Percentile Queries

Multi-Dimensional Markov Decision Processes

Mickael Randour ${ }^{1}$ Jean-François Raskin ${ }^{2}$ Ocan Sankur ${ }^{2}$

${ }^{1}$ LSV - CNRS \& ENS Cachan, France

${ }^{2}$ ULB, Belgium

September 16, 2015 - Highlights 2015, Prague 3rd Highlights of Logic, Games and Automata

In a nutshell

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic environment.

In a nutshell

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic environment.

■ Good? Performance evaluated through payoff functions.
■ Usual problem is to optimize the expected performance or the probability of achieving a given performance level.
■ Not sufficient for many practical applications.
\triangleright Reason about trade-offs and interplays.
\triangleright Several extensions, more expressive but also more complex...

In a nutshell

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic environment.

■ Good? Performance evaluated through payoff functions.
■ Usual problem is to optimize the expected performance or the probability of achieving a given performance level.
■ Not sufficient for many practical applications.
\triangleright Reason about trade-offs and interplays.
\triangleright Several extensions, more expressive but also more complex...

Aim of this talk

Multi-constraint percentile queries: generalizes the problem to multiple dimensions, multiple constraints.

Advertisement

Full paper available on arXiv [RRS14]: abs/1410.4801

Featured in CAV'15 [RRS15a]

Percentile Queries in Multi-Dimensional Markov Dec
Processes - -Francois Raskin ${ }^{2}$, and Ocan Sankur ${ }^{2}$ Nickael Randour ${ }^{1}$, Jean-François Raskin², and (UMONS), Belgium Computer Science Department, Université de Mons (Université Libre de Bruxelles (U.L.B.), Belgium ${ }^{2}$ Département d'liform (MDPs) are useful to the and
 Abstract. Multi-dimensional weighted potentially confictictig auries in succh MDPs, alial weight Abss with multiple objectudy the complecch constraints. Gveso (one per dimensilin), dimension i offs. In this paper, we se that enforce sutitative threshothe enforces that problem for the class to synthesize stryoff function f, qua a single strategy tha . We study this pron poff, truncated

Illustration: stochastic shortest path problem

Two-dimensional weights on actions: time and cost.
Payoff: sum of weights up to work.
Often necessary to consider trade-offs: e.g., between the probability to reach work in due time and the risks of an expensive journey.

Illustration: stochastic shortest path problem

Classical problem considers only a single percentile constraint.

Single-constraint percentile problem

Given MDP M, initial state $s_{\text {init }}$, one-dimension payoff function f, value threshold $v \in \mathbb{Q}$, and probability threshold $\alpha \in[0,1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}_{M, \text { sinit }}^{\sigma}[f \geq v] \geq \alpha$.

Illustration: stochastic shortest path problem

Classical problem considers only a single percentile constraint.

- C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\leadsto \leq 10$ minutes with probability $0.99>0.8$.

Illustration: stochastic shortest path problem

Classical problem considers only a single percentile constraint.

- C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\leadsto \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.

Illustration: stochastic shortest path problem

Classical problem considers only a single percentile constraint.

- C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\leadsto \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.
Taxi $\not \vDash \mathrm{C} 2$, bus $\not \vDash \mathrm{C} 1$. What if we want $\mathrm{C} 1 \wedge \mathrm{C} 2$?

Illustration: stochastic shortest path problem

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.

Study of multi-constraint percentile queries.

\triangleright Sample strategy: bus once, then taxi. Requires memory.
\triangleright Another strategy: bus with probability $3 / 5$, taxi with probability $2 / 5$. Requires randomness.

Illustration: stochastic shortest path problem

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.

Study of multi-constraint percentile queries.

In general, both memory and randomness are required.
\neq classical problems (single constraint, expected value, etc)

Multi-constraint percentile problem

Multi-constraint percentile problem

Given d-dimensional MDP M, initial state $s_{\text {init }}$, payoff function f, and $q \in \mathbb{N}$ percentile constraints described by dimensions $l_{i} \in\{1, \ldots, d\}$, value thresholds $v_{i} \in \mathbb{Q}$ and probability thresholds $\alpha_{i} \in[0,1] \cap \mathbb{Q}$, where $i \in\{1, \ldots, q\}$, decide if there exists a strategy σ such that query \mathcal{Q} holds, with

$$
\mathcal{Q}:=\bigwedge_{i=1}^{q} \mathbb{P}_{M, s_{\text {init }}}^{\sigma}\left[f_{l_{i}} \geq v_{i}\right] \geq \alpha_{i}
$$

Very general framework allowing for: multiple constraints related to \neq or $=$ dimensions, \neq value and probability thresholds.
\leadsto For SP, even \neq targets for each constraint.
\leadsto Great flexibility in modeling applications.

Results overview (1/2)

- Wide range of payoff functions
\triangleright multiple reachability,
\triangleright inf, sup, liminf, limsup,
\triangleright mean-payoff ($\overline{\mathrm{MP}}, \underline{\mathrm{MP}}$),
\triangleright shortest path (SP),
\triangleright discounted sum (DS).

Results overview (1/2)

- Wide range of payoff functions
\triangleright multiple reachability,
\triangleright mean-payoff ($\overline{\mathrm{MP}}, \mathrm{MP}$),
\triangleright shortest path (SP),
\triangleright discounted sum (DS).
■ Several variants:
\triangleright multi-dim. multi-constraint,
\triangleright single-dim. multi-constraint,
\triangleright single-constraint.

Results overview (1/2)

- Wide range of payoff functions
\triangleright multiple reachability,
\triangleright inf, sup, lim inf, lim sup,
\triangleright mean-payoff ($\overline{\mathrm{MP}}, \underline{\mathrm{MP}}$),
\triangleright shortest path (SP),
\triangleright discounted sum (DS).
■ Several variants:
\triangleright multi-dim. multi-constraint,
\triangleright single-dim. multi-constraint,
\triangleright single-constraint.
- For each one:
\triangleright algorithms,
\triangleright lower bounds,
\triangleright memory requirements.
\leadsto Complete picture for this new framework.

Results overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15]$ PSPACE-h. [HK15]	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h. [HK15]
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \hline \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

$\triangleright \mathcal{F}=\{$ inf, sup, lim inf, lim sup $\}$
$\triangleright M=$ model size, $\mathcal{Q}=$ query size
$\triangleright \mathrm{P}(x), \mathrm{E}(x)$ and $\mathrm{P}_{p s}(x)$ resp. denote polynomial, exponential and pseudo-polynomial time in parameter x.

All results without reference are new.

Results overview (2/2)

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15]$ PSPACE-h. [HK15]	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. [HK15] } \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

In most cases, only polynomial in the model size.
\triangleright In practice, the query size can often be bounded while the model can be very large.

Some related work

■ Same philosophy (i.e., beyond uni-dimensional \mathbb{E} or \mathbb{P} maximization), \neq approaches.
\triangleright Beyond worst-case synthesis: $\mathbb{E}+$ worst-case [BFRR14b].
\triangleright Survey of recent extensions in VMCAI'15 [RRS15b].

Some related work

■ Same philosophy (i.e., beyond uni-dimensional \mathbb{E} or \mathbb{P} maximization), \neq approaches.
\triangleright Beyond worst-case synthesis: $\mathbb{E}+$ worst-case [BFRR14b].
\triangleright Survey of recent extensions in VMCAI'15 [RRS15b].

- Multi-dim. MDPs: DS [CMH06], MP [$\mathrm{BBC}^{+} 14$, FKR95].

Some related work

■ Same philosophy (i.e., beyond uni-dimensional \mathbb{E} or \mathbb{P} maximization), \neq approaches.
\triangleright Beyond worst-case synthesis: $\mathbb{E}+$ worst-case [BFRR14b].
\triangleright Survey of recent extensions in VMCAI'15 [RRS15b].

- Multi-dim. MDPs: DS [CMH06], MP [$\mathrm{BBC}^{+} 14$, FKR95].

■ Many related works for each particular payoff: MP [Put94], SP [UB13, HK15], DS [Whi93, WL99, BCF ${ }^{+}$13], etc.
\triangleright All with a single constraint.

Some related work

■ Same philosophy (i.e., beyond uni-dimensional \mathbb{E} or \mathbb{P} maximization), \neq approaches.
\triangleright Beyond worst-case synthesis: $\mathbb{E}+$ worst-case [BFRR14b].
\triangleright Survey of recent extensions in VMCAI'15 [RRS15b].

- Multi-dim. MDPs: DS [CMH06], MP [$\mathrm{BBC}^{+} 14$, FKR95].

■ Many related works for each particular payoff: MP [Put94], SP [UB13, HK15], DS [Whi93, WL99, BCF ${ }^{+}$13], etc.
\triangleright All with a single constraint.

- Multi-constraint percentile queries for LTL [EKVY08].
\triangleright Closest to our work.
\triangleright We use multiple reachability.

Some related work

■ Same philosophy (i.e., beyond uni-dimensional \mathbb{E} or \mathbb{P} maximization), \neq approaches.
\triangleright Beyond worst-case synthesis: $\mathbb{E}+$ worst-case [BFRR14b].
\triangleright Survey of recent extensions in VMCAI'15 [RRS15b].

- Multi-dim. MDPs: DS [CMH06], MP [$\mathrm{BBC}^{+} 14$, FKR95].

■ Many related works for each particular payoff: MP [Put94], SP [UB13, HK15], DS [Whi93, WL99, BCF ${ }^{+}$13], etc.
\triangleright All with a single constraint.
■ Multi-constraint percentile queries for LTL [EKVY08].
\triangleright Closest to our work.
\triangleright We use multiple reachability.
■ Recent work on percentile queries $+\mathbb{E}$ for MP [CKK15].

Summary

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY 08$]$, PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15] \\ \mathrm{PSPACE}-\mathrm{h} .[\mathrm{HK} 15] \end{gathered}$	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

$\triangleright \mathcal{F}=\{$ inf, sup, lim inf, lim sup $\}$
$\triangleright M=$ model size, $\mathcal{Q}=$ query size
$\triangleright \mathrm{P}(x), \mathrm{E}(x)$ and $\mathrm{P}_{p s}(x)$ resp. denote polynomial, exponential and pseudo-polynomial time in parameter x.

Thank you! Any question?

References I

Tomáš Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Markov decision processes with multiple long-run average objectives.
LMCS, 10(13):1-29, 2014.
Tomás Brázdil, Taolue Chen, Vojtech Forejt, Petr Novotný, and Aistis Simaitis.
Solvency Markov decision processes with interest.
In Proc. of FSTTCS, LIPIcs 24, pages 487-499. Schloss Dagstuhl - LZI, 2013.
Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.
Expectations or guarantees? I want it all! A crossroad between games and MDPs.
In Proc. of SR, EPTCS 146, pages 1-8, 2014.
Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.
Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games.
In Proc. of STACS, LIPIcs 25, pages 199-213. Schloss Dagstuhl - LZI, 2014.

Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.
Looking at mean-payoff and total-payoff through windows. Inf. Comput., 242:25-52, 2015.

Krishnendu Chatterjee and Thomas A. Henzinger.
Probabilistic systems with limsup and liminf objectives.
In Margaret Archibald, Vasco Brattka, Valentin Goranko, and Benedikt Löwe, editors, Infinity in Logic and Computation, LNCS 5489, pages 32-45. Springer, 2009.

References II

Krishnendu Chatterjee, Zuzana Komárková, and Jan Kretínský.
Unifying two views on multiple mean-payoff objectives in Markov decision processes.
In Proc. of LICS. IEEE Computer Society, 2015.
Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger.
Markov decision processes with multiple objectives.
In Proc. of STACS, LNCS 3884, pages 325-336. Springer, 2006.
Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin.
Strategy synthesis for multi-dimensional quantitative objectives.
Acta Informatica, 51(3-4):129-163, 2014.
Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis.
Multi-objective model checking of Markov decision processes.
LMCS, 4(4), 2008.
Jerzy A. Filar, Dmitry Krass, and Kirsten W. Ross.
Percentile performance criteria for limiting average Markov decision processes.
Automatic Control, IEEE Transactions on, 40(1):2-10, 1995.
Christoph Haase and Stefan Kiefer.
The odds of staying on budget.
In Proc. of ICALP, LNCS 9135, pages 234-246. Springer, 2015.
Martin L. Puterman.
Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley \& Sons, Inc., New York, NY, USA, 1st edition, 1994.

References III

Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Percentile queries in multi-dimensional Markov decision processes.
CoRR, abs/1410.4801, 2014.
Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Percentile queries in multi-dimensional Markov decision processes.
In Proc. of CAV, LNCS 9206, pages 123-139. Springer, 2015.
Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Variations on the stochastic shortest path problem.
In Proc. of VMCAI, LNCS 8931, pages 1-18. Springer, 2015.
Michael Ummels and Christel Baier.
Computing quantiles in Markov reward models.
In Proc. of FOSSACS, LNCS 7794, pages 353-368. Springer, 2013.
Douglas J. White.
Minimizing a threshold probability in discounted Markov decision processes.
J. of Math. Anal. and App., 173(2):634-646, 1993.

Congbin Wu and Yuanlie Lin.
Minimizing risk models in Markov decision processes with policies depending on target values.
J. of Math. Anal. and App., 231(1), 1999.

Markov decision processes

- MDP $M=(S, A, \delta, w)$
\triangleright finite sets of states S and actions A \triangleright probabilistic transition $\delta: S \times A \rightarrow \mathcal{D}(S)$
\triangleright weight function $w: A \rightarrow \mathbb{Z}^{d}$
■ Run (or play): $\rho=s_{1} a_{1} \ldots a_{n-1} s_{n} \ldots$ such that $\delta\left(s_{i}, a_{i}, s_{i+1}\right)>0$ for all $i \geq 1$
\triangleright set of runs $\mathcal{R}(M)$
\triangleright set of histories (finite runs) $\mathcal{H}(M)$
- Strategy $\sigma: \mathcal{H}(M) \rightarrow \mathcal{D}(A)$
$\triangleright \forall h$ ending in $s, \operatorname{Supp}(\sigma(h)) \in A(s)$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$
Other possible run $\rho^{\prime}=s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$

- Strategies may use
\triangleright finite or infinite memory
\triangleright randomness
- Payoff functions map runs to numerical values
\triangleright truncated sum up to $T=\left\{s_{3}\right\}$: $\operatorname{TS}^{T}(\rho)=2, \operatorname{TS}^{T}\left(\rho^{\prime}\right)=1$
\triangleright mean-payoff: $\underline{\mathrm{MP}}(\rho)=\underline{\mathrm{MP}}\left(\rho^{\prime}\right)=1 / 2$
\triangleright many more

Markov chains

Once initial state $s_{\text {init }}$ and strategy σ fixed, fully stochastic process
\sim Markov chain (MC)

Markov chains

Once initial state $s_{\text {init }}$ and strategy σ fixed, fully stochastic process
$~$ Markov chain (MC)
State space $=$ product of the MDP and the memory of σ

Markov chains

Once initial state $s_{\text {init }}$ and strategy σ fixed, fully stochastic process
~ Markov chain (MC)
State space $=$ product of the MDP and the memory of σ

■ Event $\mathcal{E} \subseteq \mathcal{R}(M)$
\triangleright probability $\mathbb{P}_{M, s_{\text {int }}}^{\sigma}(\mathcal{E})$
■ Measurable $f: \mathcal{R}(M) \rightarrow(\mathbb{R} \cup\{-\infty, \infty\})^{d}$ \triangleright expected value $\mathbb{E}_{M, \text { sinit }}^{\sigma}(f)$

Results overview: sketches

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15]$ PSPACE-h. [HK15]	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h. [HK15]
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

$\triangleright \mathcal{F}=\{$ inf, sup, lim inf, lim sup $\}$
$\triangleright M=$ model size, $\mathcal{Q}=$ query size
$\triangleright \mathrm{P}(x), \mathrm{E}(x)$ and $\mathrm{P}_{p s}(x)$ resp. denote polynomial, exponential and pseudo-polynomial time in parameter x.

All results without reference are new.

Results overview: sketches

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{aligned} & \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15] \\ & \text { PSPACE-h. [HK15] } \end{aligned}$	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. }[\mathrm{HK} 15] \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

In most cases, only polynomial in the model size.
\triangleright In practice, the query size can often be bounded while the model can be very large.

Results overview: sketches

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15]$ PSPACE-h. [HK15]	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h. [HK15]
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \hline \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

No time to discuss every result!

Results overview: sketches

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15] \\ \mathrm{PSPACE}-\mathrm{h} .[\mathrm{HK} 15] \end{gathered}$	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. [HK15] } \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

Four groups of results

1 Reachability. Algorithm based on multi-objective linear programming (LP) in [EKVY08]. We refine the complexity analysis, provide LBs and tractable subclasses.
\triangleright Useful tool for many payoff functions!

Results overview: sketches

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15] \\ \text { PSPACE-h. [HK15] } \end{gathered}$	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. [HK15] } \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

Four groups of results

$2 \mathcal{F}$ and $\overline{\mathrm{MP}}$. Easiest cases.
\triangleright inf and sup: reduction to multiple reachability.
$\triangleright \lim \inf$, lim sup and MP: maximal end-component (MEC) decomposition + reduction to multiple reachability.

Results overview: sketches

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15] \\ \text { PSPACE-h. [HK15] } \end{gathered}$	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\begin{gathered} \mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { PSPACE-h. [HK15] } \end{gathered}$
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

Four groups of results

3 MP. Technically involved.
\triangleright Inside MECs: (a) strategies satisfying maximal subsets of constraints, (b) combine them linearly.
\triangleright Overall: write an LP combining multiple reachability toward MECs and those linear combinations equations.

Results overview: sketches

	Single-constraint	Single-dim. Multi-constraint	Multi-dim. Multi-constraint
Reachability	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ [EKVY08], PSPACE-h	-
$f \in \mathcal{F}$	P [CH09]	P	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h.
$\overline{\mathrm{MP}}$	P [Put94]	P	P
MP	P [Put94]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$	$\mathrm{P}(\mathrm{M}) \cdot \mathrm{E}(\mathcal{Q})$
SP	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})[\mathrm{HK} 15]$ PSPACE-h. [HK15]	$\mathrm{P}(M) \cdot \mathrm{P}_{p s}(\mathcal{Q})$ (one target) PSPACE-h. [HK15]	$\mathrm{P}(M) \cdot \mathrm{E}(\mathcal{Q})$ PSPACE-h. [HK15]
ε-gap DS	$\begin{gathered} \mathrm{P}_{p s}(M, \mathcal{Q}, \varepsilon) \\ \text { NP-h. } \end{gathered}$	$\begin{gathered} \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ \text { NP-h. } \end{gathered}$	$\begin{aligned} & \hline \mathrm{P}_{p s}(M, \varepsilon) \cdot \mathrm{E}(\mathcal{Q}) \\ & \text { PSPACE-h. } \end{aligned}$

Four groups of results

4 SP and DS. Based on unfoldings and multiple reachability.
\triangleright Need finite and bounded unfoldings.
\triangleright For SP, we bound the size of the unfolding by node merging.
\triangleright For DS, we can only approximate the answer in general. Need to analyze the cumulative error due to necessary roundings.

