
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–13

� The Author(s) 2019

DOI: 10.1177/0037549719835026

journals.sagepub.com/home/sim

An implementation of geometric
integration within Matlab

Guillaume Chauvon1,2, Philippe Saucez1 and Alain Vande Wouwer2

Abstract
Geometric integrators allow preservation of specific geometric properties of the exact flow of differential equation sys-
tems, such as energy, phase-space volume, and time-reversal symmetry, and are particularly reliable for long-run integra-
tion. In this study, variable step size composition methods and Gauss methods are implemented in Matlab library
integrators, and are tested with several representative problems, including the Kepler problem, the outer solar system
and a conservative Lotka–Volterra system. Variable step size integrators often perform better than their fixed step size
counterparts and the numerical results show excellent long time preservation of the Hamiltonian in these examples.

Keywords
Geometric numerical integrator, Hamiltonian systems, reversible systems, conservative Lotka–Volterra systems, numeri-
cal simulation

1. Introduction

Although many excellent, general purpose codes for the

numerical solution of ordinary differential equations

(ODEs) are currently available, they have mostly been

developed based on accuracy and stability concerns, and

do not intrinsically preserve specific properties or invar-

iants of the underlying problems. As numerical errors

accumulate over time, these classical integrators will usu-

ally not be able to compute solutions over long periods of

time (required in some fields of investigation such as

celestial mechanics). Geometric numerical integration is a

relatively new class of methods which focuses on the pre-

servation of geometric properties associated with the exact

solution of differential equation systems,1 and, in particu-

lar, the symplecticity and the reversibility of Hamiltonian

systems. These numerical schemes offering preservation

of geometric properties will have better long-run behavior.

The theory of geometric numerical integration was

developed in the 1980s and has been well studied since

then by many authors. More details can be found in two

monographs,2,3 or in the overview by McLachlan et al.1

Applications are also diverse, including celestial

mechanics,4 particle accelerators,5 molecular dynamics,6

and quantum mechanics, to name just a few.

To the best of our knowledge, only fixed step size

implementations of geometric integrators are readily avail-

able.7 It is the purpose of this work to develop a variable

step size implementation of the composition methods and

Gauss methods in the form of library integrators coded in

Matlab m-files. Variable step size integrators are often

more efficient than fixed step size integrators but their

implementation is more complex. Matlab is a well-known

numerical computing environment, with multiple applica-

tions in simulation of dynamic systems,8,9, and is well sui-

ted to the coding of ODE solvers. Our Matlab

implementation of geometric integrators therefore comes

as a complement to the high-quality, general purpose,

ODE suite in Matlab,10 which does not include integrators

with such capabilities. Besides, we also propose a new

fixed step size implementation of linear multistep methods

with improved performance. All the codes are made avail-

able as part of the MATMOL library (http://www.matmo-

l.org/),11 which is a Matlab toolbox containing various

methods for the solution of partial differential equations

using the method of lines (for instance, finite differences,

finite element methods, and slope limiters for the resolu-

tion of steep moving fronts), and for time integration of

differential equations. MATMOL has been used for

1Service de Mathématique et Recherche opérationnelle, Université de

Mons, Belgium
2Service d’Automatique, Université de Mons, Belgium

Corresponding author:

Alain Vande Wouwer, Service d’Automatique, Université de Mons, 31

boulevard Dolez, 7000 Mons, Belgium.

Email: alain.vandewouwer@umons.ac.be

https://doi.org/10.1177/0037549719835026
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0037549719835026&domain=pdf&date_stamp=2019-04-08

solving a wide spectrum of problems in chemical and

environmental engineering.12,13 The inclusion of geo-

metric integrators in the set of ODE solvers currently

available in the toolbox extends the range of problems that

can be considered. In this connection, several examples,

including the Kepler problem, the outer solar system, and

a conservative Lotka–Volterra system, serve as illustration

to demonstrate the use of the geometric solvers and their

performance.

This paper is organized as follows. In the next section,

the basic concepts, i.e., Hamiltonian and reversible sys-

tems, as well as geometric integration are introduced. The

several methods considered in this study, i.e., composition

methods, Gauss methods, and linear multistep methods,

are then described in more details. Matlab implementation

together with a simple application example is discussed

and finally, the several solvers are tested with three case

studies. The last section draws some conclusions.

2. Geometric integration and a
few other basic concepts

This section introduces the main concepts, i.e.,

Hamiltonian and reversible systems, as well as geometric

integration.

2.1. Hamiltonian systems

In a mechanical system, the Lagrangian is given by:

L(q, _q)= T (q, _q)� U (q) ð1Þ

where T (q, _q) is the kinetic energy and U (q) is the poten-

tial energy, which are expressed in terms of the general-

ized coordinates and velocities q=(q1, . . . , qd)
T and

_q=(_q1, . . . , _qd)
T. The system motion is described by

Lagrange equation:

d

dt

∂L

∂ _q

� �
=

∂L

∂q
ð2Þ

These equations can be reformulated by replacing the

velocities _q, which are kinematic variables, by the

momenta p=(p1, . . . , pd)
T, which are dynamic variables,

and by introducing a new function H(q, p) : R2d ! R, the

Hamiltonian,

H(q, p)= pT _q� L(q, _q) ð3Þ

The transformation _q! p leads to the equivalent

Hamiltonian equations of movement:

_qi =
∂H

∂pi

(q, p) _pi =�
∂H

∂qi

(q, p) i= 1, . . . , d ð4Þ

If the kinetic energy is a quadratic form

T (q, p)= 1=2 _qTM(q) _q, where M(q) is a symmetric and

positive definite matrix, then

p=M _q
H(q, p)= 1

2
pTM(q)�1p+U (q)= T (q, p)+U (q)

ð5Þ

and the Hamiltonian represents the total energy of the

system.

A classic example is the pendulum with equations:

_q= p, _p=� sin (q) ð6Þ

and a Hamiltonian given by:

H(q, p)=
1

2
p2 � cos (q) ð7Þ

Figure 1 shows solutions corresponding to several ini-

tial conditions. This system has interesting properties:

� It is a time-invariant system (no explicit time

dependency), and H(q, p) is constant along the

solution at all times t. In this case, H is an invariant

of the system, i.e., a quantity always preserved by

the exact solution.
� For a system with d = 1, the area is conserved

(volume conservation for d ø 2), i.e.

area(S0)= area(St),

where S0 is a set of initial values and St the correspond-

ing exact solutions at time t.

Figure 1(a) shows area preservation. Using a phase plane

representation,2 a set of initial values S0 and the corre-

sponding exact solutions at time t =p, given by set Sp,

have exactly the same area. The same is true for the sets

S00 and S0p although their shapes are very different.

Area preservation is a facet of a more general property

called symplecticity, which is defined in detail by Hairer

et al.2 In particular it is shown that all systems of the form

of Equations (4) with a twice continuously differentiable

function H(q, p) have (solution) flows that are symplectic

transformations.

Excellent coverage of Hamiltonian systems and their

integration is available in the literature.2,3,14

2.2. Reversible systems

The equations of a mechanical system, with Equation (5)

as Hamiltonian, are as follows:

_q=M�1p

_p=�rqH(q, p)= g(q, p),
ð8Þ

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

which satisfy g(q, � p)= g(q, p). This implies that if

(q(t), p(t)) is a solution of Equations (8) then

(q(� t), � p(� t)) is also a solution. If the signs of the

velocities are changed at a given time, the system will go

back to its initial position after some time.3 Such a system

is called time-reversible.

More generally, if we consider a differential equation

_y= f (y) and a linear transformation r, the differential

equation is said r-reversible if:

f (ry)=� rf (y) for all y ð9Þ

Figure 1(b) illustrates this geometric property of the

pendulum. A second-order differential equation €q= g(q)
is always r-reversible with the transformation

r(q, p)= (q, � p). A Hamiltonian system is reversible if

H(q, p)=H(q, � p), i.e., if H is quadratic in p.3

2.3. Geometric integration

A numerical integrator which preserves one of the above-

mentioned properties is called a geometric integrator.

Such an integrator is generally reliable on the long run.

Figure 2 shows the preservation of energy of the pendulum

when using a Störmer–Verlet method (as introduced in the

next subsection and implemented in a code named vstrvl2),

which is a geometric integrator for this problem, and a

non-geometric integrator such as ode45 from Matlab ODE

suite.10 The error in the energy grows linearly with ode45,

but remains bounded with the geometric integrator.

A numerical integrator with step size h is a function

fh(y) that gives an approximation of the exact solution

y(t) of a differential equation. For a one-step method, the

numerical solution is given by yn+ 1 =fh(yn). A numeri-

cal method fh is said to be

� symplectic if the function fh is symplectic;
� r-reversible if fh satisfies the two following condi-

tions:

r8fh =f�h8r

fh =f�1�h

ð10Þ

where f�1h is the inverse function. The majority of

numerical methods satisfy the first condition.

The second condition corresponds to the symmetry of the

method. A one-step method is symmetric if changing

h$ �h and yn $ yn+ 1 leaves the method unchanged.

For example, the implicit midpoint rule defined by the for-

mula yn+ 1 = yn + hf ((yn + yn+ 1)=2) is symmetric,

while the Euler explicit method yn+ 1 = yn + hf (yn) is

not.

2.4. Störmer–Verlet method

The Störmer-Verlet method,15 or leap-frog method is one

of the earliest method, often used in astronomy or molecu-

lar dynamics for its important properties.

−2 0 2 4 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

S 0

S 0

S π

S π

q(t)

p(t)

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

ρ

y

f (y)

ρy

ρf (y)

f (ρy)

q(t)

p(t)

(a) (b)

Figure 1. Geometric properties of the pendulum: symplecticity or area preservation (a) and reversibility (b).

0 20 40 60 80 100

× 10
-7

-3

-2

-1

0
vstrvl2

ode45

err. energy

t

Figure 2. Energy preservation (error in the Hamiltonian of
Equation (6)) for ode45 and vstrvl2. Initial values (q0,p0)= (0:4,0).

Chauvon et al. 3

For a second-order differential equation €q= g(q), the
Störmer–Verlet method is a one-step method

fh : (qn, pn)! (qn+ 1, pn+ 1) defined by:

qn+ 1
2
= qn +

h

2
pn

pn+ 1 = pn + hg(qn+ 1
2
)

qn+ 1 = qn+ 1
2
+

h

2
pn+ 1

ð11Þ

where qn+ 1=2 is an approximation of q(t) at time tn +
h
2
.

This method is explicit, symplectic, symmetric and order

2 and uses only one function evaluation per step.16

3. Implementation of composition
methods

The underlying idea is to exploit a simple, low-order

method as a basic element of a composition process lead-

ing to a higher-order method that performs better than the

basic one. If fh is the basic method of order p with a step

h, and if g1, g2, ., gs are real numbers defining the indi-

vidual steps g1h, ., gsh, a composition method ch with s

stages and step size h is given by:

ch =fgsh
8fgs�1h8 � � � 8fg2h8fg1h ð12Þ

=fgsh
fgs�1h � � � fg1h

� �� �� �
ð13Þ

where the notation f 8g or (f 8g)(y) means f (g(y)). This
method is at least of order p+ 1 if:

g1 + g2 + � � � + gs = 1 ð14Þ

g
p+ 1
1 + g

p+ 1
2 + � � � + gp+ 1

s = 1 ð15Þ

These equations only have a real solution if p is even.

The interest of composition methods is to increase the

order of accuracy while preserving certain properties of the

basic method, such as2:

� if fh is symplectic, then the composition method ch

is symplectic too,
� if fh is symmetric and if gi satisfies the symmetry

condition:

gi = gs+ 1�i for all i ð16Þ

then the method ch is symmetric,
� if fh preserves an invariant (for example the angu-

lar momentum of a mechanical system), then the

method ch preserves it as well.

The basic method considered in our implementation is the

Störmer–Verlet method, used in a composition process

with different integration steps. For example the following

method is of order 6 with 9 stages and satisfies the sym-

metry condition of Equation (16):

g1 = g9 = 0:39216144400731413927925056

g2 = g8 = 0:33259913678935943859974864

g3 = g7 = �0:70624617255763935980996482
g4 = g6 = 0:08221359629355080023149045

g5 = 0:79854399093482996339895035

ð17Þ

3.1. Step size selection

A variable step size integrator is usually more efficient

than a fixed step size integrator. However, the standard

step size control with a geometric integrator, i.e., based on

a local error, is not recommended due to performance

degradation.2 There are several algorithms which allow

extending geometric integrators to variable step size inte-

gration without losing the good long-time behavior of

Figure 2. To implement the Störmer–Verlet method we

have opted for the following step size selection because it

is entirely explicit.17,18 With the notation y=(q, p)T we

have the following:

yn+ 1 =chn+ 1=2
(yn)

hn+ 1=2 = esn+ 1=2
ð18Þ

where c is a composition method, hn+ 1=2 is the step size

at iteration n, and e a constant accuracy parameter.

Furthermore sn+ 1=2 is given by the following (symmetric)

recurrence relation:

1

sn+ 1=2
+

1

sn�1=2
=

2

s(yn)
: ð19Þ

with s1=2 =s(y0). For a correct long-time behavior the

function s(y) must satisfy the two following conditions:

s(y). 0 ð20aÞ

s(ry)= rs(y) ð20bÞ

The condition given by Equation (20b) allows preserva-

tion of reversibility. The function s directly influences the

step size: if s(y) increases (or decreases) the step size does

the same. In our implementation we use the following:

s(y)=
1

k f (y) k ð21Þ

which has the advantage to not require any knowledge of

the solution. The condition of Equation (20b) is verified if

r is orthogonal (because the determinant of an orthogonal

matrix is 61), which is the case for many Hamiltonian sys-

tems. In particular, the condition is satisfied for a second-

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

order differential equation. Indeed, as explained before, the

transformation is r(q, p)= (q, � p) and the determinant is

clearly equal to 61.

3.2. Round-off errors

In high accuracy long-time integration of differential equa-

tions, round-off errors may dominate truncation errors. A

direct implementation of a numerical integrator shows that

the sum of round-off errors typically increases linearly

with time. Use of the Kahan algorithm,19,20 also known as

compensated summation, reduces considerably this sum

which then grows as the square root of time. This algo-

rithm consists of introducing a variable to accumulate

small errors, and one can show that the results are close to

those produced by an extended precision calculation.

3.3. Solver vstrvl2

The algorithm vstrvl2 (v: the solver uses a variable step

size strategy, strvl: the basic solver is the Störmer–Verlet

method; 2: the solver applies to second-order ODEs) is

reversible and symplectic for second-order differential

equations:

€q= g(q) q(0)= q0 _q(0)= _q0 ð22Þ

It implements:

� a composition method (Equation (13)), up to order

10, with the Störmer–Verlet method (Equation

(11)) as basic integrator,
� a selection of the order of the composition method

through the coefficients gi in Equation (13),
� an accuracy parameter e as in Equation (18),
� the step size control defined by Equations (18),

(19), and (22),
� the compensated summation technique for reducing

round-off errors.

The user can select the order of the method and the num-

bers of stages via the solver options (see Table 1).

The reader interested in complete implementation

details can download the codes of the MATMOL library

(http://www.matmol.org/).11

4. Implementation of Gauss methods

One of the most important families of methods in the con-

text of geometric integration is that of Gauss methods,

which are symmetric and symplectic. For an arbitrary

number of stages s, they have the highest possible order

r = 2s. They belong to the class of Runge–Kutta methods

for first-order differential equations:

_y= f (y) ð23Þ

For a general problem _y= f (t, y), an s-stage Runge–

Kutta method is a one-step method yn ! yn+ 1 defined by:

Zi, n � h
Xs

j= 1

aijf (yn + Zj, n)= 0 i= 1, . . . , s ð24aÞ

yn+ 1 = yn + h
Xs

i= 1

bif (tn + cih, yn + Zi, n) ð24bÞ

No explicit Runge–Kutta method can be symplectic or

symmetric,2 and only a few of the implicit Runge–Kutta

methods have both properties.

The implicit character implies that the nonlinear system

of Equation (24a) for the values Z1, n, . . . , Zs, n has to be

solved at every step.

To construct a Gauss method,21 the coefficients

c1, . . . , cs are first defined as the roots of the Legendre

polynomial of order s:

ds

dxs
(xs(x� 1)s) ð25Þ

where s is the number of stages.

The coefficients aij and bi can then be obtained by sol-

ving the following two linear equations which represent

the order conditions:

Xs

j= 1

aijc
k�1
j =

ck
i

k
, k = 1, . . . , s, 8i ð26aÞ

Xs

i= 1

bic
k�1
i =

1

k
, k = 1, � � � , s: ð26bÞ

4.1. Step size selection

The main idea to construct an appropriate step size control

for Gauss methods is to introduce a time transformation

t $ t given as the solution of a differential equation

Table 1. Different composition methods.

Method Order Stages

21 2 1
43 4 3
45 4 5
67 6 7
69 6 9
815 8 15
817 8 17
1031 10 31
1033 10 33
1035 10 35

Chauvon et al. 5

dt
dt

=s(y) and to write the differential system in terms of

the new independent variable t.2

From the chain rule dy

dt
= dy

dt
dt
dt
, the transformed system

is given by:

y0=s(y)f (y) ð27aÞ

t0=s(y) ð27bÞ

where prime indicates a derivative with respect to t.

Integrating, with fixed step size e, Equation (27a) yields

an approximation yn of y(tn)= y(tn), where tn = ne.
Integrating Equation (27b) gives the corresponding non-

equidistant times tn+ 1’tn + es(yn). This algorithm there-

fore provides variable step size numerical solutions to

Equation (23).

Again, the function s(y) has to satisfy the conditions of

Equation (20) and, in this work, we use the function in

Equation (21). The long-time behavior is preserved as long

as r is orthogonal.

4.2. Starting approximation

As recommended by Hairer et al.,2 fixed-point iteration is

used to solve the nonlinear system (Equation (24a)).

To ensure convergence, the iterations are pursued as

long as the relative Euclidean norm of the difference

between two successive iterations Zk and Zk + 1 (the vector

Z = ½Z1 � � � Zs�) is larger than an accuracy parameter ep

related to the machine precision:

1

s

Zk � Zk + 1

Zk

����
����ø ep ð28Þ

Two safeguards complete this test:

1. When the norm of Equation (28) tends to grow

while remaining less than 10ep, the iterations are

stopped, this trend being attributed to the accumu-

lation of the rounding errors.

2. A stop test is also provided with respect to the

maximum number of iterations, which is imposed

a priori by the user (when this number is reached,

a warning or error message is displayed according

to whether the norm of Equation (28) is lower or

no to 105ep).

To achieve satisfactory performance, it is essential to have

a good starting approximation to initiate the iterations of

the fixed-point method. As the transformed system

(Equation (27)) is integrated with a fixed step size, the

underlying idea is to use the starting approximation of

Laburta.22

Denoting the transformed system (Equation (27))

y0=F(y), the starting approximation Z0
i, n is given by:

Z0
i, n = h

Ps
j= 1

aijF(yn�1 + Zj, n�1)

+ h
Pm

j= 1

nijF(yn�1 + Zs+ j, n�1),
ð29Þ

where the quantity F(yn�1 + Zi, n�1) is already known

from the previous step and the several terms

F(yn�1 + Zs+ i, n�1) are m additional function evaluations,

which can be computed from:

Zs+ i, n�1 = h
Xs+ i�1

j= 1

mijF(yn�1 + Zj, n�1): ð30Þ

The coefficients aij, nij,mij are obtained from a

Vandermonde-type linear system.22 In our codes we use

m= 3, which allows constructing a starting approximation

of order s+ 2 and reducing the number of iterations of the

fixed-point method.

4.3. Solver vgauss1

The Matlab solver vgauss1 (v: the solver uses a variable

step size strategy; gauss: the solver is based on the Gauss

method; 1: the solver applies to first-order ODEs) is

intended for reversible and symplectic first-order differen-

tial equations:

_y= f (y) y(0)= y0: ð31Þ

It implements:

� Gauss methods up to order 14 defined by Equations

(24), (25), and (26),
� step size control defined by the transformed system

(Equation (27)) and function s(y) given by

Equation (21),
� accuracy parameters, which are the fixed step size e

used to integrate the transformed system (Equation

(27)) as well as the order of the Runge–Kutta

method (coefficients aij, bi and ci in Equation (24)),
� a starting approximation of Laburta defined by

Equation (29),
� the compensated summation technique.

The reader interested in complete implementation details

can download the codes of the MATMOL library (http://

www.matmol.org/).11

5. Implementation of linear multistep
methods

Linear multistep methods are appealing because they can

achieve high order while requiring only one function eva-

luation per step. They have an excellent long-time beha-

vior when applied to second-order Hamiltonian systems.

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

For the problem:

€q= f (q) ð32Þ

a linear multistep method is defined by the formula:

Xk

j= 0

ajqn+ j = h2
Xk

j= 0

bjf (qn+ j) ð33Þ

where aj,bj are real parameters, ak 6¼ 0, and

ja0j+ jb0j. 0. If bk = 0 the method is explicit, other-

wise it is implicit. Aside from an initial value q(t0)= q0, a

starting procedure is required to get approximations

q1, . . . , qk�1 to q(t0 + h), . . . , q(t0 +(k � 1)h).
The generating polynomials are characteristic of the

method, and are given by:

r(j)=
Xk

i= 0

aij
i ð34Þ

q(j)=
Xk

i= 0

bij
i ð35Þ

The method of Equation (33) has order r if the coeffi-

cients aj and bj satisfy the following:

q(j)=
r(j)

log2 j
+O((j � 1)r) for j! 1 ð36Þ

The method of Equation (33) is stable if all roots of

r(j) satisfy jjj4 1, and those on the unit circle are at most

double zeros.

If the coefficients of Equation (33) satisfy the

following:

ak�j =aj, bk�j =bj for all j ð37Þ

then the method is symmetric. It is easy to show that the

condition of Equation (37) implies that for all zeros j of

r(j), its inverse j�1 is also a zero. Hence, for stable sym-

metric methods all zeros of r(j) lie on the unit circle and

they are at most of multiplicity two.

A symmetric multistep method (Equation (33)) is called

s-stable if, except for a double zero in 1, all zeros of r(j)
are simple and of modulus one. One can show that k is

always even for a s-stable method.

Although those methods can have high order with only

one function evaluation per step, they are characterized by

resonance phenomena and instability (in particular if large

steps are used). Undesired oscillations called parasitic

solutions are also observed. It was discovered that s-stable

methods have excellent performance when applied to a

second-order differential equation.23 In this case, the para-

sitic solution get under control and the error in the energy

and in the angular momentum remain bounded (as in

Figure 2). A long-time analysis is known only for a prob-

lem of the form2:

€q=�rU (q): ð38Þ

Among the system (Equation (38)), there are

Hamiltonian systems with constant mass matrix.

To construct a symmetric s-stable method of order k

(with k even), we first define the polynomial r by:

r(j)= (j � 1)2
Yk=2�1
j= 1

(j2 + 2ajj + 1) ð39Þ

where aj are real distinct numbers which satisfy

�1\ aj \ 1. The method is thus s-stable: there is a dou-

ble zero in j = 1, and the other zeros are complex conju-

gates and lie on the unit circle. The unique polynomial

q(j) of order k � 1 can be found thanks to the order con-

dition of Equation (36). A Taylor series expansion in

j = 1 truncated at order k gives the coefficients bi of

Equation (33) (this computation can be automated using

Matlab symbolic computation and the function taylor).

Because Equation (35) is of order k � 1 we have bk = 0

and the method is explicit.

If the derivatives p= _q are required, they can be com-

puted by finite differences of order r:

pn =
1

h

Xl

j=�l

djqn+ j: ð40Þ

The algorithm of Fornberg allows derivatives of arbi-

trary order to be obtained.24

5.1. Solver flmm2

The Matlab solver flmm2 (f: the solver uses a fixed step

size strategy; lmm: the solvers uses a linear multistep

method; 2: the solver applies to second-order ODEs) is

dedicated to second-order differential equations:

€q= g(q) q(0)= q0 _q(0)= _q0 ð41Þ

It implements:

� fixed step size linear multistep methods (Equation

(33)) up to order 12 using the generating polyno-

mials (Equations (39) and (36)),
� an initialization (computation of the first steps) with

a high-order Gauss method,
� the stabilization process and compensated summa-

tion technique described by Console and Hairer.25

The reader interested in complete implementation details

can download the codes of the MATMOL library (http://

www.matmol.org/).11

Chauvon et al. 7

Note that variable step size methods are recommended

to solve specific problems in astronomy.26

6. Tutorial introduction to the use of the
library integrators

In this section we provide a tutorial introduction to the use

of the solvers based on the simple pendulum example. The

solvers can be called in a way similar to the standard sol-

vers of the Matlab ODE suite.10 The general calling

sequence is:

with the followings arguments:

� ‘‘odefun’’ is a string that refers to the function

evaluating the right-hand side of the differential

equations _y= f (y).
� tspan=[t0 tf] is a row vector of dimension 2

defining the time span.
� y0 is a column vector containing the initial condi-

tions y0 =(q0 _q0)
T.

� options allows modifying default parameters. It

is a structure created by the function gni_set. The

syntax is the same as odeset in Matlab but the avail-

able options are different.
� varargin contains an arbitrary number of

optional arguments which are passed over to the

function.
� The output [T,Q,P] contains, respectively, the

times at which the solution is evaluated and the val-

ues of q and _q at these times.

An additional function allows adjusting the default integra-

tion parameters of each solver. It is used in the same way

as odeset in Matlab. The list of available options depends

on the solver.

For each solver, it is possible to select the order of the

method and a parameter influencing accuracy: e in

Equation (18) of vstrvl2, the fixed step size used to inte-

grate the modified system (Equation (27)) in vgauss1 and

the fixed step size h in Equation (33) of flmm2. It is also

possible to use the output Matlab functions to visualize the

solution and to change the number of output points (Refine

option in the Matlab ODE suite).

An important option of vgauss1 is the possibility to use

a vectorized ODE function (Equation (23)). (When the

ODE function _y= f (y) is vectorized then f (½y1 . . . yn�)

returns ½f (y1) . . . f (yn)�.) This allows the solver to reduce

the required number of function evaluations, and might

significantly decrease the computation time.

Finally, the solver vstrvl2 offers the possibility to

replace the default function (Equation (21)) for the step

size selection, by another function tailored to the problem

under consideration.17

6.1. A simple illustrative example

The pendulum problem is now solved using vstrvl2. The

equations are given by Equation (6), or equivalently

€q=� sin q which is defined in a Matlab function

G_pendul.m. This function has two inputs: the scalar t and

the column vector q:

This problem is solved over the time interval ½0 100�
with method ‘‘69’’ corresponding to Equation (17). The

accuracy parameter in Equation (18) is fixed to e= 0:1
and the initial conditions are taken as q0 = 0:4 and _q0 = 0.

The corresponding calling sequence is:

tspan, y0, and options are optional and can also be

defined in function G_pendul.m:

At the initialization stage, out, out2, and out3 define,

respectively, the time span for integration, the initial con-

ditions, and accuracy options. This way, the solver has an

even simpler calling sequence:

[T,Q,P] = .
solver(’odefun’,tspan,y0,options,varargin)

function out = G_pendul(t,q)
out = -sin(q);

options =
gni_set(’method’,’69’,’precision’,0.1);
[T,Q,P] = gni_vstrvl2(’G_pendul’,[0 100],[0.4
.
0],options);

function [out,out2,out3] = G_pendul(t,q,flag)
if (nargin < 3) || isempty(flag)

out = -sin(q);
else

switch flag
case ‘init’,

out = [0 100];
out2 = [0 0.4];
out3 = gni_set(‘Precision’,0.1);

end
end

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

It is also possible to use the graphical output functions

of Matlab (odeplot, odephas2) as follows (options are the

same for the Matlab ODE suite), to for instance, visualize

the first component q(t) as a function of time:

Some numerical results for this example are illustrated

in Figure 1, which takes the form of phase plane plot.

The step size selection function used by the solver is by

default s(q, p)= k f (q, p)k�1 (Equation (21)). This func-

tion is suitable for the majority of problems but is not

necessarily optimal. It is possible to tailor this function to

a specific problem. For example, s(q, p)= k qka could

be a very good choice in a two attracting body problem

(the closer the bodies the smaller the step size). In this

case, we first create a Matlab file resc_2body.m

and add the line:

7. Test examples and numerical results

In this section, the several solvers are tested with three case

studies, e.g. the Kepler problem, the outer solar system,

and a conservative Lotka–Volterra system.

7.1. Kepler problem

For computing the motion of two bodies which attract each

other, one is placed at the center of the coordinate system,

while the coordinates of the second are (q1, q2), which are

defined by:

€q1 =
�q1

(q2
1 + q2

2)
2=3

ð42aÞ

€q2 =
�q2

(q2
1 + q2

2)
2=3

ð42bÞ

The corresponding Hamiltonian is as follows:

H(q1, q2, p1, p2)=
1

2
(p2

1 + p2
2)�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
1 + q2

2

p , pi = _qi

ð43Þ

It is a reversible and periodic system. The trajectories

are elliptic orbits, with the reference body in one of the

foci. With the following initial values:

q1(0)= 1� e, q2(0)= 0,

_q1(0)= 0, _q2(0)=
ffiffiffiffiffiffiffiffi
1+ e
1�e

q ð44Þ

the trajectory is an ellipse with eccentricity e (04 e \ 1)

and period 2p.

The Kepler problem is solved with the three proposed

solvers as well as with ode113 of the Matlab ODE suite,10

which is known to be very efficient at stringent tolerances

but which is not a geometric integrator. We choose

e= 0:8 and a time interval of 200 periods. We compute

the error err= k y0 � yfin k where y0 is the initial condi-

tion and yfin the final solution. Because the problem is 2p-

periodic, we should have err= 0 with an integrator with

infinite precision.

Figure 3 compares the results of the several solvers.

We observe that the solver ode113 requires fewer function

evaluations. However, the three proposed solvers outper-

form ode113 in terms of CPU time. This can be explained

by a larger overhead (total CPU time minus that used for

the function evaluations) in ode113. Nonetheless, only the

variable step size integrators (vstrvl2 and vgauss1) have a

clear advantage over ode113 in terms of CPU time. This is

related to the relatively high eccentricity of the problem

(e= 0:8) which favors variable step size methods.

Notice that with vgauss1 solver, the s function evalua-

tions of the fixed-point iteration can be achieved in parallel

(option vectorized), which can reduce considerably the

CPU time. This is not possible with the three other solvers.

To illustrate the advantage of our variable step size

integrators (vstrvl2 and vgauss1), we compare them with

fixed step size versions. To this end, we use the codes of

Hairer and Hairer7: the integrator gni_irk2 is a fixed step

size implementation of Gauss methods for second-order

differential equations, while gni_comp is a fixed step size

implementation of composition methods with Störmer–

Verlet as a basic method.

Figure 4 shows the error at the end of the integration

interval as a function of the total numbers of function eva-

luations as well as a function of the CPU time. As we can

see, the variable step size methods are more efficient than

their fixed step size counterparts. Note that the difference

between the Gauss methods is much smaller than between

the composition methods. As explained by Hairer et al.,2

the implementation of a second-order differential equation

allows the use of a Gauss–Seidel iteration which

[T,Q,P] = gni_vstrvl2(‘G_pendul’);

options =.
gni_set(’OutputFcn’,’odeplot’,
’OutputSel’,1);
gni_vstrvl2(’G_pendul’,[],[],options);

function out = resc_2body(t,q,p,varargin)
alpha = 3/2;
out = norm(q)^alpha;

options = .
gni_set(options,’RescalFun’,’resc_2body’);

Chauvon et al. 9

converges faster that a fixed-point iteration. Our imple-

mentation, however, can be used to solve first-order differ-

ential equations or problems which require variable step

size integration.

7.2. The outer solar system

The outer solar system is a six-bodies system: Sun, Jupiter,

Saturn, Neptune, Uranus, and Pluto. If we denote by mi the

mass of the ith body, this system, for the Hamiltonian of

Equation (5) where (Mii)=mi, is diagonal and the poten-

tial function is given by:

U (q)=� G
X5
i= 1

Xi�1
j= 0

mimj

k qi � qj k

with G the gravitational constant. Initial values and planet

masses can be found in Hairer et al.2

We integrate this problem on a time interval of one

million years (which is not so much in astronomy).

Figure 5 shows the comparative results. Because of the

low eccentricity and the costly function evaluation of this

problem, the linear multistep method is now clearly the

best.

7.3. Conservative Lotka–Volterra systems

Generalized Lotka–Volterra models describe competition

and predation among n interacting species. They are useful

in mathematical ecology for modeling food webs. Here we

consider the general formulation of conservative Lotka–

Volterra systems27:

_xi = xi(ri +
Xn

j= 1

aijxj), aij =� aji, i= 1, . . . , n:

ð45Þ

10
5

10
6

10
-10

10
-5

fcn. eval

err. vstrvl2

vgauss1

flmm2

ode113

10
1

10
2

10
-10

10
-5

cpu

err.

vstrvl2

vgauss1

flmm2

ode113

(a) (b)

Figure 3. Accuracy–workload diagram for the Kepler problem using ode113 from Matlab and the three proposed solvers (vgauss1,
vstrvl2, and flmm2). Each point corresponds to an accuracy parameter.

10
5

10
6

10
-10

10
-5

fcn. eval

err.

vgauss1

gni irk2

vstrvl2

gni comp

10
1

10
2

10
-10

10
-5

cpu

err.

vgauss1

gni irk2

vstrvl2

gni comp

(a) (b)

Figure 4. Accuracy–workload diagram for the Kepler problem. Comparison between our variable step size integrators (vgauss1,
vstrvl2) and the fixed versions of Hairer and Hairer (gni_irk2 and gni_comp).7

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

where xi represents the number of individuals of species i

(xi . 0). The coefficients aij describe the interactions

between the populations and A=(aij) is the interaction

matrix. The parameters ri represent the growth rates of the

populations, subsuming birth and mortality, and depending

on the environment in the following way: if ri . 0 the spe-

cies i is able to reproduce alone, using food from the envi-

ronment, and if ri \ 0, the species i cannot survive when

left alone in the environment (as a predator that cannot

persist without its preys).

The condition aij =� aji is required for a conservative

system, i.e., a system that has at least an invariant.27 This

condition also implies that the interaction matrix A is

skew-symmetric.

If x� is a steady state of Equation (45), i.e., a solution of

r +Ax�= 0 where r =(ri) and A=(aij), a transformation

(xi ! eyi) can be applied to the system (Equation (45)) so

as to put it in the following form:

_yi =
Xn

j= 1

aij

∂H(y)

∂yj

, ð46Þ

with

H(y)=
Xn

j= 1

(eyj � x�j yj): ð47Þ

The Hamiltonian structure of the Lotka–Volterra equa-

tions is discussed in details in several papers, for exam-

ple.27,28 In particular it is shown that H(y) is an invariant

for the system given by Equation (46).

In the paper by Jay,29 it is shown that symplectic

Runge–Kutta methods (such as Gauss methods) preserve

the structure of the transformed Lotka–Volterra system

(Equation (46)). Consequently, in order to integrate the

system (Equation (46)), we use a fixed step size version of

Gauss methods for first-order differential equations (not

discussed in this article but also available in our Matlab

package).

Examples of conservative Lotka–Volterra systems of

dimension 2, 3, or 4 can already be found in the litera-

ture,2,27 so that we consider here an example of dimension

n= 5. Arbitrarily, we choose the following parameters:

A=

0 2 �0:5 0 0:2
�2 0 3 0:3 �0:5
0:5 �3 0 0:6 �0:4
0 �0:3 �0:6 0 1

�0:2 0:5 0:4 �1 0

0
BBBB@

1
CCCCA, ð48Þ

r =(� 5:8, 5:55, 7:2, � 1:9, 0:2)T , ð49Þ

x�=(5, 3, 2, 1:5, 4)T : ð50Þ

In this test, we compare the efficiency of the Matlab

integrators ode45 and ode113 and a fixed step size imple-

mentation of Gauss method of order 14. Figure 6(a) shows

the maximal error in the invariant (Equation (47)) as a

function of CPU time. The Gauss method is definitively

more efficient than ode45 and appears to be more efficient

than ode113 from a certain tolerance on. From our experi-

ence, this integrator appears to be very efficient at strin-

gent tolerances.

Figure 6(b) shows the error in the invariant as a func-

tion of time. A linear drift in the invariant is visible with

ode45 whereas the Gauss method shows the correct beha-

vior. The error remains bounded and small. For an expla-

nation of this long-time behavior, we refer to the theory of

backward error analysis.2

8. Conclusion

It is natural to use numerical integrators that preserve geo-

metric properties when solving differential equations. This

10
4

10
5

10
-20

10
-15

10
-10

fcn. eval

err.

vstrvl2

vgauss1
flmm2

ode113

10
0

10
1

10
-20

10
-15

10
-10

cpu

err.

vstrvl2

vgauss1

flmm2

ode113

(a) (b)

Figure 5. Work–precision diagram for the outer solar system using ode113 and the three proposed solvers (vstrvl2, vgauss1, and
flmm2).

Chauvon et al. 11

has been shown very successful in many fields, such as

molecular dynamics, celestial mechanics.

We have implemented a Matlab library of dedicated

solvers for Hamiltonian and reversible systems. Variable

step size integrators are often better than their fixed step

size counterparts and the numerical results show excellent

long time preservation of the Hamiltonian. The codes can

be downloaded from http://www.matmol.org/, and we

hope that the availability of these geometric solvers will

contribute to the popularity of these methods among non-

specialist users.

Funding

This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

References

1. McLachlan RI and Quispel GRW. Geometric integrators for

ODEs. J Phys A Math Gen 2006; 39: 5251–5285.

2. Hairer E, Lubich C and Wanner G. Geometric numerical inte-

gration. Structure-preserving algorithms for ordinary differ-

ential equations. 2nd ed. Springer Series in Computational

Mathematics 31. Berlin: Springer-Verlag, 2006.

3. Leimkuhler B and Reich S. Simulating Hamiltonian dynamics.

Cambridge Monographs on Applied and Computational

Mathematics 14. Cambridge: Cambridge University Press,

2004.

4. Gladman B, Duncan M and Candy J. Symplectic integrators

for long-term integrations in celestial mechanics. Celestial

Mech Dyn Astron 1991; 52: 221–240.

5. Forest E. Geometric integration for particle accelerators. J

Phys A Math Gen 2006; 39: 5321–5377.

6. Leimkuhler B and Reich S. A reversible averaging integrator

for multiple time-scale dynamics. J Comput Phys 2001; 171:

95–114.

7. Hairer E and Hairer M. GniCodes – Matlab programs or

geometric numerical integration. In: Frontiers in numerical

analysis. Berlin: Springer, 2003, pp.199–240.

8. Klee H and Allen R. Simulation of dynamic systems with

Matlab� and Simulink �. Boca Raton, FL: CRC Press,

2012.

9. Vande Wouwer A, Saucez P, Vilas C, et al. Simulation of

Ode/Pde models with Matlab, Octave and Scilab. Berlin:

Springer, 2014.

10. Shampine LF and Reichelt MW. The Matlab ODE suite. J

Sci Comput 1997; 18: 1–22.

11. Vande Wouwer A, Saucez P and Schiesser W. Simulation of

distributed parameter systems using a Matlab-based method

of lines toolbox chemical engineering applications. Ind Eng

Chem Res 2004; 43: 3496–3477.

12. David R, Vasel J-L and Vande Wouwer A. Settler dynamic

modeling and Matlab simulation of the activated sludge pro-

cess. Chem Eng J 2009; 146: 174–183.

13. Logist F, Saucez P, Van Impe J, et al. Simulation of (bio)

chemical processes with distributed parameters using

Matlab. Chem Eng J 2009; 155: 603–616.

14. Sanz-Sernar JM and Calvo MP. Numerical Hamiltonian

problems. London: Chapman & Hall, 1994.

15. Verlet L. Computer experiments on classical fluids. I.

Thermodynamical properties of Lennard-Jones molecules.

Phys Rev 1967; 159: 98–103.

16. Hairer E, Lubich C and Wanner G. Geometric numerical

integration illustrated by the Störmer–Verlet method. Acta

Numer 2003; 12: 399–450.

17. Hairer E. Variable time step integration with symplectic

methods. Appl Numer Math 1997; 25: 219–227.

18. Huang W and Leimkuhler B. The adaptive Verlet method.

SIAM J Sci Comput 1997; 18: 239–256.

19. Higham NJ. The accuracy of floating point summation.

SIAM J Sci Comput 1993; 14: 783–799.

20. Kahan W. Further remarks on reducing truncation errors.

Commun ACM 1965; 8: 40.

10
-1

10
0

10
1

10
2

10
-10

10
-5

10
0

ode113

ode45

vgauss1
cpu(s)

err. inv.

0 100 200 300 400 500

× 10
-6

-2

-1

0

1

t

vgauss1

err. inv.

ode45

(a) (b)

Figure 6. Comparison of the efficiency and behavior of Matlab integrators ode45 and ode113 and a fixed step size implementation
of Gauss method of order 14: maximal error in the invariant (Equation (47)) as a function of CPU time (a) and as a function of time
(b). The problem of Equation (46) with initial values x0 = (9,4,3,1:7,6) and time interval ½0; 500�.

12 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

21. Hairer E, Nørsett SP and Wanner G. Solving ordinary differ-

ential equations. I. Nonstiff problems. 2nd ed. Springer

Series in Computational Mathematics 8. Berlin: Springer

1993.

22. Laburta MP. Starting algorithms for IRK methods. J Comput

1997; 83: 269–288.

23. Quinlan GD and Tremaine S. Symmetric multistep methods

for the numerical integration of planetary orbits. Astron J

1990; 100: 1694–1700.

24. Fornberg B. Generation of finite difference formulas. Math

Comput 1988; 51: 699–706.

25. Console P and Hairer E. Reducing round-off errors in sym-

metric multistep methods. Comput Appl Math 2014; 262:

217–222.

26. Cano B and Durán A. A technique to construct symmetric

variable-stepsize linear multistep methods for second-order

systems. Math Comput 2003; 72: 1803–1816.

27. Duarte P, Fernandes RL and Oliva WM. Dynamics of the

attractor in the Lotka–Volterra equations. J Differ Equations

1998; 149: 143–189.

28. Idema T. The behaviour and attractiveness of the Lotka–

Volterra equations. PhD Thesis, Universiteit Leiden,

Belgium, 2005.

29. Jay LO. Preserving Poisson structure and orthogonality in

numerical integration of differential equations. Comput Math

Appl 2004; 48: 237–255.

Author biographies

Guillaume Chauvon graduated in engineering from

University of Mons in 2013.

Philippe Saucez is a retired professor at the University

of Mons, Department of Mathematics and Operational

Research. His research interests include numerical analy-

sis of partial differential equations.

Alain Vande Wouwer is a professor at the University of

Mons, Department of Automatic Control. His research

is in the area of system dynamics, estimation and

control, with applications in biological systems and

mechatronics.

Chauvon et al. 13

