
Analysis And Observations Of The Evolution Of Testing

Library Usage

Work in Progress

Ahmed Zerouali
Software Engineering Lab, UMons

ahmed.zerouali@umons.ac.be

Abstract

Many software development projects fre-
quently rely on testing-related libraries to test
the functionality of the software product au-
tomatically and efficiently. To obtain insights
in the nature of the evolution of testing li-
brary usage, we empirically analyzed the us-
age of eight testing-related libraries in 6,424
open source Java projects hosted on GitHub.
We observed how frequently specific (pairs of)
versions of libraries are used over time, for how
much they are used within a project and we
identified the delay to upgrade to a new ver-
sion. We also identified over time the most
used packages of libraries and we analyzed if
groups of packages are usually used together.
We studied the evolution of the number of test
Java files and we also studied how often de-
velopers use testing libraries to test classes
that provide a particular functionality. We
found that some versions of certain libraries
are quickly adopted than the others and some
of them are quickly upgraded. We observed
that most packages of some libraries tend to
be used in a few numbers of Java files. These
findings may pave the way for recommenda-
tion tools that allow project developers to
choose the most appropriate library and li-
brary developers to better maintain their li-
brary.

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and
Tools for Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

1 Introduction

In object-oriented software systems, and open source
software systems in particular, it is common practice
to implement systems on top of frameworks and li-
braries and to rely on external libraries to improve
code reuse, reduce development cost and promote pro-
grammers’ productivity. Nearly every programming
code that developers write will have a library call and
most of today’s software projects heavily depend on
the use of these libraries [Mileva09]. Such libraries
come with a, hopefully well-documented, API (appli-
cation programming interfaces).

From the point of view of library users, in order to
improve the way in which a library is used, it is useful
to understand how other projects use the library, how
and which library functions are often used together,
which new releases are the first to be adopted and
used.

From the point of view of library developers, it is
useful to provide insights about the common practices
and to assess the popularity of their API functional-
ities in a given ecosystem and to prevent them from
risk factors such as breaking changes and eventually
migrations to other competitor libraries.
In our research, motivated by the importance of unit
testing, we decided to study testing related libraries
evolution and usage to better understand how they are
used and eventually analyze the real drivers and the
actual requirements needed for a testing or mocking li-
brary to be adopted or abandoned. This is the focus of
our empirical study, in which we analyze the evolution
of the usage of eight aforementioned testing-related
libraries(JUnit , TestNG , Spring , Hamcrest , AssertJ ,
Mockito, EasyMock and PowerMock) in 6,424 open
source Java projects hosted on GitHub.
Our longitudinal study of testing related libraries and
frameworks usage in Java projects addresses the fol-
lowing research questions:

1



RQ1: How long does it take before a Java project
upgrades to a new released version of a testing-related
library?
RQ2: How frequently are packages of testing libraries
used?
RQ3: How does the number of test files in Java
projects evolve over time?
RQ4: How often do Java projects use JUnit to test
classes that provide a particular functionality?

2 Methodology

We focused only on open source Java projects ex-
tracted from GitHub, because Java is one of the
most popular programming languages in GitHub and
the most popular programming language according to
TIOBE 1, and because we need to have full access to
the projects historical data and source code.
Using our prepared corpus that we used in our earlier
work [Zerouali17] and retained from GitHub Archive,
and a list of the most popular testing and mocking li-
braries on Maven Repository (JUnit , TestNG , Spring ,
Hamcrest , AssertJ , Mockito, EasyMock and Power-
Mock), we extracted all import statements that exist
in each Java file and all project dependencies existed in
each Project Object Model file (pom.xml) for all the
corpus. We found that among 20,688 Java projects
that we have, only 6,424 projects can be considered,
only this group of projects makes use of Maven and
makes use of at least one of the declared testing li-
braries. For the source code analysis and exploration,
and the extraction of the tested Java classes, we used
the srcML toolkit 2, an infrastructure for the explo-
ration, analysis, and manipulation of source code.

3 Research Questions and Preliminary
Results

This section addresses our research questions by means
of observations and visualizations.

3.1 How long does it take before a Java
project upgrades to a new released ver-
sion of a testing-related library?

To answer this question, for each project, for the first
snapshot of each month of its lifetime, we extracted
the metadata available on the Maven POM file and
we identified the versions used and related to our con-
sidered testing libraries.
Figure 1 shows the delay to adopt a new released li-
brary version and the duration of use of this version.
We observe that projects that make use of TestNG ,
PowerMock and AssertJ are quickly upgrading their

1https://www.tiobe.com/tiobe-index/
2http://www.srcml.org/

library. More than 20% of these projects upgraded
their library version in the first months, where the
other ones take more time before upgrading to a new
released version. Most of the versions of testing li-
braries tend to be used for less than two years before
upgrading or switching to another library version.

3.7 3.8 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12
version

0

20

40

60

80

100

120

tim
e(

m
on

th
s)

Figure 2: Latency to adopt a new released JUnit ver-
sion in months.

We also observed that some versions of the same
library are quickly adopted than the others (i.e., the
first releases of the major version JUnit 4.0. See Fig-
ure 2 ) which might be explained by the fear of the
incompatible API changes that are made on the new
release.

3.2 How frequently are packages of testing li-
braries used?

To give an overview to the developers about the usage
of their library packages, we analyzed the source code
of all Java files of all projects that used one of the
considered libraries.
As shown in Figure 3, in the analysed Java projects,
we observed that most of testing library packages tend
to be used in only a few numbers of Java files. We
also found that more than 90% of the projects that
use testing related libraries, use only a few numbers of
the available packages in the used library.
Figure 4 shows that for unit testing libraries (JUnit
and TestNG), the proportion of projects that use dif-
ferent packages of these libraries is higher than the
proportion in the other categories. However, AssertJ
(a recent asserting library) packages seem to be used
in a different way. We also noticed that the usage of
these packages is not related to the size of the used
library.
We also analyzed how different packages and classes
of the same library are used within a project, and
we found that most packages are not necessary used
together, but for some packages, we found patterns
where they were usually used together.

2



0.00

0.05

0.10

0.15

0.20

0.25
junit
org.springframework
org.testng

junit
org.springframework
org.testng

0.00

0.05

0.10

0.15

0.20

0.25
org.easymock
org.mockito
org.powermock

org.easymock
org.mockito
org.powermock

0 20 40 60 80 100
Delay to upgrade to a new release(months)

0.00

0.05

0.10

0.15

0.20

0.25
org.assertj
org.hamcrest

0 20 40 60 80 100
Duration of use of a certain testing library version(months)

org.assertj
org.hamcrest

Figure 1: The proportion of the adopt latency and the duration of use of library versions across different projects.

junit mockito hamcrest testng assertj

library

100

101

102

103

m
e
a
n
_f

ile
s

Figure 3: The distribution of the mean number of test
Java files in a project using different packages of dif-
ferent testing related libraries.

3.3 How does the number of test files in Java
projects evolve over time?

To answer this question, we calculated for each project,
for the first snapshot of each month, the number of test
Java files existing in this project. We considered only
the unit testing libraries, JUnit , TestNG and Spring .
Figure 5 shows for the three libraries, the evolution
over time of the number of Java files that contain test
cases in the Java projects. We found that in the last
8 years, the proportion of the numbers of test Java
files existing within a Java project is always less than
15% of all Java files in this project. Before 2009,
TestNG was used in a higher numbers of test Java files
than JUnit , but after 2009 JUnit test files numbers in-
creased to beat the decreasing numbers of TestNG test
files, while Spring ’s test files proportion was always

junit mockito hamcrest testng assertj

library

0.00

0.05

0.10

0.15

0.20

p
ro

je
ct

s 
%

Figure 4: The distribution of the proportion of
projects that use different packages of different test-
ing related libraries.

under 5% of all Java files.

3.4 How often do Java projects use JUnit to
test classes that provide a particular func-
tionality?

To know how often we use testing libraries to test
classes that provide a particular functionality, and be-
cause it is important for developers to avoid the myr-
iad of problems that can occur when tests corrupt
the database and cause subsequent tests to fail, we
chose database classes as candidates. For 1,150 Java
projects that used JDBC or JPA or Hibernate for their
database access, and used JUnit as a testing library,
we identified all Java classes that make use of these
database libraries and all test Java classes, and then
we analyzed if the database classes are being tested.
We chose JUnit so we can have enough projects for this

3



2001 2003 2005 2007 2009 2011 2013 2015 2017

date

0.00

0.05

0.10

0.15

0.20

0.25

ja
v
a
 f

ile
s

junit

testng

spring

Figure 5: The evolution of the proportion of the test
Java files over time.

empirical analysis. We found that half of these classes
number is tested, and with a small difference, classes
that used JDBC are more likely to be tested than the
classes that used JPA or Hibernate. See Figure 6.

We also analyzed the co-evolution of the tested
database classes and the other tested classes and we
observed that the proportion of the database classes
that are tested is slightly decreasing compared to the
other tested classes(i.e., classes using all other types of
libraries). See Figure 7.
Which is normal since software projects evolve and de-
velop more functionalities using other libraries.

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

date

0.30

0.35

0.40

0.45

0.50

0.55

0.60

da
ta

ba
se

 c
la

ss
es

jdbc tested classes
jpa tested classes
hb tested classes

Figure 6: The evolution of the proportion of the tested
database Java classes

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

date

0.0

0.2

0.4

0.6

0.8

1.0

te
st

e
d
 c

la
ss

e
s

jdbc

jpa

hb

Figure 7: The co-evolution of the tested database Java
classes and the other tested classes.

3.4.1 Acknowledgment

This research is part of FRFC research projects
T.0022.13 and J.0023.16 financed by F.R.S.-FNRS,
Belgium.

4 Threats to Validity

Our results may not be generalisable to non-Java
projects or to projects that do not rely on the build
automation tool Maven. While we studied the usage
of eight Java libraries only, the proposed methodol-
ogy is applicable to other combinations of libraries as
well. Our results may be biased by the fact that we
consider all type of open source Java projects without
classifying these projects in different categories.

5 Conclusion

We analyzed the usage of eight popular testing, match-
ing and mocking libraries in a large corpus of GitHub-
hosted Java projects. We observed that some libraries
are rapidly upgraded within a project after the release
of a new version, moreover, certain versions of certain
libraries tend to take more time before their adoption
than the others.

We found that certain libraries are not fully used,
only few numbers of packages are used by all projects
that make use of these libraries, we also observed that
some packages are usually used together within a Java
project.

We also analyzed the test coverage in projects that
used database related libraries and we found that half
of the classes that make use of them are not tested.

Our findings can facilitate the way to library users
for better usage by giving them sharp insights of how
others make use of such libraries. Library developers
also can benefit from this analysis to better under-
stand how their major library versions are being used
in practice, in order to provide incentives to increase
their library’s adoption rate and to avoid its users to
migrate to competing libraries.

For future work, after we finish our current study,
and based on a previous one [Zerouali17], we will pro-
vide recommendation tools on testing library usage to
better assist library users as well as library developers.

References

[Qiu16] D Qiu, B Li, and H Leung. Understanding
the API usage in Java. Information and Soft-
ware Technology 73 (2016): 81-100.

[Sawant16] A A Sawant, and A Bacchelli. fine-
GRAPE: fine-grained APi usage extractoran
approach and dataset to investigate API us-
age. Empirical Software Engineering (2016):
1-24.

[Myers16] B A Myers, J Stylos. Improving API Us-
ability. CACM 59(6): 62-69

4



[Teyton12] C Teyton, JR Falleri, X Blanc. Mining
Library Migration Graphs. vol. 00, no. , pp.
289-298, 2012, doi:10.1109/WCRE.2012.38

[Kabinna16] S Kabinna, CP Bezemer, W Shang, A
E. Hassan. Logging library migrations: a
case study for the apache software founda-
tion projects”, MSR 2016

[Zerouali17] A Zerouali, T Mens. Analyzing the evo-
lution of testing library usage in open source
Java projects. Software Analysis, Evolution
and Reengineering (SANER), 2017 IEEE
24th International Conference on. IEEE,
2017.

[Mileva09] YM Mileva, V Dallmeier, M Burger, A
Zeller Mining trends of library usage. Pro-
ceedings of the joint international and annual
ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution
(Evol) workshops. ACM, 2009.

5


