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Illustration: stochastic shortest path Multi-constraint percentile queries

In a nutshell

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic
environment.
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In a nutshell

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic
environment.

Good? Performance evaluated through payoff functions.

Usual problem is to optimize the expected performance or the
probability of achieving a given performance level .

Not sufficient for many practical applications.

� Reason about trade-offs and interplays.
� Several extensions, more expressive but also more complex. . .
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In a nutshell

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic
environment.

Good? Performance evaluated through payoff functions.

Usual problem is to optimize the expected performance or the
probability of achieving a given performance level .

Not sufficient for many practical applications.

� Reason about trade-offs and interplays.
� Several extensions, more expressive but also more complex. . .

Aim of this talk

Multi-constraint percentile queries: generalizes the problem to
multiple dimensions, multiple constraints.
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Advertisement

Full paper available on arXiv [RRS14]: abs/1410.4801

Featured in CAV’15 [RRS15a]
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Illustration: stochastic shortest path Multi-constraint percentile queries

Illustration: stochastic shortest path problem

home
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Two-dimensional weights on actions: time and cost.

Payoff: sum of weights up to work.

Often necessary to consider trade-offs: e.g., between the probability
to reach work in due time and the risks of an expensive journey.
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Illustration: stochastic shortest path problem
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Classical problem considers only a single percentile constraint.

Single-constraint percentile problem

Given MDP M, initial state sinit, one-dimension payoff function f ,
value threshold v ∈ Q, and probability threshold α ∈ [0, 1] ∩Q,
decide if there exists a strategy σ such that PσM,sinit

[
f ≥ v

]
≥ α.
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Illustration: stochastic shortest path problem
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Classical problem considers only a single percentile constraint.

C1: 80% of runs reach work in at most 40 minutes.

� Taxi ; ≤ 10 minutes with probability 0.99 > 0.8.
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Classical problem considers only a single percentile constraint.

C1: 80% of runs reach work in at most 40 minutes.

� Taxi ; ≤ 10 minutes with probability 0.99 > 0.8.

C2: 50% of them cost at most 10$ to reach work.

� Bus ; ≥ 70% of the runs reach work for 3$.
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Illustration: stochastic shortest path problem

home

work
car

wreck

bus, 30, 3 taxi, 10, 20

0.7 0.99 0.01

0.3

Classical problem considers only a single percentile constraint.

C1: 80% of runs reach work in at most 40 minutes.

� Taxi ; ≤ 10 minutes with probability 0.99 > 0.8.

C2: 50% of them cost at most 10$ to reach work.

� Bus ; ≥ 70% of the runs reach work for 3$.

Taxi 6|= C2, bus 6|= C1. What if we want C1 ∧ C2?
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Illustration: stochastic shortest path problem

home
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C1: 80% of runs reach work in at most 40 minutes.

C2: 50% of them cost at most 10$ to reach work.

Study of multi-constraint percentile queries.

� Sample strategy: bus once, then taxi. Requires memory .

� Another strategy: bus with probability 3/5, taxi with
probability 2/5. Requires randomness.
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Illustration: stochastic shortest path problem

home

work
car

wreck

bus, 30, 3 taxi, 10, 20

0.7 0.99 0.01

0.3

C1: 80% of runs reach work in at most 40 minutes.

C2: 50% of them cost at most 10$ to reach work.

Study of multi-constraint percentile queries.

In general, both memory and randomness are required.

6= classical problems (single constraint, expected value, etc)
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Multi-constraint percentile problem

Multi-constraint percentile problem

Given d-dimensional MDP M, initial state sinit, payoff function f ,
and q ∈ N percentile constraints described by dimensions
li ∈ {1, . . . , d}, value thresholds vi ∈ Q and probability thresholds
αi ∈ [0, 1] ∩Q, where i ∈ {1, . . . , q}, decide if there exists a
strategy σ such that query Q holds, with

Q :=

q∧
i=1

PσM,sinit

[
fli ≥ vi

]
≥ αi .

Very general framework allowing for: multiple constraints related
to 6= or = dimensions, 6= value and probability thresholds.

; For SP, even 6= targets for each constraint.

; Great flexibility in modeling applications.
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Results overview (1/2)

Wide range of payoff functions

� multiple reachability,

� mean-payoff (MP, MP),

� discounted sum (DS).

� inf, sup, lim inf, lim sup,

� shortest path (SP),

Several variants:

� multi-dim. multi-constraint,

� single-constraint.

� single-dim. multi-constraint,

For each one:

� algorithms,

� memory requirements.

� lower bounds,

; Complete picture for this new framework.

Multi-Constraint Percentile Queries Randour, Raskin, Sankur 5 / 8



Illustration: stochastic shortest path Multi-constraint percentile queries

Results overview (1/2)

Wide range of payoff functions

� multiple reachability,

� mean-payoff (MP, MP),

� discounted sum (DS).

� inf, sup, lim inf, lim sup,

� shortest path (SP),

Several variants:

� multi-dim. multi-constraint,

� single-constraint.

� single-dim. multi-constraint,

For each one:

� algorithms,

� memory requirements.

� lower bounds,

; Complete picture for this new framework.

Multi-Constraint Percentile Queries Randour, Raskin, Sankur 5 / 8



Illustration: stochastic shortest path Multi-constraint percentile queries

Results overview (1/2)

Wide range of payoff functions

� multiple reachability,

� mean-payoff (MP, MP),

� discounted sum (DS).

� inf, sup, lim inf, lim sup,

� shortest path (SP),

Several variants:

� multi-dim. multi-constraint,

� single-constraint.

� single-dim. multi-constraint,

For each one:

� algorithms,

� memory requirements.

� lower bounds,

; Complete picture for this new framework.

Multi-Constraint Percentile Queries Randour, Raskin, Sankur 5 / 8



Illustration: stochastic shortest path Multi-constraint percentile queries

Results overview (2/2)

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(M)·E(Q) [EKVY08], PSPACE-h —

f ∈ F P [CH09] P
P(M)·E(Q)

PSPACE-h.

MP P [Put94] P P

MP P [Put94] P(M)·E(Q) P(M)·E(Q)

SP
P(M)·Pps(Q) [HK15] P(M)·Pps(Q) (one target) P(M)·E(Q)

PSPACE-h. [HK15] PSPACE-h. [HK15] PSPACE-h. [HK15]

ε-gap DS
Pps(M,Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

� F = {inf, sup, lim inf, lim sup}
� M = model size, Q = query size

� P(x), E(x) and Pps(x) resp. denote polynomial, exponential
and pseudo-polynomial time in parameter x .

All results without reference are new.
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Results overview (2/2)

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(M)·E(Q) [EKVY08], PSPACE-h —
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P(M)·Pps(Q) [HK15] P(M)·Pps(Q) (one target) P(M)·E(Q)

PSPACE-h. [HK15] PSPACE-h. [HK15] PSPACE-h. [HK15]

ε-gap DS
Pps(M,Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

In most cases, only polynomial in the model size.

� In practice, the query size can often be bounded while the
model can be very large.
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Some related work

Same philosophy (i.e., beyond uni-dimensional E or P
maximization), 6= approaches.

� Beyond worst-case synthesis: E + worst-case [BFRR14b].
� Survey of recent extensions in VMCAI’15 [RRS15b].

Multi-dim. MDPs: DS [CMH06], MP [BBC+14, FKR95].

Many related works for each particular payoff: MP [Put94],
SP [UB13, HK15], DS [Whi93, WL99, BCF+13], etc.

� All with a single constraint.

Multi-constraint percentile queries for LTL [EKVY08].

� Closest to our work.
� We use multiple reachability.

Recent work on percentile queries + E for MP [CKK15].
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Summary

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(M)·E(Q) [EKVY08], PSPACE-h —

f ∈ F P [CH09] P
P(M)·E(Q)

PSPACE-h.

MP P [Put94] P P

MP P [Put94] P(M)·E(Q) P(M)·E(Q)

SP
P(M)·Pps(Q) [HK15] P(M)·Pps(Q) (one target) P(M)·E(Q)

PSPACE-h. [HK15] PSPACE-h. [HK15] PSPACE-h. [HK15]

ε-gap DS
Pps(M,Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

� F = {inf, sup, lim inf, lim sup}
� M = model size, Q = query size

� P(x), E(x) and Pps(x) resp. denote polynomial, exponential
and pseudo-polynomial time in parameter x .

Thank you! Any question?
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Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.

Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games.
In Proc. of STACS, LIPIcs 25, pages 199–213. Schloss Dagstuhl - LZI, 2014.

Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.

Looking at mean-payoff and total-payoff through windows.
Inf. Comput., 242:25–52, 2015.

Krishnendu Chatterjee and Thomas A. Henzinger.

Probabilistic systems with limsup and liminf objectives.
In Margaret Archibald, Vasco Brattka, Valentin Goranko, and Benedikt Löwe, editors, Infinity in Logic and
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Markov decision processes

s1 s2

s3

s4

a1, 2

a2,−1

a3, 0

b3, 3

a4, 1

0.3

0.1

0.7

0.9

MDP M = (S ,A, δ,w)

� finite sets of states S and actions A
� probabilistic transition δ : S × A→ D(S)
� weight function w : A→ Zd

Run (or play): ρ = s1a1 . . . an−1sn . . .
such that δ(si , ai , si+1) > 0 for all i ≥ 1

� set of runs R(M)
� set of histories (finite runs) H(M)

Strategy σ : H(M)→ D(A)

� ∀ h ending in s, Supp(σ(h)) ∈ A(s)
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Sample pure memoryless strategy σ

Sample run ρ = s1a1s2a2s1a1s2a2(s3a3s4a4)ω

Other possible run ρ′ = s1a1s2a2(s3a3s4a4)ω

Strategies may use

� finite or infinite memory

� randomness

Payoff functions map runs to numerical
values

� truncated sum up to T = {s3}:
TST (ρ) = 2, TST (ρ′) = 1

� mean-payoff: MP(ρ) = MP(ρ′) = 1/2

� many more
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Markov chains
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Once initial state sinit and strategy σ fixed,
fully stochastic process

; Markov chain (MC)

State space = product of the MDP and the
memory of σ

Event E ⊆ R(M)

� probability PσM,sinit
(E)

Measurable f : R(M)→ (R ∪ {−∞,∞})d
� expected value EσM,sinit

(f )
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Results overview: sketches

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(M)·E(Q) [EKVY08], PSPACE-h —

f ∈ F P [CH09] P
P(M)·E(Q)

PSPACE-h.

MP P [Put94] P P

MP P [Put94] P(M)·E(Q) P(M)·E(Q)

SP
P(M)·Pps(Q) [HK15] P(M)·Pps(Q) (one target) P(M)·E(Q)

PSPACE-h. [HK15] PSPACE-h. [HK15] PSPACE-h. [HK15]

ε-gap DS
Pps(M,Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

� F = {inf, sup, lim inf, lim sup}
� M = model size, Q = query size

� P(x), E(x) and Pps(x) resp. denote polynomial, exponential
and pseudo-polynomial time in parameter x .

All results without reference are new.

Multi-Constraint Percentile Queries Randour, Raskin, Sankur 14 / 8



Results overview: sketches

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(M)·E(Q) [EKVY08], PSPACE-h —

f ∈ F P [CH09] P
P(M)·E(Q)

PSPACE-h.

MP P [Put94] P P

MP P [Put94] P(M)·E(Q) P(M)·E(Q)

SP
P(M)·Pps(Q) [HK15] P(M)·Pps(Q) (one target) P(M)·E(Q)

PSPACE-h. [HK15] PSPACE-h. [HK15] PSPACE-h. [HK15]

ε-gap DS
Pps(M,Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

In most cases, only polynomial in the model size.

� In practice, the query size can often be bounded while the
model can be very large.

Multi-Constraint Percentile Queries Randour, Raskin, Sankur 14 / 8



Results overview: sketches

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(M)·E(Q) [EKVY08], PSPACE-h —

f ∈ F P [CH09] P
P(M)·E(Q)

PSPACE-h.

MP P [Put94] P P

MP P [Put94] P(M)·E(Q) P(M)·E(Q)

SP
P(M)·Pps(Q) [HK15] P(M)·Pps(Q) (one target) P(M)·E(Q)

PSPACE-h. [HK15] PSPACE-h. [HK15] PSPACE-h. [HK15]

ε-gap DS
Pps(M,Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)
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No time to discuss every result!
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PSPACE-h. [HK15] PSPACE-h. [HK15] PSPACE-h. [HK15]

ε-gap DS
Pps(M,Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

Four groups of results

1 Reachability. Algorithm based on multi-objective linear
programming (LP) in [EKVY08]. We refine the complexity
analysis, provide LBs and tractable subclasses.

� Useful tool for many payoff functions!
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Four groups of results

2 F and MP. Easiest cases.

� inf and sup: reduction to multiple reachability.
� lim inf, lim sup and MP: maximal end-component (MEC)

decomposition + reduction to multiple reachability.
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Four groups of results

3 MP. Technically involved.

� Inside MECs: (a) strategies satisfying maximal subsets of
constraints, (b) combine them linearly.

� Overall: write an LP combining multiple reachability toward
MECs and those linear combinations equations.
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Four groups of results

4 SP and DS. Based on unfoldings and multiple reachability.

� Need finite and bounded unfoldings.
� For SP, we bound the size of the unfolding by node merging.
� For DS, we can only approximate the answer in general. Need

to analyze the cumulative error due to necessary roundings.
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