mL culture flasks, each with 60mL of medium, were inocu-
lated with a cell density around 0.2 to 0.3 x 10°cell/L and kept in an incubator
at 37°C under 5% of CO,. To prevent contamination, 2mL of antibiotics
(Sigma, cat. nr. P4333) were added to each 200mL custom medium bottle.

!Not all cells behave like an "average cell”, there is biological variability. When measuring biomass con-
centration, for example, it is sensible to estimate this biological variability as a more important cause of data
dispersion than errors related to the measurement probes.
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Table 3.6: Sampling planning for the triplicate flasks of each experiment.

Day 1/2/3/4|5/6(7[8[9|10|11
flask A | o | ® oo oo o | o
flask B (o | o | @ oo oo °
flask C | o o0 oo o o

Note: first sample is taken one hour after inoculating.

Each sample was measured offline for the concentrations of biomass, glu-
cose, lactate, glutamine and ammonia. From each 1.5mL sample, 20uL was
used for viability and cell density counting via Trypan blue dye exclusion
method (the dye penetrates dead cell membranes, discriminating them from
live viable ones, and making microscopic counting possible with a Biirker
hemocytometer). The remaining sample was filtrated and then assayed with
Megazyme enzymatic kits K-GLNAM, K-GLUC and K-LATE and a spec-
trophotometer (Shimadzu UVmini-1240) at 340nm. Glucose was also as-
sayed by DNS (Dinitrosalicylic Colorimetric) method and absorbances read
at 540nm. The DNS data was chosen since the method proved to be better in
terms of precision and much better in terms of trueness.

3.6.2 Data bank

The data bank built from experiments performed with CHO-S cells is plotted
in Figure 3.13. If the intrinsic variability of the triplicate flasks in each exper-
iment is considered, the average values can be plotted with the confidence
intervals of Figure 3.14.

In terms of cell growth, it can be seen that both the first and the second ex-
periments (B1 and B2) present similar achievements (ie, B2’s initial glutamine
concentration of 5mM seems enough to achieve that biomass profile). It can
also be seen that experiment B3 presents an early switch to the death phase
associated with a very quick glucose disappearance. A glucose limitation
phenomena can, therefore, be assumed. No noticeable lactate reconsumption
is observed. As for experiment B4, it was meant to be the glutamine-limited
one, but, in fact, it seems that glucose is the substrate disappearing faster
from the culture.
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Figure 3.13: CHO-S cultures: 4 experimental conditions, each with triplicate
flasks A,B,C (green, orange, blue). Averages are plotted in pink.
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Figure 3.14: CHO-S cultures: average values for triplicate flasks with confi-
dence intervals (20). Metabolites lactate and ammonia are plotted in grey.

There is obviously no prior knowing of which precise initial conditions
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will lead to the phenomena we intend to check. On the whole, there is
presumably potentially enough information to try and check several model
structures assuming different phenomena.

3.6.3 Model identification
3.6.3.1 Confidence intervals on parameters

The values for the model parameters that one wishes to identify will have
some uncertainty for many reasons: some experiments may not be informa-
tive enough, there is noise associated with the measurements, the algorithm
implementation has limitations, or the model isn’t obviously perfect, among
others.

One way of assessing some uncertainty in parameter values is to consider
confidence intervals and to compute them under certain hypotheses.

In order to compute confidence intervals, the elements of the Fisher infor-
mation matrix F are computed:

n states n states

1 o'?xk 8xk 1
Fij= — === — 54,056, (3.32)
kzz; 0 90i 90 kZ; T ]

This matrix predicts how well the experiments are able to constrain the
parameters and needs a prior knowledge of the measurement uncertainties
via oi. Under certain assumptions (identifiability), the Fisher matrix can be
inverted to compute the covariance matrix that informs on the uncertainties
on model parameters. The Fisher matrix thus assesses how informative
the experimental set is (when multiple experiments are available, the Fisher
matrix is the sum of the matrix for each experiment). We will use it to compute
a lower and upper bound on parameter values.

3.6.3.2 Step #1: model Q; (phase A)

Let us firstly consider data from the initial cell growth phase and reduced
order model (; (1-state, 1-parameter) to identify the parameter maximum
growth rate 01 = pyu. The sensitivity terms (for batch) were computed and
are listed in Appendix A, p. 227.

dx
Q; : {d—tl = 0111, (3.33)
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where x; = Xv and 01 = pyay.

A random initial estimate of the parameter value is generated between the
following bounds (these are related to biological significance: we suppose
that animal cells take at least 6h to divide):

[ 0, ]0 = random(0 — 2.8 d71). (3.34)

The algorithm then goes on to compute an estimate of 0; according to the
procedure described on page 81. Although the generation of a 6(1) is bounded,
the algorithm is free to investigate values of 0; outside this interval. Even if it
is not necessary with this simple model, a best practice is followed: in order
to avoid being trapped in a local minimum of the cost function, a multistart
procedure is used (10 random initial values are tested). The following value
was proposed as the best:

[ 61 ] =0.4947. (3.35)

Figures 3.15 up to 3.18 show the results: a simulation of the identified
model (in blue) with upper and lower bounds relating to a 95%-confidence
interval (in green) of the simulated concentrations. Measurements (circles)
are also plotted with error bars relating to the intrinsic biological variability
(this information is available for time points where the number of measure-
ments was enough).
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Figure 3.15: Model )4, experiment 1, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 20) .
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Figure 3.16: Model );, experiment 2, CHO-S: model simulation (blue), 95%-

confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 20) .
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Figure 3.17: Model )4, experiment 3, CHO-S: model simulation (blue), 95%-

confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 20) .
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Figure 3.18: Model Q);, experiment 4, CHO-S: model simulation (blue), 95%-

confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 20) .

For the fourth experiment it can be noticed that the real ¢,.; (highest value
of Xv attained) is maybe a bit higher. Overall the results are good, even
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if this is not for the moment very important. In fact, the goal of this first
identification step is to find out a good estimate of the value of 0; that could
later on be used with a more complex model. It is, thus, not very relevant if
the fit is excellent or not since there is an obvious model-plant mismatch (ie.
this reduced model is too simple to capture the behaviour of the biological
system being considered).

All the initial estimates tested in the multistart led to basically the same
final value for p,,,. In fact, there can only be one value describing this ex-
ponential early phase of biomass concentration and the algorithm converges
quite quickly given that the model is mathematically very simple so far.

3.6.3.3 Step #2: model Q, (phase A)

Let us now further expand the model by considering also the substrates. The
initial growth phase can be described by reduced order model 2, (3-states,
3-parameters) to identify the maximum growth rate (again) and parameters
Og and 0, related to the stoichiometry of the consumption of the substrates:

% = 01x1,
de -1
1 —— = —01x1, .
Q2 it~ O 1X1 (3.36)
da _ —lg
it 0,0

where x; = Xv; x, = Glc; x4 = GIn; 01 = Upax; 08 = Yxo/6ie; 012 = Yxojcins

The sensitivity terms (for batch) were computed and are listed in Ap-
pendix A on p. 227.

As for the initial estimate, one value is already available from the previous
step. For the other parameters, arandom initial guess 0 is generated between
the following plausible bounds (where a large safety margin was put on
typical literature values! for Og and 01»):

01 0.49 d-t
Os | =| random(0 —10) 10%cell mmol™" |. (3.37)
012 |, | random(0—10) 10°cell mmol™

Again, despite the fact that the generation of the initial guess 0, is con-
strained, the identification algorithm is still free to search elsewhere. After a

1See, for example, (dos Reis Castilho, 2008), (Xing et al, 2010), (de Tremblay et al, 1992), (Dunn et al, 2003).
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multistart with 10 initial guesses, the optimal vector 0" found was:

0, 1 030 47t
Os | =] 0.03 10%ellmmol™" |. (3.38)
015 0.12 10%cell mmol ™!

This corresponds to a model that is able to describe the data as plotted in
Figure 3.20 to 3.22.
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Figure 3.19: Model ),, experiment 1, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 20) .
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Figure 3.20: Model (),, experiment 2, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 20) .
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Figure 3.21: Model €),, experiment 3, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 20) .

Experiment 4

o}
=}

8
7
R 08 {> I % 6
-
3 { 40 =58 {
= 06 ol A = =
3 | l E 3 £ N S
= & © £ Q ( [
30.4/ 17 O ol Os l TLE ]I\ ‘f} \ o
x 0xfD l / I \ 2 foleh ¢ 1 c’} o) I
. { T T of “N ) [ ‘
o L9 O 0 r Q00000 0
0 5 10 15 0 5 10 15 0 5 10 15
t (d) t(d) t(d)

Figure 3.22: Model (),, experiment 4, CHO-S: model simulation (blue), 95%-
confidence interval for states (green), measurements (circles) and their vari-
ability (error bars, 20) .

It can be seen that the estimates found for 0;, 6g and 6;, are overall
acceptable.

3.6.3.4 Step #3: model Q; (phase A)

Let us now include also the production of metabolites associated with the
two major substrates. The initial growth phase can be described by reduced
order model Q3 (5-states, 5-parameters) to identify not only 0, O3 and 01>
(again) but also new parameters 9 and 013 related to the stoichiometry of
the production of metabolites:
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dx1

L0 e

Y2 _ -2 axs _ Y9

Qy:q 5 = 05 01x1, o 9891361, (3.39)
dx4 —19 X % = %9 X
dt 612 141, dt - 912 141,

where x1 = Xv; xp = Glc; x3 = Gln; x4 = Gln; x5 = Gln; 01 = Upay;
Os = Yxovscic; 09 = Yxuscie; 012 = Yxoscins 613 = YxoGins

The sensitivity terms (for batch) were computed and are listed in Ap-
pendix A on p. 228.

Three parameter estimates are available from the previous step. We have
made use of this information by including them in the initial estimate vector
0o whilst the remaining values were randomly generated within bounds
(again, a large safety margin was put on typical literature values for 0y and

013):

[ 07 | [ 0.30 d-!
Og 0.03 10%cell mmol ™!
Oy | =| random(0 —10000) mmol mmol~' |. (3.40)
017 0.12 10%cell mmol ™t
| 013 |, | random(0 —10000) mmol mmol™"

The model to be identified has now more states and is more complex. Fur-
thermore, time vectors are various, not all timepoints were actually measured
and sometimes variance information is lacking for a given state, timepoint
and experiment. Itis thus more important to look in further detail at the form
of the cost function J,,r,. Up to now, an intuitive form of the cost function in
terms of normalized variables, [,.,,,, has been used:

; 2
ne k X-]
ti ] 1 k sim i,k,meas)
Jnom =) Z Z (341)
j=1 i=1 k=1 zk

where ng is the number of experiments, ns is the number of states, Ny, is
the number of measured timepoints for state i in experiment j, k; ; is either

1 if state i in experiment j in timepoint #;,, was measured or 0 if not, xl K sim
is the simulated normalised value of state i in experiment j and timepoint

tr, is the measured normalised value of state i in experiment j

ij/ z k measured
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and timepoint f;,; and nl].,k is the number of times a quadratic deviation was
computed (ie, the number of timepoints where measurements were available,
all experiments of the data bank and all state variables comprised).

Firstly, for each experiment, states x were normalised with respect to
the maximum measured value attained by the state. The reason for doing
so is the fact that scales and units are quite different'. By doing this, all
normalised states ¥ will now vary between 0 and 1 (if measured) or around
it (if simulated).

Secondly, for some timepoints, some concentrations were not measured
and it is, thus, not possible to evaluate the quadratic deviation between
measured and simulated values. Furthermore, some experiments last more
than others. Since we intend to have a cost that treats all experiments with the
same importance irrespective of the amount of timepoints available, we have,
therefore, chosen to compute the average quadratic distance per timepoint.

Cost J,,orm illustrates thus how distant model simulations are to measured
values, on an average timepoint for all normalised states and all experiments.

However, more information can be used in the construction of the cost
function . Namely, if a measurement is more certain than another, then
ideally it should weigh less on the cost that we intend to minimise, while
more uncertain values should weigh more. This weighting can be done by
introducing the variance matrix, the general formula being:

J=0xV1txQ (3.42)
where Q is the matrix of quadratic deviations and V a diagonal matrix
with the variances of the states, 2.

A consequence of dividing by the variance is that (while not exactly nor-
malising with respect to the highest measured value) we attenuate the dif-
ferent scales of values assumed by different physical states of the system
since each state deviation is divided by the standard deviation, yielding also,
obviously, in this case, a dimensionless value:

A 2 - S
dlm ((xsnn xmeas) ) — dlm ((xsmz xmeas)) % dlm ((xszm meeas)) — 1 (343)

02 o

Typically, when variance is accounted for in the cost function, a hypothesis
is made that measuring probes will have a certain €% error associated and this

'For example, while typical open loop values for biomass can vary between 0 and 10°cell/mL, glutamine
concentrations can fluctuate between 0 and 8mM, a much smaller span.
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will be the error behind the dispersion observed throughout one experiment.
This is usually an optimistic estimate of the real dispersion of data since it is
frequently based on equipment supplier technical sheets (if at all available?)
or a common sense free guess of its absolute/relative numerical magnitude.
In this case, one could, for example, for one curve of biomass over time, add
confidence intervals corresponding to a constant 10% error.

In our case, since each experiment was done in triplicate?, sample variance
0- can be computed in timepoints f; where a concentration was measured
more than once (1 times, as shown in Figure 3.14) with its definition:

2
Xi — Xaverage
o2 = Z ( ) (3.44)

n-—1

2

1

We have thus a better measure of the real dispersion of data. Not only
do we have more information on dispersion over time, over different experi-
ments and over different states, we also have real information that embodies
the natural biological variability which really has the bigger weight in animal
cell cultures, ie. the different behaviour of cells in the culture has more impact
in data dispersion than probe related errors.

One can thus consider another form for the cost function J:

ng Ns l] — 2
tl/] zkszm zkmeas) /
Tour = Z 2 ) ]. (3.45)
j=1 i=1 k=1 ;g

where x/, . is the simulated value of state i in experiment j and timepoint

tr, is the measured value of state i in experiment j and timepoint
tx,

variables are defined as previously in equation (3.41).

i’ zk measured
] is the time-average® variance for state i in experiment j, and the other

1]’

2For instance, cell counting under the microscope (for the determination of biomass concentration) has not
only errors associated with pipettes and general equipment but also a user error that can be bigger or smaller,
depending on the user counting, his/her way of counting, attention, etc. It is common practice to suppose a
value between 5% and 20%.

31deally, a good practice is to consider a sample size around 10 for a good estimate of dispersion or 30 for a
very good one, if it is to be used in hypothesis tests leading to critical consequences (eg. patients undergoing
a treatment). However, with respect to animal cell cultures, performing the same measurement/experiment 10
times is really too much given financial, time and resource constraints.

“For example, 0%/ , refers to state 2 (Glc) in experiment 4. It is the average of variances in the timepoints of
experiment 4 where variance could be computed since state x, was measured more than once.
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Both cost functions were trialed for 10 multistarts departing from initial
estimate as defined in equation (3.40). With the variance-based cost function
Joar the simulation resulted in:

[ 0, T [024 47!
Og 0.73  10%cell mmol™"
Oy | = 1.39 mmol mmol™" |. (3.46)
012 0.07 10%cell mmol™
O | | 0.02 mmolmmol™?

o, T [ 029 4!
O 0.84 10%cell mmol™"
Oy | =| 134 mmolmmol™ |. (3.47)
01, 0.04 10°cell mmol ™"
013 | | 0.007 mmol mmol™

Both results are acceptable upon a visual inspection (Figures 3.23 to 3.26,
where results obtained with [, are plotted in blue and those obtained using
Juar are in green).
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Figure 3.23: Model )3, experiment 1, CHO-S: model simulation using Jyorm
(blue), using [, (green), measurements (circles).
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Figure 3.24: Model Q3, experiment 2, CHO-S: model simulation using J,orm
(blue), using [, (green), measurements (circles).
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Figure 3.25: Model )3, experiment 3, CHO-S: model simulation using Jorm
(blue), using [, (green), measurements (circles).
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Figure 3.26: Model Q)3, experiment 4, CHO-S: model simulation using Jorm
(blue), using [, (green), measurements (circles).

It seems that, compared to [,orm, if Juar is used, more emphasis is put on
glutamine model-data compliance and less on biomass compliance. The final
decision of which is more important remains with the final user, of course,

but both results are acceptable. We will proceed using [, in the following
steps since it seems to be slightly faster.
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3.6.3.5 Step #4: model Q4 (phases A and B)

The following step is a critical one since all of the culture data will now be
included, namely growth phase A (period when cell concentration rises) and
death phase B (when cell concentration starts to decrease). It is critical to
correctly chose a mathematical form that allows the net growth rate p,,; to
become negative whenever biomass concentration Xv decreases.

aX
d—tv = ‘LlnetXU (348)
The simplest approach is to firstly try out very simple sub-models for the
whole culture (growth phase and death phase) based on some hypothesis on
phenomena that can put an end to the rise of biomass concentration.

Some basic hypotheses are:

o H,,: growth is limited by glucose disappearance

Cfdxr X _dXv Glc
Cha : { T T e Tl S et R (349)
o Hy,: growth is limited by glutamine disappearance
dxy X4 _dXv _ Gln
Cap : { it =T A i G (3:50)

e H,.: growth is limited both by glucose and glutamine disappearance

O, - @_9 X X4 x=dﬁ— Glc Gln
de dt B 192+X293+X4 1=

G e Glekan + Gin Y
(3.51)

Sub-models Qy, to Q4. provide typical forms of expressing substrate lim-
itation. They are, however, not eligible since they only allow 1, to be either
positive (in that case Xv will increase) or null (Xv will remain constant).

In order to allow . to become negative, a baseline death rate 0, will be
introduced:!

Notice also that a sub-model where SIMPLY lnet = Umax — Hd,max = constant is not eligible either since it would
not allow both a growth and a death phase. It would allow only a growth phase (tu¢ > 0), only null growth
(tnet = 0) or only a death phase (i, < 0).
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o Hy;: growth is limited by glucose disappearance and there is a baseline

death rate
Qus @—(9 12 —e)x (3.52)
A - ar ! 0, + x» 2 .
o H,,.: growthislimited by glutamine disappearance and there is a baseline
death rate
Qs : @—(9 *s —Q)x (3.53)
e dt ! O3 + x4 ) '

e Hys: growth is limited both by glucose and glutamine disappearance
and there is a baseline death rate

dx1 X2 X4 )
Qur:i—— =10 -0 3.54
f { dt ( 162+X263+X4 4] ( )

All of these will now be tested. Note that these sub-models cannot be
solved autonomously. The system is multivariable and the evolution of states
x is done by simultaneous integration of all the various differential equations.
More precisely, how other components are modeled will also have an impact
on Xv(t) since dXv/dt depends on other states (the substrates). In order to
test all submodels ()4 to Qyy, these will be coupled to the other following
differential equations where p g0 is defined in each submodel:

de 1 u X
. — — . HgrowthrA1l

Qg rest % ~ _Qi N (3.55)
At = 012 UgrowthX1

The following initial guesses were considered:

[ 61 ] [ 0.24 d_l
0, random(0 —11) mM
(4]0 ;| Os | =| random(0—24) d7! : (3.56)
Os 0.73 10%cell mmol ™
| O [, | 0.07 10cell mmol ™" |
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[ 67 | [ 0.24 d!
03 random(0 —11) mM
[Os]o:| Os | =| random(0—-2.8) d! , (3.57)
Os 0.73 10%cell mmol ™!
| Oz [, | 0.07 10%cell mmol™ |
[ 01 ] [ 0.24 d!
6, random(0 —11) mM
03 random(0 —11) mM
[Oaflo : 0, | ~ | random(0—2.8) d-! ‘ (3-58)
Os 0.73 10%cell mmol~!
| O |, | 0.07 10%cell mmol™" |

The upper bounds for the random generation of a guess value of new
parameters 0 = kg, O3 = kgin, 04 = Uamax Were set by choosing values much
bigger than those provided in the literature. As for 04 = U4 ma, it needs to be
smaller than 01 = .y so that there will be an initial growth phase and a later
death phase (otherwise u,; would always be negative and biomass would
always decrease throughout the culture). The value found in the previous
step was, thus, used as an upper bound for this random generation.

The algorithm was run using [, and [, as cost functions (with similar
results). The identified values were added to Table 3.7 that summarises all
results gathered so far.

Note that at this stage some extra information from system dynamics
could be useful in this identification step: we expect from the sensitivity
analysis that parameters such as kg, will be more influential throughout
a glucose-poor experiment (in this CHO-S case study, experiments 3 and
4), and parameters such as kg, will be more influential in glutamine-poor
experiments (experiments 2 and 4).! Since the cost function is a sum of the
costs for the different experiments, some weighting factors w; could be used
to put special emphasis on more informative experiments:

] = w1]Exp1 + W2JExp2 + W3Exps + WaJExpa (3.59)

One can thus expect the algorithm’s convergence to be faster if w3 and wy
are bigger while identifying option {Q4; + Quret).2, and, likewise, if greater

!This is illustrated in Figure 3.2 on page 89, for example.
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wy and wy are used while identifying {Qy4, + Qyr}). However, it is impor-
tant to consider the informative richness of all experiments. In fact, as an
extreme example, if only one experiment is accounted for by the algorithm
as the "training dataset”, then most likely the identified model will offer a
reasonably good fit for that particular experiment and yet be inadequate
for the remaining experiments (which are the independent "cross-validation
datasets"). This is illustrated in Figures 3.27 to 3.30: model {Q4y + Qypest}
was firstly identified considering only data from experiment 1: the identified
model unsurprisingly describes experiment 1 (red solid lines in Figure 3.30)
well, but does not predict the outcome of the culture for the conditions of
the other experiments (red dashed lines in Figures 3.28-3.30) well. The same
happens when the algorithm considers only data from experiment 2 (blue), 3
(green) and 4 (black): they can only describe well the experiment from which
the parameters were identified.
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Figure 3.27: Model {Qa4g + Qupest}, experiment 1, CHO-S: model simulation
using parameters identified (direct validation) with experiment 1 (red) or
(cross-validation) using only experiment 2 (blue) or 3 (green) or 4 (black).
Circles represent experiment 1’s dataset.

2Since this model considers the existence of a kg, ie. alimitation of growth by progressive glucose depletion.
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Figure 3.28: Model {Q4y + Qupest}, experiment 2, CHO-S: model simulation
using parameters identified (direct validation) with experiment 2 (blue) or

(cross-validation) using only experiment 1 (red) or 3 (green) or 4 (black).
Circles represent experiment 2’s dataset.
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Figure 3.29: Model {Q4y + Qupest}, experiment 3, CHO-S: model simulation
using parameters identified (direct validation) with experiment 3 (green) or

(cross-validation) using only experiment 1 (red), 2 (blue) or 4 (black). Circles
represent experiment 3’s dataset.
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Figure 3.30: Model {Q4y + Qupest}, experiment 4, CHO-S: model simulation
using parameters identified (direct validation) with experiment 4 (black) or

(cross-validation) using only experiment 1 (red), 2 (blue) or 3 (green). Circles
represent experiment 4’s dataset.
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This model is simple enough to be able to adjust itself and describe (only)
one experimental set of conditions but not powerful enough to capture culture
behaviour and to predict how it would react to other different conditions.

Itis, thus, important at this stage to consider all datasets since our purpose
is to have a rough idea of good starting values for some parameters that will
be used later in more complex models. All experimental datasets considered,
thebest fits are presented in Figures 3.31 to 3.34 for the three simple submodels
(44, Q4e, Q) proposed to estimate the substrate limitation phenomena:
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Figure 3.31: Models {Qug + Qupest}, {Quae + Qurest}, {Qar + Qurest}, experiment
1, CHO-S: simulations with models identified using the complete databank.
Circles represent experiment 1’s dataset.
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Figure 3.32: Models {4 + Qurest}, {Qae + Qurest}, {Qar + Qurest}, experiment
2, CHO-S: simulations with models identified using the complete databank.
Circles represent experiment 2’s dataset.
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Figure 3.33: Models {44 + Qurest}, {Qae + Qupest}, {Qar + Qurest}, experiment
3, CHO-S: simulations with models identified using the complete databank.
Circles represent experiment 3’s dataset.
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Figure 3.34: Models {Q4s + Qurest}, {Qae + Qurest}, {Qar + Qurest}, €xperiment
4, CHO-S: simulations with models identified using the complete databank.
Circles represent experiment 4’s dataset.

In Table 3.7, it can be seen that although the best cost value was obtained
with model Qgf ¢ (both glucose and glutamine limitation are assumed),
different runs of the algorithm converge, in this case, to different values for
some of the parameters. In fact, it seems that the available data may not be
informative enough to estimate glutamine limitation and, therefore, different
combinations of values for {kgi; tmax; kcic} lead to similar curves.

On the other hand, for glucose, another substrate, limitation is a phe-
nomenon well present in the data. Therefore, kg can be easily estimated

using model Qyg4..s:: multiple runs of the algorithm all lead to a similar final
value.
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Table 3.7: Identification results for steps #1 to #4f.

Parameter / Step Ql Qz Q3 Q4d Q4e Q4 f
01 = Unax 049] 030 | 024 | 069 | © ®)
0.49) | (0.30) | (0.24) | (0.24) | (0.24)
92 = kGlc 0.14 )
03 = kin @ ®
04 = Ud max 0.053  0.36 @ 0.41
Os = Yxo/Glc 0.03 | 0.02 0.053 0.042 0.082
0.03) | (0.02) | (0.73) | (0.73)
99 = YLac/Glc 1.39
012 = Yxo/Gin 0.12 | 0.08  0.38 0.17 @ 0.31
(0.12) | (0.07) | (0.07) | (0.07)
013 = Y amm/Gin 0.74
] Cost | \ \ \ \ 0.677 \ 0.535 \ 0.472 \

Note: for each column (step/model), the initial parameter guess, whenever not randomly
generated, is shown in parentheses. Cells shaded in grey indicate parameters considered
in that model. Remarks: ) means results are inconclusive because, despite convergence
obtained in each run, the identified values are very different, they have different orders of
magnitude, eg. they range from 10 to 107.

In any case, the main purpose of this step is to check whether an idea of the
amplitude of the substrate limitation constants can be found. In this reduced
simplistic model, these are the parameters responsible for the moment when
cell growth switches to a cell death phase. But it is clear from Figures 3.31 to
3.34 that the phenomenon alone is not able to fully describe the death phase.
We will consider some other hypotheses.

3.6.3.6 Step #5: model Q5 (phases A and B)

Let us presume that another phenomenon can occur also in the culture:
metabolite inhibition, namely, the fact that ammonia and lactate may inhibit
cell growth and contribute to the negativeness of term p,,; during the death
phase.

The terms proposed below in models (s, — Qs are inspired by (de Trem-
blay, 1991)’s model. Taking into consideration the parameter values of this
model (for hybridoma cells) and the range of concentrations of our data bank
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(similar but with CHO cells), these terms assume the curves described in
Figure 3.35.

Gle Gin Gin

Lac Amm Glc

Figure 3.35: How terms used in models {Qs,, - - - , (s} vary for our range of
concentrations (mM) when given De Tremblay’s parameter values. Green
triangles indicate initial value at ty and red squares indicate final value at t.

To start with, very simple hypotheses will be considered:

o Hs,: growth is limited by glucose disappearance, death is enhanced by
lactate accumulation (ie, the pair substrate/metabolite Glc/Lac plays a
major role)

dx; Xo 1 )
Qs {20 = - =
> { dt (61 0, + x» O 01 — Osx3 H

dXv Gle 1
e e e e AL

o Hs;: growth is limited by glutamine disappearance, death is enhanced
by ammonia accumulation (ie, the pair GIn/Amm plays a major role)

dx, X4 1 )
— = -0 =
QSb { dt (61 O3 + x4 491 — O¢x5 A
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dXv

Giln 1
7 - ([Umakaln + GIn ~ Hemax HUmax — kd,AmmAmm) X (361)

o Hs.: growth is limited by glucose and glutamine disappearance, death is
enhanced by lactate and ammonia accumulation (ie, both pairs Glc/Lac
and GIn/Amm play a major role)

dxq X X4 1 1
> { dt 162+x2 O3 + x4 491 — O5x3 01 — Ogxs M

& B Glc Gln B
dt  \"" %o+ Glckey + Gln

1 1
- max X 62
e Hmax = Ka LacLaC [pax — kd,AmmAmm) v (3.62)

o Hs,: (de Tremblay, 1991)’s model structure, ie. growth limited by glucose
and glutamine disappearance, death enhanced by lactate and ammonia
accumulation, insignificant death aslong as glutamine abundant, glucose
consumption partially explained by cell maintenance activities

Q-ﬁ—(e X2 Y g 1 1 Oy )x=
5 - dt B 192+X293+X4 491—95X391—96X597+X4 1=

@ B Glc Gln _
at  \""ko + Glekey + Gln
1 1 ki cin
~Hdmax Umax — Ka 1acLac tmax — kg AmmAmm kg i, + Gln) A0 (363)

Again, notice that (s, ... are submodels and need to be coupled with the
remaining differential equations that further define relations with the other
states so that the model is complete:

de _ _1}1 X dX3 _ 89[1 X
. E - 9_ growthA1, E - 6_ growthA1,
QS,rest . dX4 B _81 dx5 B 9;33 (364)

— = X1, —5 = o X1,
At lelugrowth 1 dt lellgrowth 1
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except for submodel ()s; where glucose, while abundant, is partially used
for maintenance purposes and thus:

dx, ( 1 u L0 X2 )x dxs 69# X
. — —\ 4 Hgrowth 10 1, 37 = 7 Hgrowthr1,
QSd,rest . dogct4 _198 On + x2 dcgctS g;g?) (365)
T Q_H(Ugrowthxll ar Q—H#growthxlf
X7 Glc
here : O = _—
wrhere 10 911 + Xo mGlckm,GlC + Glc

The following initial values were considered for the parameters present
overall in the four models:

o, 1| 0.69 d-1
6, 0.14 mM
03 random(0 — 11) mM
04 0.35 a1
Os random(0 — 14) mM~td1
O random(0 — 28) mM~1 g1
[Ormsavealo = | O7 = random(0 — 900) mM . (3.66)
Og 0.02 10%cell mmol ="
O 1.39 mmol mmol~!
010 random(0 — 2.5 x 10%)  mmol 10~cell d1
611 random(0 — 11) mM
012 0.08 10%cell mmol ™!
| O3 [, | 0.74 mmol mmol ™1

Since the complexity of the models is now greater, starting from a bad ini-
tial guess has a bigger impact on the duration of the identification procedure.
Therefore, an additional step was added where many random 6 are initially
generated<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>