
An Empirical Study of Identical
Function Clones in CRAN

Maëlick Claes, Tom Mens, Narjisse Tabout, Philippe Grosjean
Software Engineering Lab & Ecologie numérique des Milieux aquatiques Lab

COMPLEXYS Research Institute, University of Mons
Email: firstname.lastname@umons.ac.be

Abstract—Code clone analysis is a very active subject of study,
and research on inter-project code clones is starting to emerge.
In the context of software package repositories specifically,
developers are confronted with the choice between depending on
code implemented in other packages, or cloning this code in their
own package. This article presents an empirical study of identical
function clones in the CRAN package archive network, in order
to understand the extent of this practice in the R community.
Depending on too many packages may hamper maintainability
as unexpected conflicts may arise during package updates. Dupli-
cating functions from other packages may reduce maintainability
since bug fixes or code changes are not propagated automatically
to its clones. We study how the characteristics of cloned functions
in CRAN snapshots evolve over time, and classify these clones
depending on what has prevented package developers to rely on
dependencies instead.

I. INTRODUCTION

Analysing the impact (whether it be harmful or beneficial)
of inter-project code cloning is an emerging topic of research
in the code cloning community [1], [2]. Developers are of-
ten confronted with the difficult choice between depending
on existing functions developed in other libraries, or copy-
pasting or re-implementing similar functions in their own code.
In the case of depending upon a third-party library, errors
may be introduced inadvertently when upgrading to a newer
version of the library one depends upon. Finding and fixing
these errors can be cumbersome. Duplicating functions across
different libraries is an alternative but may be detrimental to
the maintainability in the long run.

In this article, we study the extent of the practice of cloning
function code between packages contained in a large open
source package archive maintained by a specific community
of developers. In such a complex and dynamically evolving
context, there are many packages, maintained by different
developers, having many dependencies between them, and
being subject to regular changes and updates.

The case study that we have chosen for this paper is
CRAN, the official archive network of R packages supported
by the community surrounding the statistical project R. The
R developer community is part of a rather specific ecosystem
that mostly consists of non-programmers such as statisticians,
biologists and economists. They generally don’t have a soft-
ware engineering background as strong as other programming
language communities.

Identical cloned functions across packages appear to be
omnipresent in CRAN. With our study, we aim to understand
why this is the case, and how this practice evolves over time.

In particular, we want to understand to which extent functions
are Type-1 clones across packages, why R package developers
clone functions, and if clones could be avoided by the introduc-
tion of explicit dependencies. Thus our longitudinal empirical
study of inter-package function clones in CRAN focuses on
the following research questions:

1) How prevalent are clones in CRAN, and how does
this evolve over time?

2) How and why did clones appear?
3) Is it possible to remove clones and how?

II. ABOUT CRAN

CRAN is the official R package repository containing
thousands of software packages maintained by a community
of thousands of developers surrounding the R project. CRAN
dates back from 1997, and is still the biggest R package
repository available today, containing over 6,000 packages and
9 million lines of R code. While some researchers have studied
the evolution of this ecosystem [3], we are not aware of any
study that focuses on the presence of function clones in CRAN
and the consequences thereof.

CRAN has a rather strict policy to ensure package quality.
Packages need to pass a series of tests to be accepted in the
repository. These tests are rerun daily on the last version of
each available package. Package maintainers must ensure that
their package still passes these tests to avoid their package
being archived. This policy puts a heavy burden on package
maintainers, especially if the package no longer passes the tests
due to un update of some dependent package over which the
maintainer has no control [4].

We hypothesise that R package maintainers sometimes
resort to copy-and-paste reuse to reduce the extent of this
problem. Indeed, copying the code of a function they want
to reuse from another package requires less effort (at least at
the short term) than explicitly depending on that package and
take the risk that future changes in that package may lead to
conflicts in ones own package.

The other way around, we also suspect that some function
clones between R packages exist because the declaration of
an explicit package dependency does not allow to access the
required function. This is for example the case if the function
is local to the package, or if it is anonymous, or if it is a global
function that is not exported in the package’s namespace.

III. RELATED WORK ON SOFTWARE CLONES

Code cloning is an active research topic of the software
engineering community. A comprehensive overview of soft-
ware cloning literature can be found on http://students.cis.uab.
edu/tairasr/clones/literature/. Most research focuses on how to
detect clones (e.g., [5], [6], [7], [8], [9]), while some articles
focus on how to remove clones (e.g., [10], [11], [12]). Research
on inter-project software clones is starting to emerge ([1],
[2]), and our work fits within this theme. A specificity of our
research is that we take an ecosystemic point of view.

Code clones can be classified in four mutually exclusive
types [13], [9]. Type-1 clones are syntactically identical code
snippets at the abstract syntax level (i.e., ignoring differences
in white space, layout and comments). Type-2 clones addition-
ally differ in identifier names and literal values. Type-3 clones
syntactically differ by having some statements added, modified
and/or removed with respect to each other. Type-4 clones
implement the same functionality while being syntactically
dissimilar. This article focuses on Type-1 function clones
because our goal is to study code that has been duplicated
across different packages rather than depended upon. Thus we
need to be sure that the identified clones are equivalent from
a computational point of view.

Code clones are often considered harmful because they lead
to redundancy due to code duplication. This makes software
maintenance more difficult. For example, Jürgens et al. found
inconsistent changes to code clones to be very frequent and a
significant number of defects are introduced by such changes
[14]. On the other hand, many situations have been reported
in which clones are not considered harmful, are impossible or
impractical to remove, or are even beneficial [15], [16], [17].

The bottom-line is that, if you really have to clone some
code, you need to do it safely. Proactive tool support can
be very beneficial to help detect the presence of clones, to
propagate changes across clones, to assess the risk or benefits
of clones, and to help remove clones if needed. Many tools
have been proposed for detecting clones, including CCFinder,
CBCD, CloneDR, CPMiner, Dup, Duploc, iClones, KClone
and NiCad. For a qualitative comparison of clone detection
techniques and tools, see [9].

In earlier work we presented maintaineR [18], a web-based
dashboard that can be used by CRAN package maintainers.
This tool enables, among others, to see which functions in
their package are duplicated in other packages. The current
article uses such information to perform an in-depth analysis
of identical function clones in CRAN.

IV. TERMINOLOGY

Before answering the research questions introduced in
Section I, let us introduce the necessary terminology and
notation.

Let Date be the set of all possible dates (represented by
year, month and day).1 This set is totally ordered, i.e., any two
dates can be compared using the < operator.

1We exclude more specific information such as the hour, minutes and
seconds; and we assume that all dates are converted to the same timezone.

Each CRAN package is identified uniquely by its package
name. The list of all available CRAN packages, sorted by
name, can be found on http://cran.r-project.org/web/packages/
available packages by name.html. Packages are versioned,
and the code contained in each version may be different. As an
example, package biotools has 3 different versions (1.0, 1.1,
and 1.2), with different release dates (2014-02-12, 2014-02-16,
and 2014-05-26).

Notation IV.1 (Package and version).

P denotes the set of all packages.

p ∈ P denotes an individual package.

∀p ∈ P : Vp denotes the set of all versions of package p.

succ : Vp → Vp is the (partial) successor function defining a
total order on Vp. It is defined for each version of a package
except the last one, which does not have any successor.

date : Vp → Date gives the release date of each package
version. By definition, ∀v ∈Vp : date(succ(v))> date(v).

V = ∪p∈PVp denotes the set of all versions of all packages.

package : V → P : v→ p if v ∈Vp

Each package version v ∈V is characterised by a number
of function definitions, that contain source code.

Notation IV.2 (Function). Let v ∈V .

Fv is the set of all functions belonging to a package version
v. A function f ∈ Fv is a triple (fargs, fbody, fenv) where fargs
denotes the set of function parameters, fbody the function body,
and fenv the environment of the function.

Fv = FG
v ∪FL

v partitions all functions of Fv into local functions
FL

v (that are defined internally to another function) and global
functions FG

v .

contains⊆ FL
v ×Fv determines inside which other function of

the package version a local function is defined.

Fv = FN
v ∪FA

v partitions all functions of Fv into named func-
tions FN

v (that have an explicit name) and anonymous functions
FA

v (that do not have an associated name).

name : FN
v → Σ∗ provides the name of each named function as

a sequence of symbols belonging to some alphabet Σ.

A snapshot Sd represents the set of the latest available
versions of each package at a given date d. These snapshots
allow us to study the evolution of CRAN over time. The date
d of each snapshot has the format YYYY-MM-DD. The latest
package versions existing at that date will be considered in the
snapshot.

Notation IV.3 (Snapshot). Let d ∈ Date.

Sd = {w ∈ V | date(w) ≤ d ∧ @v ∈ Vpackage(w) : date(w) <
date(v)≤ d}.
Fd = { f ∈ Fv | v ∈ Sd} is the set of all functions in snapshot
Sd . Fd

v = Fd ∩Fv is the set of all functions in package version
v belonging to snapshot Sd .

From this definition, and the fact that all package versions
are related by a total order succ based on their release date, it

http://students.cis.uab.edu/tairasr/clones/literature/
http://students.cis.uab.edu/tairasr/clones/literature/
http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html

follows that each snapshot contains at most a single version
of each package. Because of this, whenever we restrict ourself
to a particular snapshot, we will use the term package to
refer to the particular version of this package belonging to
the snapshot.

In this article, we are interested in finding identical function
clones (i.e., Type I clones) belonging to the same snapshot. We
will use the term clones to refer to distinct functions with an
identical function body (the name, arguments and environment
of the functions are allowed to be different). Clones may
appear either within the same package, within two versions of
the same package, or belong to two different packages. Clone
sets represent groups of identical clones.

Notation IV.4 (Clones and clone sets). Let d ∈ Date.

Cd = {(f ,g) ∈ Fd × Fd | f 6= g∧ fbody = gbody} denotes the
clone relation between functions. Let f ∈ Fd , then we define
clonesd(f) = {g ∈ Fd | (f ,g) ∈Cd}.

Cd forms a partial equivalence relation (i.e., it is symmetric
and transitive). A clone set C ⊆ Cd is a class of (function)
clones defined by this partial equivalence relation Cd .

For each clone set C we define its origin(s) as the func-
tion(s) representing the oldest incarnation(s) of the clone:

origin(C) = { f ∈C | @g ∈C : f 6= g∧date(g)< date(f)}

While theoretically a clone set can have multiple origins,
in practice this occurs very rarely. And even if it does, these
multiple origins tend to belong to the same package version
(i.e., the multiple origins are internal clones of one another
in the same package). For example, for snapshot Sd at date
d =2014-12-01 we found exactly 1 origin package for all 3,184
detected clone sets.

Our research focuses on inter-package clones, i.e., clones
across different packages, as they are subject to the mainte-
nance problem described in Section I. We will not consider
clones between different versions of the same package.

Notation IV.5 (Inter-package function clones).

Cd
Inter = {(f ,g)∈Cd | ∃v,w∈ Sd : v 6=w, f ∈ Fv,g∈ Fw} denotes

all clones between functions belonging to different packages.
Like Cd it forms a partial equivalent relation that allows us
to define clone sets.

clonesd
Inter(f) = {g ∈ Fd | (f ,g) ∈Cd

Inter}.

For example, package biotools 1.2 has one identical clone
with package soilphysics 1.1. The function body is

i f (i s . n u l l (t e x t))
t e x t<−”Welcome t o t h e s t a t i s t i c a l s o f t w a r e r e v o l u t i o n ! ”

i f (! i n h e r i t s (t e x t , ” c h a r a c t e r ”) | | l e n g t h (t e x t) ! = 1)
s top (” ’ t e x t ’ must be a c h a r a c t e r v e c t o r o f l e n g t h 1 ! ”)

vec <− s t r s p l i t (t e x t , ” ”) [[1]]
l a b <− c (vec , ”\n ”)
f o r (i i n 1 : l e n g t h (l a b)) {

s e t T x t P r o g r e s s B a r (t x t P r o g r e s s B a r (char = l a b [i]) , 0 . 0 1)
Sys . s l e e p (0 . 1)
}

R packages can be related by dependency relationships
specified in the R DESCRIPTION file of the package version.
There exists different kind of dependencies for R packages:

depends, imports, suggests and enhances. We limit ourselves
in this study to the depends and imports dependencies as they
are the ones that are mandatory to install the package. We
only consider dependencies to CRAN packages, and exclude
all dependencies to R “core” packages.

Notation IV.6 (Version dependencies). Let d ∈ Date.

Depd ⊆ {(v,w) ∈ Sd × Sd | v 6= w} denotes the dependency
relation between packages belonging to snapshot Sd .

depd(v) = {w ∈ Sd | (v,w) ∈ Depd} is the set of all direct
dependencies of package v.

revdepd(v) = {w ∈ Sd | (w,v) ∈ Depd} is the set of all direct
reverse dependencies of package v.

depd
∗(v) = depd(v)∪

⋃
w∈dep(v) depd

∗(w) is the set of all recur-
sive dependencies of v.

revdepd
∗(v) is defined in a similar way.

For example, let us consider d =2012-04-02.
depd(pgfSweave) contains packages cacheSweave, tikzDevice,
highlight and formatR. depd

∗(pgfSweave) contains these
packages and their recursive dependencies, which are slashR,
parser, filehash, Rcpp, digest and codetools.

V. TYPE-1 FUNCTION CLONE EXTRACTION

To analyse the history of clones in CRAN, we have
proceeded as follows to extract and identify Type-1 function
clones. First, we parsed the source code of each version
of each CRAN package using built-in R functions. More
specifically, we used the R base function parse to construct
the abstract syntax tree (AST) of the body of each function of
each package. Working with the AST allows us to ignore all
code comments and differences in code indentation between
otherwise identical function bodies. Next, we computed a hash
value for each function body using the SHA-1 cryptographic
secure hash algorithm. Two functions that have the same hash
value for their function body can be considered as identical
functions with a negligible probability (< 10−18) of false
positives.

For the purpose of the empirical analysis we excluded
all functions whose body contains less than 6 lines of code.
Through manual inspection we found that this value allows
us to avoid most of the small code fragments leading to
“accidental clones”.

We also excluded all intra-package clones, i.e., clones that
appear within the same package. For the empirical analysis,
only those clones that appear between different packages (i.e.,
belonging to the clone relation Cd

Inter of Section IV) are of
interest to us.

VI. OBSERVED CLONE CASES

Before delving into an empirical analysis, we focused on
a limited subset of “interesting” CRAN packages with respect
to their cloning behaviour. In particular, we considered those
packages for which there is an unusually high number of
clones, or an unusually high number of packages that have
cloned functions belonging to the considered package. The aim
of this section is not to provide a representative classification

but is rather indicative about some interesting cases of clones
found in CRAN. We present these observed cases of cloning
behaviour below.

1) Coexisting package versions: In some CRAN snapshots,
two different “versions” of the same package may coexist.
While these packages have a different name, one of them
can be regarded as the new version of the other. Needless
to say, the majority of functions from the old package will be
cloned in the new package. A valid reason for this clone case
is to allow existing packages to continue to depend on the old
version, while already exposing the new version with extended
functionality.

One occurrence of this type of clone behaviour was found
for packages plyr and dplyr. They are maintained by the same
person, and both allow to manipulate R data structures more
easily and more efficiently but in a different way. They share
3 identical function clones totalling 48 lines of code.

Another occurrence are packages lme and nlme that have
coexisted for some time. Both packages fit the same goal
of providing statistical model functions. nlme adds non-linear
models to lme and actually replaced it in later snapshots of
CRAN. They share more than 600 identical function clones
totalling over 7,000 lines of code.

A third example is the pair of packages np and npRmpi.
The latter package is a version of np that uses MPI (Message
Passing Interface) to distribute computation. Both are currently
available on CRAN, are maintained by the same person and
share more than 10,000 lines of code.

2) The fork package: Related to the previous case, forked
packages continue to coexist with the package they have forked
from. An example is package Rcmdr, offering a graphical
interface to use R statistical functions. Package QCAGUI
provides a graphical interface for the QCA package, and can
be considered as a fork of Rcmdr with most of the statistical
related features removed. Rcmdr and QCAGUI share more than
8000 lines of code.

3) The frequently cloned package: For some packages,
most functions have been cloned by other packages. An
example is distr, which contains 182 lines of code, and all
its global functions have been cloned by different packages.

4) The utility package: We refer to an utility package as a
package that bundles together a lot of functions that are cloned
from many other packages. An example is package DescTools,
which gathers functions for basic statistics that are scattered
across different packages, and bundles them together into a
single package. DescTools copied 52 functions (totalling 1,419
lines of code) from 27 different packages. Some of them are
public functions while others are local functions meaning that
they are probably used in wrapper functions.

5) The popular package: A popular package contains spe-
cific functions that are cloned by a lot of other packages. An
example of such a package is MASS, a well-known and widely
reused statistical package. It has 16 functions that have been
cloned by 16 different packages for a total of 180 code lines.

6) The popular function: A popular function is a function
that is cloned by a lot of different packages, while the other
functions of the same package are not. An example is the

package combinat, whose function permn of 151 lines of code
is cloned by 7 different packages.

VII. METRICS

In this section, we define the metrics that we will use for
the empirical analysis in Section VIII.

A. Size metrics

Let d ∈ Date, Sd the corresponding snapshot, v ∈ Sd a
package (version), and f ∈ v a function.

LoC(f) = number of lines of code of f .

LoC(v) = ∑ f∈v LoC(f) = number of lines of code of v.

We define size metrics at the snapshot level as follows:

NoP(d) =| Sd | = number of packages in snapshot Sd .

LoC(d) = ∑v∈Sd LoC(v) = lines of code for snapshot Sd .

B. Clone metrics

NoC(f) = | clonesd
Inter(f) | = number of inter-package Type-1

clones of function f in the same snapshot Sd .

Let Clones(v) = { f ∈ v : NoC(f) > 0} the set of function
clones contained in package version v.

NoCF(v) =| Clones(v) | = number of cloned functions of
package v.

LoCC(v) = ∑ f∈Clones(v) LoC(f) = number of lines of cloned
code in package v.

RoCS(v) = LoCC(v)
LoC(v) = ratio of cloned code in package v.

We can aggregate these clone metrics at the snapshot level
as follows.

NoCP(d) =| {v ∈ Sd : NoCF(v) > 0} | = number of packages
containing clones in snapshot.

NoCS(d) = number of clone sets of snapshot d = number of
classes defined by the partial equivalence relation Cd

Inter.

LoCC(d) = ∑v∈Sd : NoCF(v)>0 LoCC(v) = number of lines of
cloned code in snapshot.

LoCCP(d) = ∑v∈Sd : NoCF(v)>0 LoC(v) = number of lines of
code in all packages containing clones.

RoCP(d) = NoCP(d)
NoP(d) = ratio of packages with clones.

RoCC(d) = LoCC(d)
LoC(d) = ratio of cloned lines of code.

RoCCP(d) = LoCCP(d)
LoC(d) = ratio of cloned lines of code in

packages containing code.

All these metrics can be qualified by an extra parameter
n representing a minimal threshold on the function size ex-
pressed in lines of code, i.e., we restrict the functions under
consideration to { f ∈ Fd | LoC(f)> n}. In this paper we have
used a threshold n = 5 to exclude all clones containing less
than 6 lines of code.

VIII. EMPIRICAL ANALYSIS

This section uses the metrics defined in Section VII to
answer the research questions presented in the introduction.

A. How prevalent are clones in CRAN?

In order to assess the importance of the cloning phe-
nomenon across CRAN packages we computed the snapshot
for each day d from January 2000 to December 2014. For each
snapshot Sd we computed the snapshot-level metrics related to
clones.

0

2000

4000

6000

2000 2005 2010 2015
Time

variable
Packages with clones
Packages

Fig. 1. Evolution over time of NoP(d) (in blue) and NoCP(d) (in red).

Figure 1 shows the evolution in CRAN of the number of
packages NoP(d) and number of packages containing clones
NoCP(d). The general trend is that the number of packages
containing clones increases over time, up to 2,000 packages
containing clones today. This corresponds to 24.2% of all
packages. The trend follows the overall exponential growth
trend of the number of available CRAN packages.

0

2500000

5000000

7500000

2000 2005 2010 2015
Time

variable
Cloned LOC
LOC
LOC of cloned packages

Fig. 2. Evolution over time of LoC(d) (in green), LoCC(d) (in red) and
LoCCP(d) (in blue) in CRAN.

The evolution of the number of lines of cloned code
LoCC(d) (Figure 2) also follows an increasing trend. We
observe that LoCC(d) is much smaller than LoCCP(d), the
total number of lines of code of the packages containing these
clones. The ratio amounts to 2.6% of all lines of code in CRAN
and 5.3% of all lines of code of packages containing clones.
This is much less than the ratio observed in Figure 1 of 24.2%
of packages containing clones. Nevertheless, these cloned
functions are included in packages that, together, represent
49,7% of all lines of code in CRAN!

Figure 3 shows how these ratios evolve over time. The ratio
RoCC(d) of lines of cloned code decreases over time (starting
from around 20% initially to less than 5% today). The ratio
RoCP(d) of packages containing cloned code has the opposite

0.0

0.2

0.4

0.6

2000 2005 2010 2015
Time

variable
% packages with clones
% cloned LOC in CRAN
% LOC contained in packages with clones

Fig. 3. Evolution over time of RoCP(d) (in red, the ratio of packages
containing clones), RoCC(d) (in green, the ratio of cloned lines of code) and
RoCCP(d) (in blue, the ratio of lines of code in those packages containing
cloned code).

behaviour, with a higher percentage of packages is containing
cloned code. In both cases, the ratio seems to stabilise during
the last 8 years of CRAN. We hypothesise that this is because
CRAN has become more mature.

From these findings we can conclude that

• The cloning phenomenon in CRAN impacts quite a lot
of packages (up to 25%). However it does not impact
the majority of CRAN packages.

• The ratio of packages impacted by cloning appears to
have stabilised.

• While cloning impacts very few lines of code com-
pared to the overall size of CRAN, it still impacts
more than 250,000 code lines. Moreover, those lines
are included in packages that represent around 50%
of all code lines in CRAN.

B. Why did clones appear?

We have seen previously that cloning potentially impacts
hundreds of thousands of lines of code. Our goal is to un-
derstand the reason of existence for those clones and whether
these clones could have been avoided.

To fulfil this goal we study in more detail snapshot Sd

corresponding to date d =2014-12-01. We limit ourselves here
to those packages that are not archived at date d.2

We counted NoP(d) = 6,253 non-archived packages. The
clone relation Cd

Inter resulted in NoCS(d) = 3,184 clone sets,
involving 7,366 function clones in NoCP(d) = 1,409 distinct
packages. In total, this amounts to LoCC(d) = 162,327 lines of
cloned code out of LoC(d) = 8,338,417 in total (i.e., < 2%).

In order to understand why these clones exist we studied
origin(C), the origin function of each identified clone set C.
The origin corresponds to the function with the oldest date,
implicitly assuming that all other clones belonging to the same
clone set were copied from it. We found exactly 1 origin
package for all 3,184 considered clone sets.

For the origin of each clone set, we try to answer the
following questions:

2In the previous research question we did not exclude archived packages
because there is no history available online to know which packages were
archived or not at a certain point in time.

• Is the origin anonymous (i.e., not stored in any vari-
able)?

• Is the origin declared locally (i.e., declared inside
another function)?

• Is the origin available as a public function to the
package users?

• Does the origin still exist in the most recently available
package version?

Among the 3,184 considered origin functions (one for each
clone set), we identified 796 functions (i.e., 25%) that were
either anonymous or local. 250 of these were both anonymous
and local.

For the 2,388 (3,184 - 796) origin functions that were
globally visible (i.e., not local) in the origin package version,
202 (8.45% of all global origin functions) were no longer
available in the latest considered version of the same package,
either because the function has been removed or changed
somehow over time.

The current CRAN policy requires packages to define
a “NAMESPACE” file that lists which functions or objects
are exported by the package. Those exported functions are
all the functions that the package user is allowed to use3.
Because NAMESPACE files can use regular expressions and
because package environments can be modified dynamically,
we extracted the list of exported objects by loading each
package in a virtual machine containing a snapshot of CRAN
corresponding to the release date of the package.

Out of the 2,186 (2,388 - 202) origin functions that still
exist today, we weren’t able to retrieve the list of exported
functions for 287 of them (i.e., 13%). Of the remaining 1,899
origin functions, 673 were exported while 1,226 were not.

In summary, it turns out that, for the considered snapshot,
cloning cannot be avoided for the majority of clones in each
identified clone set. Of the 3,184 origin clones, 25% (796) of
them were local functions that cannot be depended upon no
matter whether they are exported or not by their containing
package. Of the remaining 1,899 global functions, only 35%
(673) were public ones.

Fig. 4 presents the distribution of number of lines of code
LoC(f) for each clone set origin function f . The function size
varies a lot, and while most origin functions tend to be rather
small (less than 20 LoC for more than 50% of them), their size
can increase up to 1,000 LoC. We also observe that function
size tends to be bigger for global than for local origins, and
bigger for public clones than for private origins.

C. Is it possible to remove clones and how?

a) Removing clones by adding a dependency to the
origin: We have seen that it was only possible for a small
fraction of the clone sets to remove identical clones by adding
a dependency to the origin function. However, we still need
to check whether this dependency already exists or if it
could be added. This dependency cannot be added if the

3Although, technically, it is still possible to call non-exported functions
using syntactic sugar, this is strongly discouraged by the CRAN check process.

5
10

20
50

10
0

20
0

50
0

10
00

Anonymous Local Private Public

Fig. 4. Beanplots showing the distribution of LoC(f) for the clone set origins,
classified according to their visibility: anonymous, local, (global) private or
(global) public.

package containing the origin (directly or indirectly) depends
on the package containing the clone, since otherwise a cyclic
dependency would be introduced.

To the previously identified 673 public (and hence, poten-
tially refactorable) origin functions correspond 782 clones in
332 packages. Of these, there are 49 packages with an existing
direct dependency to the origin package. In the opposite
direction we found 20 packages for which their origin package
directly depends upon them and only one for which the origin
package indirectly depends upon it.

b) Removing clones by adding a dependency to a clone
of the origin function: While the majority of clones cannot
be removed by depending upon the package that contains the
origin function, perhaps a dependency can be added to another
package containing a clone of the origin.

Let us consider the 3,458 non-origin clones of the 2,511
clone sets for which the origin is not refactorable by adding
a dependency. Is one of the non-origin clones refactorable
instead? For 801 clone sets, all non-origin clones are all local
functions, and for 194 clone sets we were not able to retrieve
the list of exported objects by the package. For the remaining
global functions for which we could retrieve exported objects,
1,266 are private functions and only 250 are public ones.

For the 250 clone sets containing at least one public clone,
there is a total of 317 clones that could potentially be removed
by adding a dependency to the package with this public
clone. 31 already have this dependency and 18 have a reverse
dependency to the package declaring the public clone, making
it impossible to add the dependency.

IX. THREATS TO VALIDITY

Our study has several potential threats to validity. Since
we have restricted ourselves to R packages, our results do not
necessarily generalise to other package-based systems.

For our analysis we used mainly tools and scripts that we
developed ourselves and which could still contain bugs. We
also relied on data available on CRAN web site and some of
this information could be unreliable. In particular we cannot
be sure that the release date of packages is the actual one as
it can be misestimated by a few days.

For snapshots older than one year there is no way of
knowing which packages were present on CRAN at that time.
The history of when package versions were archived is not
available and we have to rely on data we started to extract
since September 2013.

The threshold of at least 6 code lines we have used to
consider identical functions to be clones is arbitrary and could
lead to over- or underestimations of the number of clones.

X. FUTURE WORK

This paper studied the presence of Type-1 function clones
across CRAN packages in an objective way. We intend to com-
plement this information by performing a subjective survey
with actual R package maintainers. In particular, we wish to
know to which extent they purposefully resort to the practice
of code cloning, and if they perceive the presence of clones as
something good or bad. A survey also allows us to get direct
feedback from CRAN package developers.

So far we only considered Type-1 clones. A direct exten-
sion would be to consider Type-2 and Type-3 clones as well.
For example, it would be interesting to find out how long it
takes before a Type-1 clone becomes a Type-2 clone, and so
on. Further work is needed to understand how function clones
in CRAN packages evolve over time in order to help package
maintainers cope with these clones in a better way.

Section VI highlighted a series of interesting clone cases.
Future work includes a systematical study of clone patterns in
order to determine if those cases are representative of cloning
behavior in CRAN.

Finally, we intend to explore how popularity and speciali-
sation of CRAN packages impacts presence of function clones.
An answer to this question could both highlight why the origins
of function clones tend to be concentrated in a small number of
packages and why a lot of packages do not encounter cloning.

XI. CONCLUSION

This article studied the problem of inter-project software
clones from an ecosystemic point of view. To this extent, we
carried out an empirical study of Type-1 function clones across
R packages contained in the CRAN package repository over
a 15-year time period. Our goal was to understand to which
extent functions are cloned across packages, why R package
maintainers clone functions, and if clones could be avoided.

While identical cloned functions of at least 6 code lines
appear to be present in a rather small portion of the code of
all packages, they still represent hundred of thousands of lines
of code. Moreover, they are present in one out of four packages
that together make up half of all CRAN code.

We were able to identify an important number of clones
that could theoretically have been avoided by introducing ex-
plicit dependencies to another package containing the function
clone. Only in very few cases it was not possible to add such a
dependency because it would give rise to a cyclic dependency.

We also found valid reasons why cloned functions ap-
peared. In the majority of cases, cloning could not be avoided
because the original function being cloned was local or private.

This made it technically impossible to reuse the function by
simply depending upon the package defining it.

Hence, the problem of identical cloned functions in CRAN
appears to be less problematic than what one could expect at
first. Nevertheless, we believe that R package maintainers still
lack information about, and could benefit from, feedback on
the presence of clones in their package and dedicated tools to
help them deal with it.

ACKNOWLEDGEMENTS

This research was carried out in the context of ARC
research project AUWB-12/17-UMONS- 3.

REFERENCES

[1] R. Koschke, “Large-scale inter-system clone detection using suffix trees
and hashing,” Journal of Software: Evolution and Process, vol. 26, no. 8,
pp. 747–769, 2014.

[2] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in Int’l Conf. Software Maintenance and Evolution, 2014, pp. 476–480.

[3] D. M. Germán, B. Adams, and A. E. Hassan, “The evolution of the
R software ecosystem,” in European Conf. Software Maintenance and
Reengineering, 2013, pp. 243–252.

[4] M. Claes, T. Mens, and P. Grosjean, “On the maintainability of CRAN
packages,” in Int’l Conf. Software Maintenance, Reengineering, and
Reverse Engineering, 2014, pp. 308–312.

[5] K. Kontogiannis, R. D. Mori, E. Merlo, M. Galler, and M. Bernstein,
“Pattern matching for clone and concept detection,” J. Automated
Software Engineering, vol. 3, no. 1/2, pp. 79–108, June 1996.

[6] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in Int’l Symp. Static Analysis, Jul. 2001, pp. 40–56.

[7] F. Lanubile and T. Mallardo, “Finding function clones in web appli-
cations,” in European Conf. Software Maintenance and Reengineering,
2003, pp. 379–386.

[8] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in Working Conf. Reverse Engineering, 2006, pp.
253–262.

[9] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[10] R. Komondoor and S. Horwitz, “Eliminating duplication in source code
via procedure extraction,” UW-Madison Dept. of Computer Sciences,
Technical Report 1461, Dec. 2002.

[11] Y. Higo, S. Kusumoto, and K. Inoue, “A metric-based approach to
identifying refactoring opportunities for merging code clones in a Java
software system,” J. Software Maintenance and Evolution: Research
and Practice, vol. 20, no. 6, pp. 435–461, 2008.

[12] R. Koschke, Software Evolution. Springer, 2008, ch. Identifying and
Removing Software Clones, pp. 15–36.

[13] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. M. Merlo,
“Comparison and evaluation of clone detection tools,” IEEE Trans. Soft.
Eng., pp. 577–591, Sep. 2007.

[14] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Int’l Conf. Software Engineering, 2009, pp. 485–495.

[15] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical study
of code clone genealogies,” in ESEC/FSE. ACM, 2005, pp. 187–196.

[16] C. Kapser and M. W. Godfrey, “‘Cloning considered harmful’ con-
sidered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13, no. 6, pp. 645–692, 2008.

[17] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy, and K. A.
Schneider, “Evaluating code clone genealogies at release level: An
empirical study,” in Int’l Working Conf. Source Code Analysis and
Manipulation, 2010, pp. 87–96.

[18] M. Claes, T. Mens, and P. Grosjean, “maintaineR: A web-based
dashboard for maintainers of CRAN packages,” in Int’l Conf. Software
Maintenance and Evolution, 2014, pp. 597–600.

	Introduction
	About CRAN
	Related work on software clones
	Terminology
	Type-1 function clone extraction
	Observed Clone Cases
	Coexisting package versions
	The fork package
	The frequently cloned package
	The utility package
	The popular package
	The popular function

	Metrics
	Size metrics
	Clone metrics

	Empirical Analysis
	How prevalent are clones in CRAN?
	Why did clones appear?
	Is it possible to remove clones and how?

	Threats to Validity
	Future Work
	Conclusion
	References

