
Preface

ERCIM is a European research consortium that hosts a number of Working Groups

on various topics within the field of mathematics and informatics. One of these

thematic groups is the ERCIM Working Group on Software Evolution. On 6 and

7 april 2006, this working group held its annual two-day workshop. This interna-

tional workshop was hosted by the Laboratoire d’Informatique Fondamentale de

Lille (LIFL) and INRIA Futurs at the Université des Sciences et Technologies de

Lille (USTL) in France. It was co-organised by Tom Mens (WG chair), together

with Laurence Duchien and Maja DHondt (ERCIM Postdoctoral Fellow). It was

financed by the Institut de Recherche sur les Composants logiciels et matériels pour

l’Information et la Communication Avancée (IRCICA), the Institut National de

Recherche en Informatique et en Automatique (INRIA), and the Université des

Sciences et Technologies de Lille (USTL).

The main goal of the workshop was to report on the theoretical, practical and

empirical research on software evolution carried out by the working group members,

and to discuss new opportunities for collaboration. After the workshop, the best

submissions were selected, after substantial revision, for inclusion in this special

issue of Electronical Notes in Theoretical Computer Science.

The rest of this preface is structured as follows. Section 1 provides some more

detailed information about the workshop itself, whereas Section 2 briefly discusses

the papers that have been selected for this special issue, that can be seen as the

official postproceedings of the workshop.

1 About the workshop

The workshop brought together 40 researchers coming from 10 different European

countries (Belgium, Finland, France, Germany, The Netherlands, Norway, Spain,

Sweden, Switzerland, United Kingdom). In total, 25 position papers were submitted

to the workshop, all of which were peer-reviewed by an international programme

committee consisting of 17 well-known researchers. Of all submissions, 11 were

invited for a long presentation, and 6 for short presentation.

In addition to its scientific purpose, the workshop also hosted the annual steering

committee meeting of the ERCIM Working Group on Software Evolution. During

the latter meeting, we discussed the current status of the network (including over

Electronic Notes in Theoretical Computer Science 166 (2007) 1–4

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.09.010

http://www.elsevier.com/locate/entcs


35 members originating from research institutes all over Europe, 17 of which belong

to 10 different ERCIM partner institutes). We also planned our future activities.

Last, but certainly not least, we discussed about concrete opportunities and plans

for proposing new initiatives within the IST domain of the EU 7th Framework Pro-

gramme, in particular within the strategic objective Adaptive Software Intensive

Systems. Indeed, it appears that the need for supporting software adaptation and

software evolution is becoming increasingly important within this strategic objec-

tive.

The workshop presentations covered a wide variety of research topics. Among

others, the following topics were addressed, with the aim to provide either better

formal support or better tool support: model-driven software evolution, aspect-

oriented software evolution, component-based software evolution, architectural evo-

lution, runtime software evolution, empirical analysis, software restructuring, and

software quality measurement. In addition, Arie Van Deursen of Delft University

of Technology in the Netherlands gave an invited talk on The Software Evolution

Paradox: An Aspect Mining Perspective. During this talk, he explored the relation

between software evolution and the exciting research domain of aspect-oriented

software development.

We also discussed the need for common case studies in software evolution re-

search, in order to be able to compare research results, or to be able to assess

the complementarity of different techniques on the same case study. Jean-Marie

Favre proposed to use the case study of a Conference Management System for this

purpose. As an alternative, Serge Demeyer already suggested in earlier work to

use a simulation of a Local Area Network as a case study for teaching refactoring

techniques and tools in a classroom [2]. In fact, the need for a software evolution

benchmark that provides a commonly agreed set of case studies that is freely avail-

able, and that can be used to compare approaches seems to be an important and

recurring theme that needs to be addressed urgently [3][1].

2 About the papers in this issue

The following papers have been included in this issue of ENTCS because of their

quality and because they provide a good overview of the topics that have been

presented and discussed during the workshop.

• The first article in this issue, entitled Formal model merging applied to class

diagram integration was written by Artur Boronat, José Á Carśı, Isidro Ramos

and Patricio Letelier. It proposes algebraic description techniques in the Maude

language to provide more generic automated support for model management in

general, and model integration (or model merging) in particular.

• The experience report Software Evolution from the Field: An Experience Report

from the Squeak Maintainers, written by Marcus Denker and Stéphane Ducasse,

discusses the lessons learned during the maintenance and evolution of the open-

source Squeak software development environment for the Smalltalk programming

language.

Preface / Electronic Notes in Theoretical Computer Science 166 (2007) 1–42



• The article Aspect-orientation for revitalising legacy business software by Kris

De Schutter and Bram Adams shows how the techniques of aspect-oriented pro-

gramming and logic metaprogramming can be used to deal with the migration,

restructuring and revitalisation of legacy business software written in C or Cobol.

• The article SmPL: A Domain-Specific Language for Specifying Collateral Evo-

lutions in Linux Device Drivers, written by Yoann Padioleau, Julia L. Lawall

and Gilles Muller, studies the problem of collateral evolution. This occurs when

evolution of a software library entails modifications in all affected library clients.

To address this problem they propose a transformation language, called SmPL,

relying on so-called semantic patches. They illustrate their approach on the case

study of Linux device drivers.

• A Change-based approach to software evolution was written by Romain Robbes

and Michele Lanza. It addresses the limitations of current-day version control

tools, and suggests to address the problem by integrating them into software

development environments. This allows them to store much more fine-grained

information, taking into account the change operations performed by the software

developers.

• Romain Rouvoy and Philippe Merle wrote the article Using microcomponents

and design patterns to build evolutionary transaction services. It addresses the

limitations of existing transaction services by allowing them deal with evolving

concerns. Based on the Fractal component model, a framework is proposed to

construct such evolutionary transaction services.

In addition, one extra paper has been added to this special issue, because it was

one of the most promising papers of the French-speaking workshop on software

evolution (Atelier sur l’évolution du logiciel), held on 21 March 2006 in Nı̂mes,

in conjunction with the French national conference Langages et Modèles á Objets

(LMO 2006). The paper, entitled A methodological approach to choose components

in development and evolution processes was written by Bart George, Régis Fleurquin

and Salah Sadou. It addresses the problem of composing and substituting evolving

software components.

3 Summary

Considered as a whole, this special issue of Electronic Notes in Theoretical Computer

Science covers a wide variety of topics in the research domain of software evolution,

both at the level of source code and software models. Formal support and tool

support is proposed for the following activities: model-driven software evolution,

software quality measurement and improvement, merging and integration, aspect-

oriented software evolution, component-based and architectural software evolution,

runtime software evolution, software restructuring, version management, empirical

analysis and domain-specific languages.

Tom Mens

Maja D’Hondt

Preface / Electronic Notes in Theoretical Computer Science 166 (2007) 1–4 3



References

[1] Serge Demeyer, Tom Mens, and Michel Wermelinger. Towards a software evolution benchmark. In Proc.
Int’l Workshop on Principles of Software Evolution, September 2001.

[2] Serge Demeyer, Filip Van Rysselberghe, Tudor Ĝırba, Jacek Ratzinger, Radu Marinescu, Tom Mens,
Bart Du Bois, Dirk Janssens, Stéphane Ducasse, Michele Lanza, Matthias Rieger, Harald Gall, and
Mohammad El-Ramly. The LAN simulation: A refactoring teaching example. In Proc. Int’l Workshop
on Principles of Software Evolution (IWPSE 2005), 2005.

[3] S. E. Sim, S. Easterbrook, and R. C. Holt. Using benchmarking to advance research: A challenge to
software engineering. In Proc, 25th Int’l Conf. Software Engineering, pages 74–83, Portland, Oregon,
May 2003. IEEE Computer Society Press.

Preface / Electronic Notes in Theoretical Computer Science 166 (2007) 1–44


	About the workshop
	About the papers in this issue
	Summary
	References

