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1 Introduction

Higher Spin Gravities (HiSGRA) — theories that extend gravity with massless higher
spin states — should be good probes of the Quantum Gravity problem because of several
reasons: as string theory and AdS/CFT suggest, higher spin states, whether massless or
massive, should be important for UV completion of gravity, while the masslessness can
simulate some properties of the UV regime already at the classical level. A posteriori
the latter might explain numerous difficulties encountered by HiSGRA: it is not easy to
construct even a toy quantum gravity model. In any event, there is only a handful of
HiSGRA, all of which exist thanks to certain subtleties in the no-go theorems.

Purely massless, partially-massless and conformal HISGRA in three dimensions [1-7]
can always be formulated as Chern-Simons theories with an additional data [8] and they



do not have propagating degrees of freedom. Conformal HiSGRA in 4d [9-11] is a nice
example of a pertubatively local HISGRA, which extends conformal (Weyl) gravity. There
is just one class of HISGRA, Chiral HiSGRA, [12-16] that features propagating massless
higher spin fields and admits an action. However, the action has been so far known only in
the light-cone gauge. Our paper is a step towards a covariant formulation of Chiral HiS-
GRA. Tt also aims at resolving some old puzzles and confusions in the literature regarding
(non)existence of minimal gravitation interactions of higher spin fields and the (ir)relevance
of the cosmological constant.

Chiral HiSGRA can be interesting for a number of reasons: (i) it has a simple action;
(ii) it is shown to be UV-finite at one-loop [15-17] and it is expected to be one-loop exact;
(iii) it captures a subset of correlation functions of Chern-Simons matter theories [18] (all
of them at the 3-point level); (iv) its one-loop amplitudes in flat space contain all helicity
plus one-loop amplitudes of perturbative QCD [17]; (v) Chiral HiSGRA is very close to
self-dual Yang-Mills (SDYM) and self-dual Gravity (SDGRA) theories [19], which are of
great importance on their own. This link to SDYM and SDGRA is what is exploited in
this paper.

The main goal of the present paper is to construct covariant actions for HiSGRA
with propagating massless fields. The theories we construct are close relatives of Chiral
HiSGRA and correspond to its simple contractions [19]. These contractions are directly
related to SDYM and SDGRA and can be thought of as their extensions to higher spins.
For that reason, we refer to them as HS-SDYM and HS-SDGRA. Importantly, the actions
of HS-SDYM and HS-SDGRA are complete gauge invariant actions, and feature interaction
vertices up to the quintic order in the fields. This should be contrasted to previous results
in the literature that are mostly devoted to construction of specific low order interactions.

The actions we construct are based on a new description of free massless higher spin
fields, the roots of which can be traced back to twistor theory. One of the advantages of the
new approach is that it admits gauge and gravitational interactions of higher spin fields,
which have long been known to exist in the light-cone or spinor-helicity approach [20-23],
but whose formulation in terms of widely adopted Fronsdal fields seems impossible [24-27].
The new approach allows one to uplift the (previously known only in light-cone gauge)
gauge and gravitational interactions of higher spin fields to Lorentz invariant off-shell ex-
pressions both in flat and AdSy spaces. The vertices have a smooth flat limit, i.e. the new
approach does not call for the cosmological constant. Also, the new description of higher
spin fields is well-adapted to a much richer class of backgrounds. In particular, what can be
called self-dual backgrounds are treated on an equal footing with the maximally symmetric
backgrounds such as A(dS).

The self-dual theories that this paper is about (SDYM, SDGRA and we believe HS-
SDYM, HS-SDGRA and Chiral HiSGRA as well) contain important information them-
selves: (i) self-dual backgrounds are much richer than just flat or (anti)-de Sitter spaces,
over which the usual perturbation theory is formulated; (ii) certain features of complete
theories can be understood already from their self-dual truncations, e.g. all helicity plus one-
loop amplitudes of perturbative QCD coincide with those of SDYM (similarly for SDGRA
vs. Gravity); the two-loop divergence of pure Gravity can be traced back to a non-vanishing
amplitude, ATHTT of SDGRA, see [28]; (iii) the twistor space methods are well-suited for



self-dual theories; (iv) full Yang-Mills and Gravity theories can be understood as pertur-
bations of their self-dual sectors, see e.g. [29], which leads both to new insights into their
structure and to new computational techniques, see e.g. [30, 31]; (v) the self-dual theories
have much better UV-properties, see [29].

We expect that most of the features listed above can be extended to Chiral HISGRA,
except for the fact that the complete HISGRA, of which the chiral one is supposed to be
a contraction, requires new ideas that go beyond the standard field theory approach due
to non-locality [19, 32-38]. In particular, we expect that there should exist a covariant
action for Chiral HISGRA, both in flat and anti-de Sitter spaces, that has a smooth flat
limit. Our results also suggest that the twistor space techniques, of which in this paper we
see only the final results in spacetime, should provide the most natural way to construct
interactions of higher spin fields.

The paper organized as follows. In section 2 we discuss various formulations of free
higher spin fields. In particular, we introduce a new description of higher spins and discuss
its precursors. In section 3 we, after a brief overview of SDYM, construct its higher spin
extension. In section 4 we construct a higher spin extension of SDGRA, both in flat and
anti-de Sitter spaces. The relation between the results of this paper and previously available
results on higher spin interactions are discussed in section 5.

2 Free higher spin fields

The spin one field (gauge field) is usually described by an object with a single spacetime
index. Similarly, the spin two field (graviton) is described by the metric perturbation, which
is an object with two spacetime indices. It is therefore not surprising that the standard
Fronsdal description of higher spin fields, see below, is based on a generalisation of this and
uses objects with many spacetime indices. However, it has been known for a long time that
there exists an alternative description of (free) higher spin fields. We will first review the
standard Fronsdal approach, and then motivate and develop the alternative description.

2.1 Fronsdal approach to higher spin fields

It is customary in the higher spin world to describe a massless spin-s field by Fronsdal
tensor [39] @, .. ., (x) that is totally-symmetric, yet obeys a strange double-trace constraint
<I>")‘,,/\u5.__us = 0. The Fronsdal field is a gauge field

0Py s = Vi &ps...us + permutations (2.1)

where the gauge parameter is traceless £”,,;..u,_, = 0. Here V, is the Levi-Civita con-
nection with respect to the same background metric that was implicitly involved in the
trace constraints. Fronsdal tensor is a generalization of the gauge potential, A,, and of the
metric tensor, g, to any spin. The algebraic constraints take effect starting from s = 3,4
and were invisible for low spin theories, including gravity. The trace constraints involve
the metric tensor, which becomes dynamical in a higher spin theory and also transforms
under higher spin symmetries. This leads to various subtleties, in general.



Fronsdal fields prefer constant curvature backgrounds. With A denoting the cosmo-
logical constant, the Fronsdal equations [39, 40] are!

1 2
O, s Vi qu)vuznws) + iv(ulvusq)yvusmus) =M Py, +2Ag(u1uzq)yvu3--~us) =0,

where m2 = —A((s — 2)(d + s — 2) — s). Our convention is [V, V,]¢* = Aéﬁf,, — AGYE,.
As long as V, is the connection of the de Sitter, anti-de Sitter or flat space the equation is
gauge invariant. However, once the Weyl tensor C*,, », is nonvanishing the equation ceases
to be gauge invariant for [V, V] brings C*, », , which cannot be compensated by any other
terms [41]. It was mentioned in [41] that (anti)self-dual backgrounds can be admissible
at least for positive/negative helicity fields, which was also known from the twistor liter-
ature [42-45]. However, one cannot use Fronsdal fields for self-dual backgrounds. Higher
spin fields on plane wave geometry were studied in [46].2

Fronsdal equations follow from an action [39, 40] that bears the same name. This is

an ordinary second order action

1 v
S = /\/gq)l"l-.-lls <F,U«1--',U«s — ig(ﬂlﬂ2F VNS---HS)) s (22)

where F' is the L.h.s. of the Fronsdal equation. For some other closely related descriptions
we refer to [48-50] and references therein, thereon.

2.2 Higher spins and representations of the Lorentz group

To motivate an alternative description of higher spin fields, we recall that irreducible finite-
dimensional representations of the Lorentz group in four dimensions are characterised by
two numbers (n, k). The representation space S (k) is then the space of objects with a
number of unprimed, and some other number of primed spinor indices®

§(nk) 5 wAL--AmA,l---A;C . (2.3)

This is a vector in an irreducible representation when it is completely symmetric in its
unprimed and primed indices.

Now, the gauge field is the object A, with a single spacetime index, which in the spinor
notation becomes the object 444" € SO, The (tracefree part of the) metric perturbation
becomes the spinor object h4142:4145 ¢ §(22) Tt is then clear that the total spin of an
object in S(™*) should be defined as (n + k)/2.

The convention that is often to be followed below is that all indices that are either
symmetric or to be symmetrized are denoted by the same letter with the number of indices

Indices enclosed in the round brackets are assumed to be symmetrized by adding the minimal number
of terms needed, which requires s, s(s — 1) and s(s — 1)/2 terms, respectively.

21t is possible to put higher spin fields on higher spin flat backgrounds [47] without facing the non-locality,
but this goes beyond the present discussion.

3Indices A,B,...=1,2and A’, B’,... = 1,2 are two-component spinor indices. They can be raised and
lowered with the help of eap = —epa, €12 = 1, idem. for eAB, according to §A = eABSB, ¢ = {AeAB.
AA’

A four-component vector v* corresponds to a bi-spinor v via Van der Waerden symbols ¢’ ,,, which

in flat spacetime are Pauli matrices. Given metric g,, we have gwaﬁA,agB, = eapeap- The covariant
! ’
derivative Vg4 = 0% ,,V,, is defined so that V0% 4 =0, V,.e*? = 0. We will use notation ey = o

’
where ef}A is vierbein/tetrad.



in a group indicated in brackets, e.g. A(s) = Aj ... As. This simplifies formulas, especially

(n,k)

in the higher spin case. In this notation, an object in S becomes written as

S(k) 5 g Am).A'(R) (2.4)

The symmetrization is defined to be a projector, e.g. £4n4 = %(ﬁAlnA2 4 A2,

With this notation in hand, we can return to the question of description of higher
spin fields. The spin one field is described by an object AAA/, the standard description
of the spin two field is with the object RA@A(2) Tt is, however, clear that there exist
other possible descriptions in both cases. In the case of spin one we have an object 142
that carries the same spin (one). In the case of spin two we have two alternative objects
AABLA and €AW | as well as similar objects with mostly primed indices, all describing the
spin two.

Of course, there exists a definite reason why the standard description with A44” and
hA2):A4'(2) is gpecial. Recall that in the Lorentzian signature the primed spinors are complex
conjugates of the unprimed. This means that the “balanced” representations S(™™ of the
Lorentz group are the only ones that contain real vectors. This means that if we are to
impose the condition that the description we are after has to be manifestly real, then the
only alternative is to use the balanced representations, e.g. Fronsdal’s description.

There are, however, many benefits in dropping the manifest reality property. Indeed,
the history of mathematics of the last two centuries teaches us how beneficial it may be to
“complexify” the problem at hand. And indeed, both in the case of spin one and spin two
we know that it is very beneficial to consider the other, inherently complex, representations
of the Lorentz group.

Let us consider the spin one case first. The field strength is then a two-form, and this
can be decomposed into its self- and anti-self dual parts. In the spinor formalism these two
parts are described as objects FA142 = FAR) and FA142 which are complex conjugates of
each other. It is then well-known that both of the vacuum Maxwell’s equations dF' = 0,
d*F = 0 can be written as a single complex equation

OpaFBA=0. (2.5)

The two real Maxwell’s equations arise as the real and imaginary parts of this complex
equation. Here we have translated the operator of partial derivative d,, into its spinor form
0aar. We note that the equation (2.5) is conformally invariant.

Let us now consider the case of spin two. In this case we have the Riemann curvature
tensor R, 0. It splits into its Lorentz irreducible components that are the Ricci scalar, the
tracefree part of Ricci, and the Weyl curvature. The tracefree part of Ricci gets translated
into a spinor object #4242 In vacuum this vanishes. The Weyl curvature tensor
Clv,po becomes described by two objects CArA24344 = 0AM) apnd €Y@ that are complex

conjugates of each other. In vacuum, we have a direct generalisation of (2.5)
VpaCBA2A3A — (2.6)

where now the covariant derivative is used instead of the partial one. The complex conju-
gate of this equation is then an equation on C4'(4). This is again a conformally invariant



(complex) equation. For more details on this standard material we refer the reader to the
book [51].
The pattern in (2.5), (2.6) is clear and there is a direct generalisation of these equations
to the higher spin case [42]
VpaWBAC=D — o (2.7)

where s is the total spin. This is again a conformally invariant equation. The difference
with Fronsdal’s description based on “balanced” representations of the Lorentz group is that
now one is instead using the maximally unbalanced representations, with the spinor indices
of only one type. This description arises naturally in twistor theory, as we now review.

2.3 Higher spins and twistors

Twistor theory leads to a deep correspondence between various field equations (in com-
plexified Minkowski space) and holomorphic structures on a three-dimensional complex
manifold, the twistor space. Massless fields of any spin in 4d can be realized as functions
on twistor space via Penrose transform. In this paper we prefer to stay in spacetime and
only borrow the end results of twistor theory. The original references are [44, 52, 53],
collection of papers [43] and review [45]. Twistor space is well-suited for self-dual back-
grounds. However, the propagating fields of positive [42, 45, 54] and negative [43, 45]
helicity are treated differently [44, 45], which may look awkward on the first sight. Twistor
constructions can be extended from free fields to self-dual Yang-Mills [55], self-dual Grav-
ity [56], self-dual conformal Gravity [57] and, eventually, the twistor space description of
the complete theories can be rebuilt as perturbations over the self-dual truncations [58-60].
Twistor techniques were applied to conformal HiISGRA in [61, 62].

As we already reviewed, a massless spin-s field on Minkowski or conformally-flat back-

ground (e.g. anti-de Sitter) can be described by two rank-2s spin-tensors YA Azs AT Ay
see e.g. [42], which are complex conjugate of each other and obey
VBA/ \I/BA(QS—I) — 0’ VAB/ \IIB’A/(Qs—l) _ 0’ (28)

where we used the already described convention that the symmetrised spinor indices are
denoted by the same letter. However, this is not how massless fields emerge from twistor
theory. The first equation can be left as it is and describes, say, positive helicity fields. The
opposite helicity requires a different approach [43—-45]. It is described by a gauge potential
PAr--A2:-1.4" that obeys

A, A _ SPARs 1A _ AN AQ25-2) (2.9)

)

The self-consistency (gauge invariance for (2.9)) of the equations above requires
[VAcr , VAY A = 0. (2.10)

Eq. (2.10) must hold for any spinor y“, which implies that the self-dual (SD) component
of the Weyl tensor vanishes, Capcp = 0. In particular, all constant curvature backgrounds



are admissible. Moreover, the equation becomes well-posed on an arbitrary self-dual space-
time,* a fact known from 70’s. However, SD spacetimes are not reachable via Fronsdal equa-
tion: the gauge parameter of the Fronsdal field £ 4(,_1),4/(s—1) has both types of indices and
[V, V] will produce both SD and ASD Weyl tensors upon taking the gauge variation.

2.4 The chiral connection formalism for GR

There is yet another story where the linearised description based on (2.8), (2.9) arises.
This is the chiral “pure connection” formalism for General Relativity developed in the
series of works [63-70]. The link to the developments of this paper is that the descrip-
tion of self-dual GR [29] that is here generalised to higher spins is based precisely on the
“connection” variables.

The link to (2.8), (2.9) is as follows. First, there exists a chiral “pure spin connection”
formulation of GR, first exhibited in [64], and arrived at by the procedure of “integrating
out” the metric-like and the Lagrange multiplier fields from the Plebanski action [71]. As
is described explicitly in [65], on any self-dual background, the linearisation of the GR
Lagrangian in this formalism takes the form (V47 @ A(3), )%, This can be written in
a first-order form in which an auxiliary field ¥4® is introduced so that the linearised

Lagrangian becomes
1

L~V Dy g — 5(\Iﬁ‘@‘))?. (2.11)
The first of these terms appears as the linearised Lagrangian of self-dual GR [29]. The
second term gets added when one passes from the theory of SDGRA to the full GR,
see [29]. In both cases the higher spin generalization is straightforward.

In this “pure connection” formalism for GR, the field ® 4(3) p: arises as the projection
of a one-form field wa, 4, = wa, 4,:BB’ dzBB’ onto its totally symmetric part WA(3),Ar in its
unprimed spinor indices. The connection field wa, 4,.B5/ dzBB' is a one-form with values
in the Lie algebra of the self-dual “half” SO(3,C) of the Lorentz group. The projection
onto the totally symmetric part arises because the theory is invariant not only under gauge
SO(3, C) rotations, but also under diffeomorphisms. In the “pure connection” setup under
consideration, the diffeomorphisms act purely algebraically, by shifts®

677("}141142 = inHAlAg s (2.12)

BC'

where we introduced the self-dual 2-forms HAP = e A eBY, and ip is the operation

of insertion of a vector field (interior product or inner derivative). We refer the reader

4There are no self-dual spacetimes apart from the maximally symmetric ones if one requires the signature
to be Lorentzian. It is then customary in twistor theory to go beyond Minkowski signature by considering
complexified spacetimes, Euclidian and split signatures and/or by treating ¥ as (complex) wave functions
that carry positive energy. Such extensions beyond Minkowski are also necessary for the modern amplitude
techniques, as this uses a three-point amplitude, which vanishes for spinning fields in Minkowski. In what
follows we assume that one or another point of view is chosen and will not discuss reality /positive energy
conditions explicitly.

Let us recall Cartan formula £, = {d,i,}, which can be used to represent Lie derivative £,A of
a connection A as L,A = D(inA) + i, F, i.e. as a combination of a gauge transformation and of the
curvature term.



to the series of papers [63-70] for more details. In particular, already the first paper [63]
emphasises the importance of this realisation of the action of diffeomorphisms on the basic
connection field. We now generalise this description of free spin two fields to higher spins.

2.5 A simple action for free higher spin fields

The equations (2.8) and (2.9) follow from a simple action

S = /\/g\I,BAz...Azsz ! (PAQ...AQS,B’ (2.13)

This action was almost written in [53], where it was noted that the adjoint operator of (2.9)

corresponds to (2.8).

As reviewed in the previous subsection, for the case of spin two,
this action arises naturally in the “connection” description of Einstein 4-manifolds. In
particular, the paper [70] contains a rather general discussion of issues arising in the case
of spin two.

As in the case of the “connection” description of spin two, and in the general higher
spin case discussed in [53], there is an even more geometric reformulation. Thus, one

introduces a One-form connection
/
Aq...Ags_o (I)Al...AQS,QB,B deB’ , (214)

and relaxes the identification with ®. As a result, w?142:=2 acquires one more irreducible
component that we will need to take care of, i.e. to make sure it does not lead to any
propagating degrees of freedom. The decomposition into irreducible spin-tensors reads

WA = o GARS2BE | A gA(25-3).B" (2.15)

7
where e44" =

e,‘jA/ dx* is the vierbein one-form. For s = 1,2 we recover the Maxwell gauge
potential w and the self-dual part of the spin-connection that plays the main role in the

description of [29]. The gauge transformations take the form”
6WA(28_2) — vé—A(Qs—2) + 6AC’ ,r]A(2s—3),C', (216)

where the first term represents the usual “gauge” invariance, while the second term projects
out the unwanted components of w4?$=2) and generalises (2.12). It is then clear that the
following action®

S = /\I’Al“‘A25 ANHapja, NVwa,. Ay, = /\I/A(2S) ANHpa N va(2s—2) . (2.17)

is gauge invariant and, hence, equivalent to (2.13). Indeed, for SD backgrounds we have
V2€A(2572) =AH /B §BA(2s—3), Where A is some constant, and the variation vanishes thanks

5This is a math’s way of saying ‘there is an action’. For the case of flat space this action was also
discussed in [72]. We are grateful to D.Ponomarev for bringing this paper to our attention.

A(”)’A/(m), were introduced

"We note that the same and more general type of variables, one-forms w
in [73] as well as zero-forms CAMm)A(m) of general type. This formulation contains all possible types of
fields that can be relevant for description of higher spin fields at the level of equations of motion.

8Curiously enough, this action can be obtained as a particular case of the presymplectic AKSZ ac-

tion of [74].



to Haa A HAP = 0. The algebraic symmetry, which is the second term in (2.16) is valid
thanks to Haa A eap =0, of which Haa A H4Z =0 is a simple consequence.

Action (2.17) is, perhaps, the simplest action for massless higher spin fields on Minkow-
ski and (anti)-de Sitter backgrounds. It also works for self-dual spaces. We note that, as
in any “chiral” (complexified) formalism, the positive and negative helicities are treated
differently. The action is also valid for fermionic (anti-commuting) fields, which have half-
integer s and odd number of A indices, but we only discus the case of bosonic fields. It is
worth stressing that actions (2.13) and (2.17) are valid actions for s > 1, i.e. they do not
cover the matter fields with s = 0, %

Lastly, in parallel with the discussion of GR Lagrangian in section 2.4 there is a simple
second order Lagrangian for higher spin fields in terms of ®

1
(‘;[IA(QS))2 ) (218)

L= (VA" D 4(25-1),5)° ~ WA (7, P P g25-1),8') — 5

which can be written in the first order form with the help of WA(2%).  Action (2.13) is
obtained by dropping the last term. The second order equations resulting from the action
are gauge invariant on SD backgrounds and describe both helicities. This is the second
(new) description of free higher spin fields. In this paper we employ the first one, which is
based on (2.17), to construct examples of interacting higher spin theories.

2.6 Generating functions

For future convenience, let us rewrite the action in an index-free form with the help of
generating functions. Firstly, we pack all connections as

1
w=wlyle) =3 Fwaracy™ oyt (2.19)
— k]

where y4 is a commuting auxiliary variable. Formally, we deal with sections of S(S;) ®
Q(M), which is a product of the symmetric tensor algebra of the spinor bundle and the
algebra of differential forms (M) or, equivalently, we can consider the algebra C[y|@Q(M)
of polynomials (or formal series) in y# times Q(M). For two elements X, Y such that the
total differential form degree equals the spacetime dimension d we define

L
(X |v)= [ xiy), (V) =3 XA AYay - (220)
With ¥ = ¥(y|z) being the generating function of WA(2%) the free actions sum up to
1 A A
S=(U iHAAy y“*AVw), (2.21)
where V acts component-wise. The gauge transformations can be represented as

ow =VE+ Z; (;HAAyAyA) , (2.22)



2s—1),A’

where instead of nA( we define generalized vector fields n*(y) as sections of Cly] ®

TM. For any differential form X = X (y;x;dx) the (new) inner derivative is defined as

WX = (y) o X, (2.23)

O(dxH)

which is, thereby, inert to the spinor indices hidden under y“. Therefore, we can define

nA(%‘—l)vAl as follows

eMAC’ T]A(stl),cl — 77A(2572)‘VH;4#A . (224)

Note that n#(y) contains another irreducible component not present in (2.16), but this gets
projected out due to symmetrization.

3 Higher spin SDYM

The first class of higher spin theories that we construct extends the SDYM action. We
start by reviewing the latter.

3.1 Self-dual Yang-Mills

Our starting point is the covariant Chalmers-Siegel action [75] for SDYM, which we write as

SspyMm = tr/B ANF, (31)
where F' = dA + %[A, A] is the Yang-Mills field-strength of connection A for some Lie
algebra g, and B is a self-dual two-form valued in g. Without loss of generality we assume
that g is realized as a matrix algebra and tr is the (invariant) trace. With the help of the

basis self-dual two-forms HA4, HAB = ¢4 A eBY we can represent B as B = UA4H 4
for some zero-form W44, while F' can be decomposed as

F=HpaF*+Hya FYY | Faupp =0waApp —0ppAan+[Asa, App], (3.2)
where Fap = FyaBpr B Fup = FAA/‘BB/GAB. As aresult, the action can be written as
Sepyn = ;tr/\I/AA NHaANF. (3.3)

Using the generating functional we can rewrite this as
Sspym = <;\IJAAZ/A?JA ‘ %HAAyAyA A F> (3.4)

and its free approximation agrees with (2.17) for s =1

1
Stree = itr/\IJBB ANHpp NdA. (35)

~10 -



3.2 Higher spin extension

Let us consider flat, (anti)-de Sitter or even any self-dual gravitational background. The
spacetime is described by covariant derivative V and vierbein e44’. The latter defines the
basis HA4 of self-dual two-forms. It is easy to construct a higher spin extension of the
SDYM action. We take one-form w?(*=2) for every s and pack them into a generating
function w(y|z). In order to switch on Yang-Mills gauging we assume w(y|x) to take values
in a Lie algebra g, i.e. the components are one-forms valued in some Lie algebra. A bit
more formally connection w takes values in C[y] ® Q(M) ® g. As before, we assume that g
is realized in Maty for some N and, hence, w(y|z) = w(y|z);/ are N x N matrices and we
write w A w instead of 1[w,w].

The field-strength is defined in the standard way, F' = dw + w A w, and contains the
commutator of the components followed by the symmetrization over all spinor indices,
which is achieved automatically thanks to y*:

1 A Anim
WAWZn%;OW[wA(NWWA(m)]y R (3.6)

The higher spin action we consider is the direct generalisation of (3.3) to higher spin,
which is achieved by allowing all objects to take values in polynomials in the y variables.
The action can be written in several equivalent forms. We have (now, (e | e) is improved
with tr):

1 A A 1 A(2s
S = <\1/‘ 5 Haayy /\F> =y (28)!tr/\ll @A Haa A Fags o) (3.7)

s=1

This action is invariant under the usual Yang-Mills transformations:
ow = VE+ [w, ], oW = [¥,¢], (38)

where £ is a generating function £(y|x). It is important that the commutator does not
touch the spacetime components, which are eventually associated with expansion in y*.

The higher spin extension of (3.3) introduces a new type of gauge invariance, not
present in the usual SDYM. Indeed, the action is also invariant under

5WA(k) — eAC/ UA(’C—I),C/ , (39)

which is again a simple consequence of Haseqp = 0.

Lastly, we would like to stress that the Yang-Mills type interactions of (higher spin)
fields are non-abelian ones, i.e. they do deform the gauge algebra and, hence, the consistency
of the action is far from being trivial.

3.3 Gauge-fixing and amplitudes

The action (3.7) contains the kinetic term of the schematic type WOw, as well as the
cubic interaction terms Www. The interaction can be usefully characterised in terms
of amplitudes.
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For this purpose, we first discuss how the gauge symmetry present in the kinetic term
can be gauge fixed. We then present the polarisation states describing higher spin fields of
positive and negative helicities. Such states can then be inserted into the cubic vertex to
obtain the 3-point amplitudes that this vertex describes.

As is appropriate in the amplitude context, we consider a flat background. The gauge-
fixing of the symmetry (3.9) is done by simply requiring the (linearised) connection field
wA(2s—2);Bp’ to take values in the irreducible Lorentz representation @ 4(z,_1), 4. Given that
the gauge transformation (3.9) does not contain derivatives of the gauge transformation
parameter, the algebraic gauge-fixing employed is appropriate. The arising kinetic term
is then

TACDD 40 @ g95 1) (3.10)

This kinetic term is still invariant under the 0® 4(2,_1)4r = 047§ (25—2) gauge-transformati-
ons, because 94 4:05Y ~ Oeap, which then vanishes after the symmetrization. This kinetic
terms also exhibit a mismatch in the fields. The dimension of the representation described
by an object 1 4(x) is k£ + 1, and so there are 4s components in the field ® 4(o5_1) 4/, While
there are only 2s + 1 components in the field ¥4(2%), The mismatch 4s — (25 +1) = 25 — 1
is precisely the number of the components in the gauge transformation parameter £4(25_2)-
This gauge symmetry can be fixed by adding the generalised Lorentz gauge condition
BN BA@2s—2),4» = 0. This gauge condition can be added to the action with a Lagrange

multiplier field, as a term
XAE20PY Dy 05 o) a1 (3.11)

It can then be noted that the terms (3.10) and (3.11) can be put together as

’

@A@S—l);BaBA’WA(Qs—l)A , (312)
where we have defined a new field
@A(?s—l);B _ \IJA(Qs—l)B + XA(25—2)6AB ) (313)

(25=1):B matches the number of components

The number of components in the new field ¥4
in ¢ A(Qs,l),A/ and the kinetic term is completely gauge-fixed. The operator appearing in
the kinetic term is then a version of the chiral Dirac operator. Its inverse is then the
propagator that arises in this theory.

One of the two helicities described by (3.7) resides in the connection field, while the
other helicity resides in W4(29). Let us agree that it is the negative helicity that is described

by the connection. The corresponding polarisation tensor is then

_ _ s—1 qu e QAgs_lkA’
eA(stl),A’(k) =M (k)1

(3.14)

Here we have a null momentum k44 = kakas, g4 is an auxiliary spinor, and (gk) := qka
is the spinor contraction. We have also included a dimensionful parameter M to an appro-
priate power in front, so that the polarisation spinor is dimensionless for all s. The case
of s = 1 gives the familiar polarisation spinor of YM theory. The case s = 2 reproduces
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the states considered in [67]. We note that the polarisation spinors introduced satisfy the
(momentum space version of the) linearised field equation

FY € gam1y.a (B) = 0. (3.15)

The polarisation spinor describing the opposite, positive helicity is an object with only
unprimed spinor indices and is given by

i = M kay K, - (3.16)

The mass parameter in front is so that the mass dimension of this spinor is always one.
In particular, for s = 1 there is no extra mass parameter that is needed. This polarisation
spinor satisfies the equation

K e a1y = 0. (3.17)

We can finally characterise the cubic vertex appearing in (3.7). It is clear that it gives
a pairing of two plus and one minus helicity states. The self-dual projection of the two-form
ww evaluated on two positive helicity states of momenta 1,2 and spins s1, s2 is given by

S1+s2—2 [12]
ww ~ MPELTs2 (ql)(23171)(q2)(232*1) qA, "'qA281—1qu “‘QB252—1 y (318)
where [12] := k{‘/ ko 4+ is the contraction of the corresponding primed spinors. This quantity

can now be paired with the negative polarisation spinor of momentum ks : k1 + ko + k3 = 0.
The total spin of the state must be such that the unprimed indices match, and so
253 = 281 + 2s9 — 2. This means that s; + ss — 2 = s3 — 1, which means that the di-
mensionful prefactor cancels out from the amplitude. This gives the following amplitude

(q3)281+28272
(q1)2s1-1)(g2)(2s2-1)

AT =112] 8(s3 — (51 4+ 59— 1)). (3.19)

This can be further transformed using the momentum conservation to eliminate the
g-dependence. We have (¢3)/(ql) = —[12]/[32], (¢3)/(¢2) = —[21]/[31], and so
[12]2514»28271

——+ _
A - [23](231—1)[13](252—1)

(5(83 — (81 + 89 — 1)) , (3.20)

which is the higher spin generalisation of the standard YM result.

3.4 Light-cone gauge

Yet another way to see how the interactions between physical degrees of freedom look like
is to impose the light-cone gauge:’

(I)A(2s—2)+,+' =0, (321)
which leaves us with a ‘scalar’ ®,(z) = (9t )"1®~=*". The rest of the ®-components
either vanish or is an auxiliary field @+~ = §+~ & . The second field UA(2%) contains

We use A = +, — instead of A =1,2.

~13 -



one physical component, which we denote ®_; = (8**1)\11_“__, the rest being auxiliary
fields. Action (3.7), when expressed in terms of the two physical fields, reduces to

Z/tr(q)*squhrs) +y9 Z sy ,50€A BT <¢—(81+82—1)[6+A/¢+81>a+B,q)+52]) ) (3'22)
S 51,52

where we recall that ¢, take values in a Lie algebra. Coefficients as, 5, are not important
at the moment since for each three helicities the interaction vertex in (3.22) is consistent.
The s = 1 subsector contains the standard (chiral half of) Yang-Mills interaction and has
the well-known Chalmers-Siegel form [75]. In this regard let us note that ® are related
via a simple rescaling ¢+, = (8+)i1<I>is to fields ¢+ that transform canonically under
the Lorentz transformations, see e.g. [12, 13, 21]. In particular, the interaction has only
one transverse derivative, while the second derivative is 8% = 97F. Therefore, in the
standard picture (3.22) features one-derivative interaction of Yang-Mills type. Eq. (3.22) is
a contraction of the Chiral HISGRA that was considered in [19].1 In the language of [19]
it corresponds to the commutative limit of the (kinematic) algebra. Historically, it was
observed in [76] that the self-dual truncation of super Yang-Mills theory does not have an
upper bound for A, which also leads to higher spin fields for N’ > 6.

4 Higher spin SDGRA

Our other new higher spin theory is the higher spin extension of the SDGRA, which we now
review. There are two formulations, one relevant in the case of a non-zero scalar curvature,
the other one describing “flat” gravitational instantons. The first has been described in [29].
The second is new. Here we motivate it by a “contraction” procedure from the non-zero
scalar curvature one, but it can be also described intrinsically, which will be the subject of
a separate publication [77].

4.1 SDGRA: non-zero scalar curvature

The formulation of SDGRA with non-zero scalar curvature given in [29] is the “pure con-

)

nection” one, as it uses the basic fields already encountered in section 2. The dynamical

\I,ABC'D

fields are a zero-form and a connection one-form wA?. The action reads

1
S = E/IIJABCD/\FAB/\FCD, FAB — 4B 4 w40 AwOEB | (4.1)
It is invariant under

SwP = deP +wAc €9P + WP 9 + Lpw?P, (4.22)

5\IJABCD _ \I’M(ABCé-MD) + £77‘11ABCD . (42b)
Let us choose the constant curvature or an instanton background, i.e. we choose wy such that

dwB + wie AwB =eler A eBY = HAB (4.3)

%The dictionary between (3.22) and the light-cone formulas in momentum space of [19] is that structure
cap 0T 0918 o will correspond to pg'pg — pg'pg = P23 in momentum space, where p* = (p*,p~,p, D).
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the cosmological constant being implicit on the right-hand side (we set it to 1). The

\I,ABCD

background value of is assumed zero. The action decomposes as

S = /\I/ABCD A (Hap A Vwep) +
1
+\I/ABCD/\ (2VwAB/\VwCD+HABw(;M/\wDM> + (4'4)
+PABCD A (VwAB N wom /\WDM) .

There is a canonical free term, cf. (2.17). The cubic term features the dwdw-part and an
ww term due to curvature. There is also a quartic term, but the quintic one vanishes. This
is the structure we would like to generalize to higher spin fields.

4.2 SDGRA: zero scalar curvature

We motivate the zero scalar curvature version of (4.1) by referring to a “contraction”
procedure that is known to give another formalism for flat space SDGRA.

In [78] the author gave a covariant formulation of flat space SDGRA that works by
producing, as one of the arising Euler-Lagrange equations, the condition that one of the
chiral “halves” of the spin connection is zero. This then implies that the metric is a flat
gravitational instanton. The paper [79] notes, see formula (30) of this paper, that Siegel’s
action is equivalent to the action one obtains by setting to zero the ww term in the chiral
Plebanski action. Inspired by this, we apply the same “contraction” procedure to the
action (4.1), to obtain an action to describe flat space SDGRA.

The effect of the contraction procedure is to remove the ww terms from the curvatures
in (4.1). This results in the following action

1
SSDGRA, flat = 5 / UABCD A dwap A dwep (4.5)

where we use the flat space derivative operator d. It can be extended to an appropriate
covariant derivative (on e.g. a background instanton) if necessary. The action is invariant
under

(SWAB _ deB + £T]WAB7 5\I/ABCD _ £n\I/ABCD, (46)

where n = n#(z) is a vector field. Modulo a gauge transformation, the effect of the n-

AB

symmetry on the one-forms w“” can be massaged into the following simpler form, cf.

footnote 5,
5pwB =i, (dw?P) SWABED — i quABCD (4.7)

A

The action only depends on the exterior derivative of one-forms wA? and is thus invariant

under shifts of these by an exact form. It is also clearly diffeomorphism invariant. This
demonstrates that (4.6) are indeed the gauge symmetries.

Now, we expand the action over the flat space background, where an appropriate

AB AB deC’ AB

solution for wy'? is wy'? = x4 in Cartesian coordinates (recall that w”” is not a
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spin-connection), so that H AB = oA, A eBC = Vwé“B. One finds
1
SSDGRA, fat = /\I/ABCD ANHuap N dwop + B / YABCD 5 dwap N dwep, (4.8)

where the first term is the correct free action (2.17). Upon imposing the light-cone
gauge and introducing a coupling constant g we arrive at the Siegel light-cone action for
SDGRA [75, 78]

/ O _o00P 9+ geapecp®_00T4 0T D0t 0T D, . (4.9)

4.3 Higher spin generalisation: flat space

We begin with flat space. The fields are represented by generating functions ¥ and w. V is
a covariant derivative such that V2w = 0, i.e. its self-dual part vanishes and we can choose,
for example, V = d. The action is simply

1

S:§<\II|F/\F>, F=Vuw, (4.10)

and is invariant under
-

dw = VE+ iy F, OV = (d¥)i, , (4.11)
where for any ¢-form X (y) = X (y; z; dx) we define
<_
0

y1=0" Z;X(y) - n“(y)a(dxﬂ)X' (4.12)

X(y)hy = Xy - o)

a(dgcu)n“(yl)

In the first definition 0 = 9/dy;! will contract all spinor indices of 7 with available indices
of X. In the component form we find

%

< 1 0
X(y)i, = Z,}E X g B®) 5] W vy (4.13)

To analyze the content of the theory we expand it over wé‘B = 240 dzP¢" and find

/‘I’A(2s) NHaa N dwyos—2)+

1
S:Z (2s)!

(4.14)
" Z 2(251 + 252 — ) / WACHHZ2TY A dio g5, 9 A dwa(as,—2)

where we recall that HAZ = e A eBC = Vwé“B.

4.3.1 Amplitudes

We can now characterise the interactions appearing in the second line of (4.14) by projecting
them onto helicity states. We have already described the polarisation spinors for the free
theory in 3.3. It remains to insert these states into the cubic vertex.
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On negative helicity states e~ (k) the 2-forms dw(2,—1) have only the ASD parts,
because their SD parts vanish in view of the equation satisfied by these states. So, the only
non-vanishing part of dw 4(2,_1) is the spinor

s—14A1 - - - qAss_o
M —(qk)(zs—z) kakp: . (4.15)
We then obtain for dw A dw the contraction of two such spinors in their primed indices,

which gives
9qA; -+ -qAs,, 29B; -+ - 4By, 2

(q1)2s1-2)(g2)(2s2=2)

We now contract this with a negative helicity spinor. The unprimed indices should match,

MeTTs22(19]

(4.16)

which gives the condition 2s3 = 2s1 + 2s9 — 4. This means that there is precisely a factor
of 1/M remaining in the amplitudes for all spins. The amplitude is then given by

1
M

(q3) (2s1+2s2—4)
(q1)(21=2)(¢2)(2s2-2)

AT [12]2 §(s3 — (s1+52—2)). (4.17)

Eliminating factors of the auxiliary spinor ¢ using the momentum conservation we get

. 1 [12](281+282—2)
A =17 [23](251_2)[13](252_2)6(53 — (51 + s2 — 2)). (4.18)

At s = 2 this is the usual result in gravity.

4.3.2 Light-cone gauge

In the light-cone gauge the new higher spin action features minimal gravitational interac-
tions and reads

S:Z/(I),SD(I)+S+9 Z asl,SQEA’B’GC"D’(Dfsl8+A/a+clq)+52 6+B/8+D’(I)+53
s —81+82+s3=2
(4.19)

When restricted to helicities £2 the action reproduces the light-cone action (4.9) of SDGRA
proposed by Siegel [78]. Action (4.19) corresponds to a contraction of the Chiral HISGRA
that was considered in [19]. In the language of [19] it corresponds to the Poisson contraction
of the (kinematic) algebra. Again, as, s, can take arbitrary values due to the fact that each
of the vertices is consistent on its own. We discuss the relations between this and other
results in the literature in section 5. For now, let us just note that it is this two-derivative
gravitational interaction of higher spin fields in flat space that for a long time was thought
not to exist within the Fronsdal approach. At the same time, this interaction is clearly
seen in the light-cone gauge and in the spinor-helicity language. For the first time we have
a covariant description of this interaction.

4.4 Higher spin generalisation: Anti-de Sitter space

We would like to combine the higher spin action (4.10) from the previous section with the
SDGRA action (4.1), so that the resulting theory has constant (non-vanishing) curvature
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space as a natural vacuum. The fields are the same: zero-form ¥ = ¥(y|z) and one-form
w = w(y|z). A new ingredient that we will need is the Poisson bracket on the C[y]-space.
Given any two functions f(y) and g(y) we define

(1.0} = 4009 = ¥ ey danne v vt (420)

n,m

Thus, the Poisson bracket of objects f, g involves the contraction of a single pair of spinor
indices of fA( ¢AM) With the help of the Poisson bracket we define

F:dw—&-%{w,w}, dw = d€ +{w, &} = DE. (4.21)

For spin two this reproduces the formulas familiar from SDGR. Indeed, in this case

w = %wA aydy? and € = %f 4y2yA. Let us also note that for w of a general spin and

the gauge parameter £ that has only two spinor indices and is thus a Lie algebra sls

element, the Poisson bracket {w,{} leads to the canonical action of sly on spin-tensors.
We postulate the action to have the same form as (4.10)

(W|FAF)= > : i / WA A F g0y A Fagmy - (4.22)

im0 2(n+m

1
S=-
2
The main task is now to show that this action is gauge invariant under some non-linear
extension of (4.11).

Let analyze the &-variation of w first. Using §F = {F, ¢} we have

5= S (W {EIAF)+3 (U] FA{EE)) = L (| {FAFE) =3 (| {E FAF))  (423)

We now need to define the action of & on ¥ so as to cancel this arising variation. And
indeed, we observe that one can define a sensible action of the Poisson algebra on V. First,
for any f, g and £ in C[y] @ Q(M) we define (the fact that (e | e) involves integration is not
important at the moment and we can work with (e ; @), which is just the full contraction
of sly-indices, (2.20))

(fi{&9}) = (fo&59). (4.24)

Thus, the idea is to define a new o action that is the adjoint with respect to (e ; @) of the
action by the Poisson bracket. A simple computation shows that

1
Vol = Z @‘I’B(H)A(m) £B(n)A yhooyt (4.25)

We draw reader’s attention to the fact that all but one indices of £ have to be contracted
with W.

It is now convenient to encode various operations on C[y] in terms of generating func-
tions. Let us define (p;)c = 0% and a - b = a“bc. Then we have

{f, 9} = (p1-p2) exply - (p1 + p2)]f (y1)9(y2) piaz0’ (4.26a)
fo&=(y-p)eply-prtp-plfy)elw)] (4.26b)
(f,9) = explp1 - p2] f (y1)9(y2) s’ (4.26¢)
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The o-operation equips us with the (right) action of the Poisson algebra on the dual space:
R(¥):=-Tof, Ry Rgl(¥) = Ryfg3(T). (4.27)
We now continue with (4.23) by adding the yet to be determined &-variation of W
5582—%<\1105|F/\F>+%<55\If|F/\F). (4.28)
Therefore, we need to postulate
0¥ =Vol (4.29)

to make the action £-invariant. Note, that the o-action reduces to the standard slo trans-
formations for £ = %5 a4 y?yA. This shows that the action is invariant under “gauge”
transformations generated by objects £ with an aritrary number of spinor indices.

Let us now analyse the “shift” n-symmetry. We first postulate that its action on the
connection w is given by the insertion of a y-dependent vector field n*(y) into the curvature

— —
Syw = iy F, inF = n"(y)

B F(y;dx). (4.30)

Let us vary the action with respect to w:

(L,S:%&J(\I/]F/\F>:%(\I’|D5w/\F+F/\D5w>:<\II\D(5w/\F)>:

(4.31)
= (V| d0wAF)+{w,dwAF})=—(d¥ —VYow]|dwAF).
It makes sense to define the covariant derivative in the module as
R:=DV =d¥V —Vow. (4.32)

For the gravitational background (w is bilinear in y) the last term coincides with the
usual action of the spin connection on a spin-tensor. Also, R has canonical transformation
properties 0R = R o £ and obeys Bianchi identity dR + Row + ¥ o F' = (0. We now come
back to the n-symmetry. Using (4.30), (4.31) we have:

1
5,5 = —(R| ZFAF>+§<5,,\1/|FAF>. (4.33)
We then use ;]}F NF = %Z(F A F). Finally, we define
(Riy | X) = (R| 7y X), (4.34)

which should be compared to (4.12). Explicitly, in the language of generating functions

<_
- )
Riy = exply - p1+ p1 - po] R(yi; dr) 5 o' (312)

: 4.35
- (4.35)
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It is now clear that we should require that 6, ¥ = RZ. Summarizing, we have the following
gauge transformation rules

|
Sw = dé + {w, €} + 0, F , F = dw+ 5{w,w}, (4.36a)
00 =Tot+ RS, , R=dVU - Vow. (4.36D)

Once these transformation rules are expanded over the constant curvature background we
find, in the leading order, the expected

SU=0+... Sw="VE+inFy+ ..., (4.37)

where Fy = %H a4y yA. The last term is the desired shift symmetry, cf. (2.24).

It is worth making few comments about the action. The action features quartic and
even quintic terms.!! However, the quintic terms will vanish in the light cone gauge. It
is important to stress that the n-symmetry is crucial for preserving the right number of
physical degrees of freedom. In the free approximation this symmetry can be written
as (2.24)

A(2s=2) _ A A(25-3),C" (4.38)

Opw =e’orn

. . /
However, vierbein e44

is not a field that is present in the action. Instead, it is defined
by the background. In the interacting theory this field becomes dynamical, and not easily
constructible from the basic fields. Therefore, the Noether procedure would face some
difficulties when trying to go beyond cubic vertices.

Another remark is that, while in the spin two case the n-symmetry can be interpreted
in terms of diffeomorphisms, this is no longer the case in the higher spin case. Indeed, the
Cartan formula does not help to provide n-symmetry with a more geometrical interpretation
since

1
Lyw = digw + iydw = D(iyw) + iy F — §in{w,w} —{w,ipw} . (4.39)

The last two terms do not cancel each other since the Poisson bracket acts on 1 too (n
depends on y for s > 2). Therefore, the shift symmetry should be defined the way we did
via i, I rather than £,w. This subtlety does not make any difference in the case of spin
two, but for higher spins the only available option is the one with i, F'.

Let us finally remark on the difference between the two actions (4.10) and (4.22).
One is suitable for an expansion over the flat space and the other one has AdS; as a
natural background. The difference between the two action is in {w,w}-terms, which can
be introduced with some coupling constant to be sent to zero in the flat space limit.
Therefore, the flat space limit is smooth. In more detail, we replace w with gw, where
g = /]A] and A is the cosmological constant, which leads to g7 F = dw + 2{w,w} and we
should add ¢g=2 in front of (4.22) to ensure the smooth g — 0 limit.

"There is not much literature on interactions of higher spin fields beyond cubic order, see e.g. [36, 80-84].
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5 Discussion

We have constructed actions for massless (propagating) higher spin fields that feature gauge
(one-derivative) and gravitational (two-derivative) interactions.'? There are two types of
theories: higher spin extensions of SDYM and of SDGRA. The HS-SDGRA theory admits
two formulations, one having flat space and another having anti-de Sitter space as natural
backgrounds. The flat limit is smooth and it agrees, upon going into the light-cone gauge,
with the already known contractions of the Chiral HISGRA [19]. When expanded over the
AdSy-background the actions should agree with the classification of vertices in the light-
cone gauge obtained in [85] and with contractions of the cubic terms of Chiral HISGRA in
AdSy [18]. The actions we proposed for HS-SDYM and HS-SDGRA are complete, i.e. are
gauge-invariant up to all orders,'® which seem to be the first Lorentz-covariant examples
of this kind.

The actions described in this paper are based on a new formulation of massless higher
spin particles on constant curvature and, more generally, (anti)self-dual backgrounds. As
we reviewed, the fields WA23) and wA(2s—2) (or gauge potential <I>A(25_1)7A,) naturally
emerge in twistor theory. The same fields appear in the “connection” description of grav-
ity [65]. The actions we propose generalise to higher spins the familiar Chalmers-Siegel [75]
covariant action for SDYM, and the “connection” formalism action [29] of SDGRA. As is
the case with any chiral formalism, positive and negative helicities are treated in a different
way. It would be interesting to construct other vertices that appear in Chiral HISGRA, and,
perhaps, redo the classification of vertices in the approach to higher spins described here.

In the context of AdS/CFT correspondence SDYM, SDGRA and higher spin gener-
alizations thereof, HS-SDYM and HS-SDGRA, may provide interesting cases of duality.
These examples are quantum consistent theories in anti-de Sitter space, some of which
contain dynamical graviton. It would be interesting to compute AdS/CFT correlation
functions in these theories and investigate CFT duals thereof. The corresponding cor-
relation functions should be a subset of those in Chern-Simons vector models [18]. The
recently developed spinor-helicity techniques in AdS; [86-88] should be an appropriate
starting point.

It remains to discuss the puzzle that the gauge and gravitational interactions of higher
spin fields have long been thought not to exist, see e.g. [25, 41, 89, 90|, or require some
non-minimal vertices and anti-de Sitter space [89, 91, 92]. On the other hand, they are
fine in the light-cone gauge [12, 13, 21] and the spinor-helicity formalism [90]. We discuss
these puzzles below.

121t is convenient to define ‘the number of derivatives’ as the number of transverse derivatives in the
light-cone gauge (provided trivial interactions that are proportional to the Hamiltonian are eliminated).
Such definition would be independent of how the physical degrees of freedom are embedded into one or
another covariant formulation. In anti-de Sitter space one should refer to the maximal number of derivatives
since there is a lower derivative tail. In any case, for a triplet of helicities A; the number of derivatives so
defined is ‘)\1 + Ao + >\3|, [21, 85]

13In principle, it is easy to construct something nonlinear and gauge invariant by taking powers of the
linearized gauge-invariant curvatures, e.g. powers of the linearized field-strength F},,, linearized Riemann
tensor R,. x, and higher spin generalizations thereof. However, this usually does not lead to interesting
interactions. Here, we consider some of the most important interactions: gauge and gravitational.
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Let us briefly recall some of the important milestones in the study of higher spin
interactions. We stick to the results obtained within the field theory approach, putting
aside any S-matrix results, e.g. Weinberg low energy theorem [93]. (A) In [41] it was argued
that it is impossible to put higher spin fields on nontrivial gravitational backgrounds. (B)
In [24-27] it was noted that higher spin interactions require more derivatives, in particular,
there is no standard, i.e. having two derivatives, gravitational interaction for higher spin
fields. Instead, the simplest s —s—2 interaction'* has more than two derivatives. (C) in [89]
a ‘gravitational’ interaction (and some other cubic interactions as well) of massless higher
spin fields was constructed in AdSy up to the leading (cubic) level and it was argued to have
a singular flat space limit. The ‘gravitational’ interaction of [89] does not have the minimal
form and features terms with two and more derivatives. (D) However, around the same time
a complete classification of cubic interactions of helicity fields was obtained in the light-
cone gauge [20, 21] in flat space. This list clearly contains a two-derivative gravitational
interaction s—s—2 of higher spin fields. The same result is easy to see in the spinor-helicity
formalism [22, 23]. (E) Recently, a complete classification of cubic interactions in AdSy
was obtained in the light-cone gauge [85] and in the spinor-helicity formalism [88], and is
in one-to-one with that in flat space. (F) Such low-derivative interactions, which are not
reachable within the Fronsdal approach, are necessarily present in Chiral HISGRA [12-15],
which is the minimal extension of gravity with higher spin fields (provided they also feature
at least one genuine higher spin interaction).

There is an apparent tension between some of the results reviewed above. Firstly,
(A,B,C) are obtained in the Fronsdal approach (A,B) or are equivalent to those (C), while
(E,D) are about objective reality. In other words, non-existence or singularity of certain
structures observed in (A,B,C) may represent a feature of a given covariant approach,
rather than an actual fact about interactions of higher spin fields. Secondly, there is a
perfect (D+E) agreement between cubic interactions in flat and anti-de Sitter spaces. The
latter proves that (A,B,C) reveal some subtleties of the Fronsdal formulation rather than
of the structure of higher spin interactions themselves. The subtleties are of two types: (I)
certain interactions (low derivative ones) are invisible in the Fronsdal approach; (II) there
are certain discrepancies between results in flat space and AdS.

Thus, one important feature of any fundamental approach (e.g. light-cone and S-
matrix) is the presence of low derivative interactions [12, 13, 21, 94] that are not seen [90, 95]
in the Fronsdal formulation,'® see e.g. [32, 97]. For example, it was shown [90, 98] that the
two-derivative gravitational interactions of higher spin fields cannot be (at least locally)
written in terms of Fronsdal fields. This paper resolves all these puzzles by constructing a
covariant formulation of higher spin fields that features the minimal gravitational interac-
tions (it should also allow one to write down the other low derivative interactions that are
invisible in the Fronsdal approach).

M A cubic vertex of spin s; fields is called s1 — s2 — s3 interaction. By standard or minimal gravitational
interactions we mean something like VI T g"¥, where T}, is a stress-tensor, which has two derivatives for
bosonic fields. Such coupling would induce diffeomorphism symmetries on the matter fields.

15The same result, i.e missing interactions, can be obtained by extrapolating the light-cone results from
d > 4 to d = 4 [96]. The vertices in the light-cone gauge agree with the ones in terms of Fronsdal fields
ind > 4.
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In more detail, consider the gravitational interactions s — s — 2 as an example. The
light-cone offers vertices of type (+s,—s,+2) (two derivatives),'¢ (+s,+s,—2) (25 — 2
derivatives) and (+s,+s,+2) (2s 4+ 2 derivatives, but we will not need this one). In flat
space each vertex is one term with a fixed number of derivatives. When deformed to AdS
it has to be accompanied with a tail of lower derivative terms to remain consistent [85].
In AdSs the (+s,+s, —2)-vertex begins with a (2s — 2)-derivative term and goes down
to a l-derivative one. The (+s,—s,+2)-vertex consist of a two derivative term and a
one-derivative term (tail).

What is observed in Fronsdal language? (B) can see only (+s, +s, —2)-vertex in flat
space. (C) has (+s,+s, —2)-vertex together with its lower derivative completion due to
AdSy, see [26, 97, 99]. The last terms in the tail have two and one derivatives and can
be mixed up with the (+s, —s, +2)-vertex. (F) implies that (+s, —s, +2)-vertex must be
present too. Therefore, our conclusion is that the covariant ‘gravitational’ vertex in AdSy
that starts with (2s — 2) derivatives is a chimera: upon going into the light-cone gauge the
vertex has to decompose into two independent vertices (+s,+s,—2) and (+s, —s,2) with
a fixed relative coefficient. The coefficient can be read off from Chiral HISGRA. The same
has to be true for other low derivative interactions. It would be interesting to check this.
We believe that this resolves (I).

As for (II), there are different ways to define flat limit:!” (i) one can simply send
the radius R to oo as in [89], which is singular; (ii) one can rescale both [, and R in
such a way that the highest derivative term survives [26, 97]. This trick works for each
vertex separately; (iii) one can assume that fluctuations take place far from the boundary
z = 0 and are of typical size [ that is much smaller than R, which would bring the entire
Chiral HiSGRA from AdS, to flat space and make the flat limit smooth for all interaction
vertices together.!® What confronting (A,B,C) with (D,E,F) shows is that the mixture of
(+s,+s,—2) and (+s, —s, 2) interactions that is present in the s — s — 2 vertex in AdSy in
the Fronsdal formulation boils down to a single (+s,+s, —2) vertex in the flat limit. On
the contrary the vertices we constructed so far have a smooth flat limit.

As the results of this paper and previous works suggest, there is no difference between
flat space and AdS for the problem of constructing interactions of massless higher spin fields.
For example, the cubic interactions are in one-to-one. More generally, there should be no
difference provided that all questions are formulated in an invariant way. Starting from the
quartic order there are severe obstructions to existence of HISGRA both in flat [19, 32, 33,
35] and AdS cases [36-38]. Chiral HISGRA (ant its contractions) is the only perturbatively
local HiSGRA in flat space [19], which is likely to be so in AdS;.

As a general lesson, it is convenient to stick to the approaches that deal directly with
physical degrees of freedom (p.d.o.f.) and, thereby, avoid any ambiguities that are present

6 Curiously enough [25] found the deformation of the gauge algebra and gauge transformations that would
correspond to such a vertex in the Fronsdal language. However, it was shown there that they fail to give a
consistent vertex.

YFor example, the ‘gravitational’ interaction in the Fronsdal approach would look schematically as
Ip(®2V2DD, 4 ...+ R* 1D, V2728, ®,), where I, is Planck length and R is AdS ‘radius’

8Note that the vertices in the light-cone gauge in AdSs; do not have any explicit dependence on R
at all [85].
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in many local covariant field theory formulations (the same p.d.o.f. can be embedded
into different covariant fields and some of these formulations may not be convenient for
introducing interactions, see e.g. [100]). Two such invariant approaches come to one’s mind:
S-matrix and light-cone (or light-front) approach. The former idea is to try to construct
a consistent S-matrix, but it does not come with too many tools. The latter idea is to
build the charges of the Poincare (or any other spacetime’s symmetry algebra), including
the Hamiltonian in terms of local p.d.o.f.

We prefer the light-cone approach as, perhaps, the most general approach to local field
theory. Once the light-cone form of a theory is known, it makes a lot of sense to look
for a covariant formulation, which would make it possible to deal with non-perturbative
problems and simplify most of the light-cone computations even perturbatively. As far
as we know, there is no theorem that would guarantee that a nice covariant formulation
always exists. In this paper we make an observation that the most important interaction
vertices that are present in Chiral HISGRA and could not be written within the Fronsdal
approach can now be written with the help of the new approach. The covariant fields that
we employed were known since 70’s thanks to the development of twistor theory. All this
strongly suggests that Chiral HISGRA should have a manifestly covariant action, which
might be easier to look for directly in the twistor space. Other HiSGRA in AdS; can
be understood as perturbations of the Chiral similarly to how YM and Gravity can be
understood as deformations of SDYM and SDGRA.
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