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An advanced day-ahead bidding strategy for wind power producers 
considering confidence level on the real-time reserve provision 
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H I G H L I G H T S  

• Wind power bidding in energy and reserve market respecting reliability of reserve bid. 
• The proposed model is recast in a tractable mixed-integer linear programming approach. 
• Impact of wind fluctuations on portfolio’s profit and reserve confidence are evaluated ex-post.  
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A B S T R A C T   

The current evolutions in electricity market policies combined with the technical progress in wind farm control 
encourage Wind Power Producers (WPPs) to participate in the joint day-ahead energy and reserve market 
(JERM). In this paper, an advanced bidding strategy dedicated to optimal dispatch of the WPP in the JERM is 
proposed. The suggested strategy exploits a novel bi-objective two-stage chance-constrained stochastic model in 
which various revenue streams, stemming from both day-ahead and real-time stages, are fully accounted for. The 
first objective of the presented model is to allocate the optimal share of the power assigned to each market floor 
in the day-ahead stage so as to maximize the WPP’s profit. Then, the formulation considers the confidence level 
of delivering the contracted reserve power in real-time through an additional competing objective. Meanwhile, 
the presented method allows us to also illustrate the effect of reserve availability as a probabilistic measure on 
WPP’s profit. In this regard, the wind speed and system frequency uncertainties are introduced as stochastic 
inputs in the proposed framework. The obtained revenue streams regarding each market floor as well as the total 
revenue of the WPP are then evaluated in a Monte Carlo out-of-sample analysis. The ex-post samples contain 
system frequency data from the Belgian market along with wind speed data representing the wind turbulence 
intensity level. Outcomes reveal not only the effectiveness and flexibility of the proposed model for enhancing 
WPPs’ revenues, but also the importance of properly considering the uncertain real-time delivery of the con
tracted reserve power.   

1. Introduction 

Liberalization of the electricity market exposed new challenges for 
secure and reliable operation of the power systems compared to the 
former vertically integrated structure Therefore, other market floors 
such as the day-ahead reserve market are complementing the day-ahead 
energy market so as to help compensating for the real-time mismatch 
between generation and demand, thereby improving the dynamic as
pects of the power systems [1]. These market floors are accompanied by 
a real-time balancing stage in which the imbalances from the scheduled 
bids are financially settled [2]. 

Meanwhile, the recent worldwide rising investment in renewable 
energy projects such as large wind power plants indicates a broad 
expansion of their penetration in power systems [3]. Despite the eco
nomic and environmental benefits of such sources, their intermittent 
nature deteriorates the power systems reliability and security status to a 
higher extent [4]. Hence, while uncertain generations become more 
significant in power systems, the necessity for a more responsive and 
costly reserve power increases [5]. Consequently, there is an emerging 
opportunity for power producers (which have fast ramping abilities) to 
achieve a greater economic advantage in the liberalized electricity 
market. In particular, WPPs could be incentivized to participate in the 
reserve market since the wind turbines are nowadays equipped with fast 
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Nomenclature 

Abbreviations 
WPP Wind Power Producer 
JERM Joint Day-Ahead Energy and Reserve Market 
BTCS Bi-Objective Two-Stage Chance-Constrained Stochastic 
TSO Transmission System Operator 
CLRA Confidence Level of Reserve Power Availability 
TIL Turbulence Intensity Level 
BRP Balance Responsible Party 
FCR Frequency Containment Reserve 
MOP Multi-Objective Programming 

Sets and indices 
ω/Ω Scenario index/ set of scenarios 
H Set of first-stage decision variables 
Ψ Set of second-stage decision variables 
k Index of MOP sub-problem 
S Set of feasible solution space in the generic MOP problem 
i Index of the optimal Pareto solution 
w Index of wind signal in ex-post analysis 
t’ Index of balancing stage time-interval in ex-post analysis 
f Index of frequency signal 
t Instantaneous time index 
j Index of imbalance settlement period 
τ’

j jth imbalance settlement period 

Parameters 
Δt Market time unit, i.e. 1 h 
λEo Day-ahead energy market price 
λB↑ Imbalance settlement price for over-generation 
λB↓ Imbalance settlement price for under-generation 
θ The required real-time percentage of FCR 
Δf Frequency deviation of the power system 
λRo Day-ahead reserve power procurement price 
λR↓ Penalty rate regarding deviation of available capacity from 

the offered bid 
λa↑ Reserve activation price in terms of energy 
λa↓ Reserve activation penalty rate considering availability 

check 
πω Probability of occurrence of scenario ω 
θω The activated percentage of the FCR at scenario ω 
Pmin/Pmax Minimum/maximum limit of WPP’s generation 
Pq

ω Total available wind power at scenario ω 
M Big-M constant for mixed-integer programming 
m Small positivity tolerance in Big-M method 
εk Right hand side parameter of the constrained objective in 

kth sub-problem 
F2min/F2Max Minimum/maximum bound of the second objective 

function 
Q Number of grid points in ε-constraint method 
rk Right hand side parameter of the constrained objective, 

Risk, in kth sub-problem 
τ Time resolution of reserve power settlement at the 

balancing stage (10 s) 
N Number of time-intervals at the balancing stage 
Pt’ ,w Available capacity regarding reserve market at instance t’ 

for wind signal w 
θt’ ,f Percentage of the called reserve at instance t’ for frequency 

signal f 
τ’ Imbalance settlement time resolution (1/4h) 
P̃t,w Power injected into the network for tth time instance and 

wind signal w considering wind turbine derating 
tj Integral bound of power to calculate the deliverable energy 

for jth imbalance settlement period 
Eτ’

j ,w Available energy of wind signal w at imbalance settlement 

interval τ’
j regarding wind turbine derating 

Decision variables of BTCS model 
PRo Reserve bid regarding the day-ahead reserve market 
PEo Power bid regarding the day-ahead energy market 
Π Total revenue of the WPP in the JERM 
ΠEo Revenue of WPP regarding day-ahead energy market 
ΠRo Revenue of WPP regarding day-ahead reserve market 
ΠE↑

ω Revenue of WPP regarding over-generation at scenario ω 
ΠE↓

ω Revenue of WPP regarding under-generation at scenario ω 
ΔPE↑

ω Positive deviation of injected power at scenario ω from the 
offered bid 

ΔPE↓
ω Negative deviation of injected power at scenario ω from 

the offered bid 
Πa↑

ω Revenue of WPP regarding reserve activation at scenario ω 
Πa↓

ω Penalty for failing to activate the reserve power at scenario 
ω 

ΠR↓
ω Penalty regarding the deviation of the reserve power at 

scenario ω from the offered bid 
ξω↑ Binary variable regarding reserve activation at scenario ω 
ξω↓ Binary variable regarding failure to activate the reserve 

considering availability at scenario ω 
ΔPR

ω Deviation of available capacity margin at scenario ω from 
the offered bid 

PR
ω Available reserve power at scenario ω 

Pqo The total amount of day-ahead offered bids 
PE

ω Delivered power to the energy market at scenario ω 
μω Binary variable regarding the availability of sufficient 

power capacity 
δω Binary variable regarding the status of available reserve 

power at scenario ω 
F1(x)/F2(x) First/second objective function of the generic MOP 

method 
Φ Confidence level of revere power availability 
Φ Risk of inability to provide the reserve power 
PRo

i Optimal power bid of day-ahead reserve market for ith 

Pareto point 
PEo

i Optimal power bid of day-ahead energy market for ith 

Pareto point 

Other variables 
ΠE Total revenue of WPP regarding energy market and 

imbalance settlement 
PE Real-time injected power to the network 
ΠR Total revenue of WPP regarding reserve market and 

balancing stage 
PR Real-time available capacity margin 

Π̃
Ro
t’ ,w,i Ex-post capacity procurement revenue for Pareto point i at 

time t’ for wind signal w 
Π̃

a
t’ ,(w,f),i Ex-post reserve activation revenue at instance t’, Pareto 

point i, wind and frequency signal (w,f) 

Π̃
R 

Total ex-post revenue of WPP in the reserve market 
Π̃E

τ’
j ,w,i Ex-post revenue of WPP in energy market for Pareto point 

i, settlement period τ’
j and wind signal w 

Π̃
E 

Ex-post total revenue of WPP in the day-ahead energy 
market and imbalance settlement 

ΔΠ̃
R
n % Normalized ex-post revenue deviation of the WPP in the 

reserve market 

ΔΠ̃
E
n% Normalized ex-post revenue deviation of the WPP in the 
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control schemes which enable them to rapidly alter their output power 
[6,7]. Different control techniques can be implemented, such as derat
ing, as well as relative and absolute reserve procurement strategies. The 
de-rating method consists in restricting wind turbine maximum output 
power by a new specified upper bound, thereby creating a flexibility 
margin for upward regulation. The relative reserve power procurement 
strategy specifies a fixed percentage of the available wind power for 
curtailment. Finally, the absolute strategy restricts the wind turbine 
output power by a fixed quantity, given that sufficient power is avail
able, to take part in the reserve market whereas the rest of the available 
power is allocated to the energy market [7]. The latter strategy thus 
prioritizes the provision of the contracted reserve power. 

A possible way to tackle the imbalance cost of wind power deviation 
is to team up with other stable power sources, such as thermal power [8] 
or hydro technology [9], in order to maximize the portfolio’s profit. 
However, coordinated bidding may not be recognized in some markets 
[10]. Moreover, owing to the recent developments in the wind turbines’ 
technology, market incentives, and forecast tools, the WPPs are seeking 
to obtain an optimal offering strategy while acting as single GENCO 
owners in the electricity market [11]. Accordingly, several studies have 
been devoted to devising efficient tools for the participation of WPPs in 
the day-ahead energy market while minimizing real-time energy im
balances [12–18]. 

In [12] a stochastic bidding algorithm for single and dual imbalance 
settlement schemes is presented to enhance WPP’s profit in the day- 
ahead energy market while minimizing the imbalance costs consid
ering generation and price uncertainties. An optimal energy bid is ob
tained in [13] by reducing the commercial risk of imbalance cost using 
Markov probabilities. In addition, the impact of market closure delays 
and forecasting window lengths are studied. In [14], an hourly bidding 
strategy for a WPP participating in the day-ahead energy and adjustment 
market is proposed while controlling the risk of profit variability at the 
expense of a minor decrease in expected profit. In [15] an energy of
fering curve aiming to maximize the WPP’s profit is obtained through 
the two-dimensional distribution of price and wind power prediction 
errors. The presented offer curve has greater profitability rather than the 
offer curve of the marginal distribution. An optimal energy bidding 
strategy to maximize the operating profit of a WPP in a real-time market 
is developed in [16], taking into account the uncertainty of other energy 
sources. The presented model employs a bi-level stochastic optimization 
scheme in which the lower-level clears the real-time market and the 
upper-level reduces the negative profit of the WPP. In [17], the negative 
impact of real-time energy deviations of WPP is mitigated by buying a 
quantity of energy from the intra-day reserve market which is calculated 
by the Cauchy-Lorentz distribution model. In [18] two types of offering 
strategies hedge the risk of profit variability by relying on a naïve use of 
power forecast and stochastic model. Interestingly, it is shown that the 
stochastic approach outperforms the bidding strategy based on the naïve 
forecast in terms of expected profit and its variability. 

However, despite the potential ability of wind turbines in reserve 
provision, limited attention is devoted to the participation of the WPP in 
the JERM while reducing the imbalances that occur in real-time (for 
energy and reserve contributions). In [19], an analytical method is 
applied to increase the wind power profit by participating in the JERM. 
In this model, both WPP and the TSO encounter less intra-hour varia
tions in the energy market since part of these variations are absorbed in 
the reserve market. However, the TSO may further suffer from the risk of 
real-time reserve power unavailability. Moreover, the wind turbine 
control strategy is neglected in their model. Thus, the obtained optimal 
bids and the expected revenue may not be attainable in practice. In [20], 

different control strategies for the allocation of energy and reserve 
power in the bidding strategy are taken into account. The proposed 
model employs market penalties and wind power uncertainties in an 
analytical approach based on the newsvendor problem. The optimal 
bidding strategy of the WPP aiming to maximize its expected profit in 
the JERM, based on market incentives, considering wind power uncer
tainty is dealt with as a stochastic programming problem in [21]. The 
proposed method also evaluates the impact of having better forecast 
information, close to the real-time stage, on WPP’s offering strategy. 

Despite the interesting techno-economic aspect of WPPs’ participa
tion in the JERM, the intermittent nature of their output power is a 
barrier for allowing them to play in the reserve market. Remarkably, 
market policies are shaped to ensure a competitive and liberalized 
environment for participation of all market players subject to the system 
security and reliability. Notably, reserve capacity requirement is 
conventionally considered as a deterministic metric, e.g. fraction of 
demand, the largest generator or line contingency, in the market 
clearing process [22]. However, such practice can impose a great cost on 
the power system’s operation since neglecting the compromise between 
the system’s operating cost and security of supply [22]. Moreover, such 
criterion leaves out the stochastic nature and underlying reliability of 
the committed units and, thereby could result in a substantial loss-of- 
load in the power system [23]. Accordingly, several approaches in the 
course of the past 40 years have been presented so as to integrate a 
probabilistic reserve constraint in the market-clearing algorithm [23]. 
For instance, a probability method is presented in [24] such that the 
reliability of reserve service, based on the probability of not meeting the 
load, remains fixed. The authors in [22] explicitly modeled a probabi
listic reserve criterion in the unit commitment problem which properly 
represents the reserve capacity with respect to various risk levels. In 
[25], a computationally efficient unit commitment approach with a 
probabilistic reserve based on the full capacity outage probability dis
tribution is presented. A pool-based market-clearing method that in
corporates a hybrid deterministic-probabilistic reliability measure based 
on the probabilities of loss-of-load due to the single and double gener
ation outage for scheduling the capacity services is proposed in [23]. 

In regard to the aforementioned efforts and, more importantly, the 
increased uncertainty in power systems, owing to the high penetration 
of renewable energy sources, the incorporation of such probabilistic 
reserve constraints in the electricity market could potentially tackle the 
problem of wind power integration in the reserve market. 

Accordingly, reserve market participants should guarantee a certain 
confidence level of reserve power availability, determined by the TSO, 
in order to be considered as a reserve provider. Nevertheless, while 
participants ensure a certain CLRA, their real-time energy and reserve 
power deviations should be financially settled. 

Remarkably, it should be noted that the classical offering strategy of 
the WPP in the market, which is merely based on the market incentives, 
does not ensure a firm reliability level. In other words, the WPP offers 
power quantities such that the income resulting from the positive in
centives are greater than the negative incentives. Also, the TSO is not 
informed about the confidence level of the contracted bid which, in 
return, deteriorates the system security. Hence, this paper aims to 
address the research gap regarding the optimal bidding strategy of the 
WPP while fulfilling a required CLRA. Additionally, Table 1 briefly 
provides the readers with the advantages of the proposed method over 
the methods presented in the literature in the context of the WPP’s 
bidding strategy. 

Particularly, in this paper, firstly the remuneration and penalty 
mechanism of the applied JERM model while satisfying the interest of 

energy market 
ΔΠ̃n% Normalized ex-post total revenue deviation of the WPP 

Φ̃ TIL% Real-time inability of reserve procurement regarding each 

TIL in ex-post analysis  
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system operators and the WPP is detailed. The model is formulated as a 
bi-objective two-stage chance-constrained stochastic framework, where 
the first objective is to obtain the optimal bids of WPP in the different 
day-ahead market floors, while the second one is to ensure the desired 
real-time CLRA. Additionally, the absolute reserve power procurement 
strategy is adapted in the model to make sure that the obtained decisions 
of the BTCS framework are practical with respect to the wind turbine 
control scheme. Therefore, the obtained efficient Pareto front provides 
WPP with a powerful tool to participate in JERM. To do so, a plausible 
set of system frequency and hourly wind speed (provided by forecasting 
tools) are considered as uncertain variables in the model. It should be 
noted that generating a set of discrete scenarios, based on the available 
information, for simulating the uncertainties of the influencing param
eters of the model, e.g. wind speed, price, in the stochastic programming 
is regularly practiced in power system applications [26,27]. Then, the 
effectiveness of the proposed approach is properly evaluated through an 
extensive out-of-sample analysis containing three wind turbulence in
tensity levels with a high resolution, i.e. 0.1 Hz, along with the real-time 
system frequency data. Furthermore, the obtained results are also 
compared with the results of the state of the art methods to show the 
effectiveness of the proposed framework. Finally, the impact of market 
incentives on WPP’s risk attitude and biding strategy is detailed. 

The organization of the paper is as follows. In Section 2, the JERM 
framework is presented. The optimal offering strategy for the partici
pation of WPP in JERM is detailed in Section 3. In Section 4, the ex-post 
analysis methodology is described. Numerical results are provided in 
Section 5 so as to evaluate and discuss the effectiveness and flexibility of 
the proposed approach. A discussion regarding the advantages and 
limitations of the proposed framework with respect to the state-of-the- 
art method is given in Section 6. Finally, Section 7 concludes the paper. 

2. Proposed market framework 

In the proposed framework, WPPs are considered as BRPs and are 
thus able to contribute to the jointly cleared day-ahead energy and 
reserve market. Therefore, WPPs could submit two separate bids, PRo 

and PEo, regarding respectively the reserve and energy markets for each 
period Δt of the following day. The deviations from the day-ahead 
scheduled bids are compensated by an imbalance settlement mecha
nism. Indeed, the quantity of energy fed in the system by a BRP may 
likely deviate from its nominated bid due to the inherent uncertainties in 

power generation. Therefore, the TSO applies an imbalance pricing 
mechanism to ensure the real-time demand-supply balance at the system 
level. To do so, the deviating BRP is expected to purchase its generation 
deficit and sell its generation surplus at the energy imbalance price. The 
imbalance pricing scheme varies between markets [28]. In this paper, 
we consider an imbalance settlement mechanism in which BRPs are 
discouraged to deviate from the contracted bids by means of a dual 
pricing. The net revenue of the BRP regarding the day-ahead energy 
market and imbalance settlement, ΠE, versus the injected power to the 
network, PE, in this scheme is graphically shown in Fig. 1. As seen in this 
figure, the BRP receives a defined revenue with respect to the offered 
energy bid and day-ahead energy market price, λEo. However, real-time 
over-generation is remunerated to the committed unit at a lower price, 
λB↑, with respect to λEo. Likewise, the BRP should purchase the deficit of 
generation at a higher price, λB↓. 

The reserve market enables the TSO to rely on power resources in 
order to resolve a potential system imbalance or contingency, thus 
ensuring systems security and stability. Therefore, producers can offer 
the required power-related commodities to the TSO in this market. The 
reserve market services are categorized by their response time and 
duration [29]. In this paper, the focus is around the FCR which requires 
the provision of power reserves in less than 30 s. The producers who 
offer FCR are remunerated based on the offered power in the day-ahead 
reserve market. However, depending on market rules, they can also get 
additional energy based revenue for real-time activation of FCR [30]. 
When it is not the case, markets should accommodate such additional 
energy payment in their policies, so as to incentivize WPPs to actively 
participate in the reserve market. 

The required real-time percentage of the FCR, θ, which is automat
ically activated by the TSO in a decentralized way, is a function of the 
system frequency deviation Δf. In this regard, when a deviation is within 
the dead-band, |Δf| ≤ 0.01 Hz, the system is considered to operate 
normally and no FCR service is activated. However, a specific percent
age of FCR is activated for 0.01≤|Δf| ≤ 0.2 as a linear function of Δf. 
Then, the full power is activated for |Δf| > 0.2. This relationship be
tween the FCR activation and the system frequency deviation is illus
trated in Fig. 2. It should be noted that positive frequency deviations 
indicates a surplus of generation and thus a down-regulation require
ment, whereas negative Δf requires the activation of upward regulation. 

Concurrently, a screening scheme exists to verify the real-time 
availability of FCR, and penalizes the reserve providers which fail to 
provide the offered capacity. Accordingly, two penalty prices are 
considered in the proposed JERM structure in order to meritoriously 
remunerate the committed providers. 

[MW]

[€]

Fig. 1. Revenue obtained at the day-ahead energy and imbalance settlement 
versus delivered power (plain black line). Fig. 2. Percentage of FCR activation with respect to frequency deviation Δf.  

Table 1 
Advantages of the proposed strategy over the methods presented in the literature regarding WPP’s bidding strategy.  

References Participation in energy 
market 

Participation in reserve 
market 

Control technologyof wind 
turbine 

Integrating uncertainty of system 
frequency 

Consideration of reserve 
reliability 

[12–18] ✓ ⨯ ⨯ ⨯ ⨯ 
[19] ✓ ✓ ⨯ ⨯ ⨯ 
[20–21] ✓ ✓ ✓ ⨯ ⨯ 
[Proposed] ✓ ✓ ✓ ✓ ✓  
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In the day-ahead stage, the FCR provider is paid for the offered 
quantity, PRo (MW) at the cleared reserve market price, λRo (€/MW/h). 
However, at the balancing stage, the real-time deviations from PRo, is 
penalized by a specified price which is considered to be equal to λRo is 
this study. Moreover, when the reserve provider fails to provide the 
required FCR, the unit pays an additional penalty. This adaptive 
mechanism ensures that the FCR provider yields no advantage regarding 
the activated FCR in terms of energy when it fails in the availability 
check. The net revenue of WPP in the reserve market, ΠR, versus the 
available power capacity, PR , in this mechanism is illustrated in Fig. 3. 
In this figure, the dotted blue line shows the income for the real-time 
reserve procurement. It is seen that for PR ≥ PRo, the committed unit 
receives a constant expected revenue regarding the day-ahead offer. 
However, the lack of reserve power availability leads to a loss of revenue 
in real-time. Moreover, as shown by the dotted red line, the participant 
obtains a constant revenue of λa↑θ PRo when it passes the availability 
check in real-time for reserve activation. In contrast, when PR < PRo, the 
committed unit is penalized at a higher price factor λa↓θ PRo. Finally, the 
total revenue of WPP in real-time is obtained by adding both remuner
ation strategies as shown by the plain black line. 

3. Offering strategy of wind power producers 

The proposed BTCS framework takes advantages of a multi-objective 
programming approach to simultaneously optimize WPP’s profit and 
CLRA in the JERM. The idea behind the presented framework is 

illustrated in Fig. 4. As seen in this figure, WPP’s profit and confidence 
level of reserve power availability is modeled as a stochastic model, in 
which system frequency and wind speed uncertainties appear as the 
inputs of profit maximization problem while the maximization of CLRA 
only required wind speed uncertainty as the input. Finally, the bi- 
objective optimization programming allows us to illustrate the impact 
of the risk threshold, defined by the TSO, on WPP’s revenue. The details 
and formulation of each objective and the applied MOP approach are 
further elaborated in the following subsections, i.e. 3.A-C.  

3.A Objective functions and problem constraints 

The first objective function Π of the proposed MOP problem aims to 
maximize WPP’s profit in a two-stage stochastic programming frame
work, in which the first and second stages respectively represent the 
day-ahead and real-time market floors. The objective function is 
formulated as follows: 

Max
H,Ψ

Π =
{

ΠEo + ΠRo}+

{
∑

ω∈Ω
πω(ΠE↑

ω − ΠE↓
ω

+Πa↑
ω − Πa↓

ω − ΠR↓
ω )

}

(1) 

The terms ΠEo and ΠRo respectively represent the revenue of the WPP 
in the day-ahead energy and reserve markets, and are given by: 

ΠEo = λEoΔtPEo (2)  

ΠRo = λRoPRo (3) 

Then, the effect of real-time deviations from the contracted day- 
ahead bids on WPP’s revenue is taken into account by the second term 
of (1). In that regard, πω is the probability of occurrence of scenario 
ω ∈ Ω. The energy imbalance settlement is represented by ΠE↑

ω and ΠE↓
ω , 

which respectively indicate the financial compensation regarding real- 
time surplus and deficit of generation in scenario ω. The mathematical 
expression of the energy imbalance settlement, as described in Section 2 
and illustrated in Fig. 1, is as follows: 

ΠE↑
ω = λB↑ΔtΔPE↑

ω (4)  

ΠE↓
ω = λB↓ΔtΔPE↓

ω (5)  

where ΔPE↑
ω and ΔPE↓

ω are respectively the positive and negative power 
imbalances with respect to the day-ahead energy market bid of scenario 
ω. 

[MW]

[€]

Fig. 3. Representation of the different revenues from the FCR, i.e., procure
ment revenue as a function of the offered FCR bid (blue), activation revenue as 
a function of the percentage of called reserve θ (Red), and total revenue in the 
reserve market as a function of the delivered FCR (black). 

Fig. 4. Proposed bi-objective two-stage stochastic chance-constrained framework for profit maximization of WPP with respect to risk thresholds.  
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The last 3 elements in (1) represent the real-time balancing stage in 
which Πa↑

ω and Πa↓
ω respectively indicate payment and penalty for reserve 

activation, while ΠR↓
ω deals for the penalty for unavailability of the FCR 

in scenario ω. The mentioned elements for a given θω , as explained in 
Section 2 and shown in Figs. 2 and 3, are formulated as follows: 

Πa↑
ω = λa↑Δtθωξω↑ (6)  

Πa↓
ω = λa↓Δtθωξω↓ (7)  

ΠR↓
ω = λR↓ΔPR

ω (8)  

where ξω↑ and ξω↓ are conditional decision variables, which are equal to 
PRo regarding the real-time availability and unavailability of the 
scheduled reserve power, respectively. Also, ΔPR

ω indicate the negative 
deviation of the available reserve power PR

ω fromPRo in scenario ω. 
It should be noted that the model is only considering the provision of 

upward reserve regulation since WPP is not able to benefit from fuel- 
saving return in downward regulation (like the conventional units do) 
[19,20]. 

The constraints associated with the first objective function (1) are as 
follows: 

PEo + PRo = Pqo (9)  

Pmin≤ Pqo ≤ Pmax (10)  

PEo − PE
ω = ΔPE↓

ω − ΔPE↑
ω (11)  

PE
ω + PR

ω = Pq
ω (12)  

PR
ω ≤ PRo (13)  

PR
ω ≤ Pq

ω (14)  

PR
ω ≥ PRo − M(1 − μω) (15)  

PR
ω ≥ Pq

ω − Mμω (16)  

PRo − PR
ω ≤ ΔPR

ω (17)  

m(1 − δω) ≤ ΔPR
ω ≤ M(1 − δω) (18)  

ξω↓ ≤ Pmax(1 − δω) (19)  

ξω↓ ≤ PRo (20)  

ξω↓ ≥ PRo − Pmaxδω (21)  

ξω↑ ≤ Pmaxδω (22)  

ξω↑ ≤ PRo (23)  

ξω↑ ≥ PRo − Pmax(1 − δω) (24) 

where Pqo is the total bid of the WPP at the day-ahead stage for en
ergy and reserve market which is limited by (9) and (10). The power 
mismatch in scenario ω is obtained by the power balance equation in 
(11), where PE

ω is the power fed in the network regarding scenario ω. Eq. 
(12) ensures that the allocated power in the energy and reserve market 
does not exceed the total available power Pq

ω of scenario ω. Constraints 
(13)-(16) indicate the absolute control strategy of the WPP, where μω is a 
binary decision variable. In this strategy, a fixed amount of reserve 
power is allocated to the reserve market providing that sufficient power 
is available, i.e. μω = 1. However, when the available power,Pq

ω, is lower 
than PRo, the power is fully allocated to the reserve market, i.e.μω = 0, 
such that PR

ω = min(PRo,Pq
ω). The negative deviation of the allocated FCR 

from its analogous day-ahead bid is obtained by (17). The status of ΔPR
ω 

is expressed by (18), where δω ∈ {0,1} is equal to 0 in case of negative 
deviation (ΔPR

ω > 0), and equal to 1 when no deviation from the con
tracted reserve power bid exists (ΔPR

ω = 0). It should be noted that m and 
M are respectively the minimum and maximum bounds of the decision 
variable. Constraints (19)-(21) let the conditional decision variable ξω↓ 
to be equal to PRo so as to calculate the penalty for reserve activation 
failure, provided that a negative deviation between the contracted and 
allocated FCR exist, i.e. if ΔPR

ω > 0 then ξω↓= PRo. However, constraints 
(18)-(20) assign ξω↑ to PRo when ΔPR

ω = 0, so as to calculate the real-time 
reserve activation revenue of scenario ω . It should be also noted that the 
first stage decision variables, H =

{
PEo,PRo, Pqo

}
, and the second stage 

variables including {PE
ω,ΔPE↓

ω ,ΔPE↑
ω ,PR

ω,ΔPR
ω, ξω↓, ξω↓} ∈ Ψ are non- 

negative continuous. Additionally, {μω, δω} ∈ Ψ are binary decision 
variables of the second stage. Moreover, Pq

ω and θω are the uncertainty 
sources respectively related to the available power and system frequency 
in scenario ω. In the same fashion as [12,18–21], it is assumed that the 
generation of WPP is sufficiently low in comparison with the generation 
at the system level, such that it is not affecting market prices (so-called 
price-taker assumption). Owing to certainty equivalent theory since all 
prices enter linearly in (1) and WPP is a price taker, the uncertainties of 
market prices are substituted by their expected value [20]. Additionally, 
it allows us to better concentrate on the risk behavior of the WPP 
regarding the offered power quantities in the market. 

The presented objective function in (1), along with the constraints 
(9)-(24), define the two-stage stochastic optimization problem aiming to 
maximize WPP’s profit in the JERM. 

Then, the second objective of the proposed BTCS problem, which 
maximizes CLRA is formulated as follows: 

Max
H,Ψ

Φ = P
(
ΔPR

ω = 0,ω ∈ Ω
)

(25)  

Pmin≤ PRo ≤ Pmax (26)  

PR
ω ≤ PRo (27)  

PR
ω ≤ Pq

ω (28)  

PR
ω ≥ PRo − M(1 − μω) (29)  

PR
ω ≥ Pq

ω − Mμω (30)  

PRo − PR
ω ≤ ΔPR

ω (31)  

ΔPR
ω ≥ 0 (32) 

The objective function of the CLRA problem, Φ, is presented in (25), 
where P is a probability function that computes the probability of real- 
time reserve availability throughout the scenarios. Similar to Section 3. 
A, PRo is the first stage decision variable regarding the day-ahead reserve 

[MW]

MW]

Fig. 5. Feasible solution space and objective function value of CLRA.  
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power bid. PR
ω and ΔPR

ω are the second stage decision variables, which 
respectively, correspond to the real-time allocated reserve power and 
violation of PR

ω from the contracted bid PRo. Additionally, μω is a binary 
decision variable that is equal to 1 when sufficient power regarding the 
contracted reserve bid is available and 0 otherwise. Also, Pmin, Pmax are 
respectively, the lower and upper power production limits of the wind 
turbine. The uncertainty of the available wind power and percentage of 
the FCR activation concerning the system frequency in scenario ω are 
represented by Pq

ω and θω, respectively. Constraints (26)-(32) guarantee 
that the obtained solution is in the feasible space of the problem. 
However, it should be noted that this single-objective optimization 
problem does not have a unique solution in the feasible space since there 
is no gain to provide a likely high reserve power bid. To better illustrate 
this effect, let us consider a single scenario where Pq

ω = 2.5MW with the 
probability of 100%, and 0≤ PRo ≤ 5MW. As shown in Fig. 5, the 
maximum value of Φ can be obtained through various decision varia
bles,PRo and PR

ω within the feasible solution space as shown by a blue 
line.  

3.B Bi-objective optimization approach: 

In Multi-Objective Programming (MOP), instead of obtaining a single 
global optimum solution, as familiarized in single-objective problems, 
the concept of Pareto optimality is employed. Pareto optimality states 
that the performance of any objective function cannot be improved 
without negatively affecting the other objective functions, owing to the 
competing nature of objectives [31]. 

The weighted-sum and ε-constraint methods are the most predomi
nant scalarization approaches among the other MOP methods in the 
literature of the power systems [32]. However, the ε-constraint method 
has some advantages over the weighted-sum approach, such as no need 
for normalization of the objective functions and controllability of the 
number of generated efficient solutions by simply adjusting a resolution 
parameter [32,33]. Based on the ε-constraint formulation, one objective 
function is chosen as the main objective,F1(x), and the other, e.g. 

F2(x), is considered as inequality constraint. The generic formulation 
of such an approach for a bi-objective problem is as follows: 

Max
x∈S

F1(x) (33)  

s.t.F2(x) ≥ εk  

where εk = F2min + k(F2Max − F2min)/Q; k = 0,⋯,Q 
where S is the feasible region of the MOP problem and εk is a lower 

bound for F2(x). Thus, by varying εk in a range of minimum and 
maximum value of the second objective, i.e. F2min, F2Max, Q + 1 sub- 
problems are produced. Accordingly, the optimal solution of each sub- 
problem corresponds to a Pareto solution. However, the sub-problems 
with an infeasible solution should be ignored in the process of MOP. 
Moreover, the obtained Pareto front may contain some dominated so
lutions, which should be filtered out from the optimal set.  

3.C BTCS Framework: 

In order to plausibly investigate the effect of the risk threshold on the 
WPP’s profit and offered power quantities in the JERM, the problem is 
recast as a MOP. Accordingly, WPP’s profit (1) and the confidence level 
of reserve availability (35) are considered as the two competing objec
tives of the proposed MOP problem, i.e. Max

x∈(9)− (24)
{(1), (35) }. It implies 

that the proposed BTCS framework concurrently maximizes the WPP’s 
profit in a two-stage stochastic environment while ensuring a sufficient 
CLRA. Accordingly, Eq. (1) is considered as the primary objective 
function of the ε-constraint method, while the second objective (25), i. 
e.Φ, is treated as an inequality constraint. Additionally, the feasible 
space of the problem is defined by constraints (9)-(24). Also, the 

minimum and maximum bounds of Φ are 0 and 1, respectively. It should 
be noted that constraints (26)-(32) can be discarded in the MOP 
approach as they either are redundant or not limiting the feasible space. 
The compact representation of the BTCS model is finally given by: 

Max
H,Ψ

Π

Constraints(9) − (20)
Φ = ℙ

(
ΔPR

ω = 0,ω ∈ Ω
)

Φ ≥ εk = k/Q k = 0,⋯,Q

(34) 

Furthermore, the primary objective function and the defined con
straints (9)-(24) sufficiently limit the feasible space of the problem, 
thereby one decision set per CLRA is returned (as opposed to the earlier 
description through Fig. 5). 

The probabilistic constraint in (34), which controls the real-time 
provision of the committed reserve, can be expressed as a chance- 
constrained program, and thus approximated by various approaches 
such as second-order cone program if the distribution of random vari
ables follows a Gaussian function [34]. When dealing with an unstruc
tured distribution, sampling average approximation technique 
accompanied by mixed integer programming can be used to estimate 
(34) [35–37] as follows: 

Φ =
∑

ω∈Ω
πωδω (35) 

Nevertheless, in chance-constrained programming, it is more com
mon to measure the probability of constraint violation, i.e. risk, rather 
than its confidence level. Therefore, the last two constraints of (34) and 
(35) can be reformulated as follows: 

Φ = 1 −
∑

ω∈Ω
πωδω (36)  

Φ ≤ rk = k/Q k = 0,⋯,Q (37)  

where rk is the analogous parameter to that of εk and Φ is the one’s 
complement of Φ, which indicates the optimal risk level regarding the 
tradeoff between competing objectives. 

It is worthwhile noting that the proposed framework considers a 
single time period. However, the model can be modified by new sce
narios and market settings to obtain the optimal bids of the consecutive 
time steps. 

4. Ex-Post analysis 

In this Section, we evaluate the obtained solutions of the BTCS 
framework using the out-of-sample approach. To that end, a set of wind 
speed and system frequency signals with a resolution of τ are employed 
so as to assess the actual revenue of the WPP. Therefore, the ex-post 
revenue of WPP regarding the reserve market participation including 
FCR procurement and activation payment along with the financial 
compensation in the balancing stage is described in Section 4.A. 
Furthermore, the ex-post revenue of WPP concerning the day-ahead 
energy market and the imbalance settlement is detailed in Section 4.B. 

4.A. Ex-post revenue of WPP in the reserve market 
In the proposed JERM market, the resolution of reserve power set

tlement at the balancing stage is considered to be τ = 10 s. Therefore, 
the actual revenue of WPP for reserve procurement concerning day- 
ahead remuneration and real-time settlement is obtained by: 

Π̃
Ro
t’ ,w,i = N − 1λRoPRo

i

[
1 − I

(
Pt’ ,w < PRo

i

) ]
(38)  

where Π̃
Ro
t’ ,w,i is the instantaneous revenue of WPP for Pareto optimal 

point i at time t’ for wind signal w. Then, PRo
i corresponds to optimal 

solution i within the Pareto front, while Pt’ ,w is the available power at 
instance t’ for wind signal w. I is the indicator function that is equal to 1 
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when the operand in the parenthesis is satisfied and 0 otherwise. N is the 
number of intervals within one hour with respect to the defined reso
lution of the reserve market, i.e. N = 360. 

Subsequently, real-time remuneration and settlement for reserve 
power activation depend on system frequency. Hence, the percentage of 
the called reserve as described in Fig. 2 should be calculated for each 
instance regarding the frequency samples. 

Π̃
a
t’ ,(w,f ),i = N − 1θt’ ,f PRo

i

[
λa↑ − λa↓I

(
Pt’ ,(w,f ) < PRo

i

) ]
(39)  

where Π̃a
t’ ,(w,f),i is the actual instantaneous reserve activation revenue of 

WPP in which θt’ ,f is the percentage of the called reserve at instance t’ for 
frequency signal f. 

The total actual revenue of WPP in the reserve market, Π̃R, can be 
assessed using (38) and (39) for each Pareto point, i.e. risk level. It 
should be noted that in an ideal situation, the obtained revenue should 
match its corresponding expected value obtained by BTCS model, i.e. 
ΠRo +

∑
ω∈Ωπω(Πa↑

ω − Πa↓
ω − ΠR↓

ω ). 
4.B. Ex-post revenue of WPP in the energy market 
The real-time energy imbalance should also be settled in the same 

fashion as explained in Section 2. In this paper, it is assumed that the 
BRP submits its nomination at the end of the day-ahead market with a 
quarter-hour resolution, τ’ = 1/4 h. Consequently, an asymmetric 
imbalance tariff is imposed for BRPs who violate their nominations. 
Moreover, nominations of the WPP in this problem for the all intervals 
within one hour day-ahead market time unit is considered to be τ’PEo

i , 
since WPP only injects power to the network with no off-takes. There
fore, the fed-in energy to the system for each imbalance settlement in
terval is obtained by: 

Eτ’
j ,w

=

∫ tj+1

tj
P̃t,wdt (40)  

where P̃ t,w is the real-time available power injected into the network, 
considering the wind turbine de-rating mode, and tj,∀j∈{0,⋯,3} defines the 
boundary of each time interval τ’

j of the imbalance settlement process. 
Eτ’

j ,w is the available energy of wind signal w at imbalance settlement 

interval τ’
j . 

The actual net revenue of WPP resulting from the day-ahead and 
imbalance settlement,Π̃E

τ’
j ,w,i, regarding each time interval τ’

j , wind signal 

w and Pareto solution i is obtained as follows: 

Π̃
E
τ’

j ,w,i
= λEoτ’

jP
Eo
i + λB↑

(
ETj ,w − τ’

jP
Eo
i

)
I
(

ETj ,w

≥ τ’
j P

Eo
i

)
− λB↓

(
τ’

j P
Eo
i − ETj ,w

)
I
(

ETj ,w < τ’
jP

Eo
i

)
(41) 

Finally, for each Pareto point, i.e. risk level, the total ex-post hourly 
revenue of WPP regarding the day-ahead energy and imbalance settle

ment stage,Π̃
E
, can be obtained using (41) which should be ΠEo +

∑
ω∈Ωπω(ΠE↑

ω − ΠE↓
ω ) in an ideal condition. 

5. Numerical results 

In this Section the performance of the proposed BTCS bidding 
strategy is verified using a 5.3 MW wind turbine with a cut-in, rated, and 
cut-out wind speeds of 3, 12, and 25 m/s for participation in the JERM. 
In that regard, the in-sample and out-of-sample results of the proposed 
bidding strategy are discussed and compared to the classical bidding 

strategy method in Section 5.A and 5.B, respectively. Moreover, the 
impact of market incentives on the WPP’s revenue and risk attitude for 
the base case is evaluated through 4 additional cases in Section 5.C. The 
prices and penalties associated with the presented market for the base 
case are shown in Table 2. 

5.A. In-sample analysis 
The stochastic process of the wind speed is simulated using the 

ARMA scenarios generation method. To do so, firstly a set of hourly 
mean wind speed data, available in [38], is fed into the ARMA model so 
as to obtain its associated statistical parameters. Then, a set of 1000 
wind speed scenarios, covering the interval between the day-ahead 
market gate closure and the first hour of the next day, is produced by 
means of the estimated model. However, these numerous scenarios 
should appropriately be reduced, while keeping a reasonable approxi
mation of the original distribution, in order to be practically tractable in 
the optimization process. Accordingly, a set of 20 wind speed scenarios, 
i.e. representing a sub-set of the most plausible scenarios in the original 
set, are collected through a scenario reduction technique based on 
Kantorovich distance. In this method, one scenario is chosen per itera
tion such that the Kantorovich distance of the main and reduced set is 
minimized. The iteration stops when the size of the plausible subset 
reaches a predetermined number. Subsequently, the selected hourly 
wind speed scenarios are converted to power scenarios using the static 
power curve of the wind turbine. Additionally, a set of 9 system fre
quency scenarios is also selected in the same manner so as to model the 
percentage of FCR activation as a stochastic process. The details of both 
scenario generation and reduction techniques used in this paper can be 
found in [39]. 

Both aforementioned stochastic sources along with the JERM tariffs 
are applied to the BTCS framework in order to obtain the optimal Pareto 
set. Meanwhile, a fine resolution over rk is selected so as to reach a dense 
grid in the ε-constraint method, thereby sufficiently covering the entire 
Pareto front. Moreover, the weakly and strongly dominated solutions are 
filtered out in order to achieve a Pareto front that merely holds the 
efficient solutions. The proposed BTSC model is executed in Julia/JuMP 
[40] in 10.68 s on a MacBook Pro hardware set with Intel Corei5 CPU 
2.3 GHz. 

The resulting decisions of the BTCS framework for the first stage 
variables with respect to the risk of inability to provide the contracted 
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Fig. 6. First stage decision variables of the BTCS model regarding different risk 
levels for the base case, PRo

i (dotted blue line),PEo
i (plain red line), and Pqo

i 
(dashed black line). 

Table 2 
Prices and penalties in the JERM for the base case.  

λEo [€/MWh] λRo [€/MW] λB↑ [€/MWh] λB↓ [€/MWh] λa↑ [€/MWh] λa↓ [€/MWh] λR↓ [€/MW] 

33 36 30 40 40 60 36  
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reserve power are shown in Fig. 6. In this figure, the horizontal axis is 
the expected probability of inability to provide the contracted reserve, 
Φ, while the vertical axis represents the scheduled power at each market 
floor. It can be seen that when the risk level, Φ, is between [0,0.3], WPP 
bids a fixed quantity of power in the JERM. As expected, when the risk 
level rises, WPP submits a higher power quantity in the market (and it 
faces thus more imbalance penalties). Likewise, risky strategies lead to a 

prominent share of the available power that is committed to the reserve 
market while a lower portion is allocated to the energy market, 
reflecting that bidding in the reserve market is more advantageous than 
in the energy market (in the studied market conditions). To get a better 
insight, the penalty paid by the WPP as a function of the risk threshold is 
shown in Fig. 7. It can be seen that the induced penalty regarding the 
reserve market monotonically increases with respect to the risk level. 

The obtained in-sample revenue of the WPP using the proposed BTCS 
framework is illustrated in Fig. 8. It can be observed that the expected 
revenue of WPP in the reserve market (dotted blue line) is monotonically 
improving with respect to the permitted risk level, while the expected 
revenue stream of the energy market (plain red line) exhibits the 
opposite trend. This observation is aligned with the allocated power bids 
at market floors which are shown in Fig. 6. Remarkably, for risk level 
above 0.3, WPP still gathers revenue for its energy imbalance in real- 
time while not submitting any bid to the day-ahead energy market. 
The entire expected revenue of WPP for competing in the JERM is shown 
in Fig. 9 on a Pareto-efficient front in which the total expected revenue 
of WPP steadily grows with regard to risk levels. Accordingly, the pro
posed BTCS model appears to afford the WPP with a flexible tool to 
strategically bid in the JERM with respect to the allowed level of risk. 

5.B. Ex-post analysis 
As mentioned earlier, the stochastic process of intra-hour wind speed 

variations is approximated by an hourly mean wind speed scenario 
generation routine in the day-ahead decision-making process. This 
assumption arises from the fact that most wind speed forecasters 
concentrate on an hourly resolution which is thus readily accessible for 
WPPs. Therefore, in order to demonstrate the impact of real-time intra- 
hour wind speed variations on WPP’s actual revenue, using the proposed 
BTCS tool, an extensive out-of-sample validation is performed. Accord
ingly, three sets of wind speed signals, embodying different TIL, i.e. 
10%, 30%, and 50%, are initially produced using [41]. Each set carries 
50 wind speed signals with a resolution of 0.1 Hz on a one-hour span. 
Furthermore, another set of system frequency realizations, with an equal 
dimension, is captured by employing real-world frequency deviation 
data available in [38]. Therefore, regarding each TIL 2500 samples are 
generated so as to evaluate the obtained results of the BTCS framework. 

In this case, the classical bidding strategy approach [19–21], pro
vides the WPP with the optimal bids of PEo = 0 and PRo = 2.375[MW], 
and revenue of 80.97 €. However, such a bid demonstrates a high-risk of 
unavailability in ex-post, which is equal to 0.585, 0.585, 0.569 
regarding the TILs of 10%, 30, 50%, respectively. Therefore, the offered 
bids may even deteriorate the system’s security of supply as the TSO 
generally considers high reliability for the reserve services. 

The ex-post revenue of WPP regarding playing in the reserve and 
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Fig. 7. The penalty paid by WPP in the reserve market with respect to the 
inability to provide the contracted reserve bid for the base case. 
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Fig. 8. The expected revenue of WPP at energy (plain red line) and reserve 
market (dotted blue line) for the base case. 
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Fig. 9. The total expected revenue of WPP for participating in the JERM for the 
base case versus risk levels. 
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Fig. 10. The Expected revenue of WPP in the reserve market (black line) and its 
related actual revenue for TIL of 10% (dotted blue line), 30% (dashed green 
line), and 50% (red dash-dotted line) in the base case. 
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energy market, based on the obtained decisions of the BTCS model, is 
respectively shown in Figs. 10 and 11. In these figures, the blue, green, 
and red styled lines respectively correspond to the TIL of 10%, 30%, and 
50% while the related expected in-sample revenue is shown by a plain 
black line. It can be seen that for each TIL, the ex-post revenue resulting 
from the energy and reserve market has the same trend as its associated 
expected in-sample term. Nevertheless, the actual revenue of WPP in the 
reserve market is higher than its related expected value for a low TIL, i.e. 

10%. In other words, the in-sample BTCS model overestimates the un
certainty around intra-hour wind speed fluctuations for this case, which 
results into conservative decisions. Conversely, for 30% TIL, the actual 
reserve market revenue is slightly below the expected term, while TIL of 
50% is considerably lower than the expected in-sample revenue due to 
the inability of the WPP to offer the scheduled reserves. 

More interestingly, compared to the reserve market, the real-time 
revenue of WPP in the energy market has an inverse behavior with 
respect to the increase of turbulence intensity. This aspect stems from 
the fact that a high turbulent wind yields more energy when the oper
ating point of the wind turbine is in the convex region of the power curve 
[42–43]. Nevertheless, turbulence has a positive correlation with the 
fatigue of the wind turbine components [44], (thereby leading to an 
increase in maintenance costs) and power loss (due to the wake effect) 
[45]. However, it should be noticed that the static power curve of the 
turbine, used in this study, merely maps the mean wind speed to mean 
output power, and thus disregards the dynamics involved in the wind 
characteristics nor the turbine. In that respect, the WPP should incor
porate wind turbine dynamic model in order to better assess the 
captured output power and component fatigue regarding the turbulent 
characteristics of the wind. 

As seen in Fig. 11, for a low TIL, i.e. 10%, the actual revenue of WPP 
in the energy market is lower than the expected in-sample one while the 
one computed for turbulence level of 30% is really close to the expected 
in-sample revenue. It is also interesting to observe that the obtained 
revenue for a high TIL of 50% can even be higher than the expected one. 

In other words, WPP may compensate for some loss of revenue by 
leveraging the additional available energy in turbulent wind. However, 
the loss of revenue in the reserve market is more substantial than the 
gain of revenue in the energy market concerning the increase of tur
bulence. As shown in Fig. 12, the total real-time revenue of WPP in the 
JERM concerning the expected revenue declines by the increase of tur
bulence level. 

To gain insight into this matter, the deviation of actual revenue 
streams from their expected in-sample values for the different TIL is 
normalized by the total expected revenue of the same Pareto point. The 

results are detailed in Table 3. It can be seen that ΔΠ̃
R
n %, normalized 

revenue deviation of the reserve market, is between [-0.152, 12.601] for 
10% TIL, [-5.118, − 0.399] for TIL of 30% and finally [-13.137, − 1.485] 

for 50% TIL. Moreover, ΔΠ̃
E
n% , normalized revenue deviation of the 

energy market, for TIL of 10%, 30% and 50% is in range of [− 13.313, 
− 0.947], [− 0.758, 1.438] and [0.091, 8.015], respectively. It can be 
observed that when the risk level increases, the actual revenue term is 
getting farther from the total expected term. Additionally, ΔΠ̃n%, i.e. 
resulting from both markets, for TIL of 10%, 30%, and 50% is in the 
range of [− 1.328, − 0.346], [ − 4.134, − 1.501], and [− 5.590, − 1.394]. 

It is interesting to see that the wide range of ΔΠ̃
E
n% andΔΠ̃

R
n % is shrunk 

compared to the normalized total revenue deviation ΔΠ̃n%. It means 
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Fig. 11. The Expected revenue of WPP in the energy market (black line) and its 
related actual revenue for TIL of 10% (dotted blue line), 30% (dashed green 
line), and 50% (red dash-dotted line) in the base case. 
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Fig. 12. The overall expected revenue of WPP in the JERM (black line) and its 
related actual term for TIL of 10% (dotted blue line), 30% (dashed green line), 
and 50% (red dash-dotted line). 

Table 3 
Normalized deviation of each revenue stream regarding different TIL for the base case.   

ΔΠ̃n%  ΔΠ̃
E
n%  ΔΠ̃

R
n %  

TIL 
Φ  

10% 30% 50% 10% 30% 50% 10% 30% 50% 

0.000 − 1.099 − 1.157 − 1.394 − 0.947 − 0.758 0.091 − 0.152 − 0.399 − 1.485 
0.037 − 1.228 − 1.501 − 2.089 − 1.375 − 0.543 1.553 0.147 − 0.958 − 3.641 
0.099 − 1.241 − 2.055 − 3.054 − 2.664 − 0.478 3.079 1.423 − 1.577 − 6.133 
0.197 − 1.260 − 3.001 − 4.283 − 5.069 − 0.260 4.556 3.809 − 2.741 − 8.839 
0.215 − 1.163 − 3.192 − 4.543 − 5.923 − 0.201 4.930 4.760 − 2.990 − 9.473 
0.298 − 1.328 − 4.080 − 5.524 − 8.419 − 0.240 5.547 7.091 − 3.840 − 11.071 
0.343 − 0.836 − 4.134 − 5.590 − 10.027 0.355 6.556 9.192 − 4.489 − 12.146 
0.393 − 0.414 − 4.017 − 5.470 − 11.464 0.773 7.251 11.051 − 4.791 − 12.721 
0.444 − 0.346 − 3.946 − 5.330 − 12.690 1.172 7.807 12.344 − 5.118 − 13.137 
0.529 − 0.712 − 3.668 − 4.890 − 13.313 1.438 8.015 12.601 − 5.106 − 12.905  
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that even though the model cannot fairly assess the specific revenue of 
each market floor with respect to the turbulence and high-risk levels, it is 
still able to sufficiently estimate the entire revenue of the WPP in the 
JERM with an acceptable range. 

The obtained results of the BTCS framework regarding the second 
objective function, Φ, is reported in the first column of Table 4, which 
corresponds to the defined risk threshold by the TSO. Additionally, the 
out-of-sample analysis regarding the real-time inability of FCR pro

curement for TILs of 10%, 30, 50% ,Φ̃ TIL%, are detailed in the 2nd, 3rd 
and 4th columns of this Table. It is observed that the actual risk level 
associated with the inability to procure reserve power for 10% TIL, 

Φ̃ 10%, is lower than the expected risk metrics, for Φ < 0.529, while 
greater for a high TIL, i.e. 30% and 50%. Moreover, it should be noted 
that setting a high-risk threshold for reserve provision by the TSO, i.e. 
higher than 0.5, is unrealistic, as these products should be highly reli
able. Additionally, it should be further remarked that for Φ = 0.529, 

Φ̃ 10%and Φ̃ 30%is slightly higher than the case of 50% TIL. This is evident 
since its associated reserve power bid is equal to the deterministic value 

of power scenarios, i.e. slightly (3%) higher than the mean power of the 
generated wind signals. In other words, in turbulent wind, the possibility 
of reaching this rather high power-bid is higher than wind with a low 
TIL. Nevertheless, the actual revenue of WPP regarding this bid is still 
much lower than the case of 10% and 30% TIL because the deviation 
term ΔPR

ω in (8) is more significant in a higher turbulent wind. 
5.C. Impact of market incentives on WPP’s revenue and risk attitude 
In order to investigate the impact of market incentives on the WPP’s 

revenue and its risk attitude, 4 cases regarding different market prices 
and penalties are presented. In each case, a specific incentive factor in 
the reserve market is changed while the other incentives remain un
changed as reported in Table 2. The variability of the total revenue as a 
function of the risk threshold is shown in Fig. 13(a)-(d). Also, similar to 
the base case, as discussed in Section 5.A-B, the associated expected in- 
sample revenue is shown by a plain black line and the ex-post revenue 
concerning the TIL of 10%, 30% and 50% are respectively represented 
by blue, green and red styled lines. 

In case 1, the day-ahead reserve procurement price, λRo, is increased 
to 39 [€/MW] in order to investigate the effect of such variation on WPP’s 
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Fig. 13. (a)-(d). The impact of reserve market incentives on the risk-taking attitude and WPP’s revenue including in-sample and ex-post analysis for TILs of 10%, 
30% and 50%, (a) day-ahead reserve procurement price is set to 39, (b) reserve activation price is set to 88, (c) penalty regarding the deviation of the available 
capacity from the offered one is set to 39, (d) reserve activation penalty rate is set to 88. 

Table 4 
The real-time inability of reserve power deployment as a risk metrics concerning different TIL for the base case.  

Φ  Φ̃ 10%  Φ̃ 30%  Φ̃ 50%  

0.000 0.000 0.033 0.134 
0.037 0.000 0.083 0.201 
0.099 0.001 0.183 0.316 
0.197 0.014 0.294 0.399 
0.215 0.022 0.316 0.414 
0.298 0.063 0.373 0.446 
0.343 0.132 0.423 0.476 
0.393 0.220 0.467 0.500 
0.444 0.363 0.518 0.529 
0.529 0.585 0.585 0.569  
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risk attitude and associated revenue. The single-objective solution, i.e. 
neglecting the risk threshold, of this case yields the expected revenue of 
92.49 € regarding the optimal offered bids of PEo = 0and PRo =

5.08[MW] in the JERM. Remarkably, as the WPP does not meet any risk 
threshold in biding strategy, the ex-post analysis shows that, for all TILs, 
the WPP is never able to provide the offered capacity bid throughout the 

market period, i.e. Φ̃ 10% = Φ̃ 30% = Φ̃ 30% = 1. 
On the other hand, when using the BTCS model, this favorable 

incentive allows the WPP to withstand a higher risk regarding the 
inability to provide the offered FCR service, compared to the base case, 
as illustrated in Fig. 13(a). As seen in this figure, the ex-post revenue of 
the WPP for 10% TIL stays suitably close to the in-sample results, 
whereas highly diverges from the expected revenue for higher TILs, i.e. 
30% and 50%. Moreover, as shown in Table 5, for 10% TIL, the actual 
risk level, obtained by out-of-sample analysis, regarding the inability to 
procure the offered FCR is lower than the expected risk level for 
Φ < 0.529. It means that, when the defined risk threshold, indicated by 
the TSO, is higher than 0.529, WPP may not be able to meet this 
requirement in real-time. However, defining such a high-risk threshold 
for reserve procurement by the TSO is unrealistic as these services 
should be highly reliable. The real-time risk level, obtained by ex-post 
analysis, for high TIL, i.e. 30% and 50%, are detailed in the third and 
fourth columns of Table 5. 

In the second case, the reserve activation price, λa↑ , concerning the 
real-time energy deployment is augmented to 88 [€/MWh]. In this 
configuration, when neglecting the risk index (single-objective prob
lem), despite WPP submits the same bids as the base case, i.e. PEo =

0and PRo = 2.375[MW], it expects an increased revenue of 82.61 € 
compared to the base case, 80.97 €. However, such bids demonstrate a 
high-risk of unavailability in ex-post, which is equal to 0.585, 0.585, 
0.569 regarding the TILs of 10%, 30, 50%, respectively. Nevertheless, 

when incorporating the allowed risk threshold in the bidding strategy, 
WPP is able to obtain the optimal bids with respect to the defined risk 
threshold to improve its revenue in the JERM, as shown in Fig. 13(b). As 
seen in this figure, the ex-post revenue of the WPP closely follows its 
expected term for TIL of 10% while further deviates for higher TILs. 
Moreover, as shown in Table 6, apart from the case when the allowed 
risk is impractically high, Φ = 0.529, the real-time FCR unavailability is 
below the expected threshold defined by the TSO for 10% TIL. Also, the 
real-time risk level, obtained by ex-post analysis, for high TILs, i.e. 30% 
and 50%, are detailed in the third and fourth columns in Table 6. 

In case 3, the penalty regarding the deviation of the available ca
pacity from the offered one, λR↓ , is increased to 39[€/MW], so as to study 
the effect of such negative incentive in WPP’s revenue and risk behavior. 
The outcomes of the single-objective problem for such a penalty setting 
shows that the revenue of the WPP compared to the related solution of 
the base case decreases (79.50 € versus 80.97 €). More importantly, the 
risk of procuring such a bid is 0.363, 0.518 and 0.529 for TILs of 10%, 
30% and 50%, respectively. Although, when applying the risk measure 
in the bidding strategy, such negative incentive, firstly, entails the 
WPP’s decisions not to exceed a risk of unavailability higher than 0.444. 
Additionally, as shown in Table 7, for 10% TIL, the ex-post risk of 
inability to procure the offered bid is lower than the one defined by the 
TSO. Moreover, the out-of-sample revenue of the WPP for this situation 
is close to the expected term as indicated in Fig. 13(c). It can also be seen 
in the same figure and Table that the ex-post revenue and risk measure 
gets farther from the expected values regarding higher TILs. 

In case 4, the reserve activation penalty rate, λa↓, is increased to 88[€/ 

MWh], so as to study the effect of this negative market incentive on 
WPP’s behavior in the JERM. It should be noted that, when merely 
considering the WPP’s profit as the objective function and disregarding 
the risk threshold, WPP’s optimal revenue is 79.91 € which is lower than 
the revenue obtained by the base case. Also, the out-of-sample analysis 
shows that the real-time unavailability of such a bid is 0.363, 0.518 and 
0.529 for TIL of 10%, 30% and 50%, respectively. Moreover, when 
integrating the risk level threshold in the model, the interaction of 
market incentives, do not allow the WPP to take any decision riskier 
than 0.444, as seen in Fig. 13(d). Also, it can be seen in Fig. 13 that the 

Table 5 
The real-time inability of reserve power deployment as a risk metrics concerning 
different TIL for case 1.  

Φ  Φ̃ 10%  Φ̃ 30%  Φ̃ 50%  

0.000 0.000 0.033 0.134 
0.037 0.000 0.083 0.201 
0.099 0.001 0.183 0.316 
0.197 0.014 0.294 0.399 
0.243 0.022 0.316 0.414 
0.296 0.063 0.373 0.446 
0.343 0.132 0.423 0.476 
0.393 0.220 0.467 0.500 
0.444 0.363 0.518 0.529 
0.529 0.585 0.585 0.569 
0.645 0.709 0.625 0.593 
0.697 0.867 0.689 0.629 
0.746 0.950 0.742 0.665 
0.790 0.983 0.786 0.692 
0.836 0.997 0.843 0.740 
0.934 1.000 1.000 1.000  

Table 6 
The real-time inability of reserve power deployment as a risk metrics concerning 
different TIL for case 2.  

Φ  Φ̃ 10%  Φ̃ 30%  Φ̃ 50%  

0.000 0.000 0.033 0.134 
0.037 0.000 0.083 0.201 
0.099 0.001 0.183 0.316 
0.197 0.014 0.294 0.399 
0.243 0.022 0.316 0.414 
0.262 0.063 0.373 0.446 
0.343 0.132 0.423 0.476 
0.385 0.220 0.467 0.500 
0.444 0.363 0.518 0.529 
0.529 0.585 0.585 0.569  

Table 7 
The real-time inability of reserve power deployment as a risk metrics concerning 
different TIL for case 3.  

Φ  Φ̃ 10%  Φ̃ 30%  Φ̃ 50%  

0.000 0.000 0.033 0.134 
0.037 0.000 0.083 0.201 
0.099 0.001 0.183 0.316 
0.197 0.014 0.294 0.399 
0.243 0.022 0.316 0.414 
0.278 0.063 0.373 0.446 
0.343 0.132 0.423 0.476 
0.393 0.220 0.467 0.500 
0.444 0.363 0.518 0.529  

Table 8 
The real-time inability of reserve power deployment as a risk metrics concerning 
different TIL for case 4.  

Φ  Φ̃ 10%  Φ̃ 30%  Φ̃ 50%  

0.000 0.000 0.033 0.134 
0.037 0.000 0.083 0.201 
0.099 0.001 0.183 0.316 
0.198 0.014 0.294 0.399 
0.215 0.022 0.316 0.414 
0.262 0.063 0.373 0.446 
0.343 0.132 0.423 0.476 
0.385 0.220 0.467 0.500 
0.444 0.363 0.518 0.529  
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ex-post revenue of the WPP for 10% TIL is acceptably close to the ex
pected term. Additionally, as detailed in Table 8, the real-time un
availability of the contracted FCR is less than the expected one (defined 
by the TSO). However, evidently, when the TIL increases, the ex-post 
revenue deviates further from the expected revenue and the WPP is 
not able to meet the indicated risk threshold. 

Accordingly, the variation of market incentives, including the prices 
and penalties, directly affect the obtained revenue of the WPP. More 
interestingly, the interaction of these incentives defines the maximum 
tolerable risk regarding reserve unavailability. In particular, when the 
penalty rates associated with the reserve market increases, the 
maximum tolerable risk decrease whereas the increases in the reserve 
market prices allow the WPP to take a riskier decision regarding maxi
mization of its profit. Therefore, the market incentives alone cannot 
limit the risk attitude of the WPP. However, by integrating the risk 
threshold definition in the biding strategy framework, WPP can maxi
mize its profit while respecting the defined risk threshold. 

6. Discussion 

The current advancements in electricity market regulations and 
control mechanisms of wind turbines motivate wind power producers to 
participate in the joint energy and reserve market. As shown in the re
sults Section, the classical offering strategy of WPP in the market, which 
is merely based on the market incentives [19–21], does not ensure a firm 
reliability level. In other words, WPP offers power quantities such that 
the income resulting from the positive incentives are greater than the 
negative ones. Also, the TSO is not informed about the confidence level 
of the contracted bid which deteriorates the system security. Therefore, 
their intermittent nature is a great concern of the TSO to consider them 
as a reserve provider, since these services are expected to be highly 
reliable (as conventional units). Nevertheless, regarding the advantages 
of the probabilistic reserve procurement metrics [22–25], discussed in 
Section 1, the TSO can define a risk threshold for the participation of 
WPP in JERM. In this way, WPP integrates the indicated risk threshold in 
its bidding strategy algorithm so as to maximize its profit while 
respecting market polices. The proposed BTCS framework illustrates the 
potential benefits of WPP’s profit improvement while respecting a large 
range of confidence level which can be imposed by the TSO. It should be 
noted that future research should consider the dynamics of wind tur
bines while evaluating the expected results in ex-post. Moreover, with 
the increase of wind farm size in the near future, WPP could act as a 
price-maker, thus affecting market prices by their offered bids. There
fore, integrating market price uncertainty and performing a global 
sensitivity analysis based on market incentives should be considered. 
Finally, the scenario generation approach used in current studies which 
are based on hourly forecast should be improved using shorter time step 
(minute or even, ideally, 1- second) wind speed forecast tools so as to 
better assess the fluctuations of wind speed. 

7. Conclusion 

In this paper, firstly, a market framework, which incentivizes the 
wind power producer to participate in the day-ahead energy and reserve 
market so as to maximize its profit, is described. In this market setting, 
the transmission system operator also benefits by enhancing system 
security due to the appropriate penalty settings in the balancing stage, 
while specifying a new risk metric for the real-time unavailability of the 
scheduled reserve bids. Consequently, an advanced bidding strategy for 
the participation of the wind power producer in this market, considering 
practical constraints of wind turbine and market rules, is proposed. 
Then, an extensive out-of-sample validation regarding different turbu
lence intensity level is performed ex-post to verify the validity of the 
obtained results. It is shown that, in contrast with traditional models, the 
obtained results of the proposed bidding strategy ensure the availability 
of the offered bid as a probabilistic risk metric and improve the 

producer’s revenue in the market, thereby they could practically be 
considered as a reserve provider. On the other hand, the risk of un
availability of the reserve power in classical approach could increase to 
100%, depending on market incentives, thus threatening system’s se
curity of supply. Additionally, it is seen that with the increase of tur
bulence intensity level, the actual revenue of the wind power producer 
gets farther from the expected value. However, the deviation is still 
acceptable, i.e. around − 5%. Nevertheless, the dynamic characteristics 
of the wind turbines and turbulent wind as well as intra-hour wind speed 
fluctuations are among the important aspects of the bidding strategy 
that should properly be addressed in future research works. Moreover, 
introducing the chance-constrained problem in the multi-objective 
optimization context could open up new avenues of research to apply 
more efficient approaches in order to obtain a higher computation ef
ficacy and quality of the efficient frontier. 
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