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The envelope theory (ET) [1–3], also known as the auxiliary

field method [4–7], is a convenient method to compute approxi-
mate eigenvalues and eigenstates in quantum mechanics. The
basic idea is to replace the Hamiltonian H under study by an aux-

iliary Hamiltonian eH which is solvable, the eigenvalues of eH being
optimized to be as close as possible to those of H. This method has
several interesting characteristics: (i) Following the structure of
the Hamiltonian H, the approximate eigenvalues can be upper or
lower bounds, or not to have a variational character; (ii) The
method is easy to implement since the solution can be obtained
simply through a transcendental equation; (iii) The accuracy is rea-
sonable and can be improved by fitting one parameter introduced
in the global quantum numbers. In this paper, it is shown that the
approximate solutions obey a kind of Hellmann–Feynman theorem
[8–10], and that the comparison theorem [11,12] can be applied to
approximate solutions for two ordered Hamiltonians.

Let us assume that the Hamiltonian H for N identical particles
can be written as (�h ¼ c ¼ 1)

H ¼
XN
i¼1

TðjpijÞ þ
XN
i¼1

U jri � Rjð Þ þ
XN
i<j¼2

V jri � rjj
� �

: ð1Þ

T is a kinetic energy, U a one-body interaction, V a two-body

potential and R ¼ 1
N

PN
i¼1ri is the center of mass position. In the

framework of ET, an approximate eigenvalue E is given by the
following equation for a completely (anti)symmetrised state and

the center of mass motion removed
PN

i¼1pi ¼ 0
� �

[5]
E ¼ NTðp0Þ þ NU
r0
N

� �
þ CN V

r0ffiffiffiffiffiffi
CN

p ; ð2Þ

where CN ¼ NðN � 1Þ=2 is the number of particle pairs, p0 is the
mean momentum per particle and r0=N the radius of the system.
p0 and r0 are linked by the following relation

r0 p0 ¼ Q ; ð3Þ
where

Q ¼
XN�1

i¼1

ð/ni þ liÞ þ ðN � 1ÞDþ /� 2
2

ð4Þ

is a global quantum number in D dimensions. In the original
method, / ¼ 2, which corresponds to the global quantum number
of N � 1 identical harmonic oscillators. It has been shown that
allowing variations of / can improve the accuracy of the approxi-
mate eigenvalues [6,7]. In this case, the variational character of
the solution cannot be guaranteed. The parameter r0 is the solution
of the equation

@E
@r0

				
p0¼Q=r0

¼ 0: ð5Þ

Let us note that (5) is the translation into variables r0 and p0 of the
generalized virial theorem [13].

The Hellmann–Feynman theorem states that if the Hamiltonian
of a system HðlÞ depends on a parameter l, and that the
eigenvalue equation for a bound state is

HðlÞjli ¼ EðlÞjli; ð6Þ
where EðlÞ is the energy and jli the normalized associated
eigenstate, then
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dEðlÞ
dl

¼ l @HðlÞ
@l

				
				l


 �
: ð7Þ

Solving system (2)–(5) for such a Hamiltonian HðlÞ, one finds
E ¼ Eðl; r0Þ with r0 ¼ r0ðlÞ. One can then write E ¼ Eðl; r0ðlÞÞ.
The variation of the eigenvalue with l is given by

dE
dl

¼ @E
@l

þ @E
@r0

@r0
@l

: ð8Þ

With relation (5), one finally gets

dE
dl ¼ @E

@l

				
r0¼r0ðlÞ

: ð9Þ

This relation canbeuseful to easily computedE=dl if r0 is only known
numerically. It can be considered as the translation into variables r0
and p0 of the Hellmann–Feynman theorem. This theorem shows that
the variationof the eigenvalue canbeobtainedby computing thepar-
tial derivative of the Hamiltonian, and by computing its mean value
for the eigenstate considered. For ET, the variation of the eigenvalue
can be obtained by computing the partial derivative of the form (2)
giving the approximate eigenvalue, and by computing its value for
the parameter r0 of the approximate state considered.

The comparison theorem states that if two Hamiltonians Hð1Þ

and Hð2Þ are ordered, h/jHð1Þj/i 6 h/jHð2Þj/i for any state j/i, then
each corresponding pair of eigenvalues is ordered Eð1Þ 6 Eð2Þ, for
the same set of quantum numbers [11,12].

Let us follow the procedure established in [12] by assuming that
the Hamiltonian

HðlÞ ¼ ð1� lÞHð1Þ þ lHð2Þ ð10Þ
possesses a number (finite or infinite) of well defined eigenvalues
EðlÞ for 0 6 l 6 1. An approximate solution for a given state com-
puted by ET is
Eðl; r0ðlÞÞ ¼ ð1� lÞEð1Þðr0ðlÞÞ þ lEð2Þðr0ðlÞÞ; ð11Þ
where EðiÞðr0ðlÞÞ is the form (2) for a Hamiltonian HðiÞ. From Eq. (9),
it appears that

dE
dl

¼ Eð2Þðr0ðlÞÞ � Eð1Þðr0ðlÞÞ: ð12Þ

In order to be sure that the two Hamiltonians are ordered, it is nec-
essary that the following three conditions {Tð1ÞðxÞ 6 T ð2ÞðxÞ;
Uð1ÞðxÞ 6 Uð2ÞðxÞ;V ð1ÞðxÞ 6 V ð2ÞðxÞ} are all fulfilled [12]. In this case,
dE=dlP 0. Consequently,

Eð1Þðr0ðl ¼ 0ÞÞ 6 Eð2Þðr0ðl ¼ 1ÞÞ; ð13Þ
where Eð1Þðr0ðl ¼ 0ÞÞ and Eð2Þðr0ðl ¼ 1ÞÞ are respectively the
approximate eigenvalues, with the same quantum numbers, for
Hamiltonians Hð1Þ and Hð2Þ. The approximate eigenvalues computed
by ET are then also ordered. This does not mean that the quality of

the approximation is the same for the two Hamiltonians HðiÞ, but at
least the hierarchy of the approximate eigenvalues corresponds to
the hierarchy of the genuine eigenvalues.

References

[1] Hall RL. Phys Rev D 1980;22:2062.
[2] Hall RL. J Math Phys 1983;24:324.
[3] Hall RL, Lucha W, Schöberl FF. J Math Phys 2004;45:3086.
[4] Silvestre-Brac B, Semay C, Buisseret F, Brau F. J Math Phys 2010;51:032104.
[5] Semay C, Roland C. Results Phys 2013;3:231.
[6] Semay C. Few-Body Syst 2015;56:149.
[7] Semay C. Eur Phys J Plus 2015;130:156.
[8] Hellmann H. Acta Physicochimica URSS 1935;1:913.
[9] Feynman RP. Phys Rev 1939;56:340.
[10] Lichtenberg DB. Phys Rev D 1989;40:4196.
[11] Reed M, Simon B. Methods of modern mathematical physics. IV. analysis of

operators. New York: Academic Press; 1978.
[12] Semay C. Phys Rev A 2011;83:024101.
[13] Lucha W. Mod Phys Lett A 1990;5:2473.

http://refhub.elsevier.com/S2211-3797(15)00066-2/h0005
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0010
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0015
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0020
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0025
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0030
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0035
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0040
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0045
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0050
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0055
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0055
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0060
http://refhub.elsevier.com/S2211-3797(15)00066-2/h0065

	The Hellmann&ndash;Feynman theorem, the comparison theorem, �and the envelope theory
	References


