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ABSTRACT

The multiplicity of drug resistaniycobacterium tuberculosis (Mtb) strains is a growing
health issue. New therapies are needed, actingeantargets. The 13-Ag85 was already
reported to reduce the amount of trehalose dimyedipid of the mycobacterial cell wall.
This inhibitor of Ag85c increased the mycobactenehll permeability. We previously
showed thatM. tuberculosis strains, even multi-drug resistant and extenstdelyg resistant
strains, can be susceptible to vancomycin whenaroitantly treated with a drug altering the
cell envelope integrity. We investigated the effedft the 13-Ag85 on vancomycin
susceptibility ofM. tuberculosis. Although no synergy was observed, a new targétisfdrug

was discovered: the production of phthiodioloneyioterosate (PDIM B).
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The emergence of multi- and extensively drug rasis{MDR and XDR)Mycobacterium
tuberculosis (Mtb) strains emphasized the urgent need for newitudercular drug
development [1]. In this perspective, we focused dvogs targeting the external lipid
envelope of these bacteria. Mtb, the main causatgent of tuberculosis, has a particular
waxy cell wall outward its peptidoglycan layer. Thery long chain fatty acids, up to C100
and called mycolic acids, are attached to arabiactgn, which in turn is covalently bound to
peptidoglycan. The giant complex macromolecule rage with extractable waxy lipids,
forming a hydrophobic wall [2]. Among these complgids, trehalose dimycolate (TDM),
sulfolipids (SL), diacyltrehalose (DAT), penta- poly-acyltrehalose (PAT) and phthiocerol-
or phthiodiolone dimycocerosate (PDIM A and PDIM &% virulence factors important for
host interaction. Additionally, both TDM and PDIMag an important structural role. TDM,
known as *“cord factor”, is involved in the host'smmune system modulation during
granuloma formation, but it is also involved in th@ycobacteria wall impermeability,
conferring protection against drug entrance [3PHOIM A and PDIM B have been shown to
be involved in mycobacterial wall impermeabilityadgst drugs, oxidative stresses and SDS
[5-9].

The large molecular size of the glycopeptides pnesséhem from penetrating the waxy Mtb
cell wall. However, in previous articles, we showbet drugs inhibiting PDIM synthesis
could increase the inhibitory action of vancomyamMtb [9,10]. The report of Warrier et al.,
on a TDM inhibitor specifically targeting the Ag85 MDR and XDR Mtb clinical strains
and able to improve Mtb permeability to glyceralised our attention [11]. The Ag85C is part
of an enzymatic complex including Ag85A and Ag8%Bd the most active enzyme involved
in the transfer of mycolic acid residues, carried ttehalose monomycolate (TMM), on

arabinogalactan [12].

Based on Warrieet al. results, we tested the susceptibility of Mtb taxa@mycin in the
presence of this inhibitor, 13-Ag85, in order to@stigate a potential synergistic effect of this
combination [11]. The 13-Ag85 was synthetized asvusly described [13]. We performed
drug susceptibility assay following the agar prapor method on the Mtb H37Rv strain [14].
Vancomycin and 13-Ag85 were serially diluted alamran combination in 24-well plates and
inoculated with 10 pl 1Hto 10* dilutions of McFarland No. 1 turbidity culture. &lobtained
minimal inhibitory concentration (MIC) were used talculate the fractional inhibitory
concentration index (FICI) following the Checkertmbamethod: FICI= MIG/MIC, +
MICp/MICy, [15]. MIC, were 50 pg/ml for vancomycin and Mj@as 44 pg/ml for 13-Ag85.
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Vancomycin serially diluted with 4.4 pg/ml 13-Ag&% concentration still gave an Mjgof
50 pg/ml vancomycin. Similarly, 13-Ag85 seriallylaied with 10 pug/ml vancomycin fixed
concentration gave a Mlgof 44 ug/ml 13-Ag85. A FICI of 2 was obtained,os¥ing no

synergistic effect of the two drugs.

Since these results suggested that the 13-Ag8&t&aropcluding Ag85C [11], are not involved
in vancomycin resistance, we verified the vancomyausceptibility by the agar proportion
method of a strain lacking this enzyme (KO), MTO18btained by transposon insertion,
compared to the CDC1551 wild type Mtb strain (WI®]. The absence of the expression of
the Ag85C in the MT0137 strain was confirmed bytpomic analysis (Fig. S1). In contrast
to the WT strain, no specific peptide correspondingthe Ag85c was identified and
sequenced from the KO sample. The WT and KO stishingved similar MIC for vancomycin
(50-200 pg/ml for the WT and 100-200 pg/ml for #@). Considering that the vancomycin
susceptibility was unchanged in the KO strain comgao WT strain, we considered that
Ag85C is not an interesting target to potentiajegbeptide effect. It is worth noting that we
observed the same susceptibility to the 13-Ag8542319/ml) in both strains, as previously
reported by Warrier et al. [11].

13-Ag85 inhibitory effect should therefore rely dhe inhibition of additional targets,
including potentially orthologous Ag85A or B pratsj given that the KO strain is devoid of
Ag85C but shows the same MIC to the inhibitor @&WA strain. We therefore analyzed their
lipid composition by high-pressure thin-layer chadography (HPTLC) as previously
described [10], comparing midlog-phase growing I@MC1551 WT and KO cultures (with
inoculum size 100 fold higher compared to drug sp8bility assays) , treated or untreated 24
h with 44 pug/ml 13-Ag85 [17]. As described by Warret al., we observed a slight decrease
of TDM and an increase of DAT+TMM ithe treated WTstrain (Fig. 1A and B) [11].
Additionally, we observed a decrease of acylatedsphatidylinositol hexamannoside
(AcoPIMg) and an increase of phosphatidyl ethanolamine (Pig) 1A and B). Although both
the 13-Ag85 treated KO and the WT strains showednarease of DAT+TMM, the mutant
additionally exhibited a decrease of the triacytghpl (TAG) and PDIM B (Fig. 1A and C).
This decrease of PDIM B by the 13-Ag85 treatmenttimee KO strain is highlighted by the
stronger PDIM B HPTLC signal intensity comparedhe untreated Wtrain (Fig. 1A).

As reported by Warrier et al, mycolic acid metagters (MAME) were not notably changed
by the 13-Ag85 treatment, suggesting that otheyeres, including the orthologous Ag85A or
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B proteins could rescue mycolic acid transfer ombsrogalactan (data not shown).
Considering that Warrier et al. also reported a freycolic acid change, these authors
suggested that a specific effect on the TDM syngh@gthis inhibitor [11].

Our lipid analyses, especially on the KO strairkiag Ag85C, suggest that the 13-Ag85 has
an additional effect by reducing the PDIM B prodioic either directly or indirectly . Indeed,
a change in the balance between an acetyl-CoA etélipid (e.g. TMM) and a propionyl-
CoA derived lipids (e.g. PDIM B), as observed bg tB-Ag85 treatment, has been already
reported in aAmcel KO mutant strain [18]. Propionyl-CoA derived lipsynthesis could
protect bacteria against propionate induced toxif2i. The inhibition of PDIM synthesis
could therefore be harmful for Mtb and explain tBeAg85 susceptibility of both WT and
MT0137 AfbpC strains.
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FIGURE LEGEND

Fig. 1. HP-TLC analyses of the CDC15& andAfbpC strain lipids. Each experiment was
performed at least three times using independenpkes.A. HP-TLC migration profiles of
lipids in petroleum ether/diethyl ether (9 :1) rakel with phosphomolybdic acid to visualise
PDIM (upper panel) or migrated in CHL{IH;OH/H,O (60:35:8) revealed with anthrone to
visualise more polar cell wall lipids (lower pand) Lipid spots quantification, performed on
HP-TLC using primuline for the revelation, for thx strain, normalized to the total amount
of lipids in the 13-Ag85 treated condition compartedthe DMSO control (set as 100%).
Lipid spots quantification, performed on HP-TLC ngsiprimuline for the revelation, for the
AfbpC strain, normalized to the total amount of lipihs the 13-Ag85 treated condition
compared to the DMSO control. The relative abundanf the different classes of lipids in B.
and C. was determined by loadingu§ of lipid mixture onto a HP-TLC silica gel 60 pgat
(Merck) with a Camag ATS4 apparatus. The plate desloped in the appropriate solvent
mixture using a Camag ADC2 device and stained gy rdmgent with a Camag CID3
apparatus, followed by heating at 150°C for 20 maihen necessary. Lipids were quantified
by absorption measurement at 400 nm with a Camamrigc 3 device using Wincats

software.



PDIM A
PDIM B

TAG

TAGPAT >
TDM _

DAT/TMM —
PE—>

PG —

APIM2_

AcPM2

PIM —

Ac2PIM6 —=
AcPIM6

Percents

BWT DMSO treated
OWT I3Ag85 treated

Percents

BKODMSO treated

BKOI3Ap8S treated




