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Multicriteria decision analysis studies decision problems in which the alternatives are evaluated
on several dimensions or viewpoints. In the problems we consider in this article, the scales used
for assessing the alternatives with respect to a viewpoint are bipolar and univariate or unipolar
and bivariate. In the former case, the scale is divided in two zones by a neutral point; a positive
feeling is associated to the zone above the neutral point and a negative feeling to the zone below
this point. On unipolar bivariate scales, an alternative can receive both a positive evaluation and a
negative evaluation, reflecting contradictory feelings or stimuli. The article discusses procedures
and models that have been proposed to aggregate multicriteria evaluations when the scale of each
criterion is of one of these two types. We present both a constructive view and a descriptive
view on this question; the descriptive approach is concerned with characterizations of models of
preference, whereas the constructive approach aims at building preferences by questioning the
decision maker. We show that these views are complementary. C© 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

Multicriteria decision aid (or support) is concerned with the process of helping
a decision maker (henceforth DM) understand a decision problem and clarify his
preferences; helping him is required since the decision is obscured by the presence
of several objectives and the fact that the alternatives show contrasted behavior with
respect to these objectives. The alternatives are usually described by their evaluation
on a set of attributes; the latter are selected in such a way as to provide a description
of the alternatives in all the aspects that are relevant for the decision that has to be
made. Very often, at some stage of the process, each alternative has been associated
with a vector, the coordinates of which represent the assessments of the alternative
on a set of criteria that encode the objectives of the DM. A crucial technical operation
at this stage consists in producing a synthesis of the various aspects relevant to the
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decision; this is often called aggregation. The result of this operation may take
different forms; it can be an evaluation of each alternative on a supercriterion; it can
also be a relation on the set of alternatives, a pair of alternatives being in the relation
if the comparison of the performances of both elements of the pair on the relevant
criteria shows that the first element should be preferred over the second one.

The points of view on which the alternatives have been assessed may often
be considered as being bipolar; for instance, there may exist a natural neutral point
on the evaluation scale associated to the criteria; above this “zero” lies the zone of
evaluations corresponding to a good performance, and below the zone corresponding
to bad performance. Taking into account the bipolar nature of the scale often amounts
to treating the good and the bad performances differently.

An example of the considered situation is the evaluation of a car on the basis
of features such as maximum speed, acceleration, fuel consumption, price, and so
on. From a psychological viewpoint, these features constitute a set of stimuli that
combine to form the DM’s preferences on the set of alternatives. From the decision
analysis point of view, these features are the attributes on which a comprehensive
evaluation is based. Modeling the DM’s preferences on each attribute amounts to
translating the effect of the stimulus into a level on the scale associated to the
corresponding criterion. The simplest way to do so is to consider a unipolar scale
on which it is not possible to identify a reference point separating positive and
negative evaluations. A bipolar scale is appropriate when the DM is able to say
whether he perceives each alternative positively or negatively with respect to each
viewpoint; for each criterion, we have either a positive or a negative evaluation on
a bipolar but univariate scale. In this case, the positive or the negative sign of the
evaluation derives from the comparison with a neutral reference point, such that
all the values over the reference point are considered positive and all the values
under the reference point are considered negative. For example, if we consider the
maximum speed of a car, the reference neutral level can be 150 km/h. In this case, a
maximum speed of more than 150 km/h is considered positive, whereas a maximum
speed of less than 150 km/h is considered negative.

In some cases, a DM might be unable to make a synthesis of possibly contra-
dictory stimuli relative to a single viewpoint, which leads to using two scales for the
evaluation of the alternatives on such a viewpoint: one for the positive stimulus and
one for the negative stimulus associated to the same alternative. In a bivariate con-
text, one can consider two different reference points, one for the positive values and
another for the negative ones. Coming back to the example of the car, a maximum
speed of 120 km/h can be considered as an undesirable level, whereas a maximum
speed of 180 km/h is a desirable level. Now, consider a car with a maximum speed
of 150 km/h. In this case, we have both a positive evaluation, because the maximum
speed is more than the lower level of 120 km/h, and a negative evaluation, because
the maximum speed is less than the higher level of 180 km/h. In case the DM is not
able to make a synthesis of the good and the bad aspects on each viewpoint, two
evaluations are needed for each criterion: one related to the positive part and another
to the negative part.

Also with respect to the comprehensive evaluation, one can consider a unipo-
lar setting, a bipolar setting, or a bivariate setting. In a unipolar setting, for each
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alternative x, there is only one comprehensive evaluation CE(x) and it is not mean-
ingful to distinguish between positive and negative comprehensive evaluations. In a
bipolar setting, there is only one CE(x), but it is meaningful to distinguish between
a positive CE(x) > 0, a negative CE(x) < 0, or a neutral CE(x) = 0. Nevertheless,
in a bipolar setting, it is not possible to decompose the comprehensive evaluation
CE(x) as the net result of the aggregation of a comprehensive positive evaluation and
a negative comprehensive evaluation. In a bivariate setting, there are two evaluation
axes, one for a comprehensive positive evaluation and the other for a comprehensive
negative evaluation. Therefore, for each alternative x, the evaluations with respect
to the considered criteria are aggregated in a comprehensive positive evaluation
CPE(x), a comprehensive negative evaluation CNE(x), and a comprehensive fi-
nal evaluation CE(x) resulting from a further aggregation of CPE(x) and CNE(x),
representing the final net evaluation.

In this article, we mainly examine procedures and models that have been
proposed for aggregating multicriteria information when the scales of the criteria
are viewed as bipolar and univariate or unipolar and bivariate.

Two different approaches exist for analyzing aggregation procedures. One is
the so-called descriptive approach that tries to model the observed behavior of DMS.
It states conditions under which a preference can be represented in a given family
of models. Relying on such results, it proposes methods for eliciting the parame-
ters of a particular model in a specific family of models. The second approach is
called constructive. It proposes procedures for building a preference relation taking
into account the available information. In Section 2, we briefly review the notion
of a bipolar scale as a scale of evaluation of alternatives relatively to a particular
point of view (criterion); we distinguish two ways of representing bipolarity: the
bipolar univariate model and the (unipolar) bivariate model. Section 3 analyzes, in
a descriptive perspective, the notion of bipolarity in a variety of preference models;
models for the aggregation of bivariate scales are also described. In Section 4, we
present a number of procedures for constructing a preference based on assessments
on bipolar univariate scales. Section 5 offers a broad view on all the models that
can be thought of to describe preferences resulting from the aggregation of bivariate
scales associated to criteria; the case where the global or the comprehensive eval-
uation itself is bivariate is also envisaged. The article ends with some comments
on the complementary views brought by both the descriptive and the constructive
approaches.

2. BIPOLAR SCALES IN MULTICRITERIA DECISION ANALYSIS

In this section, we describe two ways of modeling the preferences of a DM on
a criterion, taking into account the bipolar nature of the affect.

2.1. Two Possible Models

Many experiments in psychology have shown that our way of evaluating alter-
natives, objects, and making decision is guided by affect. According to Slovic,1 affect
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Figure 1. The bipolar univariate model.

Figure 2. The unipolar bivariate model.

is the “specific quality of ‘goodness’ and ‘badness,’ as it is felt consciously or not
by the decision maker, and demarcating a positive or negative quality of stimulus.”
This definition clearly reflects the bipolar nature of the affect, since it is built on two
opposite poles (good/bad, positive/negative). Hence, the way we represent quantities
on a scale in a given model of decision making, such as scores, preferences, etc.,
should reflect this bipolar nature. Measurement theory2,3 introduces scales as ho-
momorphisms between a set of objets of interest equipped with some (e.g., binary)
relation � and the set of real numbers equipped with another relation ≥ (e.g., the
usual order). However, the distinction between bipolar scales and unipolar scales
(i.e., with only one pole, which could be either positive or negative) is not considered
in this theory.

There are basically two ways of representing a bipolar notion on a scale: the
bipolar univariate model, called Type I,4 and the unipolar bivariate model, called
Type II.5 Scales of Type I consist of a single axis with a central 0 value, ranging
from negative to positive values (see Figure 1). On this scale, the intensity of the
affect is encoded by a number greater than 0 if it is felt as good or positive in some
sense and smaller than 0 if it is felt as bad or negative. The central 0 value is used to
encode the neutral affect, which is neither good nor bad. More recently, the tendency
is to use the unipolar bivariate model introduced by Cacioppo et al.5 As shown in
Figure 2, this model uses two independent unipolar scales bounded below by 0. The
horizontal axis encodes the intensity of the positive affect, whereas the vertical axis
encodes the negative affect. Hence, one can have independent components for both
the positive and the negative parts of the affect. The motivation for such a model is
that a subject may feel at the same time for a given object (alternative etc.) a positive
feeling and a negative one. Yet, the subject does not have a resulting feeling, which
would be in some sense the summation of both. For example, eating chocolate gives
some gustative pleasure (positive affect), while the subject may feel some greediness
(negative affect).a

a See however Section 4. A closer analysis of this example shows that it is better modelized in
a multicriteria framework, that is, gustative pleasure and greediness (we may also speak of “effect
on diet”) are considered as two criteria, each one being evaluated on a scale that is bipolar univariate
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2.2. Neutral Level: Boundedness

Coming back to the definition of the affect, besides the notion of poles, another
important notion that is characteristic of the affect—and indeed a consequence of
the presence of two opposite poles—is the notion of neutral level. The neutral level
is the point where the two sides (negative, positive) of the axis meet, that is, it is the
point that is felt by the DM with neither a positive nor a negative affect. Formally,
let us consider a set A of objects and some binary relation � on A, expressing, for
example, the preference of a DM. We assume that � is reflexive, complete, and
transitive. We consider a numerical scale f : (A, �) −→ (R, ≥), that is, an order-
preserving function. A neutral level is an object in A denoted by 0 such that for
each object a ∈ A, if a � 0, then a is considered as “good” by the DM (positive
affect), and if a ≺ 0, then a is considered as “bad” (negative affect). Usually, we set
f (0) = 0, which means that the value 0 on the scale represents the neutral level.

Our definition of a neutral level is rooted in the notion of affect, and so always
corresponds to the frontier between two paired and opposite notions of natural
language related to the affect. Hence, a neutral level exists in particular with the
following examples of binary relations: “more attractive than,” “better than,” and
“preferred than,” whose corresponding opposite pairs are respectively “attraction/
repulsion,” “good/bad,” and “like and dislike.” On the contrary, the relations “more
permitted than,” and “more prioritary than” are not related to affect, and thus have no
neutral level in our sense (although they may have in another context, such as logic).6

Another interesting feature of scales is boundedness. We say that a scale is
bounded above (resp. below) if there exists an object a such that a � a for every
a ∈ A (resp. there exists a such that a � a for every a ∈ A). If a unipolar scale
is bounded below, which is most often the case, we denote the lower bound by 0,
and we usually set f (0) = 0. When an upper bound exists for a scale (unipolar or
bipolar), we may denote it by 1 and set f (1) = 1. In the rest of the article, the lower
bound of a bipolar scale is denoted by −1 when it exists, and we set f (−1) = −1.
In the previous examples, relations “more attractive than,” “better than,” “preferred
than,” and “more prioritary than” are not bounded since it is always possible to find
something more attractive, or better, or preferred to, or more prioritary than a given
object. Besides, relation “more permitted than”is bounded, with greatest element
“completely permitted.”

2.3. Net Prediposition and the Cumulative Prospect Theory Model

Let us consider a unipolar bivariate model, taking as illustration the “chocolate
example.” We said that the subject feels at the same time a negative affect and

or possibly only unipolar univariate. Indeed, “gustative pleasure” has a neutral level corresponding
to the absence of taste, and two poles that could be called “delicious” and “disgusting, inedible.”
Greediness in this context may be considered as unipolar, whereas “effect on diet” is bipolar
with a neutral level separating good effects from bad effects. A good argument to be convinced
that the chocolate example is not suited to unipolar bivariate scales is to replace “chocolate” by
“steamed brocoli.” Many people do not consider steamed brocoli as giving a gustative pleasure,
but everybody agrees that it is good for diet.
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Figure 3. Net predisposition as a function of positive and negative affects.

a positive affect, without mixing them in a kind of overall resulting feeling. The
simultaneous presence of positive and negative affects makes any decision difficult.
Suppose now that the subject is forced to act, for example, he must decide whether
to buy or not to buy some chocolate in a shop or to order or not to order some desert
with chocolate in a restaurant. Then, the subject resolves the ambiguity caused by the
presence of positive and negative affects by mapping them on to a bipolar univariate
scale. The resulting feeling is called the net predisposition. Then, if no other factor
can influence the decision, the subject will act according to the position of the net
predisposition with respect to the neutral level of the scale.

Experiments in psychology have shown that the net predisposition has a typical
shape when represented as a function of the positive and negative affects (see
Figure 3). One can remark that the slope is steeper on the negative part, since in
general the negative affect has more weight than the positive affect. This is clearly
shown by point A, where both positive and negative affects have their maximal
value, but the net predisposition is strictly negative.

Cumulative Prospect Theory (CPT) introduced by Tversky and Kahnemann7

is an example of decision-making model computing a net predisposition in a simple
way. This model is detailed in Section 4 and is expressed as follows:

CPT(f ) := Cμ1 (f +) − Cμ2 (f −),

where f is a function expressing scores, f +, f − being their positive and negative
parts, and Cμi

is a function aggregating scores into an overall score. Hence, Cμ1 (f +)
represents the intensity of positive affect, whereas Cμ2 (f −) represents the negative
one, and the net predisposition is simply computed as a difference of the two parts.
This is represented in Figure 4. Note that this model is a very simple example of net
predisposition and does not exhibit a steeper slope for the negative part.
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Figure 4. The CPT model viewed as a particular way of computing the net predisposition.

3. A DESCRIPTIVE APPROACH BASED ON CONJOINT

MEASUREMENT

As anticipated in the introduction, the descriptive approach to MCDM, is a
behaviorist one: it aims to describe the behavior of a DM facing a decision problem.
The only thing that can actually be observed is the preference that the DM expresses
by choosing an object instead of another. This preference is usually represented
by a relation on a set of objects (alternatives) and constitutes the main primitive
of the theory. The role of the models is to relate the observable preference of the
DM to a description of the objects in terms of their attributes. The conditions under
which a model is applicable are formulated in terms of properties of the preference;
they may thus be tested in practical situations by asking the DM whether he prefers
or not some alternative over another alternative (most of the time, the compared
alternatives are chosen in such a way that some answers or sequences of answers
imply that a property is not satisfied, and, consequently, lead to reject the model).

3.1. The Additive Value Function Model

Suppose that in a given context, the alternatives can be described by means
of n relevant attributes; an alternative is thus well represented by a vector x =
(x1, . . . , xn), where xi describes the alternative on attribute i; xi ranges in a set
Xi , which we call the domain of attribute i. The set of all attributes is denoted
by N = {1, . . . , n}. The set Xi can be a set of numbers but it can also be a set
of labels, ordered (e.g., “bad,” “average,” “good”) or unstructured (i.e., nominal
labels). A preference � is supposed to be a relation that contains all pairs (x, y) of
alternatives (each of them corresponding to a n-dimensional vector) such that the
DM would choose x rather than y. Any combination of levels in Xi is supposed
to correspond to an alternative, so that the set of all alternatives X can be iden-
tified with the Cartesian product

∏n
i=1 Xi . The following notation is useful in the

sequel; let a = (a1, . . . , ai, . . . , an) be any alternative; we denote by a−i the n − 1
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components vector having the same components as a except on the ith dimension
that is lacking; X−i is the set of all such vectors. We denote by (xi, a−i) the alterna-
tive (a1, . . . , xi, . . . , an), which is obtained from a by substituting its ith component
value by a level xi ∈ Xi . In the same spirit, for any subset of attributes I ⊂ N ,
we denote by aI (resp. a−I ) the vector of components of a corresponding to the
attributes in I (resp. in the complement −I of I in N); (xI , a−I ) is thus the alterna-
tive that has the same evaluations as x on the attributes in I and the same evaluations
as a on the attributes that do not belong to I .

The model of preferences that is dominant is the additive value function model.
A preference � on X is representable in the additive value function model (also
called additive utility model) if there are functions ui : Xi → R such that

x � y ⇔
n∑

i=1

ui(xi) ≥
n∑

i=1

ui(yi). (1)

Sufficient conditions on � are known from the literature, guaranteeing that a pref-
erence is representable in this model.2,8,9 Some necessary conditions are obvious,
among which the fact that � must be a weak order (a reflexive, complete, and
transitive relation) and that � must fulfill the full preference independence property,
that is, for all x, y, a, b in X and for all subsets of attributes I :

(xI , a−I ) � (yI , a−I ) ⇒ (xI , b−I ) � (yI , b−I ). (2)

The particular case in which I is a single attribute {i} gives rise to the property
known as weak preference independence, that is, for all x, y, a, b in X and for all
attribute i ∈ N :

(xi, a−i) � (yi, a−i) ⇒ (xi, b−i) � (yi, b−i). (3)

Preference independence allows for ceteris paribus reasoning. This implies in
particular when preferences are supposed to be weak orders that the functions ui

in model (1) are numerical representations of relations �i on Xi called marginal
preferences and defined by:

xi �i yi ⇔ ∀a−i ∈ X−i , (xi, a−i) � (yi, a−i). (4)

A typical result in conjoint measurement is the following (see Krantz et al.2

Theorem 13, p. 302] for additional definitions and proof).

THEOREM 1. Let � be a relation on the Cartesian product X = ∏n
i=1 Xi , with

n ≥ 3. If � is an independent weak order that satisfies two additional conditions
(restricted solvability and an Archimedean property) and provided the preference
� is nondegenerated (at least three components are “essential”), then there exist
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real-valued functions ui on Xi such that for all x, y ∈ X,

x � y ⇔
n∑

i=1

ui(xi) ≥
n∑

i=1

ui(yi).

Moreover, the functions ui are unique up to a positive affine transformation, that is,
if u′

i is another such family of functions, then there exist numbers α > 0 and βi ∈ R

for i ∈ N , such that:

u′
i = αui + βi.

The practical interest of such results is that they provide a sound basis to the
elicitation process of the model: in the present case, the independence hypothesis
allows us to look for pairs of indifferent alternatives that differ only on two dimen-
sions (all their other levels being equal) and this leads to building the ui functions
used in the model; once these functions have been obtained, we know that we have
found the “right” ones since Theorem 1 states that they are (essentially) unique.b

3.2. Bipolarity in the Additive Value Model

It should first be noted that formulating a bipolarity property in a conjoint
measurement (descriptive) approach is not straightforward. Why is it so? Because
in the models alluded to above, no a priori structure, not even an ordering, is
postulated on the attributes scales Xi ; the structure on Xi is eventually induced by
the preference relation � on X. For example, in the additive value model (1), �
induces a marginal preference relation �i on Xi ; the marginal preference orders
the levels of the set Xi that may initially be linguistic labels. If bipolarity is to
be considered relevant in a descriptive model, it must be revealed by, for instance,
the marginal preferences or, in other terms, it must be “contained” in the global
preference �.

In the additive value model (1) for instance, a form of bipolarity, namely, bipolar
univariate scales, can possibly be detected in the articulation of a pre-existing struc-
ture on the scales Xi with the marginal preferences. Consider the following example.
Suppose that Xi is the set R of the real numbers. Suppose further that the elicitation
process of the preference � of the DM yields an additive value model in which
function ui : (Xi = R) → R is shaped as illustrated in Figure 5. The piece of the
graph corresponding to positive values of xi is not symmetric to that corresponding
to negative values with respect to the origin; in other words, ui is not an odd function.
This dissymmetry of ui w.r.t. xi = 0 can be interpreted as revealing that the scale is
bipolar: a distortion in the a priori ordering of the real numbers is needed to correctly
reflect the DM’s marginal preferences on Xi (this is similar to the modeling of the

b This is the main result on which relies the elicitation method using the so-called standard
sequences.11
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Figure 5. Example of bipolar univariate scale on the real numbers.

attitude of the DM in decision making under risk: risk prone in case of gains; risk
averse in case of losses; see, e.g., Raiffa10).

This simple example prompts two observations:

• There is room for bipolarity in the context of the additive value model but this supposes
taking into account some pre-existing structure on the scales of the attributes.

• Bipolarity is related to an interpretation of the relationship between marginal preferences
and an a priori structure on the scale; this interpretation focuses on the behavior of the
marginal preference above and below a “special point” of the scale.

3.2.1. Pre-existing Structure on Xi

In the example above, we supposed that Xi = R. Which features of the pre-
existing structure on Xi make it possible to interpret the link with the marginal
preference �i as a manifestation of bipolarity? The ingredients needed are the
following:

• Xi has to be an ordered set; let ≥i denote the order on Xi ; this a priori structure is supposed
to be “compatible” with marginal preferences �i , that is, if xi ≥i yi , one should not have
yi �i xi otherwise the a priori structure would be unrelated to the marginal preference;

• we need a “breakpoint” that separates Xi in two subsets X−
i and X+

i . Denoting the
breakpoint by 0i (it is actually the number 0 that plays this role in our example), we call
– X−

i the set of levels xi < 0i and
– X+

i the set of levels xi > 0i ;
• finally, we need a bijective application τi : X+

i → X−
i associating levels above and below

0i by pairs; this application has to be antitone w.r.t. the order ≥i , which means that for all
xi, yi ∈ X+

i ,

xi ≥i yi ⇒ τi(yi) ≥i τi(xi). (5)
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Using the inverse τi
−1, we may extend τi to be defined on X−

i : for xi ∈ X−
i , we define

τi(xi) as being τi
−1(xi), which makes τi an involution on X−

i ∪ X+
i . The fixed point of

this involution is 0i . In other words, τi is the formalization of a symmetry of Xi w.r.t. 0i

and we shall refer to it as such; the symmetric τi(xi) of a level xi on scale Xi is denoted
by xτ

i , for short.

Remark. It can happen in practice that |X+
i | �= |X−

i |. Such a case is a priori not
compatible with the existence of a symmetry τi unless X+

i and X−
i can be augmented

by adding the “mirror levels” of X−
i and X+

i , respectively; this requires that the DM
must be able to tell where he would locate the “mirror level” τi(x

+
i ) corresponding

to any x+
i ∈ X+

i in between levels of the scale X+
i , and conversely, for the mirror

levels τi(x
−
i ). This leads finally to working with the augmented level sets X̃+

i =
X+

i ∪ τi(X
−
i ) and X̃−

i = X−
i ∪ τi(X

+
i ) on which the involution, or symmetry, τi is

well defined.

3.2.2. Using Bipolarity for Elicitation Purposes

If we know (or assume) that the symmetry of the scale is linked with the
marginal preferences, this can help in the elicitation of ui . The most favorable case
is of course when function ui can be assumed to be antisymmetric w.r.t. the zero of
the scale 0i , that is, when

ui

(
xτ

i

) = −ui(xi). (6)

In the antisymmetric case, it suffices to elicit ui , for instance, on the positive part of
the scale, X+

i , and to extend ui to the negative part, X−
i , using (6) (the dashed curve on

Figure 6). Note that, in this case, there is no “distortion of the preference” around 0.
The shape of the preference on the “negative consequences” is the mirror image of
that on the “positive consequences” (see Figure 6); distortion is not necessary for
bipolarity.

Figure 6. Bipolar univariate scale without distortion.

International Journal of Intelligent Systems DOI 10.1002/int



BIPOLAR AND BIVARIATE MODELS IN MCDA 941

Figure 7. Eliciting the negative part using the symmetric image of the positive one as a reference
curve.

In case the antisymmetry of ui cannot be postulated, the benefits are more tiny
yet they exist. The gain of complexity in the elicitation process is reduced since ui

has to be built on both parts of the scale. However, knowing in advance whether
ui(xτ

i ) ≥ −ui(xi) or, on the contrary, ui(xτ
i ) < −ui(xi), reduces both the cognitive

effort of the DM and the risk of errors in his answers. This case is illustrated in
Figure 7; having elicited ui on the positive part X+

i , we use the symmetric image of
the curve (the dashed line) to serve as a reference curve in the elicitation of ui on
the negative part X−

i .
From the descriptive point of view adopted in this section, there is nevertheless

a theoretical difficulty: the antisymmetry of ui must be expressed in terms of prefer-
ence relations. This is not possible in terms of marginal preferences, but requires the
definition of relations on marginal preference differences. Let us denote by �∗

i the
relation induced by � on X2

i ,9,12 which allows us to compare preference differences
between pairs of levels of Xi ; its formal definition is as follows:

(xi, yi) �∗
i (zi, wi) ⇔

{∀a−i , b−i ∈ X−i ,

(zi, a−i) � (wi, b−i) ⇒ (xi, a−i) � (yi, b−i).
(7)

From this relation, we define another one �∗∗
i that establishes a connection between

a difference of preference (xi, yi) and the “opposite” difference (yi, xi):

(xi, yi) �∗∗
i (zi, wi) ⇔ (xi, yi) �∗

i (zi, wi) and (wi, zi) �∗
i (yi, xi). (8)

The antisymmetric condition (6) could be expressed by: for all xi ∈ Xi ,

(0i , xi) ∼∗∗
i (xτ

i , 0i), (9)
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where ∼∗∗
i denotes the symmetric part of the relation �∗∗

i . In words, (9) expresses
that the differences (0i , xi) and (xτ

i , 0i) are equal in terms of preference.
This formalism can of course be also used for expressing that differences of

preference are not equal. However, there may be a way—provided Xi has sufficient
richness—to turn ui into an antisymmetric function. Provided a form of solvabilityc

is satisfied, for all xi , we can find a level x ′
i in Xi such that the difference of preference

between 0i and xi is perceived as equal to that between x ′
i and 0i . Then, defining

(or redefining) τi by putting xτ
i = x ′

i yields a bipolar scale on Xi that satisfies (9).
If this type of “pre-processing” can be performed (in a reliable manner), we need
to elicit only marginal preferences (or the functions ui) on either the positive or the
negative part of the corresponding scale.

3.3. The Nonstrict Decomposable Model

Clearly, the type of bipolarity considered in the framework of the additive value
model corresponds to the bipolar univariate model (see Section 2.1). To deal with
other forms of bipolarity and to take into account other models, we introduce in
this section a wider framework, the (nonstrict) decomposable value function model.
Certain preferences that are described in Section 4 do not admit a representation
in the additive value model. Consider for instance the following procedure for
comparing vectors of R

n using the “min” operator, that is,

x � y ⇔ min
i∈N

xi ≥ min
i∈N

yi. (10)

The resulting preference is not independent. Indeed, let x = (5, 6, 7) and y =
(4, 6, 7); we have x � y and Not[y � x]; if we change the levels in common
between x and y, namely, 6 and 7, respectively, into 3 and 7, then x ′ = (5, 3, 7) ∼
y ′ = (4, 3, 7) since mini∈N x ′

i = 3 = mini∈N y ′
i . Condition (2) is not satisfied since

we have y ′ � x ′ but not y � x; ceteris paribus reasoning is not permitted. In reality,
the “min” satisfies a weaker form of independence: a strict preference cannot be
transformed into the opposite strict preference only by changing common levels;
strict preference can be changed only into indifference. This weak form of indepen-
dence is called separability.13−15 A preference � is separable if for all x, y, a, b in
X and for all set of attributes I :

(xI , a−I ) � (yI , a−I ) ⇒ Not [(yI , b−I ) � (xI , b−I )]. (11)

To deal with such preferences, we have to widen the range of models that we consider.
A rather general family is the nonstrict decomposable model (NSDM), introduced
(in its strict form) in Krantz et al.2 A preference � is representable in the NSDM

c Roughly speaking, solvability conditions state that some “equations,” expressed in terms of
preferences, have a solution. Another form of solvability was required in Theorem 1 as a condition
for a preference being representable in the additive value model (1).
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if there are functions ui : Xi → R and a nondecreasing function F : R
n → R such

that:

x � y ⇔ F (u1(x1), . . . , un(xn)) ≥ F (u1(y1), . . . , un(yn)). (12)

One verifies directly that such a preference is separable; it is independent as soon
as F is an increasing function (instead of a nondecreasing one); the case in which
F is increasing corresponds to the decomposable model2; we call it here the strict
decomposable model. Obviously, the additive value model is a particular case of
(strict) decomposable preference in which F is the sum of its arguments.

In the NSDM, the ui’s do not represent marginal preferences but more refined
relations that are called marginal traces.14 The marginal trace �±

i on Xi is defined
by:

xi �±
i yi ⇔

⎧⎪⎨
⎪⎩

∀a−i ∈ X−i , b ∈ X,

(yi, a−i) � b ⇒ (xi, a−i) � b

and
b � (xi, a−i) ⇒ b � (yi, a−i).

(13)

In the (nonstrict) decomposable model, marginal traces are weak orders that refine
the marginal preferences, that is, xi �±

i yi implies xi �i yi ; the ui functions can be
chosen to be numerical representations of the marginal traces �±

i .
The NSDM is general enough to encompass the models that are analyzed in

Section 4 since it can be proved that any separable preference that is a weak order
can be represented in model (12) (see Bouyssou and Pirlot,14 Proposition 8, for more
detail)

Note that there is considerably more freedom in the choice of F and ui than
it was the case with the additive value model. If F and ui can be used for repre-
senting a preference � in the NSDM, one can apply increasing transformations to
each of the ui’s and to F independently and use the resulting functions to represent
the same preference � in the NSDM. In more specific models, within the frame-
work of NSDM, one may however hope for stronger uniqueness properties of the
representation.

3.3.1. Bipolarity and the NSDM

What has been said about bipolarity (more precisely about bipolar univari-
ate scales) in the additive value model remains essentially valid with the NSDM.
Marginal preferences have to be substituted by marginal traces and the ui functions
represent the latter. Because the presence of bipolarity on (some of) the scales Xi

might help in the elicitation of the ui’s provided, we can assume some relationship
between the pre-existing bipolar structure on Xi and the marginal traces �±

i .
However, an important difference exixts that is linked with the (lack of) unique-

ness properties of the representation in NSDM. In the additive value model, the
ui’s are essentially unique (determined up to a positive affine transformation, see
Theorem 1), whereas in NSDM, any representation of the weak order �±

i can do
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and these are determined up to an increasing transformation. This has the follow-
ing consequence. Suppose that a preference on a product of bipolar scales has a
representation in the NSDM with ui satisfying (6); this is by no means the unique
one and, in particular, for any increasing transformation applied to ui and yielding
u′

i , there is a representation using u′
i ; in general, u′

i does not satisfy (6). So, in
view of exploiting the bipolarity, one may be interested in representations within a
model—for instance, the NSDM, or a family that particularizes the NSDM—that
satisfy additional constraints such as (6).

We emphasize that satisfying (6) is not a necessary condition for a representa-
tion of � in NSDM, even when � satisfies (9). Formally, from a descriptive point
of view, respecting the bipolarity information could be translated into the following
conditions expressed in terms of � and its derived relations �±

i and �∗∗
i :

xi ≥i yi ⇒ xi �±
i yi (14)

and

(0i , xi) ∼∗∗
i

(
xτ

i , 0i

)
(15)

For satisfying these requirements, it is not necessary in the NSDM to impose that

ui(0i) − ui(xi) = ui

(
xτ

i

) − ui(0i). (16)

Indeed, if there is a representation of a preference � within the NSDM that respects
the bipolar information (14, 15) and in addition satisfies (16), then there are also
other representations of the same preference that do not satisfy (16): namely, most
of those obtained through applying an increasing transformation to the ui’s; since
the preference represented remains unchanged, property (15) remains satisfied. The
explanation for this is that we have enough degree of freedom in the determination
of the function F so that we can also take care of the fulfillment of (15).

This being said, in view of facilitating the elicitation process or diminishing
the cognitive burden of the DM, one may think of forcing the ui’s to satisfy (16)
and determine F on the basis of that version of the ui’s considered as fixed. This
is possible only if that additional constraint is compatible with the other ones.
Essentially, imposing (16) will be compatible with representing � in a parameterized
family of models if, among the representations of � in that family, there is one in
which differences of values of the function ui can be used to represent the relation
∼∗∗

i that is, if

(xi, yi) ∼∗∗
i (zi, wi) ⇔ ui(xi) − ui(yi) = ui(zi) − ui(wi). (17)

In NSDM, this raises no difficulty, since increasing transformations leave
enough freedom to take this constraint into account; the case of the “min” is similar.
The same is true for the additive value model, in which all determinations of the
ui’s fulfill condition (17).
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3.3.2. Bivariate Scales (Unipolar and Bipolar)

The NSDM offers good potential for the analysis of bivariate scales (unipolar
and bipolar; see Section 2.1 and other articles in this issue). This track has not been
explored in detail so far; we limit ourselves to indicate two research directions in
our descriptive framework; we borrow their denomination to P. Perny.16 Section 5
presents specific models that fall into one or the other of the approaches described
as follows.

3.3.2.1. Compare Then Aggregate. A straightforward approach could con-
sist in duplicating each dimension, yielding a model on 2n components. Instead of
Xi , we consider two subdimensions,d the positive part of dimension i, X+

i , and the
negative one, X−

i . An alternative x is represented by a n-pairs of components vector
x = ((x+

1 , x−
1 ), . . . , (x+

n , x−
n )). As soon as a preference � is a weak order that is

separable w.r.t. the n dimensions, there is a representation in the NSDM, that is,
there are n functions ui : (X+

i , X−
i ) → R (of the pair of variables (x+

i , x−
i )) and a

nondecreasing function F : R
n → R such that:

x � y ⇔ F (u1(x+
1 , x−

1 ), . . . , un(x+
n , x−

n )) ≥ F (u1(y+
1 , y−

1 ), . . . , un(y+
n , y−

n )).

(18)

The (bivariate) marginal traces, represented by the functions ui(x
+
i , x−

i ), offer much
potential to model various types of connections between the positive and the negative
parts of attribute i. Note that ui makes a synthesis, for dimension i, of the positive
and the negative aspects of an alternative along that dimension; it induces a complete
ranking of the alternatives along that dimension.

A simple example of such a model is the case in which ui(x
+
i , x−

i ) obtains as
a difference of “utilities”:

ui(x
+
i , x−

i ) = v+
i (x+

i ) − v−
i (x−

i ),

where v+
i and v−

i are numerical representations of the positive and negative levels,
respectively, on a numerical scale. In a more general model, we have:

ui(x
+
i , x−

i ) = ϕi(v
+
i (x+

i ), v−
i (x−

i )),

where ϕi is a real-valued function defined on R
2 (or a subset of it) that is nonde-

creasing in its first argument and nonincreasing in the second; it models the intuitive
idea that an alternative is all the better because its positive aspects are stronger and
its negative aspects are weaker. If there is a “zero” level on both scales (bivariate
bipolar scale), 0+

i on X+
i and 0−

i on X−
i , one could set, without being restrictive,

ui(0
+
i , 0−

i ) = 0 = ϕi(0, 0). Some forms of symmetry of ϕi around (0, 0) could fa-
cilitate the elicitation of the marginal trace on dimension i.

d These two sets cannot be considered being complementary subsets of a scale Xi , such as
in univariate bipolar scales; in bivariate bipolar scales, there is no such scale Xi .
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3.3.2.2. Aggregate Then Compare. Another line of research could focus on
another decomposition of the numerical representation of the preference relation �.
Let us consider the case in which each dimension i has a positive set of levels X+

i

and a negative one X−
i , but the synthesis of the positive aspects and the negative

ones is not done for each dimension; instead, a synthesis of the positive aspects is
done through the various dimensions and similarly for the negative aspects; finally,
the preference results from comparing the synthesis of the positive aspects to the
synthesis of the negative ones. Formally, this is expressed by the following model:

x � y ⇔
F (u+(x+

1 , . . . , x+
n ), u−(x−

1 , . . . , x−
n )) ≥ F (u+(y+

1 , . . . , y+
n ), u−(y−

1 , . . . , y−
n )).

(19)

In this definition, u+ (resp. u−) represents the marginal trace of the preference on the
n-dimensional space of positive aspects (resp. negative aspects) and F is a function
of two variables that is nondecreasing in its first argument and nonincreasing in its
second. The CPT model introduced in Section 2.3 clearly pertains to this framework;
in the CPT, F is the difference of its arguments and u+ (resp. u−) represents the
intensity of the positive (resp. negative) affect.

3.4. Models Based on Preference Differences

Although Sections 4 and 5 need only the NSDM model, we briefly describe, to
conclude the present section, another important class of models in which bipolarity
receives a very natural interpretation. There are conjoint measurement models that
are based on a balance of differences of preference observed on each dimension. In
these models, the main scale attached to each dimension i is the univariate scale
of differences of preference X2

i ; the levels on this scale are (directed) pairs (xi, yi)
of levels belonging to another scale that is used for assessing the alternatives on
dimension i. The scale of differences X2

i is naturally bipolar because the differ-
ence (xi, xi) = (yi, yi), for all xi, yi , is a natural zero of this scale. Also, a natural
symmetry τi exists on this scale, since the difference (xi, yi) is associated with
an “opposite” difference (yi, xi); one could thus define τi(xi, yi) as being (yi, xi).
This, however, does not mean that the difference (yi, xi) is necessarily perceived
in terms of preference as “−(xi, yi)”; τi is just an a priori correspondence between
elements of a scale (see the discussion on the elicitation of a univariate bipolar scale
in Section 3.2.2).

A general model of preference based on preference differences is as follows:

x � y ⇔ G(p1(x1, y1), . . . , pn(xn, yn)) ≥ 0. (20)

Conditions are known12,17 under which the functions G and pi in the model have
a number of natural properties. In particular, if the marginal traces on differences
�∗

i defined by (7) are representable weak orders, one can assume that function G is
nondecreasing in its n arguments and that functions pi are numerical representations
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of �∗
i . We present three examples of well-known procedures that fit into such a model

and see how bipolarity appears in the corresponding instantiations of the model. Note
that there is in general no guarantee of transitivity for preference relations described
by models based on the aggregation of preference differences, as is well-known for
majority rules.

3.4.1. Majority Rule or Concordance Relation

Let Xi be the set of real numbers R. The weighted majority preference rule can
be defined by means of a “concordance” index c(x, y)18,19:

c(x, y) =
∑

i=1,...n

pi(xi, yi), (21)

where

pi(xi, yi) =
{
wi if xi ≥ yi

0 if xi < yi ;

the numbers wi’s are the weights that are positive and sum up to 1.
The preference is defined through comparing the concordance index to a ma-

jority threshold K , a number lying between 0.5 and 1; we have:

x � y ⇔ c(x, y) ≥ K. (22)

In this example, pi determines a very simple univariate bipolar scale; the pairs (xi, yi)
ordered by means of the weak order �∗

i are represented on the horizontal axis; all
pairs corresponding to the same difference xi − yi are indifferent with respect to �∗

i

and are thus represented by the same point labeled “xi − yi” on the horizontal axis;
the function pi(xi, yi) is represented in Figure 8. Only positive differences matter in
this model and all such differences turn out to be equivalent; the negative differences
are not at all taken into account.

3.4.2. Concordance-Discordance Rule à La Electre

Building on the majority rule that has just been defined, we add vetoes that will
prevent declaring that x is preferred to y as soon as there is at least one dimension on
which y is “much much better” than x. A veto is often described as the application
of a discordance rule that operates in conjunction with a majority rule. This type of
rule is at the basis of the ELECTRE methods.18,19 More formally, the preference �
fits into the model described by Equations 22 and 21 using the following definition
for pi :

pi(xi, yi) =
⎧⎨
⎩

wi if xi ≥ yi

0 if yi − νi ≤ xi < yi

−M if xi < yi − νi ;
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Figure 8. Univariate bipolar scale on differences for the majority rule.

where M is a large positive number, for instance, M is larger than 1 if the weights wi’s
sum up to 1; νi is a threshold used to determine discordance or veto: if xi < yi − νi ,
this corresponds to the feeling that yi is so much better than xi on dimension i that
it would make no sense to pretend that x could be globally preferred to y. The value
of M must be chosen large enough in order to guarantee that inequality c(x, y) < K

is never fulfilled as soon as at least one of the pi’s is equal to −M . Figure 9 shows
the shape of pi .

3.4.3. Tversky’s Model of Additive Differences

The preferences that are obtained using these rules cannot be supposed to be
transitive in general. Indeed, it is well known that performing pairwise comparisons
of alternatives by means of majority rules may lead to preferences that have cycles
(Condorcet paradox). This is obviously an undesirable feature if those preferences
are to be used for decision purposes. However, on the basis of empirical evidence,
several authors have argued that preferences cannot always be assumed to be tran-
sitive, and A. Tversky20 was one of the first to propose a model generalizing the
additive value model and able to encompass preferences that lack transitivity. His
model is known as the additive difference model in which,

x � y ⇔
n∑

i=1

�i(ui(xi) − ui(yi)) ≥ 0, (23)

where �i’s are increasing and odd functions.
Preferences that satisfy (23) may be intransitive but they are complete (due to

the postulated oddness of �i). This model of preferences, as compared with those
based on majority rules, allows for taking preference differences into consideration
more gradually. These are represented as algebraic differences of marginal utility
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Figure 9. Univariate bipolar scale on differences for the concordance-discordance rule.

functions ui . Contrary to what happens with majority rules, the influence of (yi, xi)
is exactly the opposite of that of (xi, yi) because of the oddness of the functions �i .
Figure 6 can be used to illustrate this model if we view it as representing preference
differences instead of levels.

A slightly more general model that encompasses the majority rule is the so-
called nontransitive additive model21−25 in which:

x � y ⇔
n∑

i=1

pi(xi, yi) ≥ 0, (24)

where the pi’s are real-valued functions on X2
i and may have several additional

properties (e.g., pi(xi, xi) = 0, for all i ∈ {1, 2, . . . , n} and all xi ∈ Xi). In this
model, what corresponds to the oddness of the �i’s is the skew-symmetry of the
pi’s, that is, pi(xi, yi) = −pi(yi, xi). In case the skew-symmetry of the pi’s is not
postulated, Figure 7 is a good illustration of the model if we represent all pairs
(xi, yi) on the horizontal axis; these pairs can be ordered by means of the relation
�∗∗

i and we can decide as a convention that the points representing (xi, yi) and yi, xi

will be symmetric w.r.t. the origin. In case pi’s are not skew-symmetric, we then get
the typical shape illustrated in Figure 7.
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4. A CONSTRUCTIVE APPROACH TO DECOMPOSABLE MODELS

BASED ON CAPACITIES AND RELATED CONCEPTS

We take as a starting point the NSDM given in (12). In this section, we show
how to construct such a model by taking into account the bipolarity of the affect if
any. We show that more general models can be thought of depending on the type of
bipolarity.

To build an NSDM, we need to solve two problems:

• build scales ui’s on criteria in a unique way,
• build aggregation function F .

A cornerstone in our construction is the determination on each criterion of two
particular levels having an absolute meaning (i.e., which does not depend on a par-
ticular criterion). One of them is the neutral level, already introduced in Section 2.2.
It has an absolute meaning independent of the criteria since it corresponds for the
DM to a state of feeling that is neither good nor bad. The second absolute level is
introduced hereafter.

4.1. The Satisficing Level

A natural choice for the second absolute level would be to take the upper
bound 1 of each criterion (see Section 2.2), since it corresponds to the maximum
satisfaction of the DM.

However, in many cases, there is no upper (or lower) bound for a scale. For
example, the binary relations “is more prioritary than” and “is more attractive than”
have no upper bound since one can always find something more prioritary (attractive)
than a given object, so we have to find a substitute. This is given by the theory of
satisficing bounded rationality of H. Simon.26,27 The theory asserts that faced to a
decision problem (e.g., which move to do in a chess game [chess player], where to
go to find food [animal], etc.), due to the limited amount of information and limited
resources (time, memory, intelligence, etc.), we are not able to optimize the decision
w.r.t. some criterion, but only to reach a satisficing solution, that is, which meets our
level of satisfaction or aspiration. The search for a solution is stopped once such a
satisficing solution has been found. The DM is aware that better solutions may exist,
but limitations of resources prevent the DM to verify their existence. Coming back
to unbounded scales, we denote by 1 the satisficing level on a (unipolar or bipolar)
scale that is not bounded above. By a kind of symmetry, we assume the existence of
an inacceptable level, denoted by −1, which is such that the DM rejects all objects
a such that a � −1. Clearly, −1 ≺ 0.

4.2. Construction of Scales

Let us consider a given criterion i ∈ N and try to build a scale for i reflecting
the preference of the DM. We choose to take as underlying scale for each criterion
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a bipolar univariate scale, or simply a unipolar scale if it happens that the criterion
is clearly of unipolar nature. However, in the rest of the section, we consider that
all criteria are bipolar since this is mathematically more general and can encompass
as particular cases unipolar criteria as well. The choice between Type I and Type II
is dictated by the fact that most of the time, a mixed feeling of both good and bad
affects for a given object on a given criterion comes from the presence of several
subcriteria hidden in the criterion (see the chocolate/brocoli example in Section 2.1).
For those cases where this decomposition into subcriteria is not possible or difficult,
we refer the reader to Section 5 where the case of mixed affect on a single criterion
is treated. Hence, we conclude that under our assumption, a scale for criterion i can
be represented by a function ui : Xi −→ R.

The problem is now to build this function ui in a unique way. To achieve this,
we make the assumption that the scales are interval scales, that is, they are uniquely
defined up to a positive affine transformation (2 degrees of freedom). Since we made
the assumption that on each scale ui there exist two particular levels 0i , 1i having
an absolute meaning, hence independent of i, we fix in a unique way all scales ui by
putting ui(0i) = uj (0j ) and ui(1i) = uj (1j ) for all i �= j . Although this is arbitrary,
it seems natural to put ui(0i) = 0 and ui(1i) = 1 for all i. Scales obtained in such a
way are said to be commensurate.

Since this is not the central topic of this article, we do not detail the prac-
tical construction of each scale ui , which can be done using the MACBETH
methodology,28,29 and refer the reader to Grabisch and colleagues.30−32 In short,
the scale ui is built from the preference of the DM over the set of fictitious alterna-
tives (xi, 0−i) when xi ranges in Xi , that is, (xi, 0−i) � (yi, 0−i) iff ui(xi) ≥ ui(yi),
and the scale is uniquely determined by putting ui(0i) := 0 and ui(1i) := 1.

4.3. Construction of the Aggregation Model

We try to construct an aggregation function F sophisticated enough to take into
account interaction between criteria. For doing this, the usual way to put weights
wi on criteria, determined by the intensity of preference of the alternative (1i , 0−i),
is not sufficient, and we have to consider at least the set of alternatives where all
possibilities of having some criteria satisfied and some other being at the neutral
level.30,32 These are called binary alternatives (1A, 0−A), for any A ⊆ N , since
criteria take only two possible values.

4.3.1. Determination of the Model for Binary and Ternary Alternatives

As we deal with bipolar scales, it is important to take into account the influence
of the unacceptable levels, but let us consider for the moment only the above set
of alternatives, which we call more precisely positive binary alternatives, since all
criteria are at least at the neutral level (unipolar case). Let us define

μ+(A) := u(1A, 0−A), ∀A ⊆ N,

that is, μ+ represents the overall score of binary alternatives. Using as before
the MACBETH approach, we may suppose that the scale μ+ is an interval scale,
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which is uniquely determined as soon as one fixes two points. It seems natural to
use the two extreme binary alternatives (1N, 0∅) and (1∅, 0N ) and assign to them
respectively the values 1 (best possible binary alternative) and 0 (worst possible
binary alternative). On the other hand, considering A ⊆ B we have that (1A, 0−A) is
dominated by (1B, 0−B) in the sense that the latter is at least as good as the former
on each criterion. Then it is natural to have (1A, 0−A) � (1B, 0−B), which gives
μ+(A) ≤ μ+(B).

DEFINITION 1.33,34 A function μ : 2N −→ R+ is a capacity or fuzzy measure if
μ(∅) = 0 and it satisfies μ(A) ≤ μ(B) whenever A ⊆ B (monotonicity). The
capacity is normalized if in addition μ(N) = 1. If μ is not monotone, then we
call it a game.

Hence, the function μ+ induced by the set of binary alternatives is a normalized
capacity.

Similarly, we consider negative binary alternatives of the form (−1A, 0−A).
Putting

μ−(A) := −u(−1A, 0−A), ∀A ⊆ N

we clearly define another capacity, which represents the overall score of negative
binary alternatives.

We turn now to the general case, considering ternary alternatives, where we mix
unacceptable, satisficing, and neutral values. Defining Q(N) := {(A, B) ∈ 2N ×
2N | A ∩ B = ∅}, the set of ternary alternatives is

{(1A, −1B, 0−(A∪B)) | (A, B) ∈ Q(N)}.

Several methods are possible to define the score of ternary alternatives. The
simplest idea is to compute a net predisposition between the positive part and the
negative part of the ternary alternatives, namely:

u(1A, −1B, 0−(A∪B)) := μ+(A) − μ−(B), ∀(A, B) ∈ Q(N).

This is the solution given by the CPT model.7 Referring to our section on bipolar
scales (Section 2), u lies on a bipolar univariate scale and can be seen as the (linear)
net predisposition between the overall score attributed to the positive part of the
ternary alternative and the overall score of the negative part.

A more general solution would be to define a function v on Q(N) by:

v(A, B) := u(1A, −1B, 0−(A∪B)), ∀(A, B) ∈ Q(N).

Hence, there is no longer a separation between positive and negative parts, and con-
sequently we lose the notion of net predisposition. Using as before the MACBETH
approach, it suffices to fix two points on the scale for its unique determination.
We may fix, for example, u(1N, −1∅, 0∅) = 1 and u(1∅, −1∅, 0N ) = 0. This gives
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v(N, ∅) = 1 and v(∅, ∅) = 0. Let us consider now (A, B) and (C, D) in Q(N) and
assume that A ⊆ C and B ⊇ D. We remark that (1A, −1B, 0−(A∪B)) is dominated
by (1C, −1D, 0−(C∪D)) since on each criterion the latter is at least as good as the
former. Thus, it is natural to have (1A, −1B, 0−(A∪B)) � (1C, −1D, 0−(C∪D)), which
gives v(A, B) ≤ v(C, D).

DEFINITION 2. 35,36 A function v : Q(N) −→ R such that v(∅, ∅) = 0 and v(A, B) ≤
v(C, D) whenever (A, B), (C, D) ∈ Q(N) with A ⊆ C and B ⊇ D (monotonicity)
is called a bicapacity. Moreover, a bicapacity is normalized if in addition v(N, ∅) =
1 and v(∅, N) = −1.

Hence, the function v defined as the overall score of ternary alternatives is
a bicapacity, which is not necessarily normalized since v(∅, N ) may be different
from −1. In this case too, u is a bipolar univariate scale.

A third solution would be to consider for u a unipolar bivariate scale, that is, u

is a pair of nonnegative numbers:

u(1A, −1B, 0−(A∪B)) := (ζ+(A, B), ζ−(A, B)), ∀(A, B) ∈ Q(N),

with ζ+(A, B), ζ−(A, B) ≥ 0, the intensity of positive and negative affects felt by
the DM when faced with a ternary alternative. Again, ζ+ and ζ− have natural prop-
erties. If we consider that ζ+, ζ− reflect interval scales, then they can be uniquely
determined by fixing two points. It is natural to put ζ+(N, ∅) = 1 and ζ+(∅, ∅) = 0
for ζ+ and ζ−(∅, N) = 1 and ζ−(∅, ∅) = 0 for ζ−. Moreover, if as before we con-
sider (A, B) and (C, D) in Q(N) such that A ⊆ C and B ⊇ D, then because of
dominance we should have ζ+(A, B) ≤ ζ+(C, D) and ζ−(A, B) ≥ ζ−(C, D).

DEFINITION 3.37 A bipolar capacity is a function ζ : Q(N) −→ [0, 1]2; (A, B) �→
(ζ+(A, B), ζ−(A, B)) such that ζ+(N, ∅) = ζ−(∅, N ) = 1, ζ+(∅, ∅) = ζ−(∅, ∅) =
0, and if (A, B), (C, D) ∈ Q(N) with A⊆C and B ⊇D, then ζ+(A, B) ≤ ζ+(C, D)
and ζ−(A, B) ≥ ζ−(C, D) (monotonicity).

Hence, we have used a bipolar capacity to represent the overall score on
symmetric scales.

4.3.2. Determination of the Model for General Alternatives

4.3.2.1. A General Methodology. So far, we have determined the way to
compute the overall score of ternary alternatives, not of general alternatives. A
simple way to do this is to consider that the overall score of a given alternative will
be obtained as an interpolation between scores of neighboring ternary alternatives.
We explain the procedure first for (positive) binary alternatives. Since ui(1i) = 1
and ui(0i) = 0 for all i ∈ N , vectors (u1(x1), . . . , un(xn)) describe the set of vertices
of the hypercube [0, 1]n when only binary alternatives are considered. This means
that the aggregation function F has a fixed and known value at all vertices, and we
have to interpolate F inside the hypercube.
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As many types of interpolation exist, we are looking here for a linear interpo-
lation using as few points as possible, which are here vertices of [0, 1]n. For a given
x ∈ [0, 1]n, let us denote by V(x) the set of vertices used for the linear interpolation,
which writes

F (x) =
∑

A⊆N |(1A,0−A)∈V(x)

[
α0(A) +

n∑
i=1

αi(A)xi

]
F (1A, 0−A), (25)

where αi(A) ∈ R, i = 0, . . . , n, ∀A ∈ V(x). To keep the meaning of interpolation,
we force that the convex hull conv(V(x)) contains x, and any x ∈ [0, 1]n should be-
long to a unique polyhedron conv(V(x)) (except for common facets), and continuity
should be ensured. Hence, the hypercube is partitioned into q polyhedra defined
by their sets of vertices V1, . . . ,Vq , all vertices being vertices of [0, 1]n. Such an
operation is called a triangulation. Note that the least possible number of vertices
is n + 1, otherwise the polyhedra would not be n-dimensional, and hence a finite
number of them would not cover the whole hypercube.

Many different triangulations are possible, but there is one that is of particular
interest, since it leads to an interpolation where all constant terms α0(A) are null.
This triangulation uses the n! canonical polyhedra of [0, 1]n:

conv(Vσ ) = {x ∈ [0, 1]n | xσ (1) ≤ · · · ≤ xσ (n)}, for some permutation σ on N.

PROPOSITION 1. The linear interpolation (25) using the canonical polyhedra writes

F (x) =
n∑

i=1

[xσ (i) − xσ (i−1)]μ({xσ (i), . . . , xσ (n)}), (26)

with μ(A) := F (1A, 0−A). Moreover, F is continuous on [0, 1]n.

The aggregation function F (x) defined in (26) is in fact the Choquet integral of x

w.r.t. the capacity μ, which we denote by Cμ(x), considering x as a function over
N . This way of introducing the Choquet integral as the simplest linear interpolation
is given in Grabisch.38 It was also discovered by Lovász,39 considering the problem
of extending the domain of pseudo-Boolean functions to R

n (for this extension
problem, see also Singer40). The fact that the so-called Lovász extension was the
Choquet integral was remarked by Marichal.41

It remains to apply this result to our different models established for ternary
alternatives.

4.3.2.2. The CPT Model. The simplest model for ternary alternatives is to
use two capacities μ+, μ−. Applying the above methodology, we interpolate F

between vertices of [0, 1]n and [−1, 0]n, corresponding respectively to positive
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Figure 10. Interpolation for the case of bicapacities.

and negative binary alternatives, and we are led to what is called the CPT model,
proposed by Tversky and Kahnemann7:

CPTμ+,μ−(x) := Cμ+(x+) − Cμ−(x−),

where x+ := x ∨ 0 and x− := (−x)+.

4.3.2.3. The Choquet Integral for Bicapacities. In this case, we consider the
hypercube [−1, 1]n and all points of the form (1A, −1B, 0−(A∪B)), which correspond
to ternary alternatives. Let us apply again an interpolation approach and call F the
function we obtain by interpolation. To do this, we examine in detail the case n = 2
(Figure 10). Let us take any point x such that x1 ≥ 0, x2 ≤ 0, and |x1| ≤ |x2|. Then,
for |x|, which is in the first (positive) quadrant, we already know that the best linear
interpolation is the Choquet integral. It suffices to use the formula with the adequate
vertices:

F (x1, x2) := |x1|F (1, −1) + (|x2| − |x1|)F (0, −1).

This is a Choquet integral w.r.t a game ν1 defined by:

ν1({1, 2}) = F (1, −1)

ν1({2}) = F (0, −1).

Let us consider now the general case. Defining N+
x := {i ∈ N | xi ≥ 0}, N−

x =
N \ N+

x , with similar considerations of symmetry, we obtain:

F (x) = |xσ (1)|F (1N+
x
, −1N−

x
, 0−(N+

x ∪N−
x ))

+
n∑

i=2

(|xσ (i)| − |xσ (i−1)|)F (1{σ (i),...,σ (n)}∩N+
x
, −1{σ (i),...,σ (n)}∩N−

x
, 0−{σ (i),...,σ (n)}),
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where σ is a permutation on N such that |xσ (1)| ≤ · · · ≤ |xσ (n)|. This expression is
the Choquet integral of |x| w.r.t. a game νN+

x
defined by:

νN+
x

(A) := F
(
1A∩N+

x
, −1A∩N−

x
, 0−A

)
.

Recalling that F (1A, −1B, 0−(A∪B)) =: v(A, B), we finally come up with the fol-
lowing definition.

DEFINITION 4. Let v be a bicapacity and x be a real-valued function on N . The
(general) Choquet integral of x w.r.t v is given by

Cv(x) := Cν
N

+
x

(|f |),

where νN+
x

is a game on N defined by

νN+
x

(C) := v(C ∩ N+
x , C ∩ N−

x )

and N+
x := {i ∈ N | xi ≥ 0}, N−

x = N \ N+
x .

4.3.2.4. The Choquet Integral for Bipolar Capacities. In this case, the
Choquet integral w.r.t. a bipolar capacity ζ is calculated as follows37:

Cζ (x) := Cν+
N+ (|x|) − Cν−

N+ (|x|), (27)

with N+ and N− as above, and ν+
N+(A) := ζ+(A ∩ N+, A ∩ N−) and ν−

N+(A) :=
ζ−(A ∩ N+, A ∩ N−). Of course, if v(A, B) = ζ+(A, B) − ζ−(A, B), we get

Cv(x) = Cζ (x).

5. THE BIVARIATE SETTING

In this section, we introduce a set of models describing multiple criteria evalu-
ations in terms of possible negative and positive evaluations with respect to the same
criterion. In psychological terms, this model represents the positive, the negative,
and the net affect resulting from a multiplicity of stimulus, each of them charac-
terized by a negative and a positive affect. The proposed models can be considered
as a generalization to a multiplicity of dimensions (stimuli) of the bivariate evalua-
tive space model.5 To be more precise, while the bivariate evaluative space model
analyzes the activation of positive and negative evaluations with respect to a sin-
gle criterion (stimulus) (e.g., the simultaneous presence of sadness and happiness,
hot and cold feelings, and so on), we consider the cases in which comprehensive
evaluations are drawn from a multiplicity of criteria (stimuli). Both at the level of
single criterion and at the level of comprehensive evaluation, positive and negative
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evaluations are considered independent and therefore they are represented in terms
of a bivariate scale, rather than in terms of a bipolar scale. This means that positive
and negative evaluations with respect to both a single criterion (stimulus) and to the
comprehensive evaluations are present simultaneously.

The proposed model admits as specific particular cases the decomposable
model and the the CPT model presented in Section 2 and the Choquet integral
model for bicapacities presented in Section 4. These are bipolar models at the level
of a single criterion, that is, they rely on the assumption that each criterion has
only a positive or a negative evaluation and cannot simultaneously receive a positive
evaluation and a negative evaluation. As explained in Section 3, in one of these
models (the CPT model), the simultaneous presence of a positive evaluation and a
negative evaluation is considered only at the level of the comprehensive evaluation.
However, the comprehensive positive evaluation and the comprehensive negative
evaluation are aggregated in the simplest way, that is, obtaining the comprehensive
evaluation as a simple algebraic difference between the positive and the negative
comprehensive evaluations, neither considering any form of different weighting
of the positive and the negative evaluations nor any form of nonlinearity. This is
very intuitive, but perhaps too simple and not general enough. Let us remark that
within the bivariate evaluative space model,5 even if only at the level of a single
criterion stimulus, both the effect of the different weighting and of the nonlinearity of
positive and negative evaluations are investigated and quantitatively measured. More
precisely, Cacioppo et al.5 proposes the following representation of the net result of
the aggregation of the positive evaluation x+

i and negative evaluation x−
i with respect

to criterion stimulus i:

ui

(
x+

i , x−
i

) = w+
i v+

i

(
x+

i

) − w−
i v−

i

(
x−

i

) + v+−
i

(
x+

i , x−
i

) + ci, (28)

where w+
i is the weight of the positive evaluation, w−

i is the weight of the negative
evaluation, v+

i (x+
i ) is the activation function for positivity, v−

i (x−
i ) is the activation

function for negativity, v+−
i (x+

i , x−
i ) represents the nonadditive effects, and ci is a

constant. Starting from a general model coherent with model (28), we first propose
a general multiple criteria model representing bivariate evaluations at the level of
single criteria and at the level of the comprehensive evaluation. Then, we recall a
generalization of bipolar Choquet integral42 that permits to take into account the
bivariate nature of the evaluations both at the level of single criteria and at the lavel
of comprehensive evaluation. Finally, we briefly discuss the introduction of bivariate
scales in models based on difference of preferences.

5.1. A General Bivariate Multicriteria Model

As anticipated in Section 3.3.2, in a bivariate setting, each alternative is rep-
resented by n-pairs of components vectors x = ((x+

1 , x−
1 ), . . . , (x+

n , x−
n )) or equiv-

alently as a 2n-component vector x = (x+
1 , . . . , x+

n , x−
1 , . . . , x−

n ) that results from
putting together the two n-vectors x+ = (x+

1 , . . . , x+
n ) and x− = (x−

1 , . . . , x−
n ), such

that x = (x+, x−). In very general terms, in this bivariate setting, CPE(x), CNE(x),
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and CE(x) can be represented as follows:

CPE(x) = F+ (
x+

1 , . . . , x+
n , x−

1 , . . . , x−
n

)
,

CNE(x) = F− (
x+

1 , . . . , x+
n , x−

1 , . . . , x−
n

)
,

CE(x) = G
(
F+ (

x+
1 , . . . , x+

n , x−
1 , . . . , x−

n

)
, F− (

x+
1 , . . . , x+

n , x−
1 , . . . , x−

n

))
,

where F+ : R
2n
+ → R+ and F− : R

2n
+ → R+ are functions nondecreasing with re-

spect to their first n arguments and nonincreasing with respect to their last n argu-
ments, whereas G : R

2
+ → R is a function nondecreasing in its first argument and

nonincreasing in its second argument.
Let us observe that in this very general model, CPE(x) depends not only on the

positive evaluations (x+
i , i ∈ N) but also on the negative evaluations (x−

i , i ∈ N).
Coming back to the example of car evaluation outlined in the introduction, this
means that the comprehensive positive evaluation depends on the positive aspects of
the cars (x+

i , i ∈ N), such as a good maximum speed and a good acceleration, but it
depends also on the negative aspects (x−

i , i ∈ N), such as a high price and an high
fuel consumption. Analogously, the comprehensive negative evaluation depends on
the negative aspects of the car (x−

i , i ∈ N), but it also depends on the positive
aspects (x+

i , i ∈ N). A special case of this very general model is the following
one, where the comprehensive positive evaluation depends only on the positive
evaluations and the comprehensive negative evaluation depends only on the negative
evaluations:

CPE(x) = F+ (
x+

1 , . . . , x+
n

)

CNE(x) = F− (
x−

1 , . . . , x−
n

)

CE(x) = G
(
F+ (

x+
1 , . . . , x+

n

)
, F− (

x−
1 , . . . , x−

n

))

5.2. The Choquet Integral in a Bivariate Setting

For the sake of simplicity, in this subsection, each alternative x is represented
by a 2n-vector (x+

1 , . . . , x+
n , x−

1 , . . . , x−
n ) ∈ [0, 1]2n, such that

• x+
i = 0 means that the positive evaluation with respect to criterion i is null,

• x+
i = 1 means that the positive evaluation with respect to criterion i is maximal,

• x−
i = 0 means that the negative evaluation with respect to criterion i is null, and

• x−
i = 1 means that the negative evaluation with respect to criterion i is maximal.
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In this bivariate setting, as an interesting specific case, one can consider a very
simple model formulated as

CPE(x) =
n∑

i=1

w++
i x+

i −
n∑

i=1

w−+
i x−

i ,

CNE(x) =
n∑

i=1

w−−
i x−

i −
n∑

i=1

w+−
i x+

i ,

CE(x) = CPE(x) − CNE(x) =
n∑

i=1

[w++
i + w+−

i ]x+
i −

n∑
i=1

[w−+
i + w−−

i ]x−
i ,

where w++
i , w−+

i , w+−
i , w−−

i ∈ R+ are nonnegative weights. In these representa-
tion, the possibility of some interactions between different criteria is not considered
at all. A possible specific model representing these types of interaction can be
formulated as follows:

CPE(x) =
n∑

i=1

w++
i x+

i −
n∑

i=1

w−+
i x−

i +

+
∑

i,j∈N,i<j

v
++,+
i,j (x+

i , x+
j ) +

∑
i,j∈N

v
+−,+
i,j (x+

i , x−
j ) +

∑
i,j∈N,i<j

v
−−,+
i,j (x−

i , x−
j )

CNE(x) =
n∑

i=1

w−−
i x−

i −
n∑

i=1

w+−
i x+

i +

+
∑

i,j∈N,i<j

v
++,−
i,j (x+

i , x+
j ) +

∑
i,j∈N

v
+−,−
i,j (x+

i , x−
j ) +

∑
i,j∈N,i<j

v
−−,−
i,j (x−

i , x−
j )

CE(x) = CPE(x) − CNE(x)

where

• v
++,+
i,j (x+

i , x+
j ) [v++,−

i,j (x+
i , x+

j )] measures the interaction of x+
i and x+

j with respect to the
comprehensive positive (resp. negative) evaluation CPE(x) (resp. CNE(x)),

• v
+−,+
i,j (x+

i , x−
j ) [v+−,−

i,j (x+
i , x−

j )] measures the interaction of x+
i and x−

j with respect to the
comprehensive positive (resp. negative) evaluation CPE(x) (resp. CNE(x)),

• v
−−,+
i,j (x−

i , x−
j ) [v−−,−

i,j (x−
i , x−

j )] measures the interaction of x−
i and x−

j with respect to the
comprehensive positive (resp. negative) evaluation CPE(x) (resp. CNE(x)).
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Let us observe that the proposed model can be generalized, considering interactions
not only between pairs of signed evaluations of the type (x+

i , x+
j ), (x+

i , x−
j ), or

(x−
i , x−

j ) but also, in general, between pairs of sets of signed evaluations of the type
(x+

i , i ∈ A, x−
j , j ∈ B), with A, B ⊆ N such that A ∪ B �= ∅. Taking into account

this aspect, we get the following model:

CPE(x) =
n∑

i=1

w++
i x+

i −
n∑

i=1

w−+
i x−

i +

+
∑

A,B⊆N,|A∪B|≥2

v+
A,B(x+

i , i ∈ A, x−
j , j ∈ B),

CNE(x) =
n∑

i=1

w−−
i x−

i −
n∑

i=1

w+−
i x+

i +

+
∑

A,B⊆N,|A∪B|≥2

v−
A,B(x+

i , i ∈ A, x−
j , j ∈ B),

CE(x) = CPE(x) − CNE(x),

where v+
A,B(x+

i , i ∈ A, x−
j , j ∈ B) (resp. v−

A,B(x+
i , i ∈ A, x−

j , j ∈ B)) measures the
interaction of x+

i , i ∈ A and x−
j , j ∈ B, A, B ⊆ N with respect to the comprehen-

sive positive (resp. negative) evaluation CPE(x) (resp. CNE(x)).
The lower boundary condition says that in order to have an interaction effect

with respect to positive evaluations on criteria from A and negative evaluations on
criteria from B, none of these evaluations must be null; in other words, if even
only one among positive evaluations on criteria from A or negative evaluations on
criteria from B is null, then there is no interaction effect. On the contrary, the upper
boundary condition says that if each one of the positive evaluations on criteria from
A and the negative evaluation on criteria from B is maximum, then the interaction
also reaches its maximum value. Two simple formulations of functions v+

A,B and
v−

A,B are the following:

• interaction based on product:

v+
A,B (x+

i , i ∈ A, x−
j , j ∈ B) = w+

A,B

∏
i∈A

x+
i

∏
j∈B

x−
j

and

v−
A,B (x+

i , i ∈ A, x−
j , j ∈ B) = w−

A,B

∏
i∈A

x+
i

∏
j∈B

x−
j ,
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• interaction based on minimum:

v+
A,B (x+

i , i ∈ A, x−
j , j ∈ B) = w+

A,B min[min
i∈A

x+
i , min

j∈B
x−

j ]

and

v−
A,B (x+

i , i ∈ A, x−
j , j ∈ B) = w−

A,B min[min
i∈A

x+
i , min

j∈B
x−

j ],

where w+
A,B, w−

A,B ∈ R are weights related to the sign of the interaction (w+
A,B > 0,

w−
A,B > 0: positive interaction; w+

A,B < 0, w−
A,B < 0: negative interaction) and to

the strength of the effect of interaction with respect to the comprehensive evaluation.
An interesting property one could expect from a multicriteria evaluation model

is the following.

DEFINITION 5. A bivariate multicriteria evaluation model 〈CPE, CNE, CE〉, is
Stable for the same Positive Linear transformations (SPL) if

CPE((rx+
1 + s, , . . . , rx+

n + s), (rx−
1 + s, . . . , rx−

n + s))

= rCPE((x+
1 , . . . , x+

n ), (x−
1 , . . . , x−

n )) + s

CNE((rx+
1 + s, , . . . , rx+

n + s), (rx−
1 + s, . . . , rx−

n + s))

= rCNE((x+
1 , . . . , x+

n ), (x−
1 , . . . , x−

n )) + s

CE((rx+
1 + s, , . . . , rx+

n + s), (rx−
1 + s, . . . , rx−

n + s))

= rCE((x+
1 , . . . , x+

n ), (x−
1 , . . . , x−

n )) + s

for all x ∈ R
2n, r > 0, s ∈ R.

Let us observe that the bivariate model with interactions based on minimum
satisfies the SPL property, whereas the interaction based on multiplication does not.
Thus, it is interesting to note that the bivariate model with interactions based on
minimum corresponds to a specific generalization of the Choquet integral,42 which
is based on the concept of generalized bipolar capacity.

Let Q∗(N ) denote a set of pairs of subsets of N , defined as follows,

Q∗(N) = {(C, D) : C ⊆ N, D ⊆ N}.
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We define the generalized bipolar capacity ζ ∗ on N as any function of the form,

ζ ∗ : Q∗(N) → [0, 1] × [0, 1]; (A, B) �→ (ζ ∗+(A, B), ζ ∗−(A, B)),

such that:

(1) ζ ∗(C, ∅) = (c, 0) and ζ ∗(∅,D) = (0, d), with c, d ∈ [0, 1];
(2) ζ ∗(N,∅) = (1, 0) and ζ ∗(∅, N ) = (0, 1);
(3) for each (C,D), (E, F ) ∈ Q∗(N ), such that C ⊇ E and D ⊆ F , we have ζ ∗(C,D) =

(c, d) and ζ ∗(E, F ) = (e, f ), c, d, e, f ∈ [0, 1], with c ≥ e and d ≤ f .

The generalized bipolar capacity, ζ ∗, is related to multicriteria bivariate evalu-
ations more or less as the bicapacity is related to bipolar evaluations. Let us consider
the set of alternatives on which the positive and the negative criterion evaluations
can only be maximal or null. These alternatives are of the form x+ = (1A, 0Ac ),
x− = (1B, 0Bc ), (A, B) ∈ Q∗(N) (Ac and Bc, respectively, denote the complement
of A and B in N). Thus, alternative x = (x+, x−) = ((1A, 0Ac ), (1B, 0Bc )) has the
maximal positive evaluation on criteria from A and the maximal negative evaluation
on criteria from B, whereas positive evaluations on criteria not from A and negative
evaluations on criteria not from B are null. These alternatives are called bivariate
binary alternatives. Now let us consider the function φ : Q∗(N) → [0, 1]2 such that
φ = (φ+, φ−), where for each (A, B) ∈ Q∗(N) we have:

φ+(A, B) = CPE[(1A, 0Ac ), (1B, 0Bc )],

φ−(A, B) = CNE[(1A, 0Ac ), (1B, 0Bc )]).

It is natural to suppose that

• φ(∅, N ) = (0, b), with b ∈ [0, 1],
• φ(A,∅) = (a, 0), with a ∈ [0, 1],
• φ(N,B) = (1, b), with b ∈ [0, 1],
• φ(A,N ) = (a, 1), with a ∈ [0, 1].

Let us also remark that for (A, B), (C, D) ∈ Q∗(N) such that A ⊇ C and
B ⊆ D and x = ((1A, 0Ac ), (1B, 0Bc )) and y = ((1C, 0Cc ), (1D, 0Dc )), we have that
x is at least as good as y with respect to both positive and negative evaluations on
each criterion. Then, it is natural to have that x is at least as good as y with respect
to CPE(x) ≥ CPE(y) and CNE(x) ≤ CNE(y), so that:

φ+(A, B) ≥ φ+(C, D) and φ−(A, B) ≤ φ−(C, D).

Hence, the function φ is a generalized bipolar capacity.
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It is interesting to observe the relation between the bipolar capacity φ and the
weights w++

i , w+−
i , w−+

i , w−−
i , w+

A,B , and w−
A,B :

φ+(A, B) =
∑
i∈A

w++
i +

∑
i∈B

w−+
i +

∑
C,D⊆N,A∪B �=∅,C⊆A,D⊆B

w+
A,B

φ−(A, B) =
∑
i∈A

w+−
i +

∑
i∈B

w−−
i +

∑
C,D⊆N,A∪B �=∅,C⊆A,D⊆B

w−
A,B

As with the CPT model and the Choquet integral for bicapacities, it is possible
to pass from scores of ternary alternatives to scores on general alternatives as showed
in Section 4. Also in this bivariate setting, it is possible to pass from evaluations on
bivariate binary alternatives to general alternatives by means of a proper interpolation
between scores of neighboring bivariate binary alternatives. In this case, we consider
the hypercube [0, 1]2n and all points of the form ((1A, 0Ac ), (1B, 0Bc )). In this way, we
obtain the bipolar Choquet biintegral,42 which can be analytically defined as follows.
For each (x+, x−) ∈ R

n
+ × R

n
+, x+ = (x+

1 , . . . , x+
n ) ∈ R

n
+ and x− = (x−

1 , . . . , x−
n ) ∈

R
n
+, we call x+ the positive part of (x+, x−), whereas x− is its negative part.

For each (x+, x−) ∈ R
n
+ × R

n
+, let us consider the following one-to-one corre-

spondence,

{1, . . . , 2n} → N ∗ = {1+, . . . , n+, 1−, . . . , n−},
such that

x(1) ≤ x(2) ≤ . . . ≤ x(j ) ≤ . . . ≤ x(n) ≤ . . . ≤ x(2n),

where

x(j ) =
{
x+

i if (j ) = i+

x−
i if (j ) = i−.

Intuitively, the values x(j ) represent the positive and the negative evaluations re-
ordered according to their intensity.

For each j ∈ N , let us also consider the following two subsets of N :

(1) C(j ) = {i ∈ N : x+
i ≥ x(j )};

(2) D(j ) = {i ∈ N : x−
i ≥ x(j )}.

Given a generalized bipolar capacity, ζ ∗, on N and (x+, x−) ∈ R
n
+ × R

n
+, we

can define the positive part of the bipolar Choquet biintegral in the following way:

CB∗+((x+, x−), ζ ∗) =
2n∑

j=1

(x(j ) − x(j−1))ζ
∗+(C(j ), D(j )) =

=
2n∑

j=1

x(j )
(
ζ ∗+(C(j ), D(j )) − ζ ∗+(C(j+1), D(j+1))

)
,
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where x(0) = 0 and ζ ∗+(C(n+1), D(n+1)) = 0.
Analogously, the negative part of the bipolar Choquet biintegral can be defined

as follows:

CB∗−((x+, x−), ζ ∗) =
2n∑

j=1

(x(j ) − x(j−1))ζ
∗−(C(j ), D(j )) =

=
2n∑

j=1

x(j )
(
ζ ∗−(C(j ), D(j )) − ζ ∗−(C(j+1), D(j+1))

)
,

where ζ ∗−(C(n+1), D(n+1)) = 0.
Finally, the bipolar Choquet biintegral of (x+, x−) ∈ R

n
+ × R

n
+, with respect to

the generalized capacity ζ ∗, is defined as follows:

CB∗((x+, x−), ζ ∗) = CB∗+((x+, x−), ζ ∗) − CB∗−((x+, x−), ζ ∗).

Summarizing, we can say that CB∗+((x+, x−), ζ ∗) represents the comprehen-
sive positive evaluation, CB∗−((x+, x−), ζ ∗) represents the comprehensive negative
evaluation, and finally CB∗((x+, x−), ζ ∗) represents the final net comprehensive
evaluation, that is, CPE(x) = CB∗+(x), CNE(x) = CB∗−(x), and CE(x) = CB∗(x).

Now to conclude our discussion about coincidence between CB∗+(x), CB∗−(x),
and CB∗(x) and the general bivariate model with interactions represented by min-
imum, after having already shown how to pass from weights w+

A,B , w−
A,B to a

generalized bipolar capacity ζ ∗ considering bivariate binary alternatives, we dis-
cuss how to pass from generalized bipolar capacity ζ ∗ to weights w++

i , w−+
i ,w+−

i ,
and w−−

i , i = 1, . . . ., n, and w+
A,B and w−

A,B , A, B ⊆ N . With this aim, putting
w++

i = w+
{i},∅, w−+

i = w+
∅,{i}, w+−

i = w−
{i},∅, and w−−

i = w−
∅,{i}, i = 1, . . . ., n, we

have to consider the following generalized Möbius transform42:

w+
A,B =

∑
{(C,D)∈Q∗(N :C⊆A and D⊆B}

(−1)(|(A∪B)|−|(C∪D)|)ζ+(C, D)

w−
A,B =

∑
{(C,D)∈Q∗(N :C⊆A and D⊆B}

(−1)(|(A∪B)|−|(C∪D)|)ζ−(C, D)

A characterization of the generalized bipolar Choquet biintegral has been pre-
sented in Greco and Figueira.42

Let us now investigate the relation between the bipolar Choquet biintegral
and some interesting specific multiple criteria models that can be derived from
it as particular cases. A specific case of the bipolar Choquet biintegral considers
bivariate scales with respect to criteria, but gives only a bipolar comprehensive final
net evaluation without distinguishing between the positive comprehensive evaluation
and the negative comprehensive evaluation, that is, in this model, for each alternative
x ∈ R

2n
+ , the model gives CE(x) but it does not give CPE(x) and CNE(x).
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In this model, we consider a generalized bicapacity v∗ on N , being a function

v∗ : Q∗(N) → [−1, 1]

such that

(1) v∗(∅, ∅) = 0;
(2) v∗(N, ∅) = 1, and v∗(∅, N ) = −1;
(3) If C ⊇ E and D ⊆ F , then v∗(C, D) ≥ v∗(E, F ).

Properties 1 and 2 are the boundary conditions, whereas property 3 is the mono-
tonicity condition.

Let us observe that using the generalized bipolar capacity ζ ∗ on N , we can
obtain a corresponding generalized bicapacity v∗ on N as follows:

v∗(C, D) = ζ ∗+(C, D) − ζ ∗−(C, D), ∀ (C, D) ∈ Q∗(N).

Therefore, between the generalized bipolar capacity and the generalized
bicapacity, there is the same difference as between the bipolar capacity and the
bicapacity; that is, the generalized bipolar capacity permits to distinguish between
the negative and the positive predisposition, whereas the generalized bicapacity
considers only the net predisposition.

The Choquet integral corresponding to the generalized bicapacity is the
following:

CB((x+, x−), v∗) =
2n∑

j=1

(x(j ) − x(j−1))v
∗(C(j ), D(j )) =

=
2n∑

j=1

x(j )
(
v∗(C(j ), D(j )) − v∗(C(j+1), D(j+1))

)
,

where v∗(C(n+1), D(n+1)) = 0.
Another model that can be seen as a special case of the generalized bipolar

Choquet biintegral is the following extension of the CPT model. Let us consider
a capacity μ+ for the positive evaluations x+ = (x+

1 , . . . , x+
n ) and a capacity μ−

for the negative evaluations x− = (x−
1 , . . . , x−

n ), and the corresponding Choquet
integral given by:

CPE(x) = Cμ+(x+),

CNE(x) = Cμ−(x−),

CE(x) = Cμ+(x+) − Cμ−(x−).
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In this model, in contrast with the CPT model, the scales of the evaluations on single
criteria are bivariate and therefore we do not necessarily have x+ = −x−; on the
contrary, in general, we have x+ �= −x−.

5.3. Models Based on Preference Differences in a Bivariate Setting

The idea of the bivariate evaluation space model can be extended also to
models based on difference of preferences.42 In this case, it is interesting to take
into consideration the bipolar or bivariate nature of the difference of preferences
and the bipolar or bivariate nature of the evaluation of comprehensive differences
of preference.43 The following preference model based on a bipolar representation
both at the level of each criterion and at the level of the comprehensive evaluation
has been considered in Section 3.4:

x � y ⇔ G(p1(x1, y1), . . . , pn(xn, yn)) ≥ 0,

where G is a function nondecreasing in its arguments. A model considering a bivari-
ate evaluation both at the level of single criterion and at the level of comprehensive
evaluation42,43 can be written as:

x �+ y ⇔ CPE(x, y) = G+(p+
1 (x1, y1), . . . , p+

n (xn, yn),

p−
1 (x1, y1), . . . , p−

1 (xn, yn)) ≥ 0

x �− y ⇔ CNE(x, y) = G−(p+
1 (x1, y1), . . . , p+

n (xn, yn),

p−
1 (x1, y1), . . . , p−

1 (xn, yn)) ≥ 0

x � y ⇔ CE(x, y) = V (CPE(x, y), CNE(x, y)) ≥ 0,

where in a given product space X = ∏n
i=1 Xi

• �+ is a preference relation on X such that, for all x, y ∈ X, the semantics of x �+ y is
“there are reasons in favor of the conclusion that x is at least as good as y”;

• �− is a preference relation on X such that, for all x, y ∈ X, the semantics of x �− y is
“there are reasons against the conclusion that x is at least as good as y”;

• p+
i : Xi × Xi → R+, i = 1, . . . ., n, is a function such that, for all xi, yi ∈ Xi , p

+
i (xi, yi)

measures the positive part of the difference of preference of xi over yi ;• p−
i : Xi × Xi → R+ i = 1, . . . ., n, is a function such that, for all xi, yi ∈ Xi , p−

i (xi, yi)
measures the negative part of the difference of preference of xi over yi ;• G+ : R

2n
+ → R is a function nondecreasing in its first n arguments and nonincreasing in

its last n arguments;
• G− : R

2n
+ → R is a function nonincreasing in its first n arguments and nondecreasing in

its last n arguments;
• V : R

2
− → R is a function increasing in its first argument and decreasing in its second

argument.

This model is related to the four-valued logic approach.44
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Table I. Main models and variants of Choquet integral.

Bipolarity of the Aggregation
Model Bipolarity of criteria comprehensive evaluation function F

Capacity μ Unipolar Unipolar Choquet integral
Pair of capacities (μ+, μ−) Bipolar univariate Bipolar univariate with CPT

linear net predisposition
Bicapacity v Bipolar univariate Bipolar univariate Choquet integral

w.r.t. a bicapacity
Bipolar capacity ζ Bipolar univariate Unipolar bivariate Choquet integral w.r.t.

a bipolar capacity
Generalized bipolar capacity Unipolar bivariate Unipolar bivariate Choquet biintegral

A specific formulation of this bivariate model of difference of preference based
on the bipolar Choquet biintegral has been proposed in Greco and Figueira.42

5.4. Summary

Table I summarizes the different aspects and types of bipolarity of the main
models presented in this article; the associated type of Choquet integral is mentioned.

6. CONCLUDING REMARKS

This article has tried to account for several aspects of bipolarity in Multicriteria
decision analysis (MCDA). Bipolarity is understood in a broad sense: the scales
representing bipolar criteria (or overall evaluations) are either bipolar univariate or
unipolar bivariate. In Section 3, adopting a behaviorist or descriptive perspective, we
have considered various models of preference and looked for those in which bipolar
scales receive their most natural representation. Section 4 has adopted a constructive
approach, that is, it focuses on techniques for building bipolar scales and aggregating
them within a suitable model in order to elicit a preference. Section 5 sketches a very
broad panorama of models in which the bipolarity of the criteria is represented by
bivariate scales; the overall evaluation itself can be bivariate. As compared with the
classical additive value function model, the methods described allow for modeling
criteria that interact differently in the positive and negative zones of the bipolar
scales or with respect to the two variables of a bivariate scale.

Clearly, the expressive power of such models is superior to that of the usual
additive value function model, that is, more preferences can find a representation
within the former. Also, eliciting some of these models in practice seems not to be
overly complicated (see Section 4). Since its intuitive content is easily perceived,
it thus appears that bipolarity offers good perspectives for the development of new
models in the field of MCDA, both on practical and on theoretical grounds.

In particular, more effort is needed in order to better understand the role of
bipolarity in models of preference. The conjoint measurement approach outlined in
Section 3 provides a general framework for analyzing preferences. Questions such
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as producing a formal definition of bipolarity in such a framework or characterizing
the aggregation methods based on bipolar scales deserve further investigation. The
methods described in Sections 4 and 5 rely on the Choquet integral and some variants
thereof. Getting, for example, a clearer understanding of which preferences can be
represented by means of a Choquet integral but not by an additive value function
surely is a question that is worth the attention of researchers.
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