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11.1 Introduction

Ethylene vinyl acetate (EVA) copolymers are interesting materials for biomedical appli-
cation such as medical packaging, medical devices, and pharmaceutical applications for
over 35 years [1�3].

EVA is a kind of thermoplastic elastomer polymeric material that raises high interest
for its easy industrial processing due to the low melting point [4]. The molecular composi-
tion of EVA is made of crystalline polyethylene (PE) segments and amorphous poly(vinyl
acetate) segments (VA) and therefore EVA exhibits excellent flexibility and shape memory
ability [5]. Adjusting the content of VA in the polymer, the material exhibits different
microstructural and performance characteristics [4,5].

However, in the biomedical field, EVA applications are limited mainly because their low ten-
sile strength, thermal stability as well as their petrochemical-based origin and nondegradability
[6]. Thus to improve its properties, EVA is often used as blends with other polymers [7] or filled
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with nanofillers. The addition of biopolymer component to polyolefin matrices has been widely
used to modulate the final properties and reduce the dependence on petrochemical resources
by adding a significant biobased component into the polymeric material [7�9]. Moreover, the
addition of natural fillers to EVA has proven to be a good option to noticeably increase the stiff-
ness of the resulting material and the strength, especially for low filler content [7,10].

Nanocomposites based on EVA can be potential candidates for several biomedical
applications, ranging from medical devices and medical packaging applications, including
thermoformed trays, containers, boxes, tubes, needle cover, bottle, blister packs, clam-
shells, and bottle caps. The formulation of EVA-based nanocomposites that are biostable,
easily processable, and with improved mechanical performance is a challenge for the bio-
medical industry [1]. It is widely known that the incorporation of well-dispersed nanofil-
lers into polymeric matrices can considerably improve a number of specific properties
owing to the strong and large polymer/nanofiller interactions [11�13]. Natural inorganic/
organic reinforcing materials, such as nanoclay, cellulose, and starch, have gain interest
due to their environmental-friendly characteristics [14].

Inorganic fillers have been used to improve the performance of EVA-based materials.
Looking at the scientific literature, however, the major results are those based on EVA
reinforced with nanoclays and most of the works focus on the investigation of the EVA-
based nanocomposites as general film packaging and flame-retardant applications. In 2001
Zanetti et al. reported an interesting work on the thermal behavior of layered silicate-EVA
nanocomposites obtained by extrusion [15]. Alexandre et al. [16] studied nanocomposites
based on EVA and montmorillonite modified by various alkyl ammonium cations pro-
cessed by mechanical kneading and they found flame-retardant properties, as well as
Beyer [17] who, in 2001, studied the flame-retardant properties of EVA-based nanocompo-
sites indicating that they caused a large decrease in heat release. Alexandre et al. [18] also
studied reactive processing to obtain EVA-based nanocomposites. Moreover Riva et al.
[19] studied EVA-based nanocomposites for telecommunication cable manufacturing.
Bourbigot et al. [20] also studied the design of EVA-based materials for flame retarded
low voltage cables and wire. Zanetti et al. [21] studied the combustion behavior of poly-
mer composites based on organically modified phyllosilicates and poly(ethylene-co-vinyl
acetate) by melt processing. They obtained that the heat release is reduced by 70%�80%
when nanocomposites with low silicate loadings (2%�5%) are burned because a protective
charred ceramic surface layer is formed as a result of reassembly of the clay layers and cat-
alyzed charring of the polymer. Gelfer et al. [22] investigated a series of nanocomposites
prepared by melt-blending of cloisite-based organoclays with poly(ethylene-vinylacetate)
(EVA) and neutralized poly(ethylene-methacrylic acid) copolymers and they obtained that
the bulk crystallinity is not significantly affected by the presence of organoclays, suggest-
ing that clay particles are predominantly confined in the amorphous phase. Pramanik
et al. [23,24] obtained EVA/clay nanocomposites by solution blending, obtaining a delami-
nated nanocomposites structure with increased mechanical and thermal properties respect
to the neat EVA matrix. Zhang et al. [25] studied the effect of both different kinds of clays
and different vinyl acetate content on the morphology of EVA-based nanocomposites
obtaining not only the intercalated and the exfoliated structure but also they proposed a
new nanostructure, “the wedged” to describe the dispersion degree of clay in nanocompo-
sites, it means the sheets of clay were partly wedged by the chains of polymer. Gianelli
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et al. [26] in 2004, studied the effect of the processing conditions on EVA-montmorillonite
nanocomposites and how its affect the mechanical properties of the final nanocomposites.
Pastore et al. [27] found that temperature in the range between 75�C and 350�C, induced
structural rearrangements of nanocomposites based on polyethylene-co-vinyl acetate
intercalated-organomodified clay (at 3�30 wt.% silicate addition). Chaudary et al. [28] pre-
sented a study on different ethylene vinyl acetate (EVA)-based nanocomposites prepared
by using EVA with different content of VA (9%, 18%, and 28% VA) filled with different
wt.% (2.5, 5, and 7.5) of a montmorillonite-based organomodified clay (Cloisite C15A and
C30B) for packaging applications. La Mantia et al. [29] reported a deep study on the rheo-
logical behavior of EVA-based nanocomposites. Osman et al. [1,30,31] and Alakrach et al.
[32] optimized different formulations of EVA-based nanocomposites for biomedical appli-
cations, performing investigations on the structure and properties of the EVA/montmoril-
lonite nanocomposites under ambient and in vitro conditions. They evaluated the
biocompatibility and biostability of the obtained materials as part of assessments to deter-
mine their suitability for use in a broad range of biomedical applications.

Between natural organic fillers, cellulose derivatives have been widely used in the form of
wood and fibers for centuries as reinforcing materials of thermoplastics for the development
of composite materials due to cellulose high mechanical properties, low density, inherent bio-
degradability, and low cost [33�37]. Cellulose is the most abundant polymer in nature, and it
is a semicrystalline and high-molecular-weight homopolymer. Nowadays cellulose is
exploited in the form of cellulose nanocrystals (CNCs), for the development of nanocompo-
sites in different forms such as films, melt-spun fibers, electrospun fibers, and bulk materials
[34,38�42]. High crystalline CNCs can be obtained from several plants and crops, in which
they are dissociated from the amorphous parts (composed by hemicellulose and lignin) of cot-
ton and/or wood cellulose fibers under sulfuric acid hydrolysis conditions [34,43]. CNCs
have proven to be optimal nanofillers for the development of EVA nanocomposites [43,44]. In
this sense, Ma et al. studied EVA rubber/CNCs nanocomposites prepared by solvent casting
followed by static vulcanization in the presence of dicumyl peroxide (DCP). A significant rein-
forcement effect was evidenced by an increase of the tensile strength values approximately
75% and the storage modulus values approximately 50%. Moreover CNCs did not compro-
mise the optical performance and thermal resistance of EVA matrix [44]. Tan et al. developed
surface-modified CNCs, by grafting long alkyl chain amine onto carboxylated CNCs, to pre-
pare EVA/CNCs nanocomposite films by means of solvent casting method followed by an
orientation process. The amide-based CNCs tensile strength and the elastic modulus drasti-
cally increased (B40%), while the typical high elongation of EVA was mainly maintained
[43]. The improvement of EVA performance due to development of EVA/CNCs-based nano-
composites was ascribed to the uniform dispersion of the CNCs into the polymeric matrix
due to the presence of cross-linker agent [44] or CNCs functionalization [43].

Another polysaccharide studied as nanoreinforcement is starch. Starch represents the major
energy reserve of higher plants, it is a mixture of two main components: amylose [a linear or
slightly branched (1-4)-α-D-glucan] and amylopectin [a highly branched macromolecule con-
sisting of (1-4)-α-D-glucan short chains linked through α-(1-6) linkages] [45,46]. It is
thought that the dominant component of the crystalline region in native starch granules is
amylopectin lamellae [45]. Starch can be used as polymeric matrix, in its thermoplastic form
[47�50] as well as nanoreinforcing materials in its nanocrystalline form, obtaining starch
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nanocrystals (SNCs) [51,52]. However, starch in comparison with cellulose, has been less
explored as reinforcing filler due to its large particle size (e.g., several 10 μm) and reduced
compatibility with polymer matrix [53]. Accordingly SNCs have gained interest as starch-
based reinforcement phase [54]. Among starch botanic sources, SNCs obtained by the hydro-
lysis of native granules of waxy maize starches have showed special interest because this
source is rich in amylopectin (. 99%) [55,56]. SNCs have also proven to be good nanofillers
for the development of EVA/SNCs nanocomposites [51,53]. Xu et al. developed EVA/SNCs
rubber nanocomposites by using epoxy-functionalized EVA and a silane coupling agent to
promote a chemical compatibilization between the nanoreinforcing phase and the polymeric
matrix. The cross-linking effect produced a strong reinforcement of EVA matrix, by an
increase of the tensile strength values approximately 100% and the storage modulus values
approximately 20% [53]. More recently Sessini et al. [51] studied EVA-based nanocomposites
reinforced with SNCs obtaining that SNCs do not lose their crystalline nature during the melt
processing. The strong hydrogen bonding between SNCs surface and the acetate groups of
EVA lead to the improvement of the mechanical and thermal properties of the neat matrix.
The elastic modulus values increase approximately 100% adding 5 wt.% of SNCs while the
thermal stability increase of approximately 10�C respect to the neat matrix.

In the past years much attention has been focused on multifunctional materials for bio-
medical applications. Polymers are blended and/or reinforced with nanoparticles to achieve
new specific properties, looking for their multifunctionality, biodegradability, and smart
behavior [57]. Among smart properties [58] are included self-healing and shape memory,
that is, the capability of a polymer to heal itself and the capability of the materials to fix a
temporary shape and to recover its initial shape when an external stimulus is applied, respec-
tively. Different are the stimuli that can be applied, temperature, humidity, light, and so on
[59]. The most common shape memory effect is due to the temperature. Thus thermally acti-
vated shape memory polymers have been designed and synthesized in such a way that two
active phases exist in the same material, the fixity phase and the switch phase, having a ther-
mal transition at a determined temperature, named transition temperature (Ttrans) able to fix
the temporary shape as well as to recover the initial shape [60,61].

Regarding EVA-based materials, shape memory is the smart property more studied
[62]. EVA-based materials can be designed and processed to show thermally activated
shape memory effect using different strategies. Li et al. [63] prepared cross-linked EVA by
a two-step method, first dispersing the cross-linking agent (DCP) into the EVA matrix and
then cross-linking at elevated temperatures. The shape recovery results indicated that only
those specimens that had a sufficiently high cross-linking degree were able to show the
shape memory effect. Moreover Nöchel et al. [64] studied the triple-shape capability of
cross-linked EVA-based materials programming double temporary shape using two differ-
ent switching temperatures within the broad melting temperature range of EVA.

In the recent years based on the study of multifunctional response of nanocomposites and
in particular on their smart capability, Sessini et al. [47] reported an interesting study on the
shape memory behavior of EVA blend and nanocomposites for possible biomedical applica-
tions. In particular, when blends of EVA and thermoplastic starch (TPS) were obtained, a dou-
ble stimuli response has been achieved, the thermal-activated shape memory response due to
the presence of EVA and the humidity-activated one due to the presence of starch. The double
stimuli response is maintained and improved in the nanocomposites obtained reinforcing the
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blends with organoclays. In 2017, Sessini et al. [48] reported a study on the humidity-
activated shape memory response increased when natural bentonite is used as reinforcing
materials. More recently Sessini et al. [6] studied the thermal and composting degradation of
EVA/TPS blends and their nanocomposites reinforced with natural bentonite. Furthermore
they reported the compatibilization effect of the bentonite on the immiscible pristine blends.

In the following sections different nanocomposites based on EVA and TPS are pre-
sented as example of strategy to obtain EVA-based materials with shape memory proper-
ties for potential biomedical applications. In fact, this kind of materials could be used for
biomedical applications activating their shape memory effect by mean of only humidity at
the human body temperature. In particular EVA/TPS blend was reinforced with different
nanofillers such as Cloisite 30B, Cloisite-Na1, CNCs, and SNCs at 0.5, 1, and 2 wt.%. In
comparison with our previous works [47,48], the designing of the nanocomposites was
done by one-step method avoiding the preprocessing of the filler with TPS through melt
intercalation method. Moreover in this work the effect of different nanofillers on the shape
memory response of the nanocomposites has been studied and a different thermally acti-
vated shape memory mechanism is proposed.

11.2 Materials and methods

11.2.1 Materials

Native pea starch was obtained from Cosucra groupe Warcoing SA, Belgium, with a dry
content of 85 wt.%, including 60.7 wt.% amylopectin, 35.7 wt.% amylose, 3.4 wt.% fiber, and
0.24 wt.% protein, as determined by colorimetric methods and Prosky and DUMAS meth-
ods [65]. Starch was used as received. Commercial EVA copolymer (ESCORENE UL00119),
with 19 wt.% of vinyl acetate content, was purchase from Exxon Mobil. Glycerol (purity
97%) was purchased from VWR International and it was used as a starch plasticizer.
Commercial natural bentonite, Cloisite-Na1 (CLNa1) and commercial alkyl quaternary
ammonium salt bentonite, Cloisite 30B (CL30B), were purchased from BYK Additives and
Instruments. Their dimensions are typically ranging from 2 to 13 μm. Microcrystalline cellu-
lose (MCC) and sulfuric acid were purchased from Sigma Aldrich (Spain). Waxy maize
starch (N200) used to synthesize the SNCs, was supplied by Roquette Laisa (Spain).

The CNCs were obtained from acid hydrolysis of commercial MCC following a previ-
ously reported method [39,42]. In brief an acid hydrolysis was performed using sulfuric
acid [64% (wt./wt. )] at 45�C for 30 min under mechanical stirring. To stop the acid hydro-
lysis, the obtained product was diluted in 4 L of deionized water while the excess of acid
was removed by centrifugation. Subsequently the CNCs solution obtained was dialyzed for
5 days to neutralize it. With the aim to purify the solution, an ion exchange resin (Dowex
Marathon MR-3 hydrogen and hydroxide form) was added for 24 h to the solution, and it
was then removed by filtration. Finally the pH of the solution was adjusted to 9 using a
1.0% NaOH buffer solution to improve the thermal stability of CNCs [66]. Finally the
CNCs solution was sonicated to get a stable suspension of the nanofillers. The obtained
CNCs exhibit individualized crystal domains with dimensions ranging from 5 to 10 nm in
width and from 100 to 200 nm in length, in agreement with previous results [66,67].
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SNCs were synthesized by acid hydrolysis as reported in our previous work [49]. In
brief waxy maize starch was acid hydrolyzed for 5 days in an aqueous solution of sulfuric
acid at 40�C under continuous mechanical stirring (100 rpm). The final suspension was
washed by successive centrifugations in distilled water until reaching neutral pH. Finally
the solution was filtered and stored at 4�C [51].

11.2.2 Processing of the blends and nanocomposites

Pea starch powder, liquid glycerol, and distilled water were manually premixed 24 h
before processing (wt. ratio 100:25:20) to favor the water absorption on the starch granules
and their swelling.

The resulting mixture was processed in a Brabender internal kneader at 110�C and
100 rpm for 3 min promoting the destructuration of the crystalline structure of the starch
granules and plasticizing the resulting thermoplastic material [48]. Then the nanocompo-
sites were processed mixing in one-step EVA, TPS and the different nanofillers, on a twin-
screw DSM microcompounder at 150�C and 125 rpm for 7 min. The composition of the
blend were fixed in 60:40 EVA/TPS based on our previous works [47,48].

Melt-processed EVA/TPS nanocomposites were then molded as a thin film by
compression-molding at 160�C for 5 min (2 min cooling down the temperature).
Nanocomposites reinforced with 0.5, 1, and 2 wt.% of CLNa1, CL30B, CNCs, or SNCs
were processed. The compositions of the nanocomposites are given in Table 11.1.

TABLE 11.1 EVA/TPS nanocomposites formulations.

Sample EVA (%) TPS (%) Fillers

EVA/TPS 60 40 0

EVA/TPS/0.5CL30B 59.75 39.75 0.5

EVA/TPS/0.5CLNa1 59.75 39.75 0.5

EVA/TPS/0.5CNC 59.75 39.75 0.5

EVA/TPS/0.5SNC 59.75 39.75 0.5

EVA/TPS/1CL30B 59.50 39.50 1

EVA/TPS/1CLNa1 59.50 39.50 1

EVA/TPS/1CNC 59.50 39.50 1

EVA/TPS/1SNC 59.50 39.50 1

EVA/TPS/2CL30B 59 39 2

EVA/TPS/2CLNa1 59 39 2

EVA/TPS/2CNC 59 39 2

EVA/TPS/2SNC 59 39 2

CL30B, Cloisite 30B; CLNa1, Cloisite-Na1; CNC, cellulose nanocrystals; EVA, ethylene vinyl acetate; SNC, starch nanocrystals;

TPS, thermoplastic starch.
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11.2.3 Characterization methods

The thermal properties were investigated by differential scanning calorimetry (DSC)
and thermogravimetric analysis (TGA).

The dynamic DSC measurements were performed in DSC Q200 from TA Instruments,
under nitrogen flow (50 mL min21). Thermal cycles were composed by the following
“heat/cool/heat” procedure: heating at 10�C min21 from room temperature to 180�C, cool-
ing at 10�C min21 to 280�C and heating again at 10�C min21 to 180�C. From second and
third scans the glass transition temperatures (Tg), the melting temperatures (Tm), the crys-
tallization temperatures (Tc) and the melting enthalpy (ΔHm) were obtained. The degree
of crystallinity (Xc) of each sample was calculated according to the following equation:

Xc %ð Þ5 ΔHm

ΔH100
m

3 100 (11.1)

where ΔH100
m , is the specific melting enthalpy for a 100% crystalline PE (293 J g21), consid-

ering that VA comonomer units are not able to participate in the crystalline lattice [68].
TGA was conducted using a TA-TGA Q500 thermal analyzer (TA Instruments). Neat

EVA and TPS, as well as EVA/TPS blend and its nanocomposites were analyzed by
dynamic mode using approximately 10 mg of sample from room temperature to 800�C at
10�C min21 under nitrogen atmosphere with a flow of 60 mL min21. The initial degradation
temperatures (T10%) were calculated at 10% of weight loss and the maximum degradation
temperatures (Tmax) were determined from the first derivative of the TGA curves (DTG).

Dynamic mechanical thermal analysis (DMTA) of the samples was carried out using a
DMA Q800 from TA Instruments in film tension mode with an amplitude of 5 μm, a fre-
quency of 1 Hz, a force track of 125%, and a heating rate of 2�C min21. The samples were
cut from compression-molded films into rectangular specimens of approximately
25 mm3 6 mm3 0.50 mm.

Scanning electron microscopy (SEM) micrographs of the cryofracture surface of the
blend and its nanocomposites were obtained by SEM (PHILIPS XL30 with a tungsten fila-
ment) to study their morphology and the compatibility between EVA and TPS depending
on the filler added. The polymer samples were frozen using liquid N2 and then cryofrac-
tured. All the samples were gold/palladium coated by an automatic sputter coated
Polaron SC7640. Field emission scanning electron microscope (Hitachi S8000) in transmis-
sion mode was used to study the filler dispersion in the nanocomposites.

Thermally activated shape memory properties were studied using a stress-controlled
DMA Q800 from TA Instruments in film tension mode. Samples for the thermomechanical
cycles were cut from compression-molded films into rectangular specimens of approxi-
mately 25 mm3 6 mm3 0.50 mm and characterized using a four-step program. In the 1st
step, the samples were kept isothermally at 75�C as switching temperature (Tsw), for
5 min, after which the nominal stress was increased with a stress ramp of 0.01 MPa min21,
until 50% of strain. In the 2nd step, the samples were quenched at 10�C (fixing tempera-
ture, Tfix) for 10 min followed by the 3rd step were the stress was completely unloaded. At
this point the temporary shape is programmed. Finally in the 4th step, the samples were
heated until the selected Tsw at 2�C min21 to activate the free-strain recovery of their per-
manent shape.
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With the aim to get a quantitative estimation of the shape memory properties of the
material, the strain fixity ratio (Rf) and the strain recovery ratio (Rr) have been calculated.
In particular, Rr, the ability to recover the initial shape, was taken as the ratio of the recov-
ered strain to the total strain, as given by the following equation:

Rr Nð Þ5 εm 2 εp Nð Þ
εm 2 εp N2 1ð Þ 3 100 (11.2)

Rf, the ability to fix the temporary shape, is the amplitude ratio of the fixed strain to the
total strain, as presented by the Eq. (11.2):

Rf Nð Þ5 εu Nð Þ
εm

3 100 (11.3)

where εm is the deformed strain, εu is the fixed strain, and εp is the recovered strain.
A preliminary humidity-activated shape memory test was performed following a proce-

dure previously reported [47]. The samples were conditioned at room temperature and at
80% of RH for 1 week before stretching it until 100% of elongation. Their fixation were
performed at room temperature and at 50% of RH while their recovery was triggered in
an oven at 37�C and saturated atmosphere [47,69].

11.3 Results and discussion

Fig. 11.1 shows the cryofracture section of the EVA/TPS blend and the nanocomposites
reinforced with 2 wt.% of different nanofillers. EVA/TPS blend resulted immiscible. In
Fig. 11.1A it is possible to observe nonhomogeneous TPS spherical microdomains dis-
persed into the rougher EVA matrix [6]. Moreover at higher magnifications (Fig. 11.1B) it
is possible to observe phase debonding indicative of the poor adhesion of TPS domains
in the polymeric matrix [9,70]. Different morphology was observed for the nanocompo-
sites. In the case of EVA/TPS/2CL30B (Fig. 11.1C), small voids were formed due to
TPS debonding from EVA matrix. Nevertheless, it should be mentioned that the TPS
domains are smallest and more homogeneous size distribution with respect to that of the
EVA/TPS blend indicating the possible improvement of the compatibility between EVA
and TPS, due to the addition of the organically modified nanoclay that can have positive
interaction with both polymers. Meanwhile in EVA/TPS/2CLNa1 (Fig. 11.1D) no signifi-
cant changes were observed regarding the size of the microdomains suggesting a probable
preferred interaction between the CLNa1 nanoclay and TPS. In the case of the organic fil-
lers, while the addition of CNCs still produce a rougher fracture with debonding TPS
microdomains (Fig. 11.1E), the addition of SNCs leads to a flat and homogenous fracture
surface without phase separation in which the microdomains practically disappeared
(Fig. 11.1F), indicating a good compatibility between SNCs with both polymeric matrices
(TPS and EVA).

Dynamic DSC measurements were performed to check the thermal properties and the
melt/crystallization behavior of the EVA/TPS blend and its nanocomposites. In Fig. 11.2
the cooling and the second heating scans performed on all materials are represented. No
significant changes were observed for the nanocomposites comparing with the neat blend.
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All the materials presented the crystallization peak of EVA at 70�C (Fig. 11.2A), the Tg

approximately 227�C and the melting peak approximately 85�C. It is worth to note that
the thermal transitions of TPS are not clear in the thermograms due to its high dependency
on the humidity content [48]. Moreover the melting peak, ascribed to the PE crystal phase
of EVA component, is a broad peak that ranges between 30�C and 90�C. As it was demon-
strated for copolymers based on PE and methacrylic acid, in our previous work [71], this
property allows to thermally activate the shape memory of the material at different switch-
ing temperatures within the melting peak.

(A) (B)

(C) (D)

(E) (F)

FIGURE 11.1 SEM images of the cryofracture section of the EVA/TPS blend and the nanocomposites: (A)
EVA/TPS, (B) EVA/TPS (higher magnification), (C) EVA/TPS/2CL30B, (D) EVA/TPS/2CLNa1, (E) EVA/TPS/
2CNC, and (F) EVA/TPS/2SNC. CL30B, Cloisite 30B; CLNa1, Cloisite-Na1; CNC, cellulose nanocrystals; EVA,
ethylene vinyl acetate; SNC, starch nanocrystals; TPS, thermoplastic starch.
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In Fig. 11.3 the TGA and DTG curves of EVA/TPS blend and the nanocomposites are
showed.

Meanwhile, the main thermal parameters obtained from TGA and DTG curves are summa-
rized in Table 11.2. The thermal degradation of EVA/TPS blends takes place in three main
steps [6], in which the first one corresponds to TPS degradation [6] and the other two corre-
spond to the degradation of VA groups and to the decomposition of the polyethylenic fraction
of EVA, respectively [72]. The TGA curves of EVA/TPS blend and its nanocomposites
showed a slightly weight loss from approximately 80�C corresponding to the evaporation of
absorbed and bounded water in the films as well as to the loss of low molecular weight com-
pounds (i.e., plasticizer) [6,73].

The TPS addition decreased the onset degradation temperature of EVA approximately
20�C, in good agreement with previous works [73]. On the other side, the TPS thermal sta-
bility was improved by the presence of EVA indicating that it is inhibiting the oxidation of
the biodegradable matrix during processing [7]. The improvement of the onset thermal deg-
radation of TPS was also observed for all nanocomposites. In fact, all the nanocomposites
with 2 wt.% of nanofiller were able to improve the EVA/TPS thermal stability, shifting the
onset of the thermal degradation to higher values, between 14�C and 23�C. Meanwhile,
lower contents of nanofiller did not increase the thermal stability of the blend. The maxi-
mum degradation temperature of TPS was mainly maintained in the blend and nanocompo-
sites. Regarding the EVA decomposition, the thermal degradation process of vinyl acetate
takes place in the range of 300�C�390�C, through deacylation with the consequent elimina-
tion of acetic acid and the formation of double bonds [74]. All nanocomposites showed
somewhat increase of the maximum degradation temperature of VA groups, suggesting a
positive interaction between the nanofillers and the carbonyl group of EVA. The CNCs and
SNCs, with high amount of �OH groups in their surface, frequently interact with polymeric
matrices containing carbonyl groups by hydrogen bonding interactions [44,53,75]. In the
case of nanoclays, CL30B was able to considerably increase the Tmax of VA groups, while
CLNa1 showed a similar improvement than organic fillers. In CL30B reinforced materials it
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FIGURE 11.2 DSC scans of processed materials: (A) cooling scans and (B) second heating scans. CL30B,
Cloisite 30B; CLNa1, Cloisite-Na1; CNC, cellulose nanocrystals; EVA, ethylene vinyl acetate; SNC, starch nanocrys-
tals; TPS, thermoplastic starch.
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seems that the hydroxyl end groups of alkyl ammonium moieties in the Cloisite layers [76]
are interacting with the carbonyl groups of EVA by means of hydrogen bonding interac-
tions, in good agreement with the literature [77]. While unmodified CLNa1 reinforced mate-
rials were less able to increase this value because the intercalation of the polymer chains is
limited leading to a weak interaction with the polymeric matrix. The Tmax of PE fraction
was mainly maintained, confirming that in these systems the main interactions between
starch, EVA, and fillers are established with the vinyl acetate fraction of EVA polymer.

To study the main thermomechanical relaxation of EVA/TPS blend and the nanocom-
posites and the reinforcing effect of the different fillers, DMTA analysis was performed.
The evolution of the storage modulus (E0) and damping factor (tan δ) as a function of tem-
perature for the blend and its nanocomposites are presented in Fig. 11.4.

The blend and the different nanocomposites showed the typical relaxations belonging
to neat EVA and neat TPS without any shift [48]. The first storage modulus drop corre-
sponds with the glass transition of EVA (β0-relaxation) while the second one is due to the
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FIGURE 11.3 Thermogravimetric analysis of the processed materials, weight loss profiles, and DTG of the dif-
ferent nanocomposites compared with the neat matrix: (A) CL30B, (B) CLNa1, (C) CNC, and (D) SNC. CL30B,
Cloisite 30B; CLNa1, Cloisite-Na1; CNC, cellulose nanocrystals; EVA, ethylene vinyl acetate; SNC, starch nanocrys-
tals; TPS, thermoplastic starch.
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melting of PE crystal phase of EVA. It is easy to note that in the case of CLNa1, CNCs,
and SNCs-based nanocomposites, the thermodynamic behavior after the glassy/rubbery
transition, changed. More likely this is due to the strong interaction between the fillers
and the starch-rich phase of the blend, able to shift the β relaxation of starch. Meanwhile,
for the CL30B-based nanocomposites any shift was evidenced, even when 2 wt.% of filler
was added to the polymeric matrix. This result might confirm the increase of compatibility
of EVA and TPS polymers due to the incorporation of organically modified clays that can
improve the interaction between polar and apolar components of the blend.

Supporting these results together with the morphological once, the FE-SEM images of
CL30B and CLNa1-based nanocomposites with 1 wt.% of nanoclay incorporated are
reported in Fig. 11.5.

It is easy to notice, in Fig. 11.5, that CLNa1 have a specific interaction with the TPS
polymeric component, being confined preferentially in it. On the contrary, CL30B have
interactions with both polymers occupying the interface between EVA and TPS polymeric
components and consequently increasing their compatibility, in good accordance with
TGA results. Due to the different interactions involved depending on the nature of the
nanofillers and their amount in the polymeric matrix, the storage modulus of the nano-
composites did not improve progressively, increasing the nanofillers amount in the blend.

TABLE 11.2 TGA and DTG thermal properties of neat polymer, EVA/TPS blend and the different
nanocomposites.

Sample name T10% (�C) TmaxTPS (�C) TmaxVA (�C) TmaxPE (�C)

EVA 356 � 351 465

TPS 203 313 � �
EVA/TPS 254 309 354 467

EVA/TPS/0.5CL30B 239 309 358 468

EVA/TPS/1CL30B 235 309 360 469

EVA/TPS/2CL30B 276 307 354 470

EVA/TPS/0.5CLNa1 243 311 356 468

EVA/TPS/1CLNa1 234 311 355 465

EVA/TPS/2CLNa1 269 309 355 468

EVA/TPS/0.5CNC 263 309 355 467

EVA/TPS/1CNC 242 309 356 467

EVA/TPS/2CNC 277 309 355 468

EVA/TPS/0.5SNC 227 312 355 468

EVA/TPS/1SNC 247 309 355 468

EVA/TPS/2SNC 271 307 356 468

CL30B, Cloisite 30B; CLNa1, Cloisite-Na1; CNC, cellulose nanocrystals; EVA, ethylene vinyl acetate; SNC, starch nanocrystals;

TGA, thermogravimetric analysis; TPS, thermoplastic starch.
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FIGURE 11.4 Dynamic mechanical thermal analysis: (A) and (B) storage modulus and damping factor of the
CL30B-based nanocomposites; (C) and (D) storage modulus and damping factor of the CLNa1-based nanocompo-
sites; (E) and (F) storage modulus and damping factor of the CNC-based nanocomposites; (G) and (H) storage
modulus and damping factor of the SNC-based nanocomposites. CL30B, Cloisite 30B; CLNa1, Cloisite-Na1; CNC,
cellulose nanocrystals; EVA, ethylene vinyl acetate; SNC, starch nanocrystals; TPS, thermoplastic starch.



The thermally activated shape memory effect of the materials was studied by proposing
a mechanism that consider that the PE crystalline phase of EVA acts as switching phase,
fixing the temporary shape and activating the recovering of the permanent one, while TPS
together with the remaining biggest PE crystals act as permanent phase able to memorize
the permanent shape as well as to store the energy needed for an efficient recovering pro-
cess. Table 11.3 shows the Rr and Rf values obtained in the thermally activated test for the
samples able to perform at least two thermomechanical cycles.

Neat EVA showed very good results in terms of Rr and Rf reaching values higher than
95% for both coefficients. When TPS is added to EVA in the EVA/TPS blend, the stability
of the permanent network drastically decreased provoking the breakage of the sample
after the second cycle. This behavior is due to the immiscibility between EVA and TPS
and to the instability of TPS properties at 75�C, due to the bonded water evaporation.
Between all the different nanocomposites the only one able to perform three consecutive
thermomechanical cycles was EVA/TPS/1CL30B, reaching maximum values of Rr and Rf

of 94 and 99%, respectively.
In Fig. 11.6, an example of humidity-activated shape memory recovery in an oven at

37�C and saturated atmosphere of the samples reinforced with 1 wt.% of fillers is reported.
In particular, Li indicate the initial length of the sample while Ld the deformed length.

The results obtained by the humidity-activated shape memory test are reported in
Table 11.4.

(A) (B)

(C) (D)

FIGURE 11.5 FE-SEM images of (A) and (B) EVA/TPS/1CLNa1, (C) and (D) EVA/TPS/1CL30B. CL30B,
Cloisite 30B; CLNa1, Cloisite-Na1; EVA, ethylene vinyl acetate; TPS, thermoplastic starch.
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As it is reported in Table 11.4 an increase of the Rr value in the nanocomposite with
2 wt.% of nanofiller was observed probably due to the hydrophilic behavior of the fillers.
The values reflect that the ability to recover the initial shape is good, showing Rr values
higher than 70%. Moreover it is easy to notice that during the second cycle the Rf value of
the blend drastically decreased while for EVA/TPS/0.5CL30B, EVA/TPS/2CL30B, EVA/

TABLE 11.3 Recovery ratio and fixity ratio values of neat blend and the different nanocomposites.

Sample Cycle Rr (%) Rf (%)

EVA 1 77 99

2 96 98

3 97 98

EVA/TPS 1 69 99

2 95 98

EVA/TPS/1CL30B 1 72 99

2 94 99

3 94 99

EVA/TPS/1CLNa1 1 67 98

2 90 100

EVA/TPS/1CNC 1 66 98

2 79 98

CL30B, Cloisite 30B; CLNa1, Cloisite-Na1; CNC, cellulose nanocrystals; EVA, ethylene vinyl acetate; TPS, thermoplastic starch.

FIGURE 11.6 Humidity-shape memory recovering of the sample filled with 1 wt.% of different fillers.
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TPS/0.5CLNa1, EVA/TPS/2CLNa1, EVA/TPS/2CNC, the values are approximately 70%
demonstrating that depending on the filled amount, the nanofiller is able to improve
the ability to fix the temporary shape. Comparing the results of the humidity-activated
shape memory ability with that obtained in our previous works [47,48], we can conclude

TABLE 11.4 Recovery ratio and fixity ratio values of neat blend and the different nanocomposites.

Sample Cycle Rr (%) Rf (%)

EVA/TPS 1 71 82

2 75 50

EVA/TPS/0.5CL30B 1 72 59

2 81 77

EVA/TPS/1CL30B 1 71 82

2 77 50

EVA/TPS/2CL30B 1 76 66

2 86 75

EVA/TPS/0.5CLNa1 1 71 56

2 81 77

EVA/TPS/1CLNa1 1 75 82

2 82 54

EVA/TPS/2CLNa1 1 75 65

2 88 68

EVA/TPS/0.5CNC 1 71 66

2 86 52

EVA/TPS/1CNC 1 68 83

2 80 60

EVA/TPS/2CNC 1 78 65

2 87 70

EVA/TPS/0.5SNC 1 74 65

2 84 56

EVA/TPS/1SNC 1 67 82

2 80 60

EVA/TPS/2SNC 1 76 63

2 84 59

CL30B, Cloisite 30B; CLNa1, Cloisite-Na1; CNC, cellulose nanocrystals; EVA, ethylene vinyl acetate; SNC, starch nanocrystals;

TPS, thermoplastic starch.
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that the strain used in the programming step to fix the temporary shape can strongly influ-
ence the results in terms of Rr and Rf. In fact, in this work the sample was stretched until
100% while in the past works, the temporary shape was programmed at 50% and 80% of
strain. Reaching 100% of strain at 37�C is likely favorizing the crystallization of PE phase
of EVA activating the thermally activated shape memory behavior guided by the induced-
crystallization mechanism. To obtain better Rr values, in the recovery step the sample
should be heated at 60�C to melt the small PE crystals and recover the original shape.

Deep study is needed to optimize the formulation and the design of the EVA-based
nanocomposite to improve their humidity-activated shape memory ability as innovative
strategy to obtain new materials for potential biomedical applications.

11.4 Conclusions

This chapter focused on polymeric nanocomposite systems based on EVA for potential
biomedical applications. A review of the most recent strategies to design and develop
EVA-based nanocomposites reinforced with organic and inorganic nanoparticles have
been done, highlighting the emerging trends in biomedical nanocomposites and examining
new potential fields of application. Moreover different nanocomposites based on EVA
were presented as example of strategy to obtain EVA-based materials with shape memory
properties for potential biomedical applications. In particular, EVA/TPS blend was reinforced
with different nanofillers such as CL30B, CLNa1, CNCs, and SNCs at 0.5, 1, and 2 wt.%. The
nanocomposites show shape memory ability and it was found that this property can be affected
by the addition of nanoparticles to the neat matrix. TGA results showed that EVA/TPS blends
requires the presence of at least 2 wt.% of nanofillers to increase the thermal stability of EVA/
TPS blend. TGA also demonstrated that the main interactions in the nanocomposites are
between the nanofillers and the VA groups of EVA as well as with TPS. DMTA and morpho-
logical results confirm the increase of compatibility between EVA and TPS polymers due to the
incorporation of organically modified clays. With the aim to optimize the shape memory ability
of EVA-based nanocomposites for potential biomedical applications, deep studies are needed
on their processing and design.
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nanocrystal films: processing, structural and thermal properties, Carbohydr. Polym. 107 (2014) 16�24.

[68] M. Brogly, M. Nardin, J. Schultz, Effect of vinylacetate content on crystallinity and second-order transitions
in ethylene—vinylacetate copolymers, J. Appl. Polym. Sci. 64 (10) (1997) 1903�1912.

[69] J. Mendez, P.K. Annamalai, S.J. Eichhorn, R. Rusli, S.J. Rowan, E.J. Foster, et al., Bioinspired mechanically
adaptive polymer nanocomposites with water-activated shape-memory effect, Macromolecules 44 (17) (2011)
6827�6835.

[70] M. Aldas, J.M. Ferri, J. Lopez-Martinez, M.D. Samper, M.P. Arrieta, Effect of pine resin derivatives on the
structural, thermal, and mechanical properties of mater-bi type bioplastic, J. Appl. Polym. Sci. (2019).
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