

Joint Meeting of the French & Italian sections, Pisa 2014

Diluted Combustion of Low Calorific, Alternative Fuels on a 30 kW furnace

G. MOSCA, D. LUPANT

Faculté Polytechnique de Mons, Thermal Engineering & Combustion Unit, Place du Parc n°20, B-7000 Mons, Belgium

Diluted Combustion

Why

- High combustion efficiencies
- Low NOx & CO emissions
- **No flame front** formation

How

- High recirculation rates
- Flue gases temperature higher than **self-ignition** fuel one

Framework

Increasing request from industry for new combustion techniques which can be safely used to burn biogas, gasified waste or by-product gases.

Diluted combustion can be a very interesting solution. No flame front is present, thus fuel with highly variable calorific values can be burned with no or after simple injection system modifications.

30 kW Test facility Front main view Rear wall: Section (Rear view) **Optical Access** rofeellog 4 Water Cooled cooling & Main exhaust 02, CO2, CH4, reaction CO, NOx on zone: dry basis **OH** images by an Intensified **UV Camera** 350 mm Rotameters System fed by **Gas Bottles &** Ø 2,8 & **Central** Electrical Air controlled by 4,5 mm preheater Mass flow Ø 24,8 mm

Research at UMONS

Main Objectives

 Creation of an experimental database for a furnace working in diluted combustion with different alternative fuels. Successfully tested

	N2	CO2	СН4	H2	CO	LHV (kJ/Nm³)
CH4			100%			35806
COG	2%	1,5%	28,5%	62%	6%	17652
B 50	28%	12%	14,25%	32,5%	13,25%	10282
Biogas		40%	60%			21484
Syngas	45,5%	12%	1,5%	20%	21%	5346

- Understanding of main phenomena and the influence of changes in main parameters setting for the different fuels. Main investigated effects:
 - Air preheating temperature
 - Immersion of the water cooled tubes
 - Diameter of the fuel injectors
 - Reduced fuel power

Test campaign 2014

Biogas
CH4
Syngas*

30kW Fuel power (*15kW)

Excess Air 15%

Air preheating 800°C

Fuel injectors Ø 2,8 & 4,5* mm

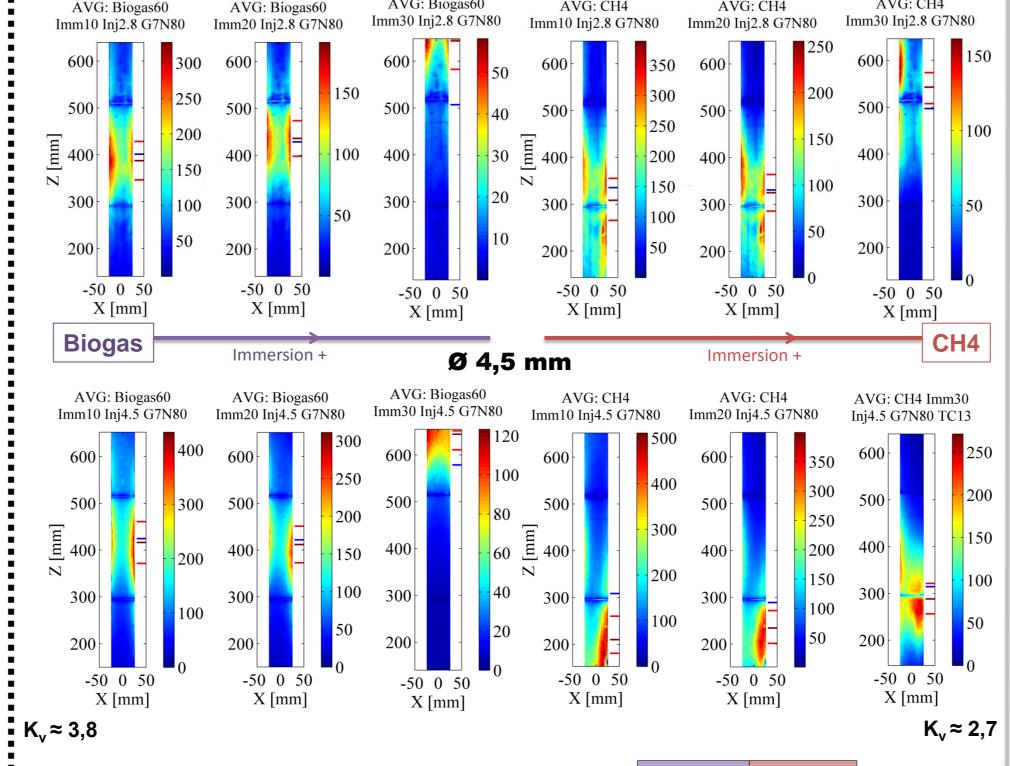
Window: Opened* (& Closed for Biogas)

Immersion 10* – 20 – 30 cm

SPW Service public de Wallonie 1ea Energy Technology

This work has been performed in the framework of a research program funded by the Walloon Government. The authors wish to thank the Walloon regional authorities for their financial support.

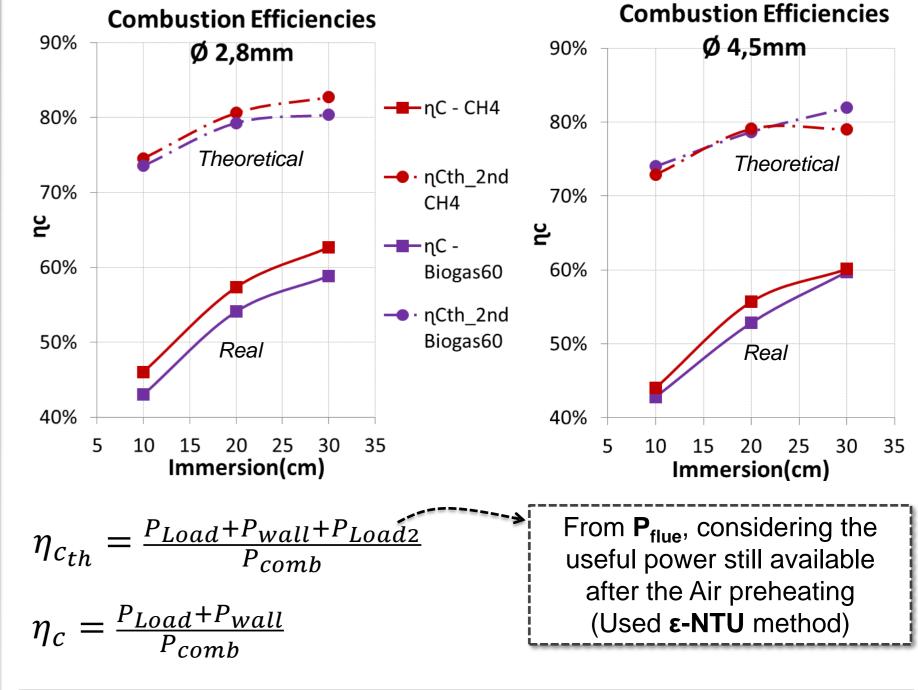
Test Campaign 2014: Results with Opened Window

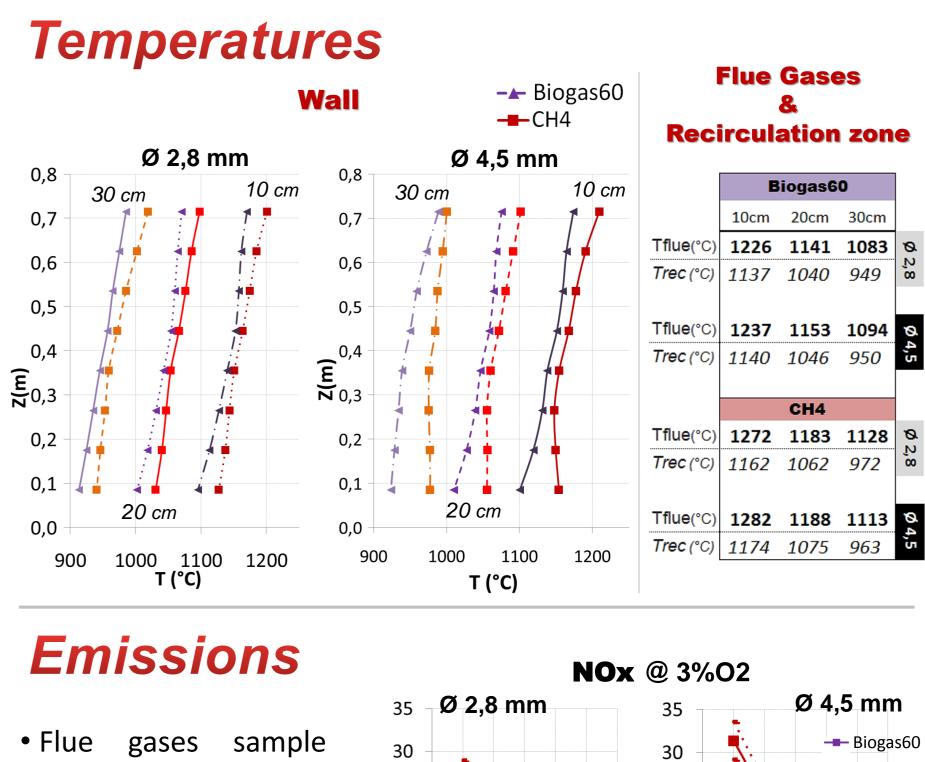

Heat balance

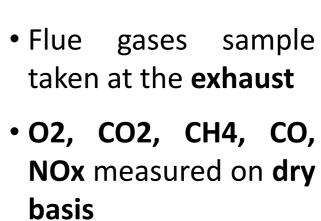
 $P_{comb} + S_{hFuel} + P_{Air} = P_{Flue} + P_{Load} + P_{Wall} + \Delta P_{Losses}$

Biogas60

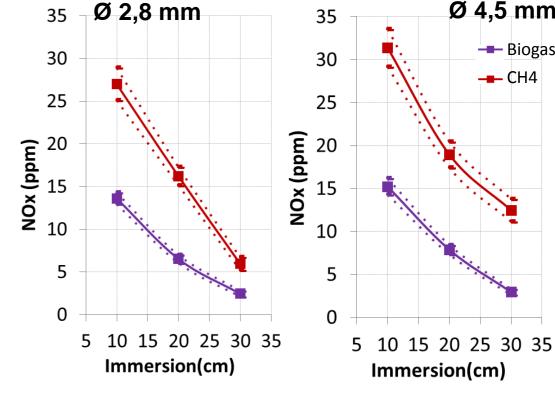
	biogasoo			0117			
Imm (cm)	10	20	30	10	20	30	
Pflue (kW) Pload (kW)	20,3 9,1	18,7 12,9	17,6 14,9	19,6 10,1	18,0 14,0	17,1 16,3	Fuel Injectors Ø 2,8 mm
Pload+Pwall(kW) ΔP (kW)	12,9 6,7	16,2 5,0	17,6 4,7	13,8 6,5	17,2 4,7	18,8 4,1	
Pflue (kW) Pload (kW)	•	18,9 13,0	17,8 15,5	19,7 9,9	18,1 13,8	16,8 16,0	Fuel
Pload+Pwall(kW) ΔP (kW)	12,8 6,5	15,8 15,1	17,9 4,2	13,2 7,0	15,8 16,7 5,1	18,0 18,1	Injectors Ø 4,5 mm






- Extraction of OH profiles

 Comparison to Wall Temp
- Comparison to Wall Temp.
 Vair (m/s) 75 75
 Calculation of speeds from vfuel (m/s) 119 72 Ø 2,8 mm experimental data
 Vfuel (m/s) 47 28 Ø 4,5 mm


Combustion efficiency Combustion Efficiencies

Detected CO levels always lower than100 ppm

Main conclusions

- Similar behavior between Biogas and CH4
- No strong differences in terms of efficiencies
- Reduced wall temperatures & NOx levels for Biogas (cooling effect of CO2 higher content)
- Higher losses when main reaction zone is placed at the bottom of the chamber
- Biogas more sensitive to the increase of the Load immersion, so to the decrease of flue gases temperature.
- Effects of decreasing fuel injectors diameter:
- main reaction zones are more **stable** and do not show asymmetries;
- the reaction zones are **more extended** along the chamber height due to the high momentum rate of fuel jets.