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Patricia Bouyer1 Stéphane Le Roux1 Youssouf Oualhadj2

Mickael Randour3 Pierre Vandenhove3

1LSV – CNRS & ENS Paris-Saclay 2LACL – UPEC

3F.R.S.-FNRS & UMONS – Université de Mons

October 10, 2019

GT ALGA annual meeting 2019



Games where you can play optimally with finite memory
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A sequel to the critically acclaimed blockbuster by Gimbert & Zielonka
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Finding good controllers for systems interacting with an
antagonistic environment.
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Finding good controllers for systems interacting with an
antagonistic environment.

� Good? Performance evaluated through objectives / payoffs.

Question

When are simple strategies sufficient to play optimally?

Two directions for finite-memory determinacy:

1 lifting under objective combination (with S. Le Roux and
A. Pauly, in FSTTCS’18 [LPR18]),
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The talk in one slide

Strategy synthesis for two-player turn-based games

Finding good controllers for systems interacting with an
antagonistic environment.

� Good? Performance evaluated through objectives / payoffs.

Question

When are simple strategies sufficient to play optimally?

Two directions for finite-memory determinacy:

1 lifting under objective combination (with S. Le Roux and
A. Pauly, in FSTTCS’18 [LPR18]),

2 complete characterization and lifting from one-player games
(ongoing work).
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Two-player turn-based zero-sum games on graphs
We consider finite arenas with vertex colors in C . Two players:
circle (P1) and square (P2). Strategies C

∗ × Vi → V .

� A winning condition is a set W ⊆ Cω.

v1 v2 v3

v4 v5 v6

From where can P1 ensure to reach v6?
How complex is his strategy?

Memoryless strategies (Vi → V ) always suffice for
reachability (for both players).
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optimally?
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When are memoryless strategies sufficient to play
optimally?

Virtually always for simple winning conditions!

Examples: reachability, safety, Büchi, parity, mean-payoff, energy,
total-payoff, average-energy, etc.

Can we characterize when they are?

Yes, thanks to Gimbert and Zielonka [GZ05].
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Memoryless strategies suffice for a preference relation � (and the
induced winning conditions) if and only if

1 it is monotone,

2 it is selective.

Games where you can play optimally with finite memory Mickael Randour 6 / 19



Memoryless determinacy FM determinacy and Boolean combinations Characterization and lifting corollary Conclusion

Gimbert and Zielonka’s characterization
Memoryless strategies suffice for a preference relation � (and the
induced winning conditions) if and only if

1 it is monotone,
� Intuitively, stable under prefix addition.

2 it is selective.

Games where you can play optimally with finite memory Mickael Randour 6 / 19



Memoryless determinacy FM determinacy and Boolean combinations Characterization and lifting corollary Conclusion

Gimbert and Zielonka’s characterization
Memoryless strategies suffice for a preference relation � (and the
induced winning conditions) if and only if

1 it is monotone,
� Intuitively, stable under prefix addition.

2 it is selective.
� Intuitively, stable under cycle mixing.

Games where you can play optimally with finite memory Mickael Randour 6 / 19



Memoryless determinacy FM determinacy and Boolean combinations Characterization and lifting corollary Conclusion

Gimbert and Zielonka’s characterization
Memoryless strategies suffice for a preference relation � (and the
induced winning conditions) if and only if

1 it is monotone,
� Intuitively, stable under prefix addition.

2 it is selective.
� Intuitively, stable under cycle mixing.

Example: reachability.
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Gimbert and Zielonka’s corollary

If � is such that

in all P1-arenas, P1 has an optimal memoryless strategy,

in all P2-arenas, P2 has an optimal memoryless strategy (i.e.,
for �−1),

then both players have optimal memoryless strategies in all
two-player arenas.
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Going further: finite memory

Memoryless strategies do not always suffice!

v1 v2 v3

(−1, 1)(1,−1) (−1,−1)

Examples:

Büchi for v1 and v3 → finite (1 bit) memory.

Mean-payoff (average weight per transition) ≥ 0 on all
dimensions → infinite memory!

Two directions:

1 single-objective � multi-objective [LPR18],

2 GZ-like characterization and one-player � two-player.
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Combining winning conditions

Our goal

We want a general and abstract theorem guaranteeing the
sufficiency of finite-memory strategiesa in games with Boolean
combinations of objectives provided that the underlying simple
objectives fulfill some criteria.

aImplementable via a finite-state machine.
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Combining winning conditions

Our goal

We want a general and abstract theorem guaranteeing the
sufficiency of finite-memory strategiesa in games with Boolean
combinations of objectives provided that the underlying simple
objectives fulfill some criteria.

aImplementable via a finite-state machine.

Advantages:

� study of core features ensuring finite-memory determinacy,

� works for almost all existing settings and many more to come.

Drawbacks:

� concrete memory bounds are huge (as they depend on the
most general upper bound).

� sufficient criterion, not full characterization.
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The building blocks
The full approach is technically involved but can be sketched
intuitively.

Criterion outline

Any well-behaved winning condition combined with conditions
traceable by finite-state machines (i.e., safety-like conditions)
preserves finite-memory determinacy.

To state this theorem formally, we need three ingredients:

1 regularly-predictable winning conditions,

2 regular languages,

3 hypothetical subgame-perfect equilibria (hSPE).

We match the FM-determinacy frontier almost exactly!

=⇒ Only one exception AFAWK (hSPE vs. opt. strategies).
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Comments

Combining similar simple objectives leads to contrasting
behaviors: difficult to extract the core features leading to FM
determinacy.
Our main result is a sufficient criterion, not a full
characterization.

� In practice, it does cover everything except average-energy with
a lower-bounded energy condition – a very strange corner case.

� Any weakening of our hypotheses almost immediately
leads to falsification.

� We also have several more precise results (e.g., much lower
bounds) for specific combinations and/or restrictive
hypotheses.

Almost complete picture of the frontiers of FM determinacy for
combinations of objectives but still not a complete
characterization à la Gimbert and Zielonka.
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Reminder: memoryless determinacy

1 Complete characterization using

� monotony,
� selectivity.

2 Lifting corollary: extremely useful in practice!

Our dream: exact equivalent in the finite-memory case.
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A partial counter-example (lifting corollary)
Let C ⊆ Z and the winning condition for P1 be

TP(π) = ∞ ∨ ∃∞i ∈ N,
n�

i=0

ci = 0

Games where you can play optimally with finite memory Mickael Randour 15 / 19



Memoryless determinacy FM determinacy and Boolean combinations Characterization and lifting corollary Conclusion

A partial counter-example (lifting corollary)
Let C ⊆ Z and the winning condition for P1 be

TP(π) = ∞ ∨ ∃∞i ∈ N,
n�

i=0

ci = 0

Both 1-player variants are finite-memory determined.

Games where you can play optimally with finite memory Mickael Randour 15 / 19



Memoryless determinacy FM determinacy and Boolean combinations Characterization and lifting corollary Conclusion

A partial counter-example (lifting corollary)
Let C ⊆ Z and the winning condition for P1 be
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n�

i=0

ci = 0

Both 1-player variants are finite-memory determined.

v1 v2

1 −1

But the two-player one is not!
=⇒ P1 needs infinite memory to win.
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A partial counter-example (lifting corollary)
Let C ⊆ Z and the winning condition for P1 be

TP(π) = ∞ ∨ ∃∞i ∈ N,
n�

i=0

ci = 0

Both 1-player variants are finite-memory determined.

v1 v2

1 −1

But the two-player one is not!
=⇒ P1 needs infinite memory to win.

Hint: non-monotony is a bigger threat in two-player games.
In one-player games, finite memory may help.
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A new hope

Our goal

GZ-like characterization for finite-memory strategies.

Two tricks:

1 Monotony as hypothesis (cf. counter-example).

2 From selectivity to S-selectivity and cyclic covers for arenas.

=⇒ Intuitively, selectivity modulo a memory skeleton.

We obtain a natural GZ-equivalent for FM determinacy,
including the lifting corollary (1-p. to 2-p.)!
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Two directions

Combinations of objectives

� Matches our current
knowledge almost-exactly.

� Useful when the underlying
obj. are well-understood.

� With Le Roux and
Pauly [LPR18] (on arXiv).
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Conclusion

Our goal

Understand and characterize the frontiers of FM-determinacy.

Two directions

Combinations of objectives

� Matches our current
knowledge almost-exactly.

� Useful when the underlying
obj. are well-understood.

� With Le Roux and
Pauly [LPR18] (on arXiv).

GZ-like criterion

� No exact equivalent.

� Natural criterion and useful
lifting corollary.

� With Bouyer, Le Roux,
Oualhadj and Vandenhove,
ongoing work.
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Thank you! Any question?
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