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a b s t r a c t

This paper proposes a new proof of the existence of constant threshold representations of semiorders
on countably infinite sets. The construction treats each indifference-connected component of the
semiorder separately. It uses a partition of such an indifference-connected component into indifference
classes. Each element in the indifference-connected component is mirrored, using a ‘‘ghost’’ element,
into a reference indifference class that is weakly ordered. A numerical representation of this weak
order is used as the basis for the construction of the unit representation after an appropriate lifting
operation. We apply the procedure to each indifference-connected component and assemble them
adequately to obtain an overall unit representation.

Our proof technique has several original features. It uses elementary tools and can be seen as the
extension of a technique designed for the finite case, using a denumerable set of inductions. Moreover,
it gives us much control on the representation that is built, so that it is, for example, easy to investigate
its uniqueness. Finally, we show in a companion paper that our technique can be extended to the
general (uncountable) case, almost without changes, through the addition of adequate order-denseness
conditions.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Treating two ‘‘similar’’ things as if they were exactly identical
as long been recognized as being a source of paradoxes. One
f them is the famous sorites paradox: a heap of sand cannot
ease to be one if one grain of sand is taken out. Repeating the
rgument leads to the paradoxical conclusion that one grain of
and is already a heap. Similar examples are well-known, for
nstance concerning the level of baldness of a man, which is surely
ot affected by the removal of a single hair. Luce (1956, p. 179)
as added to this list of paradoxes with his famous example of
ups of coffee slightly differently sugared.1
Therefore, it is not surprising that the idea of introducing
threshold into preference or perception models has distant

rigins (see Fishburn & Monjardet, 1992; Pirlot & Vincke, 1997,
or historical accounts of the idea). The formal definition of
emiorders is due to Luce (1956). Shortly after, Scott and Suppes
1958) showed that a semiorder defined on a finite set always
as a numerical representation with positive threshold. This

DOI of original article: https://doi.org/10.1016/j.jmp.2021.102568.
∗ Corresponding author.

E-mail addresses: denis.bouyssou@lamsade.dauphine.fr (D. Bouyssou),
marc.pirlot@umons.ac.be (M. Pirlot).
1 Armstrong (1939, p. 457) had given a similar example formulated in terms

of bread and cheese. For further historical aspects, see e.g., Pirlot and Vincke
(1992, Chapter 1).
https://doi.org/10.1016/j.jmp.2021.102566
0022-2496/© 2021 Elsevier Inc. All rights reserved.
paper is about the existence of such numerical representations of
semiorders. Because, it is clear that, if a numerical representation
with positive threshold exists, a numerical representation that
uses a unit threshold also exists, we will call such representations
unit representations.

The pioneering work of Scott and Suppes (1958) on finite
sets was soon followed by many other alternative proofs using
various kinds of arguments. Without aiming at exhaustivity, one
can cite Avery (1992), Balof and Bogart (2003), Bogart and West
(1999), Isaak (2009), Rabinovitch (1977), Roberts (1971, 1979),
Roubens and Vincke (1985), Roy (1996, Ch. 7), Scott (1964),
Suppes and Zinnes (1963), and Troxell (2003).

It is well-known that these results do not extend to the infinite
case, not even to the countable case (see Fishburn, 1985, p.
30). Indeed, the fact that the threshold is constant and positive
is not compatible with the existence of infinite (ascending or
descending) chains of strict preference that are bounded. This
makes semiorders at variance with what happens with many
other preference structures (e.g., weak orders, biorders, interval
orders, suborders, see Aleskerov et al., 2007; Bridges & Mehta,
1995 and Doignon et al., 1984) for which the finite and the
countably infinite cases are identical.

Contrasting with the abundance of results in the finite case,
we are only aware of two results in the countably infinite case.
In both, an additional condition must be added that forbids the
existence of infinite bounded chains of strict preference. The first

https://doi.org/10.1016/j.jmp.2021.102566
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
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f these results was given by Manders (1981, Prop. 9, p. 239)
n a path-breaking paper. His proof of this result is not easy
owever. It makes use of the Löwenheim–Skolem theorem (see
arens, 1985, Ch. 6, for an introduction and a discussion of
ts use in measurement theory) to extend the results dealing
ith the finite case to the countably infinite one. The result

n Beja and Gilboa (1992, Th. 3.8, p. 436) uses more elementary
ools. It also leads to possible extensions to the general case
see Bouyssou & Pirlot, 2020b; Candeal & Induráin, 2010, for
discussion of this extension). However the proof offers little

ontrol on the representation that is built. Moreover, it uses at
ome point expectations w.r.t. some measure (Beja & Gilboa,
992, p. 444–445).
The aim of this paper is to offer a third proof of the existence of

nit representations of semiorders on countably infinite sets. Our
im was at the same time (i) to use only elementary arguments,
ii) to use arguments that would as much as possible be common
o the finite and the countably infinite case, (iii) to have good
ontrol on the representation that is built and, in particular on
ts uniqueness.

More precisely, we show that:

• any indifference-connected semiorder (i.e., any semiorder
which cannot be decomposed in a series-sum of at least two
posets, Schröder, 2003) on a countably infinite set admits
a unit representation. We show how to construct such a
representation and establish its uniqueness properties,

• under an additional axiom forbidding the existence of in-
finite bounded chains of strict preference, it is possible
to combine the unit representations on all indifference-
connected components of the semiorder to build a unit
representation of the whole semiorder.

Our construction treats each indifference-connected compo-
ent separately. Each of these components is partitioned into ‘‘in-
ifference classes’’. Each element in the indifference-connected
omponent is mirrored, using a ‘‘ghost’’ element, into a reference
ndifference class that is weakly ordered. A numerical representa-
ion of this weak order is used as the basis for the construction of
he unit representation after an appropriate lifting operation. We
pply the procedure to each indifference-connected component
nd assemble them adequately to lead to the result.
In a companion paper (Bouyssou & Pirlot, 2020a), we show

hat this proof technique can be extended rather directly, after the
ddition of order-denseness conditions, to cover the general case.
he first complete solution to the problem of the existence of
nit representations in the general case was given in Candeal and
nduráin (2010) (for earlier partial results see Abrísqueta et al.,
009; Campión et al., 2008; Candeal et al., 2002; Fishburn, 1985;
ensemer, 1987, 1988; Narens, 1994). Candeal and Induráin use
he results of Beja and Gilboa (1992) and Manders (1981) for the
ountably infinite case as a lemma, which gives us a supplemen-
ary motivation for presenting the results in the present paper
for more recent results on representations in the general case,
e refer to Candeal et al., 2012; Estevan et al., 2013).
The paper is organized as follows. Section 2 introduces our

otation and framework. Section 3 details our construction of
he partition of an indifference-connected component into max-
mum indifference components. Section 4 explains how to build
representation on a single indifference-connected component.
ection 5 shows how to assemble the representation built on each
ndifference-connected component into a single representation.
final section discusses our results and directions for future

esearch.
 ∼

2

2. Notation, definitions and preliminary results

2.1. Binary relations

A binary relation R on a set Y is a subset of Y × Y . We often
rite yRz instead of (y, z) ∈ R. When R is a binary relation on a

set Y , we define, for all x ∈ Y , xR = {y ∈ Y : xRy} and Rx =

y ∈ Y : yRx}. The asymmetric (resp., symmetric) part of R is the
inary relation Ra (resp., Rs) such that yRaz iff [yRz and Not[zRy]]
resp., yRsz iff [yRz and zRy]).

We consider below a binary relation S on a set X . Such a
elation can be interpreted as a model for ‘‘at least as good’’
references between the objects of X .
From Section 4 on, we assume that X is a denumerable set (fi-

ite or countably infinite set). Part of the results, in particular the
mportant construction in Section 3, is valid without restriction
n the cardinality of X .
The relation S is a semiorder if it is complete (xSy or ySx, for

ll x, y ∈ X), Ferrers (xSy and zSw imply xSw or zSy, for all
, y, z, w ∈ X) and semi-transitive (xSy and ySz imply xSw or wSz,
or all x, y, z, w ∈ X).2

In the sequel, we shall often write the semiorder S as a pair
P, I) of relations, where P (resp., I) denotes the asymmetric
resp., symmetric) part of S. The asymmetric part of S is the
elation P , interpreted here as a ‘‘strict preference’’ relation. It is
partial order on X , i.e., an asymmetric and transitive relation,
hich is also Ferrers and semitransitive. The symmetric part of
is the relation I , interpreted as the ‘‘indifference’’ relation. It is
eflexive and symmetric but not necessarily transitive. Because
is complete, notice that we could have alternatively defined a
emiorder, giving its asymmetric part P , while letting I be the
ymmetric complement of P (i.e., xIy iff [Not[xPy] and Not[yPx]])
nd S = P∪I . We refer to Aleskerov et al. (2007), Fishburn (1985),
iarlotta and Watson (2016), Monjardet (1978), Pirlot and Vincke
1997), Roubens and Vincke (1985) and Suppes et al. (1989) for
etailed studies of various properties of semiorders.
Our vocabulary for binary relations is standard. A complete

reorder on X is a complete and transitive relation. A linear order
or total order) on X is a complete, antisymmetric (i.e., for all
, y ∈ X , xSy and ySx imply x = y) and transitive relation. A
trict linear order is the asymmetric part of a linear order, i.e., a
eakly complete, (i.e., for all x, y ∈ X , such that x ̸= y, xSy or
Sx), asymmetric (i.e., for all x, y ∈ X , xSy implies Not[ySx]), and
ransitive relation.

The trace ≿S of a semiorder S on X is the relation defined as
ollows: for all x, y ∈ X , x ≿S y if for all z ∈ X , [ySz implies xSz and
zSx implies zSy]. In other words, x ≿S y if [yS ⊆ xS and Sx ⊆ Sy].
The trace ≿S is transitive by construction and complete because S
is a semiorder. We omit the subscript when there is no ambiguity
on the underlying semiorder. It is easy to check that the trace ≿S
can be equivalently defined using P , i.e., x ≿S y if for all z ∈ X ,
yPz implies xPz and zPx implies zPy].

We define ≻, ∼, ≾ and ≺ as is usual. We assume w.l.o.g.3
hat X does not contain equivalent pairs of elements, i.e., for
ll x, y ∈ X , x ∼ y entails x = y. Hence ≿ is a linear order
i.e., a complete, antisymmetric and transitive relation). This is
ot restrictive (see Candeal & Induráin, 2010, Lemma 3.2) for the
urpose of studying the existence of unit representations.

2 Note that it is sufficient to impose that S is reflexive instead of complete,
ince reflexive and Ferrers entail complete.
3 In case X contains equivalent pairs of elements, we consider the quotient
f X by the equivalence relation ∼, which amounts to identify all the elements
n a class of equivalence of ∼ to a single representative element. Alternatively,
e could work with equivalent elements and consider only numerical represen-
ations that assign the same value to all elements in each equivalence class of
.
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For all x, y ∈ X with x ≿ y, we define the closed interval
[x, y] = {z ∈ X : x ≿ z ≿ y}. A convex subset of the set X
endowed with the complete preorder ≿, is a subset Y containing
all the closed intervals determined by pairs of elements in Y . The
semi-open ]a, b], [b, a[ and open ]a, b[ intervals are defined in the
obvious manner.

Finally, we will make use of the following notation: xI− = {y ≾
x : xIy}, xI+ = {y ≿ x : xIy}.

2.2. Unit representations

The following definition makes precise the type of numerical
representations that are sought.

Definition 1 (Unit Representation of a Semiorder). A unit represen-
tation of the semiorder S = (P, I) on the set X is a function u from
X to R such that, for all x, y ∈ X ,

xPy ⇐⇒ u(x) > u(y) + 1,
xIy ⇐⇒ −1 ≤ u(x) − u(y) ≤ 1.

(1)

The above definition has taken the threshold to be 1. Clearly,
if a representation (1) exists, a representation of the same type
exists with any threshold τ > 0. We stick to unit thresholds
throughout.

A variant of the above definition consists in switching the
strict and nonstrict inequalities, i.e., require that

xPy ⇐⇒ u(x) ≥ u(y) + 1,
xIy ⇐⇒ −1 < u(x) − u(y) < 1.

(2)

In the paper, we mostly deal with representations of type (1)
that we call strict representations. Representations of type (2) are
called nonstrict.

When X is finite, it is well-known that it is always possible to
build a representation for which u(x) − u(y) ̸= 1, for all x, y ∈ X ,
representations that are at the same time strict and nonstrict
exist. Beja and Gilboa (1992, Th. 3.8, p. 436) show that the same
is true when X is countably infinite. Our results below will also
note this equivalence, which does not carry over to the general
case (Bouyssou & Pirlot, 2020a, 2020b).

2.3. Chains

Let R be a relation on the set X . We call an R-chain, a sequence
xi of elements of X indexed by a subset of consecutive integers J ⊆

Z and such that any two consecutive elements of the sequence
belong to the relation R (we adopt here the terminology used
in the field of ordered sets, see Caspard et al., 2012 or Schröder,
2003. Graph theorists may prefer the term ‘‘path’’). Formally, the
sequence (xi, xi ∈ X, i ∈ J), where J ⊆ Z is a subset of consecutive
integers and (xi, xi+1) ∈ R, for all i, i + 1 ∈ J is an R-chain.4 We
shall consider the cases in which R = P and R = I in the sequel,
i.e., P-chains and I-chains. Note that an R-chain needs neither
have a first nor a last element. In other terms, it can have an
infinite number of elements before or after a given element, but
not between two given elements.

An R-chain is said to start at x ∈ X , if the set J has a minimum
element and x is the element of X indexed by the minimal
number in J . In this case, the chain is said to have a first element,
which is this x. An R-chain is said to terminate at y ∈ X , if the set J
has a maximum element and y is the element of X indexed by the
maximal number in J . In this case, the chain is said to have a last

4 Actually, one could consider chains indexed by more general sets of
ndices. To be precise, one should call the chains defined above ‘‘integer-indexed
-chains’’, but we simply call them R-chains for the sake of conciseness.
3

element, which is this y. An R-chain5 starting at x and terminating
t y is finite by definition (i.e. |J| < ∞).
A P-chain (xi, i ∈ J) has an upper (resp., lower) bound if there

exists a ∈ X (resp., b ∈ X) such that aPxi (resp., xiPb) for all i ∈ J .
f the chain has both an upper and a lower bound, we say it is
ounded. Note that the set {xi : i ∈ J}∪ {a, b} is totally ordered by
, but cannot always be indexed by the elements of a subset J ′ of
. It cannot be in the case the P chain (xi, i ∈ J) has no first or no

last element. The elements of a finite subset of X which is totally
ordered by P can be indexed by a set J of consecutive integers in
order to form a P-chain. If a P-chain (xi, i ∈ J) has no last (resp.,
first) element, then for all i ∈ J , xi+k (resp., xi−k) belongs to the
chain, for all k ∈ N.

2.4. Convex subsets in ordered sets

We start by defining ordered bipartitions and establishing sim-
ple properties linking ordered bipartitions and convex subsets in
an ordered set.

Definition 2. An ordered bipartition of a totally ordered set (X,≿)
is a partition (A,B) of X , with x ≻ y, for all x ∈ A, y ∈ B.

In the sequel, in the absence of ambiguity, we simply write
‘bipartition’’ for ‘‘ordered bipartition’’.6 The proof of the following
proposition is left to the reader.

Proposition 3. The total order ≿ on X can be extended to a total
order on the ordered bipartitions of X, by defining (A1, B1) ≿ (A2, B2)
f A1 ⊆ A2. Elements of X and ordered bipartitions can also be
ompared using ≿. Let, for all x ∈ X and all ordered bipartition
A, B):

≿ (A, B) if x ≿ y, for all y ∈ B
A, B) ≿ x if y ≿ x, for all y ∈ A.

he extension of ≿ to the union of X and the set of ordered bipar-
itions of X is a complete preorder, satisfying, for all x ∈ X and all
ipartition (A, B), x ∼ (A, B) iff x is the least element in A or the
reatest element in B.

efinition 4. A convex subset Y of (X,≿) is non-terminal if
a, b ∈ X such that a ≻ y ≻ b for all y ∈ Y . Otherwise, Y is
erminal.

roposition 5. A non-terminal non-empty convex subset Y is
etermined by two bipartitions of (X,≿): (A1, B1) ≻ (A2, B2), with
1 = {z ∈ X : z ≻ y, ∀y ∈ Y }, B1 = X \ A1, B2 = {w ∈ X : y ≻

, ∀y ∈ Y } and A2 = X \ B2. We have Y = A2 ∩ B1. Conversely,
ny two such bipartitions determine a non-terminal convex subset
= A2 ∩ B1.

roof. Let Y be a non-terminal non-empty convex subset of X .
ence ∃a, b ∈ X such that a ≻ y ≻ b for all y ∈ Y . The sets

A1, B1, A2, B2 are not empty since Y is non-terminal. They are
convex. We have B1 = Y ∪ B2 and A2 = Y ∪ A1.

(A1, B1) and (A2, B2) are bipartitions such that (A1, B1) ≻

(A2, B2). They determine Y in the sense that Y = A2 ∩ B1 and

= {y ∈ X : z ≻ y ≻ w, ∀z ∈ A1, w ∈ B2}. (3)

5 We also say, equivalently, ‘‘an R-chain from x to y’’.
6 Note that the notion of ordered bipartition corresponds to that of ‘‘decom-

position’’ in the terminology of Bridges and Mehta (1995, p. 17). We chose not to
adopt the term ‘‘decomposition’’ because we use it below with another meaning.
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n this sense Y can be viewed as the set comprised between
A1, B1) and (A2, B2), a sort of interval determined by bipartitions
instead of points.7

Conversely, two bipartitions (A1, B1) ≻ (A2, B2) determine a
convex subset Y defined by (3). This set is a convex non empty
non-terminal subset. □

Definition 6. We call (A1, B1) (resp., (A2, B2)) as defined in Propo-
sition 5, the upper (resp., lower) bound of Y .

Remark 7 (Terminal Convex Subsets). If Y is terminal and Y ̸= X ,
it is either upper-terminal and has a lower bound (A2, B2) or it
is lower-terminal and has an upper bound (A1, B1). Each of these
bipartitions is defined as in Proposition 5.

There are 4 different cases for a bipartition (A, B) in (X,≿):

1. A has a least element a and B has a greatest element b
(consider, for instance, X = Z, endowed with its usual
order ≥ and the bipartition (A, B) with A = {x ∈ Z : x ≥ 0}
and B = {x ∈ Z : x < 0}).

2. A has a least element a and B has no greatest element
(consider, for instance, X = Q, the set of rational numbers,
endowed with its usual order ≥ and the bipartition (A, B)
with A = {x ∈ Q : x ≥ 0} and B = {x ∈ Q : x < 0}).

3. A has no least element and B has a greatest element b
(consider again X = Q, ≥ and, for instance, the bipartition
(A, B) with A = {x ∈ Q : x > 0} and B = {x ∈ Q : x ≤ 0}).

4. A has no least element and B has no greatest element
(consider again X = Q, ≥ and, for instance, the bipartition
(A, B) with A = {x ∈ Q : x2 > 2} and B = {x ∈ Q : x2 ≤ 2}).

In the first case, the bipartition (A, B) is usually called a jump. In
the second and third cases, it is called a cut and in the fourth case,
a gap (see, e.g., Bridges & Mehta, 1995, p. 17).

We apply this categorization to any non-terminal non-empty
convex set Y , with bounds (A1, B1) ≻ (A2, B2). If both bounds
bipartitions (A1, B1), (A2, B2) belong to Case 1, let ai (resp., bi)
denote the least (resp., greatest) element in Ai (resp., Bi), for
i = 1, 2. Y can be described in 4 manners in terms of intervals:
Y = ]a1, b2[ = ]a1, a2] = [b1, b2[ = [b1, a2]. We have, e.g.,
Y = [b1, b2[ = {y ∈ X : b1 ≿ y ≻ b2} = {y ∈ X : z ≻

y ≻ w, ∀z ∈ A1, w ∈ B2}. The variety of representations is more
limited in cases 2 and 3. There is no such representation in Case 4.

Proposition 8 (Case 4). The bipartition (A,B) is in case 4 iff there is a
decreasing sequence (xi, i ∈ N) in A, xi ≻ xi+1, ∀i, and an increasing
sequence (yj, j ∈ N) in B, yj+1 ≻ yj, ∀j, such that

• xi ≻ yj, ∀i, j
• and ∄z ∈ X such that xi ≻ z ≻ yj for all i, j.

The proof is left to the reader. The latter formulation, involving
z, can be rewritten as follows: for all z ∈ X , ∃xi : z ≿ xi or
∃yj : yj ≿ z. In the case of the bipartition (A, B) of Q, with
A = {x ∈ Q : x2 > 2} and B = {x ∈ Q : x2 ≤ 2}, a sequence
xi (resp., yi) could be the sequence of rounded up (resp., down)
decimal approximations of

√
2.

.5. Connected components of the indifference relation

We consider the graph of relation I on X , where I is the
ndifference relation of a semiorder on X .

7 A convex subset in an ordered set is the ‘‘natural generalization of an
nterval’’ (Schröder, 2003, p.225).
4

Definition 9. The set D ⊆ X is connected w.r.t. relation I if for
all x, y ∈ D, there is an I-chain joining x and y.

Abusing notation, we denote by ≿ the restriction to D ⊆ X of
the trace ≿ on X . This abuse of notation is justified by the fact
that all elements in an I-connected component compare in the
same way to all elements outside this component (see Lemma 13
below). We also call a bipartition of (D,≿) and denote by (A, B)
an ordered partition of D into two subsets A, B such that, for all
x ∈ A, y ∈ B, we have x ≻ y. Such a bipartition is the restriction
o D of a bipartition of (X,≿).

roposition 10. Let D be a subset of X and (P, I) a semiorder on
. The following properties are equivalent:

1. D is connected w.r.t. I ,
2. for all x, y ∈ D with x ≻ y, there is a decreasing (w.r.t. ≻)

I-chain joining x and y,
3. for all bipartition (A, B) of (D,≿) there is x ∈ A, y ∈ B such

that (x, y) ∈ I ,
4. there is no bipartition (A, B) of (D,≿) such that, for all x ∈

A, y ∈ B, we have (x, y) ∈ P.

roof. 1 ⇔ 2. It suffices to prove that 1 ⇒ 2. Let x, x1, . . . , xi,
i+1, . . . , xn, y be an I-chain from x to y. If some of the vertices
n the chain are below y w.r.t. ≻, let xi be the first such ver-
ex. We have xi−1 ≻ y ≻ xi. This implies that xi−1Iy. Hence
, x1, . . . , xi−1, y is also an I-chain from x to y.
Assume now w.l.o.g. that x, x1, . . . , xi, xi+1, . . . , xn, y is an I-

chain of distinct elements from x to ywith xk ≻ y for k = 1, . . . , n.
Assume that, for some i, we have xi+1 ≻ xi. If xiIy, we can shorten
the I-chain by removing all the xk’s with k > i. Else xiPy. For some
k > i + 1 we must have xi ≻ xk. Let k be the least such index.
We have xk−1 ≻ xi ≻ xk with xk−1Ixk, hence xiIxk. We may thus
drop the sub-chain xi+1, . . . , xk−1. The remaining path is another
I-chain from x to y. Repeating this eventually leads to a decreasing
(w.r.t. ≻) I-chain from x to y.

3 ⇔ 4. This equivalence results immediately from the fact that
P and I are exclusive and P ∪ I is complete.

1 ⇒ 3. Let (A, B) be a bipartition of D. Under the hypothesis
that all pairs of elements in D can be joined by an I-chain, we
claim that we must have xIy for some x ∈ A and y ∈ B. Let z ∈

A, w ∈ B. An I-chain joining z to w cannot be entirely contained
in A. Therefore, there is a first arc (x, y), with x ∈ A, y ∈ B and xIy,
that crosses the cut. This proves the claim.

4 ⇒ 1. Assume that there is no I-chain between x, y ∈ D. We
suppose, w.l.o.g. that x ≻ y. Let A = {z ∈ D : z ≿ x}∪ {z ∈ D : x ≻

z and there is an I-chain joining x to z}. Let B = D \ A. We have
y ̸∈ A and y ∈ B. (A, B) is a bipartition of D (since {z ∈ D : z and x
can be joined by an I-chain } is convex in D). For all z ∈ A, w ∈ B,
we may not have (z, w) ∈ I , otherwise w ∈ A. Hence we have
(z, w) ∈ P , contrary to 4. □

We turn to the study of the connected components of (X, I).

Definition 11. An I-connected component of (X, I) is a maximal
connected subset of (X, I).

Proposition 12. An I-connected component D of (X, I) is a convex
set of (X,≿).

Proof. Assume D is not convex and let D denote the smallest
convex set containing D. Since the intersection of convex sets
is convex, D is the intersection of all convex subsets containing
D. Assume that D is not I-connected, i.e., there is a bipartition
(A, B) of D such that, for all x ∈ A, y ∈ B, we have xPy. (A ∩

D, B ∩ D) is a bipartition of D since neither A ∩ D nor B ∩ D is
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mpty (else it would imply that D is included either in A or in B,
hich are convex sets, hence D cannot be the smallest convex set

containing D). The bipartition (A ∩ D, B ∩ D) of D would be such
hat for all x ∈ A∩D, y ∈ B∩D, we have xPy, a contradiction. □

The following lemma justifies our earlier abuse of notation
oncerning the trace of S restricted to an I-connected component.

emma 13. For all pairs of distinct connected components D, E of
X, I), either we have aPb, for all a ∈ D and b ∈ E , or conversely.

Proof. Two elements x, y belonging to different connected com-
ponents D, E of (X, I) cannot be indifferent, by definition. Hence
we assume w.l.o.g. that x ∈ D and y ∈ E satisfy xPy. For any a ∈ D,
we have a ≻ y (otherwise y would be between a and x, which is
impossible by Proposition 12) and a cannot be indifferent to y
(since they belong to different connected components of (X, I)).
Hence aPy. For any b ∈ E , we have a ≻ b (since, otherwise, a
would be between y and b, which is excluded by Proposition 12
and b cannot be indifferent to a). Consequently, we have aPb. □

Let F denote the set of connected components of (X, I). Abus-
ing notation, we denote by P the following relation on F: for all
D, E ∈ F,

DPE if aPb, for all a ∈ D, b ∈ E. (4)

Lemma 14. The relation P on F is a strict linear order.

Proof. By Lemma 13, we know that P is a weakly complete binary
relation on F. It inherits its asymmetric and transitive properties
from the relation P on X . □

Remark 15 (Linear Lexicographic Sum Decomposition of P). The
latter property of the I-connected components of a semiorder has
already been noticed by Manders (1981, p.238). In the language
of partially ordered sets, F is a linear lexicographic sum decom-
position of the poset (X, P) (Schröder, 2003, p. 203). In case X is
not I-connected, P is said to be series decomposable or a series-sum
poset. On the contrary, if X is I-connected, P is said to be (linearly)
indecomposable.

3. Partitioning a connected component into sets of indifferent
elements

In this section we consider an I-connected component D of X .
We describe procedures for partitioning D into sets of indifferent
elements. Their construction is recursive. Each set is maximal
given the previous ones. These sets are also convex subsets w.r.t
to ≿ (we shall use the extension of ≿ to the ordered bipartitions
of D without further notice, see Proposition 3). This construction
will play an essential role in the rest of the paper. It is our basic
tool to build unit representations. Later, we shall deal separately
with each connected component D of (X, I), build a unit repre-
sentation of the restriction of the semiorder to each component
(Section 4) and then assemble these representations (Section 5).

All results in this section are valid for all semiorders S = (P, I)
on a set X and all I-connected components D of this semiorder.
We do not require X (or D) to be denumerable.

We start with introducing the notion of maximal indifference
class and describe two procedures for building such a class. Each
of these procedures allows to generate any maximal indifference
class, as we shall see.

Definition 16. A maximal indifference class of an I-connected
component D of the semiorder S = (P, I) is a subset Y of pairwise
indifferent elements such that no element outside Y is indifferent
to all elements in Y .
5

Fig. 1. Illustration of procedures Down First (a) and Up First (b). The dotted
horizontal axis represents the elements of D in increasing order w.r.t. ≻ (from
left to right).

Proposition 17. A maximal indifference class Y of D is a convex set
in (D,≿).

Proof. Let a, b be two elements in Y , with a ≻ b. Assume that
c ∈ X is such that a ≻ c ≻ b. Then, aIb implies aIc and cIb.
Moreover, c is indifferent to all elements in the set {y ∈ Y : a ≻ y}
and to all elements in the set {y ∈ Y : y ≻ b}. The union of these
two sets is Y . Consequently, c is indifferent to all elements in Y
and therefore, it must belong to Y , by Definition 16. □

As a consequence of Proposition 5, if Y is a non-terminal
indifference class of D, it is bounded by two bipartitions, (A1, B1),
its upper bound, and (A2, B2), its lower bound. If Y is terminal but
Y ̸= D, Y has either an upper or a lower bound bipartition.

3.1. Two procedures for building a maximal indifference class

Consider a bipartition (A, B) in D, a connected component of
(X, I). Since D is I-connected, there are x ∈ A and y ∈ B such that
xIy (Proposition 10.3). The two procedures are as follows.

Down first procedure. Given: a bipartition (A, B) in D. Do the
following:

• select an element y0 in B, which is indifferent to some
element x0 in A,

• define I+0 (y0) = {y ∈ B : y ≿ y0},
• define J−0 (y0) = {w ∈ B : y0 ≻ w and wIy, ∀y ∈ I+0 (y0)},
• define J+0 (y0) = {z ∈ A : zIw, ∀w ∈ J−0 (y0)},
• let I−(A, B) = I+0 (y0) ∪ J−0 (y0) ∪ J+0 (y0).

The procedure DFP is illustrated in Fig. 1(a). Note that the
esulting set I−(A, B) does not depend on the particular choice
f y0 and x0. For all pairs x0 ∈ A, y0 ∈ B, with x0Iy0, we obtain the

same set I−(A, B).

Proposition 18. I−(A, B) is a maximal indifference class.

Proof. I−(A, B) is an indifference class by construction. It is
convex. Indeed, if x, y are two elements of I−(A, B) and z is such
that x ≻ z ≻ y, it is clear that z is indifferent to all elements of
I−(A, B). It remains to prove that I−(A, B) is maximal.

Assume, to the contrary, that ∃v ̸∈ I−(A, B) such that vIy, ∀y ∈

I−(A, B). Then, either v ≺ y, ∀y ∈ I−(A, B) or v ≻ y, ∀y ∈ I−(A, B).
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n the former case, v ≺ y0 and vIy, ∀y ∈ I+0 (y0), hence v ∈ J−0 (y0),
contradiction. In the latter case, v ∈ A and vIw, ∀w ∈ J−0 (y0),
ence v ∈ J+0 (y0), a contradiction. □

roposition 19. If (A1, B1) is the upper bound of a maximal
ndifference class Y , then applying the Down First Procedure starting
rom (A, B) = (A1, B1) yields I−(A1, B1) = Y . In such a case, for all
0 ∈ B1, J+0 (y0) = ∅, i.e. Y = I+0 (y0) ∪ J−0 (y0).

roof. Y certainly contains I+0 (y0) since y0 and all elements above
t in B1 are indifferent. We first prove that Y ⊆ I+0 (y0) ∪ J−0 (y0).
uppose ∃y ∈ Y and y ̸∈ I+0 (y0) ∪ J−0 (y0). Since the latter subset
s convex, either y ≻ w, ∀w ∈ I+0 (y0) ∪ J−0 (y0) or y ≺ w, ∀w ∈

I+0 (y0) ∪ J−0 (y0). In the former case, we would have y ∈ A1,
which is excluded. In the latter case, we would have y ≺ y0
and yIw, ∀w ∈ I+0 (y0), which implies y ∈ J−0 (y0), a contradiction.
Since Y is included in the indifference class I+0 (y0) ∪ J−0 (y0) and

is maximal, we must have Y = I+0 (y0) ∪ J−0 (y0). Consequently,
J+0 (y0) = ∅. □

Note that this result applies to both non-terminal and lower-
terminal maximal indifference classes Y (provided Y ̸= D) since
the latter all have an upper bound.

Up first procedure. Given: a bipartition (A, B) in D. Do the follow-
ing:

• select an element x0 in A, which is indifferent to some
element y0 in B,

• define I−0 (x0) = {x ∈ A : x0 ≿ x},
• define J+0 (x0) = {z ∈ A : z ≻ x0; zIx, ∀x ∈ I−0 (x0)},
• define J−0 (x0) = {w ∈ B : zIw, ∀z ∈ J+0 (x0)},
• let I+(A, B) = I−0 (x0) ∪ J+0 (x0) ∪ J−0 (x0).

The procedure UFP is illustrated on Fig. 1.(b). Note that the
same set I+(A, B) is obtained independently of the particular
choice of a pair x0 ∈ A, y0 ∈ B with x0Iy0.

We have the following two results, whose proofs are similar
to those of Propositions 18 and 19 and are therefore omitted.

Proposition 20. I+(A, B) is a maximal indifference class.

Proposition 21. If (A2, B2) is the lower bound of a maximal indif-
ference class Y , then applying the Up First Procedure starting from
(A, B) = (A2, B2) yields I+(A2, B2) = Y . In such a case, for all
x0 ∈ A2, J−0 (x0) = ∅, i.e. Y = I−0 (x0) ∪ J+0 (x0).

Note that this last result applies to both non-terminal and
upper-terminal maximal indifference classes Y (provided Y ̸= D)
since the latter have a lower bound.

Propositions 19 and 21 imply that by applying the Down First
(or the Up First) Procedure to all bipartitions of D yields all non-
terminal maximal indifference classes. If D has a lower-terminal
(resp., an upper-terminal) maximal indifference class, it is also
obtained by applying the Down First (resp., Up First) Procedure
to all bipartitions of D.

3.2. Coverings by maximal indifference classes and partitions into
indifference classes

We construct coverings of a connected component D by max-
imal indifference classes. We call UFP (resp., DFP) the Up First
(resp., Down First) Procedure described in the previous section.

Procedure for constructing a covering.
1. Select a bipartition (A, B) of D

6

2. Construct an initial maximal indifference class C0 = I0 by
applying DFP or UFP while starting from the bipartition
(A, B). Call (A1, B1) (resp., (A0, B0)) the upper (resp., lower)
bound of I0 (in case these exist).

3. If there is z in D above I0, apply UFP, starting from (A1, B1).
This yields a maximal indifference class C1 = I+(A1, B1)
the upper bound of which is (A2, B2) (if it exists) and the
lower bound is (C1,D1). We have (A1, B1) ≿ (C1,D1). We
iterate this process, applying UFP starting from (Ak, Bk),
for k = 2, 3, . . ., as long as there is some z ∈ D above
I+(Ak−1, Bk−1). The resulting maximal indifference class
Ck = I+(Ak, Bk) has a lower bound (Ck,Dk) and, possibly, an
upper bound denoted by (Ak+1, Bk+1). We have (Ak, Bk) ≿
(Ck,Dk).

4. If there is w in D below C0 = I0, apply DFP, starting from
(A0, B0). This yields a maximal indifference class C−1 =

I−(A0, B0). We call its upper bound (C0,D0) and its lower
bound (A−1, B−1) (if the latter exists). We have (C0,D0) ≿
(A0, B0). We iterate this process, applying DFP starting from
(A−l, B−l), for l = 1, 2, . . ., as long as there is some w ∈ D
below I−(A−l+1, B−l+1). The resulting maximal indifference
class C−l−1 = I−(A−l, B−l) has an upper bound (Ck,Dk) and,
possibly, a lower bound denoted by (A−l−1, B−l−1). We have
(Ak, Bk) ≿ (Ck,Dk).

We shall prove below (see Proposition 24.7) that this pro-
cedure ends up, after a finite or, possibly, a countably infinite
number of iterations of UFP and DFP, with a covering of the whole
connected component D. Before, we associate a family of dis-
joint indifference classes (. . . , I−l, . . . , I0, . . . , Ik, . . .) to the fam-
ily (. . . , C−l, . . . , C0, . . . , Ck, . . .) of maximal indifference classes
produced by the above procedure. Note that C0 = I0.

Definition 22. For all k > 0, we define Ik = Ck \ Ck−1. For all
l > 0, we define I−l = C−l \ C−l+1.

In the sequel, the index m will take all the values taken by
k ≥ 0 and −l, for l > 0. This set will be denoted byM . It is a subset
of consecutive integers containing 0. The following result is a
direct consequence of the procedure for constructing a covering
described above. The first case in Proposition 23 is illustrated in
Fig. 2.

Proposition 23. For all m ∈ M for which there is w, z ∈ D such
that z ≻ y ≻ w for all y ∈ Im, we have:

Im = {y ∈ D : (Am+1, Bm+1) ≿ y ≿ (Am, Bm)}
= Am \ Am+1

= Bm+1 \ Bm

= Bm+1 ∩ Am

In case such a w exists but no such z, then

Im = {y ∈ D : y ≿ (Am, Bm)}
= Am ∩ D
= D \ Bm

In case such a z exists but no such w, then

Im = {y ∈ D : (Am+1, Bm+1) ≿ y}
= D \ Am+1

= Bm+1 ∩ D

If there is neither such a w nor such a z, then m = 0 and I0 = D.

We collect a number of properties of the sets Im in the next
proposition.
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Fig. 2. Illustration of the first case in Proposition 23. The dotted horizontal axis
represents the elements of D in increasing order w.r.t. ≻ (from left to right).

roposition 24. The sets Im,m ∈ M have the following properties:

1. They are disjoint nonempty convex subsets of D.
2. Their elements are pairwise indifferent, i.e., for all x, y ∈ Im,

we have xIy.
3. They form an ordered partition w.r.t. ≻, i.e. for all x ∈ Im−1

and z ∈ Im, we have z ≻ x.
4. For all m ≥ 0 for which Im and Im+1 exist, for all w ∈ Im+1,

there is z ∈ Im such that we have wPz.
5. For all m < 0 for which Im and Im+1 exist, for all v ∈ Im, there

is z ∈ Im+1 such that we have zPv.
6. For all m ∈ M for which Im and Im+2 exist, for all w ∈ Im+2,

for all v ∈ Im, we have wPv.
7. D = ∪m∈MCm = ∪m∈M Im.

Proof.

1. By construction, these subsets are disjoint and nonempty.
I0 is convex since it is a maximal indifference class (Propo-
sition 17). For m > 0, if there is z above Im in D, Im is
determined by the bipartitions (Am, Bm) and (Am+1, Bm+1),
i.e., Im = Am ∩ Bm+1. By Proposition 5, it is a convex set.
If there is no z above Im, then Im = Am+1 ∩ D hence it is
convex. A similar reasoning yields the result for m < 0.

2. By construction, Im is a subset of the maximal indifference
class Cm.

3. For m > 0, (Am, Bm) ≻ (Am−1, Bm−1), by construction. For
all x ∈ Im−1, z ∈ Im, we have z ≿ (Am, Bm) ≿ x. Since x ∼ z
implies x = z and since x ̸= z, we have z ≻ x. The case
m < 0 is dealt with similarly.

4. For m > 0, Cm was built using UFP. It thus includes
all elements indifferent to some element of Im, which are
above this element. Hence there is no z ∈ Im+1 which is
indifferent to all y ∈ Im. This establishes the property. The
same argument holds for m = 0.

5. For m < 0, the sets Cm were built using DFP. The result is
established similarly as for 4.

6. By 4, for all m ≥ −1, for all z ∈ Im+2, there is y ∈ Im+1 such
that zPy. Since for all v ∈ Im, we have y ≻ v, hence zPv.
By 5, for all m ≤ −2, for all y ∈ Im+1, there is z ∈ Im+2 such
that zPy. Since y ≻ v for all v ∈ Im, we conclude that zPv.

7. Let x0 ∈ I0 and y ∈ D, with y ≻ x. Since D is a connected
component of I , there is an increasing I-chain joining x0
to y (by Proposition 10.2). Let x0Ix1Ix2I . . . IxiI . . . Iy be such
an I-chain, with x0 ≺ x1 ≺ x2 . . . ≺ xi ≺ . . . y. According
to item 6, for all xi ∈ Im, we have that xi+1 ∈ Im ∪ Im+1
(because all x in Ik for k ≥ m+ 2 are such that xPxi). Hence
y ∈

⋃
m≥0 Im. The proof is similar if y is such that x ≻ y. □

.3. Remarks about finite coverings

This section deals with the particular case in which an I-
onnected component of a semiorder can be covered by a finite
umber of indifference classes. We investigate such coverings
hat use a minimal number of indifference classes. The reader
7

may want to skip this section without inconvenience since it
will not be used in the rest of the paper. The results below
indicate one way of building such minimal coverings and relate
the minimal number of indifference classes in a covering to the
maximal length of a chain of P .

Lemma 25. If X contains a P-chain of length K , it cannot be covered
using less than K + 1 indifference classes.

The straightforward proof of this lemma is left to the reader.

Proposition 26. For a semiorder that can be covered by a finite
number of indifference classes, the procedure UFP (resp., DFP) started
from an element that is indifferent to all elements below (resp.,
above) it yields a minimal covering by maximal indifference classes.

Proof. Consider the covering {Cm,m = 0, 1, . . . , K } generated by
UFP started from an element indifferent to all elements below it.
Let I0 = C0 and Im = Cm \Cm−1, for m = 1, . . . , K . Pick an element
xK in IK . Using repeatedly Proposition 24.4, we obtain successively
xK−1 ∈ IK−1, . . . , x0 ∈ I0 such that xmPxm−1 for all m = K , . . . , 1.
These elements form a P-chain of length K . By Lemma 25, the
minimal covering has at least K + 1 elements and therefore the
covering {Cm,m = 0, 1, . . . , K } is minimal. □

Using Lemma 25 and Proposition 26, it is easy to prove the
following.

Corollary 27. Let S = (P, I) be a semiorder on X. The maximal
length of a P-chain of X is K iff the minimal number of classes in a
covering of X by indifference classes is K + 1.

3.4. Examples

We illustrate the decomposition in maximal indifference
classes by two examples in which X is countably infinite. In the
first example X is ‘‘discrete’’ in the sense that each element has
an immediate predecessor and an immediate successor w.r.t. the
trace ≿. In the second example, X is ‘‘dense’’ in the sense that
between two elements of X there is always another element of
X .

Example 28. Let X = {0, n +
i

n+1 , n = 1, 2, . . . and i =

1, . . . , n} = {0, 1, 1+1/2, 2+1/3, 2+2/3, 3+1/4, 3+1/2, 3+

3/4, 4+1/5, . . .} and let S = (P, I) be the semiorder on X defined
by xPy if x > y + 1 and xIy if |x − y| ≤ 1. No pair of distinct
elements in X are equivalent, i.e., x ∼ y entails x = y. The linear
order ≿ is thus the same as the natural order on the elements of
X . The graph of I on X is connected, hence we have to decompose
a single connected component.

The set X has a least element (with respect to ≿), which is 0.
Let B = {0} and A = X \ {0}. As initial bipartition, we select, for
instance, (A, B). Let x0 = 1 and y0 = 0. Applying DFP, starting
from y0 = 0, we get C0 = I0 = {0, 1}. Then, applying UFP as
described in Section 3 yields:

C1 = I1 = {1 + 1/2, 2 + 1/3}
C2 = I2 = {2 + 2/3, 3 + 1/4, 3 + 1/2}
C3 = I3 = {3 + 3/4, 4 + 1/5, 4 + 2/5, 4 + 3/5}

. . .

i.e.,

Cn = In = {n+
n

, n+1+
1

, . . . , n+1+
n

}, for n ∈ N.

n + 1 n + 2 n + 2
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Alternatively, we could choose to apply UFP to the bipartition
(A, B). Starting from x0 = 1, this yields C′

0 = I ′0 = {1, 1 + 1/2}.
pplying UFP, successively yields:
′

1 = I ′1 = {2 + 1/3, 2 + 2/3, 3 + 1/4}
′

2 = I ′2 = {3 + 1/2, 3 + 3/4, 4 + 1/5, 4 + 2/5}
′

3 = I ′3 = {4 + 3/5, 4 + 4/5, 5 + 1/6, 5 + 2/6, 5 + 3/6}
. . .

.e.,

′

n = I ′n = {n + 1 +
n

n + 2
, n + 1 +

n + 1
n + 2

, n + 2

+
1

n + 3
, . . . , n + 2 +

n + 2
n + 3

}, for n ∈ N \ {0}.

ince there is an element below C′

0, the decomposition ends up,
y using DFP, with:
′

−1 = I ′
−1 = {0}.

Such decompositions depend on the choice of the initial bipar-
ition and the initial choice of the procedure UFP or DFP.

Starting with UFP from bipartition (A′′, B′′), with B′′
= {0, 1,

+ 1/2, 2 + 1/3, 2 + 2/3} and A′′
= X \ B′′, yields another

ecomposition. Indeed, we get C′′

0 = I ′′0 = {3 + 1/4, 3 + 2/4, 3 +

/4, 4 + 1/5}. The rest of the indifference classes fitting with I ′′0
is different from the ones already obtained. ⋄

Example 29. Let X = Q, the set of rational numbers endowed
with the usual semiorder S = (P, I) defined by xPy if x > y+1 and
xIy if |x − y| ≤ 1. There is no pair of distinct equivalent elements
in X . Therefore, the linear order ≿ is the natural order on X = Q.
The graph of I on X is connected. We thus have to decompose a
single I-connected component.

Consider the initial bipartition (A, B) with A = {x ∈ Q : x ≥ 0}
and B = {x ∈ Q : x < 0}. Let x0 = 1/2 and y0 = −1/2. Starting
UFP from x0, yields C0 = I0 = {x ∈ Q : 0 ≤ x ≤ 1} = [0, 1]. Hence
C1 = [1, 2] and I1 = ]1, 2]. For k > 0, we have Ck = [k, k + 1]
and Ik = ]k, k + 1]. On the other hand, C−1 = [−1, 0] and
I−1 = [ − 1, 0[. For l > 0, we have C−l = [−l, −l + 1] and
I−l = [ − l, −l + 1[.

With the same initial partition, starting DFP from y0 would
yield C′

0 = I ′0 = [−1, 0]. Hence C′

1 = [0, 1] and I ′1 = ]0, 1]. For
k > 0, we have C′

k = [k − 1, k] and I ′k = ]k − 1, k]. On the other
hand, C′

−1 = [−2, −1] and I ′
−1 = [ − 2, −1[. For l > 0, we have

C′

−l = [−l − 1, −l] and I ′
−l = [ − l − 1, −l[.

In Q, there are bipartitions (A′′, B′′) where A′′ has no least ele-
ment and B′′ has no greatest element (contrary to the bipartition
(A, B) defined above). Indeed, let A′′

= {x ∈ Q : x >
√
2} and

′′
= {x ∈ Q : x <

√
2}. Let x0 = 2 and y0 = 1. Starting UFP from

0, yields C′′

0 = I ′′0 = {x ∈ Q :
√
2 < x < 1+

√
2} = ]

√
2, 1+

√
2[.

Hence C′′

1 = I ′′1 = ]1+
√
2, 2+

√
2[. For k > 0, we have C′′

k = I ′′k =

]k+
√
2, k+1+

√
2[. On the other hand, C′′

−1 = I ′′
−1 = ]

√
2−1,

√
2[.

For l > 0, we have C′′

−l = I ′′
−l = [

√
2 − l,

√
2 − l + 1[. ⋄

emark 30 (Well-ordered or Finite Connected Components). In
xample 28, the set X is well-ordered by ≿, i.e., every subset of
has a least element w.r.t. ≿. In particular, X itself has a least

element, which is 0. In the case ≿ is a well-ordering of a con-
nected component D of (X, I), the procedure producing partitions
into sets of indifferent elements, described in Section 3.2, can be
simplified. We can indeed start with the least (w.r.t. ≿) element
y0 ∈ D. Let (A, B) be the bipartition which defines this element,
i.e., B = {y0} and A = D \ {y0}. Applying the DFP procedure, we
see that I+0 (y0) = {y0}, J−0 (y0) = ∅, and J+0 (y0) = {z ̸= y0 : zIy0}.
herefore, I is just the class of elements in D that are indifferent
0

8

to y0. Then we consider the least element y1 in D \ I0 and we
btain I1 = y1 ∪ J+0 (y1), the class of all elements above y1 (w.r.t.
) and indifferent to y1. For all k ≥ 1, Ik is built iteratively by
onsidering the least element yk which does not belong to

⋃k−1
j=0 Ij.

he set Ik = {yk} ∪ J+0 (yk) is the class of all elements above yk
w.r.t. ≿) and indifferent to yk. Since there are no elements in D
elow I0, the procedure exhausts the elements of D only by using
ntervals Ik, with k ≥ 0. That is exactly what was done in the case
f Example 28.
Of course, in case, the reverse order ≾ is a well-ordering, i.e., if

very subset of a connected component D has a greatest element
.r.t. ≿, the same construction can be simplified by starting from
he greatest (w.r.t. ≿) element in D and first apply UFP. Only
ntervals I−l, with l ≥ 0 will then be used to cover D.

The case in which D is a finite set is special since every subset
f D has a least and a greatest element. We may thus choose to
tart from the least element and work upwards or the opposite.
For illustration, consider the semiorder in Example 28 re-

tricted to a finite subset X ′ of X , say, the elements of X that are
maller than 4. We have X ′

= {0, 1, 1+1/2, 2+1/3, 2+2/3, 3+

1/4, 3 + 1/2, 3 + 3/4}. Starting from y0 = 0 and first applying
the DFP procedure, we generate successively the subsets I0, I1, I2
as in Example 28, the last subset I3 is limited to the singleton
{3+ 3/4}. In contrast, starting from the greatest element 3+ 3/4
and applying UFP, would lead to the partition:

I ′0 = {3 + 1/4, 3 + 1/2, 3 + 3/4}
I ′
−1 = {2 + 1/3, 2 + 2/3}
I ′
−2 = {1, 1 + 1/2}
I ′
−3 = {0}.

4. Construction of a unit representation for a denumerable
I-connected semiorder

We consider an I-connected component D of the semiorder
S = (P, I) on the set X . We assume that D is a denumerable set.
In this case we show that one can build a unit representation
of the semiorder induced on D without making any additional
assumption.

Let D be a denumerable connected component of (X, I).
Choose a bipartition (A0, B0) in D and perform the decomposition
in subsets Ik, k ≥ 0 and I−l, l > 0, starting either with DFP or UFP,
as described in Section 3. Let M denote the set of consecutive
integers, containing 0, for which Im exists. We have:

D =

⋃
m∈M

Im = (
⋃
k≥0

Ik) ∪ (
⋃
l>0

I−l).

The main idea in order to build a unit representation is to
create an image of all elements of D in I0. These ‘‘images’’, that
we call ghosts, are sequentially inserted at appropriate positions
in the set I0 augmented with the previously inserted ghosts. In
this way, the initial linear order ≿ on I0 is extended to a complete
preorder ≿ϕ on I0 and the set of inserted ghosts at each stage of
the process (this set will be denoted by Ĩ0 in the sequel). Once this
process has come to an end, i.e., when all elements of D have been
associated a representative in the set I0, at appropriate positions
determining the extended preorder, a numerical representation
of this ordered set is selected and then ‘‘lifted’’ to yield a unit
representation of the semiorder on D. The whole procedure is
illustrated by examples in Section 4.3.

4.1. Creating ghosts

We start with the pair of convex subsets I0, I1. We create and
insert a dummy element in I for each y ∈ I . This dummy
0 1
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lement is denoted ϕ1(y) and is referred to as the ghost of y. The
host of y is inserted between the elements of I0 to which it is
referred and those to which it is indifferent. Since we proceed
equentially, we also have to take the ghosts already inserted into
ccount.
Let us be more precise. Since X is a denumerable set, so is I1.
e order the elements of I1 in a sequence {yt , t ∈ T1}, with T1
set of consecutive integers starting with 1. To create the ghost
1(y1), we define an ordered bipartition (A0

1, B
0
1) in I0, with

0
1 = {x ∈ I0 : y1Ix},

B0
1 = {x ∈ I0 : y1Px}.

y Proposition 24.4, B0
1 is not empty, while it may happen that A0

1
e empty.
A ghost ϕ1(y1) is created and inserted in I0 between A0

1 and
0
1 (after all elements of B0

1 if A0
1 is empty). We extend the linear

order ≿ on I0 into a complete preorder8 ≿ϕ by setting a ≻ϕ

ϕ1(y1) ≻ϕ b for all a ∈ A0
1 and b ∈ B0

1. Since ≿ϕ extends ≿, we
also have a ≿ϕ b for all a, b ∈ I0 with a ≿ b.

Assuming that the ghosts ϕ1(ys) of ys, for s = 1, . . . , t − 1,
have been created, we now insert the ghost ϕ1(yt ) of yt in the set
I0 ∪ {ϕ1(y1), . . . , ϕ1(yt−1)} ordered by the relation ≿ϕ extending
≿. We define the bipartition (A0

t , B
0
t ) in this set, letting A0

t = {x ∈

I0 : yt Ix} and B0
t = {x ∈ I0 : ytPx}. By Lemma 32 (see below), for

all a ∈ C0
t = A0

t ∪ {ϕ1(ys) : ys ≻ yt , s = 1, . . . , t − 1} and all
b ∈ D0

t = B0
t ∪{ϕ1(ys) : ys ≺ yt , s = 1, . . . , t −1}, we have a ≻ϕ b.

A ghost ϕ1(yt ) is inserted between C0
t and D0

t (or above all
elements in D0

t in case C0
t is empty). The complete preorder ≿ϕ is

extended by setting a ≻ϕ ϕ1(yt ) ≻ϕ b for all a ∈ C0
t and b ∈ D0

t .
Proceeding sequentially in this way, we finally obtain the set

Ĩ10 = I0 ∪ ϕ1(I1) which is ordered by the (extended) complete
preorder ≿ϕ .

Remark 31. Note that a unit representation of the restriction of
the semiorder (P, I) to I0 ∪ I1 can be obtained in the following
way:

1. select any representation f of the order ≿ϕ on Ĩ10 = I0 ∪

ϕ1(I1) in the ]0, 1[ real interval,
2. set

u(x) =

{
f (x) if x ∈ I0,
f (ϕ1(x)) + 1 if x ∈ I1.

u is clearly a unit representation of the semiorder restricted to
I0 ∪ I1.

Ghosts for Ik. The generic step for k > 0 is as follows. Assume
that Ik exists and the ghosts ϕj(Ij) of the elements of Ij, for 1 ≤

j ≤ k − 1 have previously been inserted. We denote by Ĩ0
k−1

the
current extension of I0, which contains, in particular, ϕk−1(Ik−1).
We also assume that the relation ≿ϕ has been extended into a
complete preorder on Ĩ0

k−1
. We number the elements in Ik as

{zt , t ∈ Tk}, with Tk a set of consecutive integers starting with
1. Consider z1 ∈ Ik. It determines a bipartition (Ak−1

1 , Bk−1
1 ) in

Ik−1, with Ak−1
1 = {x ∈ Ik−1 : z1Ix}, a possibly empty set, and

Bk−1
1 = {x ∈ Ik−1 : z1Px}, a nonempty set (by Proposition 24.4).

We insert a ghost ϕk(z1) in Ĩk−1
0 between Ck−1

1 = ϕk−1(Ak−1
1 ) and

Dk−1
1 = ϕk−1(Bk−1

1 ) (in case Ak−1
1 is empty, we insert ϕk(z1) above

all the elements of Bk−1
1 ). There may exist a certain degree of

arbitrariness in the precise position of ϕk(z1) w.r.t. the elements of
Ĩk−1
0 (which was not the case in the initial step). We just choose an

8 In the sequel, we will have to consider that some pairs of elements can be
ndifferent w.r.t. ≿ϕ and, therefore, we may not assume that the extension of ≻

is a linear order.
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insertion position that satisfies the constraint w.r.t. the ghosts of
Ik−1 and we extend the preorder ≿ϕ accordingly while respecting
a ≻ϕ ϕk(z1) ≻ϕ b for all a ∈ Ck−1

1 and b ∈ Dk−1
1 .

Proceeding sequentially, assume that ϕk(zs), for s = 1, . . . , t −

1, have been created and inserted and the preorder ≿ϕ extended
to Ĩk−1

0 ∪ {ϕk(z1), . . . , ϕk(zt−1)}. Consider zt which determines a
bipartition (Ak−1

t , Bk−1
t ) in Ik−1, with Ak−1

t = {x ∈ Ik−1 : zt Ix}, a
possibly empty set, and Bk−1

t = {x ∈ Ik−1 : ztPx}, a nonempty
set. By Lemma 32 (see below), for all a ∈ Ck−1

t = ϕk−1(Ak−1
t ) ∪

{ϕk(zs), zs ≻ zt , s = 1, . . . , t − 1} and all b ∈ Dk−1
t = ϕk−1(Bk−1

t ) ∪

{ϕk(zs), zs ≺ zt , s = 1, . . . , t − 1}, we have a ≻ϕ b.
A ghost ϕk(zt ) is inserted in Ĩk−1

0 ∪ {ϕk(z1), . . . , ϕk(zt−1)} be-
tween Ck−1

t and Dk−1
t (in case Ak−1

t is empty, we insert ϕk(zt )
above all the elements of Dk−1

t ). The precise position of ϕk(zt )
w.r.t. the other elements of Ĩk−1

0 that lie between Ck−1
t and Dk−1

t
is determined in an arbitrary manner. The complete preorder ≿ϕ

is extended to Ĩk−1
0 ∪ {ϕk(z1), . . . , ϕk(zt )} accordingly and satisfies

in particular a ≻ϕ ϕ1(zt ) ≻ϕ b for all a ∈ Ck−1
t and b ∈ Dk−1

t .
Finally, we obtain the set Ĩk0 = Ĩk−1

0 ∪ ϕk(Ik), which is ordered
by the (extended) complete preorder relation ≿ϕ .

The following lemma was used repeatedly to prove that it was
always possible to insert ϕk(zt ) in between Ck−1

t and Dk−1
t , for

k ≥ 1 and t ∈ Tk.

Lemma 32. Assume that for all j, with 0 < j < k, ϕj is an injective
function from Ij into Ĩk−1

0 and assume further that the order ≻ϕ on
the ghosts ϕk(zs), for s = 1, . . . , t − 1, reproduces the order ≻ on
{zs, s = 1, . . . , t − 1} ⊆ Ik.

For k = 1, we have a ≻ϕ b for all a ∈ C0
t = A0

t ∪ {ϕ1(zs), zs ≻

zt , s = 1, . . . , t − 1} and all b ∈ D0
t = B0

t ∪ {ϕ1(zs), zs ≺ zt , s =

1, . . . , t − 1}.
For k ≥ 2, we have a ≻ϕ b for all a ∈ Ck−1

t = ϕk−1(Ak−1
t ) ∪

{ϕk(zs), zs ≻ zt , s = 1, . . . , t − 1} and all b ∈ Dk−1
t = ϕk−1(Bk−1

t ) ∪

{ϕk(zs), zs ≺ zt , s = 1, . . . , t − 1}.

Proof. We prove the lemma for k ≥ 2. By hypothesis, we clearly
have a ≻ϕ b for all a ∈ ϕk−1(Ak−1

t ) and all b ∈ ϕk−1(Bk−1
t ), since

x ≻ y for all x ∈ Ak−1
t and all y ∈ Bk−1

t . Consider now zs, with
1 ≤ s ≤ t −1, such that zs ≻ zt . We have ϕk(zs) ≻ϕ ϕk−1(b) for all
b ∈ Bk−1

s = {x ∈ Ik−1 : zsPx} ⊇ Bk−1
t , hence ϕk(zs) ≻ϕ ϕk−1(b)

for all b ∈ Bk−1
t . One proves, in a similar way, that for all zs

such that zs ≺ zt , we have ϕk(zs) ≺ϕ ϕk−1(a) for all a ∈ Ak−1
t .

inally, the insertion procedure guarantees that, for all zs, zs′ , with
≤ s, s′ ≤ t − 1, such that zs ≻ zt and zs′ ≺ zt , we have

k(zs) ≻ϕ ϕk(zs′ ). The proof of the lemma for k = 1 is similar. □

Let us now turn to I−l for l > 0. We start with l = 1.

hosts for I−1. We denote by Ĩ0 the current extension of I0 or-
ered by the complete preorder ≿ϕ . We number the elements

of I−1 as {zt , t ∈ T−1}, with T−1 a set of consecutive integers
starting with 1. Consider z1 ∈ I−1. It determines a bipartition
(A−0

1 , B−0
1 ) in I0, with A−0

1 = {x ∈ I0 : xPz1}, a nonempty set (by
Proposition 24.5), and B−0

1 = {x ∈ I0 : xIz1}, a possibly empty
set. We insert a ghost ϕ−1(z1) in Ĩ0, between A−0

1 and B−0
1 (in

case B−0
1 is empty, we insert ϕ−1(z1) below all elements of A−0

1 ).
There is generally some arbitrariness in the positioning of ϕ−1(z1)
w.r.t. to the elements of Ĩ0, namely, the ghosts previously inserted
between A−0

1 and B−0
1 . We just select any insertion for ϕ−1(z1)

hat satisfies the constraint and we extend ≿ϕ accordingly. In
articular this extension satisfies a ≻ϕ ϕ−1(z1) ≻ϕ b for all
∈ A−0

1 and b ∈ B−0
1 .

We then proceed sequentially, assuming that the ghosts
−1(zs), for s = 1, . . . , t − 1, have been created and inserted

˜
and the complete preorder ≿ϕ extended to I0 ∪ {ϕ−1(z1), . . . ,
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−1(zt−1)}. Consider zt , which determines a bipartition (A−0
t , B−0

t )
in I0, with A−0

t = {x ∈ I0 : xPzt}, a nonempty set, and B−0
t =

x ∈ I0 : xIzt}, a possibly empty set. By Lemma 33 (see below),
or all a ∈ C−0

t = A−0
t ∪ {ϕ−1(zs), zs ≻ zt , s = 1, . . . , t − 1} and

ll b ∈ D−0
t = B−0

t ∪ {ϕ−1(zs), zs ≺ zt , s = 1, . . . , t − 1}, we have
≻ϕ b.
A ghost ϕ−1(zt ) is inserted in Ĩ0 ∪ {ϕ−1(z1), . . . , ϕ−1(zt−1)}

etween C−0
t and D−0

t (in case D−0
t is empty, ϕ−1(zt ) is inserted

elow all elements of C−0
t ). The precise position of ϕ−1(zt ) w.r.t.

he other elements of Ĩ0 that lie between C−0
t and D−0

t is deter-
mined in an arbitrary manner and the complete preorder ≿ϕ is
extended accordingly while satisfying a ≻ϕ ϕ−1(zt ) ≻ϕ b for all
a ∈ C−0

t and b ∈ D−0
t .

Finally, we obtain the set Ĩ−1
0 = Ĩ0 ∪ϕ−1(I−1), which is ordered

by the (extended) complete preorder relation ≿ϕ .

Ghosts for I−l. The generic insertion step for subsets I−l, l = 1, . . .
is as follows. Let Ĩ−l+1

0 denote the current extension of I0. We
ssume that the ghosts ϕ−j(z) of all z ∈ I−j for j = 1, . . . , l − 1

have been inserted in Ĩ0 and the complete preorder ≿ϕ has been
extended to all Ĩ0

−l+1
. Moreover, we assume that the ≻ϕ order of

the ghosts of the elements of I−j reproduces the ≻ order in their
riginal subset.
We number the elements in I−l as {zt , t ∈ T−l}, with T−l a

set of consecutive integers starting with 1. Consider z1 ∈ I−l. It
determines a bipartition (A−l+1

1 , B−l+1
1 ) in I−l+1, with A−l+1

1 = {x ∈

I−l+1 : xPz1}, a nonempty set, and B−l+1
1 = {x ∈ P−l+1 : xPz1}, a

possibly empty set. We insert a ghost ϕ−l(z1) in Ĩ−l+1
0 between

C−l+1
1 = ϕ−l+1(A−l+1

1 ) and D−l+1
1 = ϕ−l+1(B−l+1

1 ) (in case B−l+1
1 is

empty, we insert Ĩ−l+1
0 below all elements of C−l+1

1 ). The precise
position of ϕ−l+1(zt ) w.r.t. the other elements of Ĩ−l+1

0 that lie
between C−l+1

1 and D−l+1
1 is chosen arbitrarily. The ≿ϕ preorder is

extended accordingly while ensuring that a ≻ϕ ϕ−l(z1) ≻ϕ b for
all a ∈ C−l+1

1 and b ∈ D−l+1
1 .

Assuming that ϕ−l(zs), for s = 1, . . . , t − 1, have been created
and inserted and the complete preorder ≿ϕ extended to Ĩ−l+1

0 ∪

{ϕ−l(z1), . . . , ϕ−l(zt−1)}, we consider zt . This element determines
a bipartition (A−l+1

t , B−l+1
t ) in I−l+1, with A−l+1

t = {x ∈ I−l+1 :

xPzt}, a nonempty set, and B−l+1
t = {x ∈ I−l+1 : xIzt}, a possibly

empty set. By Lemma 33, for all a ∈ C−l+1
t = ϕ−l+1(A−l+1

t ) ∪

{ϕ−l(zs), zs ≻ zt , s = 1, . . . , t − 1} and all b ∈ D−l+1
t =

ϕ−l+1(B−l+1
t )∪{ϕ−l(zs), zs ≺ zt , s = 1, . . . , t −1}, we have a ≻ϕ b.

A ghost ϕ−l(zt ) is inserted in Ĩ−l+1
0 ∪ {ϕ−l(z1), . . . , ϕ−l(zt−1)}

between C−l+1
t and D−l+1

t (or below all elements of C−l+1
t in case

B−l+1
t is empty. The precise position of ϕ−l(zt ) w.r.t. the other

elements of Ĩ−l+1
0 ∪ {ϕ−l(zs), s = 1, . . . , t − 1} that lie between

C−l+1
t and D−l+1

t is determined in arbitrary manner. The complete
preorder ≿ϕ is extended accordingly while ensuring that a ≻ϕ

ϕ−l(zt ) ≻ϕ b for all a ∈ C−l+1
t and b ∈ D−l+1

t .
Finally, we obtain the set Ĩ−l

0 = Ĩ−l+1
0 ∪ ϕ−l(I−l), which is

ordered by the (extended) complete preorder relation ≿ϕ .
The following lemma proves that the insertion of ϕ−l(zt ) is

always possible.

Lemma 33. Assume that for all j, with 1 ≥ j < l, ϕ−j is an injective
function from I−j into Ĩ−j

0 and assume further that the ≻ϕ order on
the ghosts ϕ−l(zs), for s = 1, . . . , t − 1 reproduces the ≻ϕ order on
{zs, s = 1, . . . , t − 1} ⊆ I−l.

For l = 1, we have a ≻ϕ b for all a ∈ C−0
t = A−0

t ∪{ϕ−1(zs), zs ≻

zt , s = 1, . . . , t − 1} and all b ∈ D−0
t = B−0

t ∪ {ϕ−1(zs), zs ≺ zt , s =

1, . . . , t − 1}.
For l ≥ 2, we have a ≻ϕ b for all a ∈ C−l+1

t = ϕ−l+1(A−l+1
t ) ∪

{ϕ−l(zs), zs ≻ zt , s = 1, . . . , t − 1} and all b ∈ D−l+1
t =

−l+1
ϕ−l+1(Bt ) ∪ {ϕ−l(zs), zs ≺ zt , s = 1, . . . , t − 1}.

10
The proof of this lemma is similar to that of Lemma 32. It is
left to the reader.

At the end of this construction process, involving at most a
countably infinite number of steps (each of them involving at
most a countably infinite number of insertions), we obtain the
set Ĩ0 = I0 ∪ (

⋃
k≥0 ϕk(Ik))∪ (

⋃
l>0 ϕ−l(I−l)) = I0 ∪ (

⋃
m∈M ϕm(Im)),

ordered by ≿ϕ , which is an extension of the complete preorder ≿
on I0. The restriction of ≿ϕ to ϕm(Im), for m ∈ M,m ̸= 0, is an
isomorphic image of the ≿ order on Ik.

Remark 34. In the construction described above, we chose to
start with building a representation for all Ik, for k > 0, in I0 and
then we turned to mapping the subsets I−l, for l < 0, into I0. One
could have instead alternated the insertion of Ik and I−k, for all
k > 0, starting from k = 1 and working consecutively. Other
schemes can be considered. The only restriction is that, before
inserting Ik (resp., I−k), for k > 0, one must make sure that all
elements of Ik−1 (resp., I−k+1) have been inserted.

Remark 35. In the construction described above, it is not ex-
cluded that ghosts of elements from Ik (resp., I−l) are set equiva-
lent, w.r.t. ≿ϕ , to ghosts of elements from Im, for 0 ≤ m ≤ k − 2
(resp., −l + 2 ≤ m ≤ 0). That is why we allow the equivalence
classes of ≿ϕ not to be restricted to pairs (x, x). However, in this
section, we do not allow ghosts of elements from Ik (resp., I−l)
to be set equivalent to ghosts of elements from Ik−1 (resp., I−l+1).
In Section 4.4, we investigate the precise conditions under which
this can be allowed.

4.2. Construction of a representation

Since Ĩ0 is at most countable, there exists a numerical repre-
sentation of the complete preorder ≿ϕ on this set. One way of
building a unit representation of the semiorder (P, I) is to select
a numerical representation f of ≿ϕ in the ]0, 1[ rational or real
interval and to define the function u on D as follows:

u(x) = f (ϕm(x)) + m for all x ∈ Im, (5)

for all m ∈ M , and interpreting ϕ0 as the identity function. We
shall refer to Eq. (5) as to the lifting equation.

Enforcing the representation f to range in the ]0, 1[ interval is
however a restrictive requirement. Instead we may choose for f
any numerical representation of the order ≿ϕ on Ĩ0 satisfying the
following condition: for all m ∈ M ,

sup{|f (ϕm(x)) − f (ϕm(y))|, x, y ∈ Im} ≤ 1. (6)

Obviously, this condition is satisfied if the range of f is the ]0, 1[
interval. We shall henceforth refer to condition (6) as to the unit
threshold constraint.

The following proposition is the first main result of this paper.
It shows that any I-connected component of a semiorder defined on
a denumerable set has a unit representation.

Proposition 36. If f is a numerical representation of ≿ϕ on Ĩ0
satisfying the unit threshold constraint (6), then the function u
defined by the lifting equation (5) is a unit representation of the
semiorder S = (P, I) restricted to D, i.e., for all x, y ∈ D,

xPy ⇐⇒ u(x) > u(y) + 1,
xIy ⇐⇒ −1 ≤ u(x) − u(y) ≤ 1.

Proof. Let x, y be such that xPy. If y belongs to Ik (k ∈ M), we have
that x belongs to Im for m ≥ k+ 1 (by Proposition 24). If x ∈ Ik+1,
we have u(x) − u(y) = f (ϕk+1(x)) + k + 1 − f (ϕk(y)) − k > 1,
which entails f (ϕk+1(x)) > f (ϕk(y)) since ϕk+1(x) ≻ ϕk(y) by

construction.
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If x ∈ Im, for m ≥ k+ 2, we have u(x)− u(y) = f (ϕm(x))+m−

f (ϕk(y))−k > 1 since m−k ≥ 2 and f (ϕm(x))−f (ϕk(y)) > −1. The
latter inequality is proved to hold as follows. It is trivially true in
case f (ϕm(x)) − f (ϕk(y)) ≥ 0. We thus consider the opposite case
in which f (ϕm(x)) < f (ϕk(y)). We distinguish three sub-cases.

1. Case k ≥ 0. Using Proposition 24.4, we know that there
exists a P-chain xPz1P z2P . . . Pzm−k, with zi ∈ Im−i for
i = 1, . . . ,m − k. By construction of the ghosts, we have
f (ϕm(x)) > f (ϕm−1(z1)) > · · · > f (ϕk+1(zm−k+1)) >
f (ϕk(zm−k)). Therefore f (ϕk(zm−k)) < f (ϕm(x)) < f (ϕk(y)).
Using (6) yields f (ϕm(x)) − f (ϕk(y)) > −1.

2. Case m ≤ 0. Using Proposition 24.5, we know that there
exists a P-chain wm−kPwm−k+1P . . . Pw1Py, with wi ∈ Ik+i
for i = 1, . . . ,m−k. By construction of the ghosts, we have
f (ϕm(wm−k)) > f (ϕm−1(wm−k+1)) > · · · > f (ϕk+1(w1)) >
f (ϕk(y)). Therefore f (ϕm(wm−k)) > f (ϕk(y)) > f (ϕm(x)).
Using (6) yields f (ϕm(x)) − f (ϕk(y)) > −1.

3. Case m > 0 and k < 0. Using Proposition 24.4, we know
that there exists a P-chain xPz1P . . . Pzm, with zi ∈ Im−i
for i = 1, . . . ,m. By construction of the ghosts, we have
f (ϕm(x)) > f (ϕ0(zm)). Using Proposition 24.5, we know
there exists a P-chain w−kPw−k+1P . . . Pw1Py, with wi ∈

Ik+i for i = 1, . . . ,−k. By construction of the ghosts, we
have f (ϕ0(w−k)) > f (ϕ−1(w−k+1)) > · · · > f (ϕk+1(w1)) >
f (ϕk(y)). We see that f (ϕ0(zm)) ≥ f (ϕ0(w−k)) is not com-
patible with f (ϕm(x)) < f (ϕk(y)). Therefore, we have 0 <
f (ϕk(y)) − f (ϕm(x)) < f (ϕ0(w−k)) − f (ϕ0(zm)) ≤ 1.

Hence, if xPy, then u(x) > u(y) + 1.
Consider now a pair x, y ∈ D such that xIy. We assume w.l.o.g.

that x ≻ y and y ∈ Ik (k ∈ M). By Propositions 24.2, 24.3
and 24.5, we know that x ∈ Ik or x ∈ Ik+1. In the former case,
0 < u(x) − u(y) = f (ϕk(x)) + k − f (ϕk(y)) − k < 1, due to
condition (6) on f . In the latter case, we have 0 < u(x) − u(y) =

f (ϕk+1(x)) + k + 1 − f (ϕk(y)) − k < 1 because the difference
f (ϕk+1(x)) − f (ϕk(y)) is negative. To establish this, we consider
the following two possible cases:

• k ≥ 0. By construction of the ghosts and the extension ≿ϕ

of ≿ for k ≥ 0, we have ϕk(a) ≻ϕ ϕk+1(x) ≻ϕ ϕk(b) for all
a ∈ A = {z ∈ Ik : xIz} and all b ∈ B = {z ∈ Ik : xPz}.
Since y belongs to A and f represents ≿ϕ , we have that
f (ϕk(y)) > f (ϕk+1(x)).

• k = −l < 0. By construction of the ghosts and the extension
≿ϕ of ≿ for k = −l < 0, we have ϕ−l+1(a) ≻ϕ ϕ−l(y) ≻ϕ

ϕ−l+1(b) for all a ∈ A = {z ∈ I−l+1 : zPy} and all b ∈ B =

{z ∈ I−l+1 : zIy}. Since x belongs to B and f represents ≿ϕ , we
have that f (ϕ−l(y)) = f (ϕk(y)) > f (ϕ−l+1(x)) = f (ϕk+1(x)).

Hence, if xIy, then |u(x) − u(y)| ≤ 1. □

Remark 37. Note that the hypothesis that X is a denumerable
set is used twice in the above construction. First, for constructing
a mapping of the whole set D in the subset I0, while respecting
the order of the elements in their respective original subsets
Im. Second, this hypothesis entails the existence of a numerical
representation of the ≿ϕ preorder on Ĩ0.

Remark 38. Proposition 36 shows that a semiorder on an I-
connected set always has a unit representation. It offers an al-
ternative proof of Manders (1981, Prop. 8, p. 237).

Observe also that, if we enforce f to range in the ]0, 1[ interval,
then, in Ĩ0, it is impossible that the difference, in terms of f ,
between two objects is exactly 1. Hence, Proposition 36 also
shows that, on an I-connected component, it is always possible
to build a representation that is at the same time strict (i.e., it

fulfills (1)) and nonstrict (i.e., it fulfills (2)). We will see below
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that this observation is not limited to the case of an I-connected
component. It holds true in the general case of a denumerable
semiorder which admits a numerical representation. This also
extends Beja and Gilboa (1992, Th. 3.8, p. 436) for the case of
an I-connected component of a semiorder. It is not only possible
to obtain a strict representation or a nonstrict one but it is
also possible to build a representation that is at the same time
strict and nonstrict. We will see below (see Remark 61) that this
holds true for all semiorders on denumerable sets admitting a
numerical representation.

Finally observe that, since X is countable, it is not restrictive
to enforce f to range in the ]0, 1[ ∩ Q interval. This shows that a
semiorder on an I-connected component has a unit real represen-
tation iff it has a unit rational representation. For a semiorder that
is I-connected, this gives an alternative proof of Manders (1981,
Prop. 7, p. 236). Using the analysis in Section 5, it is easy to extend
the analysis to a class of semiorders that are not I-connected (see
Remark 61).

4.3. Illustrating the construction of a representation

We build a representation for the I-connected semiorders in
Examples 28 and 29.

Example 28 (Cont’d). We consider the decomposition of the
semiorder in Example 28 in subsets In, n ∈ N, obtained by starting
from bipartition (A, B), with B = {0} and A = X \ B.

• I0 = {0, 1}.
• I1 = {1 + 1/2, 2 + 1/3}.

The insertion constraints are: 0 < ϕ1(1 + 1/2) < 1 <

ϕ1(2 + 1/3). We insert the elements ϕ1(I1) separating them
from these in I0 by a value of 1/2, i.e.,

ϕ1(1 + 1/2) = 1/2, ϕ1(2 + 1/3) = 3/2.

The complete preorder ≿ϕ is the natural preorder on the
numbers involved in the construction and it will be so in
the remaining steps.

• I2 = {2 + 2/3, 3 + 1/4, 3 + 1/2}.
The insertion constraints are: ϕ1(1 + 1/2) < ϕ2(2 + 2/3) <

ϕ2(3 + 1/4) < ϕ1(2 + 1/3) < ϕ2(3 + 1/2). We insert the
elements ϕ2(I2) separating them from these in ϕ1(I1)∪ I0 by
a value of 1/4; we set, e.g.,

ϕ2(2 + 2/3) = 3/4, ϕ2(3 + 1/4) = 5/4, ϕ2(3 + 1/2) = 7/4.

Note that ϕ2(2 + 2/3) and ϕ2(3 + 1/4) could alternatively
have been both positioned in the interval ]1/2, 1[ or both in
the interval ]1, 3/2[.

• I3 = {3 + 3/4, 4 + 1/5, 4 + 2/5, 4 + 3/5}.
The insertion constraints are: ϕ2(2 + 2/3) < ϕ3(3 + 3/4) <

ϕ3(4 + 1/5) < ϕ2(3 + 1/4) < ϕ3(4 + 2/5) < ϕ2(3 + 1/2) <

ϕ3(4 + 3/5). We insert the elements ϕ3(I3) separating them
from these in ϕ2(I2) ∪ ϕ1(I1) ∪ I0 by a value of 1/8, we set,
e.g.,

ϕ3(3 + 3/4) = 7/8, ϕ3(4 + 1/5) = 9/8,
ϕ3(4 + 2/5) = 11/8, ϕ3(4 + 3/5) = 15/8.

A number of arbitrary choices have been made in assigning
these values. The above ghost insertion choices are repre-
sented on Fig. 3.

We now indicate how we may define ϕk+1(Ik+1) knowing
ϕk(Ik), for k ≥ 1. We have:

Ik = {k +
k

, k + 1 +
1

, . . . , k + 1 +
k

}, for k ≥ 1.

k + 1 k + 2 k + 2
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Fig. 3. Ghosts insertion illustrated on Example 28.

Ik+1 has one more element than Ik. One easily verifies that the
insertion constraints are : ϕk(k +

k
k+1 ) < ϕk+1(k + 1 +

k+1
k+2 ) <

k+1(k+ 2+
1

k+3 ) < ϕk(k+ 1+
1

k+2 ) < ϕk+1(k+ 2+
2

k+3 ) < · · · <

k(k + 1 +
t

k+2 ) < ϕk+1(k + 2 +
t+1
k+3 ) < · · · < ϕk(k + 1 +

k
k+2 ) <

k+1(k+2+
k+1
k+3 ), with 2 ≤ t ≤ k−1. In words, the ghosts of the

wo smaller elements in Ik+1 are positioned between the ghosts
f the least and the second least elements in Ik. For the rest, the
hosts positions of both subsets alternate.
We may recursively assign the following values to ϕk+1:

k+1(k + 1 +
k + 1
k + 2

) = ϕk(k +
k

k + 1
) +

1
2k+1

ϕk+1(k + 2 +
1

k + 3
) = ϕk(k +

k
k + 1

) +
3

2k+1

ϕk+1(k + 2 +
t + 1
k + 3

) = ϕk(k + 1 +
t

k + 2
) +

1
2k+1 ,

for 2 ≤ t ≤ k.

rovided the values of ϕ1 and ϕ2 are set as indicated above, and
he general assignment rules are followed, it is easy to see that
he values of ϕi for i = 1, . . . , k are integer multiples of 1

2k
. Given

he way the values of ϕk+1 are set, they are odd integer multiples
f 1

2k+1 and hence are distinct from all previously assigned values.
he assignment rules ensure that the insertion constraints are
atisfied.
The greatest value taken by ϕk+1 is equal to the greatest value

aken by ϕk plus 1
2k+1 . Therefore, 0 < ϕk+1 < 2 for all k ≥ 0.

A representation f of the ≿ϕ preorder, ranging in ]0, 1[, is thus
obtained e.g., by setting f (ϕk(x)) =

1
2ϕk(x), for all x ∈ Ik and all k

uch that Ik exists. A unit representation of the semiorder is then
obtained using the lifting equation (5). ⋄

emark 39. It is worth noticing that the procedure described
n Sections 3.1, 3.2, 4.1 and 4.2 unifies the construction of a
umerical representation for finite and countable (I-connected)
emiorders. Consider for instance the finite semiorder obtained
y restricting the set X and the relation in Example 28 to the

elements less than or equal to 4 + 3/5. A preliminary check for
quivalent elements leads to identify the elements x = 3 +

/4 and y = 4 + 1/5, which have the same predecessors and
uccessors, i.e., xP = yP and Px = Py = ∅. These elements
orm an equivalence class, denoted by a. It will be represented
y a single ghost and both elements of the class a will be asso-
iated the same value in numerical representations (the option
f identifying equivalent elements was made in the introductory
ection). A numerical representation of this finite semiorder can
e constructed by the standard procedure. Starting from x0 = 0,

we obtain the same intervals I0, I1, I2 while I3 = {a, 4 + 2/5, 4 +

/5}. The ghost of a may be set for instance to the value 7/8
12
hile the other ghosts remain unchanged. We get a numerical
epresentation u with unit threshold by setting f (x) = 1/2ϕk(x)
for x ∈ Ik, k = 0, 1, 2, 3 and applying formula (5). In particular,
we have u(3 + 3/4) = u(4 + 1/5) = 3 + 7/16.

xample 29 (Cont’d). Let X = Q and S = (P, I) be the usual
semiorder on the rationals (see Example 29). We consider the de-
composition obtained by using UFP, starting from the bipartition
(A, B), with A = {x ∈ Q : x ≥ 0} and B = X\A. We have I0 = [0, 1],
he closed unit rational interval.

For x ∈ I1 = ]1, 2], ϕ1(x) is inserted between A0
x = {y ∈ I0 :

≥ x−1} and B0
x = {z ∈ I0 : z < x−1}. The element x is the only

ne in I1 that has to be inserted between A0
x and B0

x . Therefore we
reate a ghost for x, that we label (x, 1) and position (w.r.t. ≿ϕ)
just below x − 1 ∈ I0. Hence we have: ϕ1(x) = (x, 1) ≺ϕ a, for all

∈ A0
x and ϕ1(x) = (x, 1) ≻ϕ b, for all b ∈ B0

x . Doing this for all
∈ I1, we have (x, 1) ≺ϕ x − 1 for all x ∈ I1. For x ∈ Ik, k ≥ 1, we

abel its ghost ϕk(x) = (x, k) and insert it just below x−k and also
elow (x′, j), for all 1 ≤ j ≤ k such that x′

∈ Ij and x′
− j = x − k.

Hence we have: ϕk(x) = (x, k) ≺ϕ (x′, j) ≺ x − k. In a similar
way, for x ∈ I−l, l ≥ 1, we create a ghost ϕ−l(x) = (x, −l) and
insert it above x + l. For x ∈ I−l, l ≥ 1, its ghost ϕ−l(x) = (x, −l)
is positioned above x + l and also above (x′, −j), for all 1 ≤ j ≤ l
such that x′

∈ I−j and x′
+ j = x+ l. Eventually, associated to each

x ∈ I0 \ {0, 1}, we have a family of ghosts (x+m,m), for all m ∈ Z
(where (x, 0) is interpreted as x ∈ I0). For the special points x = 1
and x = 0, the associated ghosts are, respectively, (1+k, k), k ≥ 0
and (−l, l), l ≥ 0. Therefore, Ĩ0 is the set of pairs (x + m,m), x ∈

I0 \ {0, 1},m ∈ Z together with the pairs (1 + k, k), k ≥ 0 and
(−l, l), l ≥ 0. This set is ordered by ≿ϕ as follows: for all x, x′

∈ I0
and all m,m′

∈ Z such that (x+m,m), (x′
+m′,m′) ∈ Ĩ0, we have

(x + m,m) ≻ϕ (x′
+ m′,m′) iff x > x′ or x = x′ and m < m′.

The set Ĩ0 is countably infinite and ≿ϕ is a complete preorder on
Ĩ0, hence it has a numerical representation f in the rational ]0, 1[
interval.9 Letting u(x + m) = f ((x + m,m)) + m, for all x ∈ I0,
yields a numerical representation of the semiorder S on Q. Note
that such a representation is at the same type strict and nonstrict
(see Remark 38). ⋄

4.4. Sparing ghosts

In the construction of a representation described in
Sections 4.1 and 4.2, all elements from Ik, k ≥ 1, are represented
by ghosts that are distinct and also distinct from ghosts of el-
ements of Ik−1 (and similarly for I−l and I−l+1). The complete
preorder ≿ϕ that is constructed on Ĩ0 actually is a linear order
since distinct elements in Ĩ0 are never equivalent (i.e., the sym-
metric part ∼ϕ of ≿ϕ reduces to identical pairs). In this section
we determine the conditions under which ghosts of elements
from Im and Im′ , with m ̸= m′, can be set equivalent (w.r.t.
≿ϕ). Actually, there is no need for conditions unless m = k and
m′

= k − 1 with k > 0 or m = −l and m′
= −l + 1 with l > 0.

We illustrate a variant of the ghost construction on Example 29.
While positioning ghosts, we put as many ghosts as possible in
the same equivalence class of ≿ϕ . Although we do not really

9 One way of building such a representation is as follows.
1. Label each element of the denumerable set I0 = [0, 1] ∩ Q by a positive

nteger, i.e., I0 = {xn, n ∈ N0}; let n(0) (resp. n(1)) be such that xn(0) = 0 (resp.
n(1)=1).
2. Set g(xn) = xn +

∑
j:xj<xn

1
2j

+
1

2n+1 .

3. Set g((xn+m,m)) = g(xn)−sign(m) 1
2n+1

∑
1≤j≤|m|

1
2j
, whenever (xn+m,m) ∈

˜0 .
4. Set f ((x+m,m)) =

1
2 g((xn +m,m)), whenever (x+m,m) = (xn +m,m) ∈ Ĩ0 .

f is a numerical representation of ≿ ranging in the (rational) interval ]0, 1[.
ϕ
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‘spare ghosts’’ in the true sense, we do not discriminate between
s many of them as possible.
We recall the assumption made at the outset that no pair of

istinct elements in X are equivalent with respect to ≿, i.e., the
quivalence classes of ∼ are singletons.

roposition 40. For k ≥ 1, let Ik = {zt , t ∈ Tk}, with Tk ⊆ N,
a set of consecutive integers starting with 1. In the construction of
a representation described in Section 4, the ghost ϕk(zt ) can be set
quivalent (w.r.t. ≿ϕ) to the ghost ϕk−1(z ′) for some z ′

∈ Ik−1 if and
only if the following two conditions are satisfied:

1. Ak−1
t = {x ∈ Ik−1 : zt Ix} has a least element (w.r.t. ≿), which

is z ′,
2. zt is the greatest element in Ik that is indifferent to z ′.

Similarly, for l ≥ 1, let I−l = {zt , t ∈ T−l}, with T−l ⊆ N, a set
of consecutive integers starting with 1. The ghost ϕ−l(zt ) can be set
equivalent (w.r.t. ≿ϕ) to the ghost ϕ−l+1(z ′) for some z ′

∈ I−l+1 if
and only if the following two conditions are satisfied:

1. B−l+1
t = {x ∈ I−l+1 : zt Ix} has a greatest element (w.r.t. ≿),

which is z ′,
2. zt is the least element in I−l that is indifferent to z ′.

Proof. Consider the case k ≥ 1. We first prove that we can set
ϕk(zt ) equal to ϕk−1(z ′) if the conditions are fulfilled. Let zs ∈ Ik.
If zs ≻ zt , we have that zsPz ′, by the second hypothesis. Hence
we have to set ϕk(zs) ≻ϕ ϕk(zt ) ∼ϕ ϕk−1(z ′), which raises no
problem. For all z ≺ z ′, we have ztPz, which is compatible with
ϕk−1(z) ≺ϕ ϕk−1(z ′) ∼ϕ ϕk(zt ).

We now prove the necessity of the two conditions. Suppose
that we set ϕk(zt ) ∼ϕ ϕk−1(z ′) while there exists z ′′ with z ′

≻ z ′′

and zt Iz ′′. Then, using a representation f of the complete preorder
on Ĩ0, we build the representation of the semiorder according to
formula (5), and obtain u(zt ) = u(z ′) + 1 > u(z ′′) + 1, which
contradicts zt Iz ′′.

In a similar way, assuming that we set ϕk(zt ) ∼ϕ ϕk−1(z ′) while
there exists zs ∈ Ik with zs ≻ zt and zsIz ′, and constructing a
representation of the semiorder as described in Section 4.2 leads
to u(zs) > u(zt ) = u(z ′) + 1, which contradicts zsIz ′.

The case l ≥ 1 is proved similarly. □

Remark 41. In case z ′, zt satisfy the conditions in Proposition 40
for k ≥ 1 (resp., for l ≥ 1), the pair (z ′, zt ) (resp., the pair
(zt , z ′)) has been called a hollow in Pirlot (1990, 1991). This notion,
together with the dual notion of nose (a minimal strict preference
pair), plays a crucial role in the theory of minimal representation
of a finite semiorder. It turns out that their role is also important
in the characterization of the uncountable semiorders admitting
a unit representation (see Bouyssou & Pirlot, 2020a, 2020b).

Remark 42. In case we ‘‘spare ghosts’’ in the insertion pro-
cess and apply the representation construction process described
in Section 4.2, we obtain a representation that is strict (for-
mula (1)) and not nonstrict (as soon as the semiorder has at
least one hollow, i.e., a pair z ′, zt satisfying the conditions in
Proposition 40).

Example 29 (Cont’d). Let us reconsider the ghost insertion pro-
cedure described in Section 4.3 for the case of Example 29, i.e.,
the usual semiorder S = (P, I) on Q. We insert the ghosts of
the elements of I1 = ]1, 2] in I0 = [0, 1]. For x ∈ I1, x − 1
in I0 is the least rational indifferent to x and x is the greatest
indifferent to x − 1. Therefore the conditions of Proposition 40
are fulfilled and we may assign the ghost ϕ1(x) to the indifference

class (w.r.t. ≿ϕ) of x − 1 ∈ I0. This can be done for all elements
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in I1. Each element in I1 is indifferent to an element in I0. Only
the indifference class of 0 ∈ I0 remains a singleton. We go on
with inserting the ghosts of the elements x of I2. Since x and
x− 1 ∈ I1 fulfill the conditions of Proposition 40, we add ϕ2(x) to
the indifference class of ϕ1(x−1) and x−2, for all x ∈ I2. Going on
in the same way for all Ik, k ≥ 1, and then, similarly, for inserting
the ghosts of all the elements of I−l, l ≥ 1, we eventually come
to the following complete preorder ≿ϕ on Ĩ0. The elements of I0
are ordered as with ≿. Each element x ̸= 0, 1 in I0 is indifferent
(∼ϕ) to the ghosts of x + m, for all m ∈ Z. The cases x = 0 and
x = 1 are particular; x = 0 is indifferent to −l, for all l ∈ N;

= 1 is indifferent to k, for all k ∈ N. In order to obtain a unit
epresentation of the semiorder S, we may select the canonical
epresentation of the complete preorder ≿ϕ , i.e., we define f (x) =

for each x in I0 and all ghosts belonging to its indifference class.
hen we apply (5), yielding u(x) = x − m + m = x for all

x ∈ Im,m ∈ Z.
Note that we allowed f (x) to range in [0, 1], not in ]0, 1[. The

obtained numerical representation actually returns the semiorder
in its initial form. This would not be the case if we restricted the
range of f (x) to a subset of ]0, 1[. Note also that the obtained
representation is strict (and not at the same time nonstrict) even
if we restrict f (x) to range in ]0, 1[ (see Remark 42). ⋄

4.5. Bounds on the representations

In this section we establish bounds on the values of the unit
representations constructed by the procedure described above.
The existence of such bounds will be useful for assembling unit
representations on the various connected components of (X, I) in
order to obtain a unit representation of the whole semiorder (see
Section 5).

Proposition 43. Let D be a connected component of (X, I) and
et D =

⋃
m∈M Im = (

⋃
k≥0 Ik) ∪ (

⋃
l>0 I−l), where the subsets

m,m ∈ M are a decomposition of D as described in Section 3.2.
et f be a representation of the complete preorder ≿ϕ on Ĩ0 satis-
ying the unit threshold constraint (6) and u the representation of
he semiorder (P, I) on X defined by the lifting equation (5). The
ollowing inequalities hold: for all a ∈ I0,

k − 1 < u(x) − u(a) ≤ 2k + 1 for all x ∈ Ik, k ≥ 0, k ∈ M,

2l − 1 ≤ u(x) − u(a) < −l + 1 for all x ∈ I−l, l ≥ 0, −l ∈ M.

here exist semiorders for which the non-strict inequalities above are
ight and the strict inequalities cannot be improved.

roof.

1. For x ∈ I0, the first double inequality with k = 0 holds
since xIa and u is a representation of the semiorder.

2. We prove the first double inequality by induction. Assume
that 0 < k and k ∈ M . Assume that the first double
inequality holds for m = 1, . . . , k − 1. In particular, for
all y ∈ Ik−1, we have k − 2 < u(y) − u(a) ≤ 2k − 1. By
Proposition 24.4, for all x ∈ Ik, there is y ∈ Ik−1 such that
xPy. Therefore, u(x) > u(y) + 1 > u(a) + k − 2 + 1. The
strict inequality is thus established. To establish the other
inequality, we use the I-connectedness of D, which implies
that there are z ∈ Ik and y ∈ Ik−1 such that zIy. By also using
xIz, we get : u(x) ≤ u(z)+1 ≤ u(y)+2 ≤ u(a)+2k−1+2.
The double inequality for k ≥ 0 thus holds.

3. The proof of the second double inequality is similar. It is
left to the reader.

he fact that, for some semiorders, the strict bound cannot be
mproved and the other bound is tight is shown by Example 44
elow. □
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xample 44. Let (P, I) be the semiorder on Z defined for all
, y ∈ Z by xPy if x > y + 1 and xIy if |x − y| ≤ 1. Two integers
re indifferent if and only if they are consecutive. Let I0 be {0, 1}.
e have:

Ik = {2k, 2k + 1} for k ≥ 0,

−l = {−2l, −2l + 1} for l ≥ 0.

n case we decide to ‘‘spare ghosts’’, we may set ϕ1(2) = 1,
2(4) ∼ϕ ϕ1(3) ≻ϕ ϕ1(2) and, in general, for k > 0, ϕk(2k) ∼ϕ

k−1(2k − 1) ≻ϕ ϕk−1(2k). For I−l and l > 0, we may set
−1(−1) = 0, ϕ−2(−3) ∼ϕ ϕ−1(−2) ≺ϕ ϕ−1(−1) and, in general,
−l(−2l + 1) ∼ϕ ϕ−l+1(−2l + 2) ≺ϕ ϕ−l+1(−2l + 3).
We may then build f as follows on

⋃
k≥0 ϕk(Ik) : f (0) = 0,

(1) = 1 = f (ϕ1(2)), f (ϕ1(3)) = f (ϕ2(4)) = 1 + ε for 0 < ε ≤ 1,
(ϕk−1(2k − 1)) = f (ϕk(2k)) = 1 + (k − 1)ε. On ϕ−l(I−l), l ≥ 0, we
ay set: f (ϕ−1(−1)) = f (0) = 0, f (ϕ−1(−2)) = f (ϕ−2(−3)) = −ε,
(ϕ−l+1(−2l + 2)) = f (ϕ−l(−2l + 1)) = (−l + 1)ε. If we set
= 1 and define u by using (5), we get, for Ik = {2k, 2k + 1},
(2k) = f (ϕk(2k)) + k = 1 + (k − 1) + k = 2k and u(2k + 1) =

(ϕk(2k + 1)) + k = 1 + k + k = 2k + 1. In a similar way, we
ave u(x) = x for x ∈ I−l for all l > 0. Therefore, u(x) = x, for all
∈ Z. The inequality u(x) − u(a) ≤ 2k + 1, for all x ∈ Ik, k ≥ 0 is
atisfied to equality for x = 2k + 1 and a = 0. In a similar way,
he inequality −2l − 1 ≤ u(x) − u(a) is satisfied to equality for
= −2l and a = 1.
Let us build now other ghosts and another representation u

hat show that the strict inequalities in Proposition 43 cannot be
mproved. This time, it is decided not to spare ghosts. It is not
ifficult to see that we may position the ghosts in such a way
hat the preorder ≿ϕ on Ĩ0 can be represented by the function f
efined as follows. Choose a constant ε such that 0 < ε ≤ 1.
e set f (0) = 0 and f (1) = 1. For all k > 0, we set f (ϕk(2k)) =

(ϕk−1(2k−2))+ ε

2k
= ε( 12 +· · ·

1
2k
) = ε(1−

1
2k
) and f (ϕk(2k+1)) =

(ϕk−1(2k−1))+ ε

2k
= 1+ε(1−

1
2k
). We then define u(x) for x ∈ Ik,

> 0, using (5). We have u(2k) = k + ε(1 −
1
2k
) and u(2k + 1) =

+ k+ ε(1−
1
2k
). Therefore, for x ∈ Ik, k > 0, and a ∈ I0, we have

(x)−u(a) ≥ u(2k)−u(1) = k−1+ε(1− 1
2k
) > k−1+ε. Since ε may

e chosen arbitrarily close to 0, the difference u(x)− u(a) may be
rbitrarily close to k−1. In a similar way, we may define f on the
hosts of I−l for all l > 0 in such a way that u(−2l) = −l−ε(1−

1
2l
)

and u(−2l + 1) = 1 − l − ε(1 −
1
2l
). Therefore, for x ∈ I−l,

> 0, and a ∈ I0, we have u(x) − u(a) ≤ u(−2l + 1) − u(0) =

l + 1 − ε(1 −
1
2l
). Since ε may be chosen arbitrarily close to 0,

he difference u(x) − u(a) may be arbitrarily close to −l + 1. ⋄

emark 45. In case we enforce the representation f of the
omplete preorder ≿ϕ to range in ]0, 1[ (instead of allowing
or the less restrictive unit threshold constraint (6)), we get the
ollowing bounds on the representation u: for all a ∈ I0,

k − 1 < u(x) − u(a) < k + 1 for all x ∈ Ik, k ≥ 0, k ∈ M,

l − 1 ≤ u(x) − u(a) < −l + 1 for all x ∈ I−l, l ≥ 0, −l ∈ M.

t is easy to verify that the above inequalities cannot be improved.

.6. Uniqueness

The question of the uniqueness of unit representations for
emiorders is more delicate than, e.g., for linear orders. In the
atter case, it is well-known that the numerical representation of
linear order, when it exists, is unique up to a strictly increasing
ransformation. The first issue raised by the representation of
emiorders is related to the fact that equivalent elements of X
re not necessarily represented by the same number. Regular
epresentations are precisely these in which equivalent elements
14
re assigned the same number (see Roberts, 1979, p. 60 and
. 252). This issue can be avoided by considering only semiorders
ithout equivalent elements, which we assume in this paper (see
ection 2).
A second issue relates to the possible existence of several

onnected components in the graph of (X, I). Basically, the min-
imal difference between two elements belonging to consecutive
connected components has to be larger than 1. The possible ways
of assembling numerical representations of the semiorders on
different connected components will be discussed in Section 5.

In this section, we focus on the uniqueness of the unit rep-
resentation of a semiorder restricted to a connected component
D of (X, I). In the construction process of a representation (de-
scribed in Sections 3.2 and 4), we can point out three types of
arbitrary choices, which may result in different representations:

• the choice of the initial bipartition (A, B) and the application
of DFP or UFP for generating I0, in the construction of the
partition {Im,m ∈ M} of D in Section 3.2,

• in some cases, several positions for inserting ghosts are
allowed. Their position is well-determined only with respect
to the ghosts in the indifference class Im inserted at the
previous step. It is possible to ‘‘spare ghosts’’ (or not) by
‘‘merging’’ them with some previously inserted ones,

• the choice of a numerical representation of the complete
preorder ≿ϕ on Ĩ0 is arbitrary modulo condition (6), which
states that the difference between the values associated to
indifferent elements of X must be at most 1.

Actually, the first source of arbitrariness, i.e., the particular
partition {Im,m ∈ M} considered, is irrelevant. Indeed, the pro-
cedure for constructing a representation involves three steps:
construction of a partition into indifference classes, ghost inser-
tion, choice of a numerical representation of the order on the
ghosts and lifting. All unit representations of the semiorder can
be obtained by this procedure, whatever the way the initial step
is performed. This is shown in Proposition 46. The last two steps
are the only ones that matter. The process of construction of a
representation described in Sections 4.2 and 4.4 can generate any
unit representation of the semiorder on D (independently of the
chosen partition {Im,m ∈ M}). The decisions made during this
process are thus the only degrees of freedom in the construction
of a unit representation. In other words, the unit representation of
a connected semiorder is unique up to the possible orders on the
ghosts and the choice of a representation of the order ≿ on Ĩ0 sat-
isfying condition (6). Before stating and proving this ‘‘uniqueness’’
result, we illustrate on Example 29 how the different degrees of
freedom come into play in the construction of a representation

Example 29 (Cont’d). Let X = Q and S = (P, I) be the usual
semiorder on the rationals (see Example 29). Consider the parti-
tion into equivalence classes Im,m ∈ Z described in Example 29.
We have I0 = [0, 1], Ik = ]k, k + 1], for k ≥ 1, and I−l =

[− l, −l+1[, for l ≥ 1. Let x ∈ I1. Its ghost ϕ1(x) must be inserted
in order to satisfy x − 1 − ε ≺ϕ ϕ1(x) ≾ϕ x − 1, for all ε > 0.

We may choose to insert ϕ1(x) strictly before x − 1, i.e.,
1(x) ≺ϕ x − 1. This will result in a ‘‘gap’’ in the range of the

semiorder representation u to be constructed, i.e., u(Q) will not
intersect the interval [u(x) − 1, u(x)[. Such a gap appears in the
representation whenever a ghost of x ∈ Ik, k ≥ 1 (resp. x ∈ I−l, l ≥
1) is not set equivalent (∼ϕ) to the ghost of x − 1 (resp. x + 1).

In contrast, if we choose to systematically ‘‘spare’’ ghosts, as
done in Example 29 on Section 3.4, then the ghost of each element
x ̸∈ I0 is equivalent (∼ϕ) to an element in I0. In this case, the only
degree of freedom is the choice of a numerical representation
f : I0 → [0, 1] of the linear order ≿=≥ restricted to I0. Any
gap in the range of f will reproduce for each indifference class I .
m
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ndeed, if there is an interval [α, β] ⊆ [0, 1] such that f (I0)∩[α, β]

s empty, then u(Im)∩[α +m, β +m] is also empty, for all m ∈ Z.
ctually, the shape of f as a function from I0 into [0, 1] will be
eproduced by the lifting operation for all indifference classes
m. With the particular choice f (x) = x, for all x ∈ [I0], the
anonical representation of the semiorder is restored, as shown
n Section 4.4 (Example 29).

roposition 46. Let u be any unit representation of the semiorder
P, I) restricted to the connected component D of (X, I). This repre-
entation can be obtained by the construction process described in
ections 4.2 and 4.4 by making appropriate feasible choices.

roof. Consider any partition (Im,m ∈ M) of D into indiffer-
nce classes, as described in Section 3. We may define Ĩ0 and
he complete preorder ≿ϕ on the ghosts directly, by using the
epresentation u. Let

˜0 =

⋃
m∈M

ϕm(Im),

etting ϕ0(x) = x whenever x ∈ I0. Let ϕm(x) (resp., ϕm′ (y)) be the
host of x ∈ Im (resp., y ∈ Im′ ). We define the complete preorder
ϕ on Ĩ0 by:

m(x) ≿ϕ ϕm′ (y) if u(x) − m ≥ u(y) − m′. (7)

This order on the ghosts, corresponds to one feasible way of
inserting recursively the ghosts as described in Sections 4.2 and
4.4. Consider for instance z ∈ Ik, for some k > 0, k ∈ M . The
osition of ϕk(z) in the preorder ≿ϕ must satisfy the following

requirements:

1. ϕk(z) ≻ϕ ϕk(z ′) for all z ′
∈ Ik with z ≻ z ′. This requirement

is satisfied since z ≻ z ′ entails u(z)−k > u(z ′)−k and there-
fore ϕk(z) ≻ϕ ϕk(z ′), by definition (7). The requirement for
z ′

∈ Ik with z ′
≻ z is established similarly.

2. assuming k ≥ 1, we must have ϕk(z) ≾ϕ ϕk−1(z ′) for all
z ′

∈ Ik−1 such that zIz ′. We have indeed that z ′Iz and
z ≻ z ′ entails 0 < u(z) − u(z ′) ≤ 1. Therefore u(z) − k ≤

u(z ′) − k + 1 yields ϕk(z) ≾ϕ ϕk−1(z ′), by definition (7). In
the case z ′

∈ Ik−1 and zPz ′, we have u(z) > u(z ′) + 1. From
u(z)−k > u(z ′)−k+1 and (7), we deduce ϕk(z) ≻ϕ ϕk−1(z ′).

3. the conditions for sparing ghosts, i.e. considering some
ghosts as indifferent in the preorder ≿ϕ are respected by
(7).

The similar conditions relative to the insertion of ϕ−l(z) for z ∈

I−l, for some l > 0, −l ∈ M follow in an analogous way.
Now let us choose, as representation of the complete preorder

≿ϕ on Ĩ0, the following function f , defined by:

f (ϕm(x)) = u(x) − m,

for all x ∈ Im. The function f is a representation of ≿ϕ on Ĩ0 since
ϕm(x) ≿ϕ ϕm′ (y) iff f (ϕm(x)) = u(x) − m ≥ f (ϕm′ (y)) = u(y) − m′.
Function f satisfies (6) since |u(x) − u(y)| ≤ 1, for all x, y ∈ Im and
all m ∈ M . Applying (5) restates the unit representation u. □

5. Building a unit representation for non-connected
semiorders

At this stage we know from Proposition 36 that each I-
connected component of a semiorder S = (P, I) on a countable
set X has a unit representation. When does this imply that the
semiorder as a whole has a unit representation? When this is the
case, can we build the unit representation of the whole semiorder
by assembling the unit representations of its components? Beja
15
and Gilboa (1992) and Manders (1981) have given distinct neces-
sary and sufficient conditions guaranteeing that a semiorder on a
countable set admits a unit representation.

The goal of this section is to analyze these conditions and
to show how to obtain a representation of the semiorder from
those of its I-connected components, provided a representability
condition is fulfilled.

5.1. Manders’ condition

For the reader’s convenience, we recall definitions that allow
to formulate the condition used in Manders (1981, p. 238–239).

Let P∗ denote the covering relation associated to P , i.e., for
x, y ∈ X , we have xP∗y if xPy and there is no z ∈ X such that
xPzPy. So, xP∗y if y is an immediate successor of x in the partial
order P . Manders (1981) defines the relation I∗ as follows. For
x, y ∈ X , we have xI∗y if xIy or xP∗y or yP∗x. The transitive closure
of I∗ is denoted by I∗. To illustrate these definitions, let S = (P, I)
be the usual semiorder Q (see Example 29). For all x, y ∈ Q, we
have xP∗y iff y + 1 < x ≤ y + 2 and xI∗y iff |x − y| ≤ 2.

ondition 1 (Manders). The relation I∗ is connected.

Manders’ condition amounts to say that for all x, y ∈ X , there
s an I∗-chain joining x to y. In other words, it is possible to go
rom x to y following a path that uses either indifference arcs or
umps between ‘‘nearest neighbors’’ in the P relation.

We give an alternative formulation of Manders’ condition and
we prove that they are equivalent.

Condition 2. For all x, y ∈ X with xPy, there is a P∗-chain joining
x to y.

Proposition 47. The semiorder S = (P, I) on X satisfies Condition 1
iff it satisfies Condition 2.

Proof.

1. Let x, y ∈ X with xPy. Assume that I∗ is connected. Consider
an I∗-chain (xi, i = 0, . . . , n) joining x = x0 to y = xn. This
chain is composed of pairs of elements belonging to I , P∗

or (P∗)−1. We may assume w.l.o.g. that Not[xi ∼ xi+1], for
all i.
Assume first that this chain is monotone w.r.t. to the trace
≿, i.e., xi ≻ xi+1 for all i = 0, . . . , n−1. This implies that the
chain has only pairs belonging to I or P∗. If it has only P∗

pairs, there is nothing to prove. Otherwise, for some i, we
have (case 1) xiIxi+1P∗xi+2 or (case 2) xiP∗xi+1Ixi+2 or else
(case 3) the chain has only I pairs.
Case 1. Let xiIxi+1P∗xi+2. Either we have xiP∗xi+2 or there is
z ∈ X with xiPzPxi+2. In the former case, we may remove
the I pair from the chain, going directly from xi to xi+2 using
the P∗ pair (xi, xi+2). In the other case, there is z ∈ X such
that xiPzPxi+2. It is easy to prove that xiP∗zP∗xi+2. Indeed,
clearly, xi+1 ≻ z ≻ xi+2. There is no w ∈ X such that xi+1 ≻

zPwPxi+2, since this would contradict xi+1P∗xi+2. Therefore,
zP∗xi+2. In a similar way, there is no w ∈ X such that
xiPwPzPxi+2. Otherwise we would have xi+1 ≻ wPzPxi+2
contrary to xi+1P∗xi+2. In all cases, we may thus replace the
sub-chain xiIxi+1P∗xi+2 by a sub-chain composed of one or
two P∗ pairs, thus eliminating the I pair.
Case 2. Let xiP∗xi+1Ixi+2, is dealt with similarly. The con-
clusion is that the I pair can be removed by replacing the
initial sub-chain by one or two pairs from P∗.
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Case 3. The chain only has I pairs. We know that xPy. If
xP∗y, the result is immediate. Otherwise, there is z ∈ X
with xPzPy. For some i, we have xi ≿ z ≻ xi+1. If xP∗z, we
may replace the initial pairs of the chain (from x = x0 to
xi+1) by xP∗zIxi+1 which yields another I∗-chain from x to
y. This chain has a configuration that pertains to case 2. We
thus apply the procedure for case 2 chains, which results
in the elimination of I pairs.
By repeatedly applying the above procedures to case 1 or
case 2, we eliminate all I pairs.
To finish, consider an I∗-chain that is not monotonic w.r.t.
≿. If the chain goes beyond y, let xj be the first element such
that y ≻ xj. So, we have xj−1 ≿ y. Clearly, we have either
xj−1Iy or xj−1P∗y. In both cases we may replace the initial
chain by the shorter I∗-chain (x′

i, i = 0, . . . , j) with x′

i = xi,
for i = 1, . . . , j − 1, and x′

j = y. We may thus restrict our
attention to I∗-chains for which xi ≿ y, for all i.
Consider an I∗-chain (xi, i = 0, . . . , n) with x0 = x, xn = y
and xi ≿ y, for all i. Assume that this chain is not monotonic
w.r.t. ≿. Let k be the least value of i, 0 ≤ i < n such that
xk+1 ≻ xk. Let xl be the first element in the chain such
that xk ≻ xl. Clearly, we have either xkIxl or xkP∗xl. We
may thus remove from the chain the pairs (xi, xi + 1) for
i = k, . . . , l− 1, and replace them by the single pair (xk, xl)
which belongs either to I or P∗. Iterating this procedure,
we transform the chain into an I∗-chain that is monotonic
w.r.t. ≿. So the case of non-monotonic I∗ chain can be
reduced to that of monotonic ones. This concludes the first
part of the proof.

2. Proving the converse is easy. Assume that Condition 2 is
fulfilled. Consider a pair x, y ∈ X . There are three cases.
If xIy, the thesis is established. If xPy, Condition 2 entails
the existence of a P∗-chain, hence an I∗-chain from x to y.
Finally, if yPx, Condition 2 entails there is a P∗-chain from
y to x, hence a (P∗)−1-chain from x to y. The latter is also
an I∗-chain. □

5.2. Beja and Gilboa’s condition

It reads as follows Beja and Gilboa (1992, Axiom 1, p. 435).

Condition 3 (Beja and Gilboa). For every P-chain (xi ∈ X, i ∈ J),
J ⊆ Z, a set of consecutive integers

• if the P-chain has no last element, for all z ∈ X, there is n ∈ J
such that zPxn,

• if the P-chain has no first element, for all z ∈ X, there is n ∈ J
such that xnPz.

In words, this property says that, if we have an infinite P-chain
without a last element, there is no object which all elements xi
in the chain are preferred to. In a similar way, for any infinite P-
chain without a first element, there is no object which is preferred
to all elements in the chain. This property is called regularity
in Candeal and Induráin (2010).

We give an alternative formulation of Beja and Gilboa’s con-
dition and we prove that they are equivalent.

Condition 4 (Bounded P-chain Condition). Every bounded P-chain
is finite.

This property says that, if (xi, i ∈ J) is a P-chain indexed by
J ⊆ Z, a set of consecutive integers, and there are a, b ∈ X such
that aPxiPb for all i ∈ J , then |J| < ∞. This condition is clearly
necessary for the existence of a unit representation.

Proposition 48. The semiorder S = (P, I) on X satisfies Condition 3
iff it satisfies Condition 4.
16
Proof.

1. Assume that Beja and Gilboa’s Condition 3 holds and sup-
pose that Condition 4 is not verified. Hence there are a, b ∈

X with aPb, and a P-chain (xi, i ∈ J) with aPxiPb for all
i ∈ J and |J| = ∞. The chain has either no last element
or no first element (or has neither last nor first element).
In the former case, we have xiPb for all i ∈ J , contrary to
Condition 3. In the latter case, we have aPxi for all i ∈ J ,
which also contradicts Condition 3.

2. Assume that Condition 4 is verified and let us prove that
Beja and Gilboa’s Condition 3 must hold. Let (xi, i ∈ J) be
a P-chain without a last element and suppose that Beja
and Gilboa’s property is violated for that chain, i.e., there is
z ∈ X such that Not[zPxi] for all i ∈ J . We have xi−2Pxi−1Pcdz
for all i ∈ J , where the co-dual Pcd of P is defined by xPcdy
iff Not[yPx]. A well-known property of semiorders (Pirlot &
Vincke, 1997, Th. 3.2, p.53) states that PPPcd

⊆ P . Therefore
xi−2Pz, for all i, which implies xiPz for all i such that i − 2
belongs to J .
Choose an arbitrary i0 ∈ J (with i0 − 1 ∈ J) and consider
the truncated P-chain (xi, i ∈ J, i > i0). This is a chain
which has no last element and such that xi0PxiPz, for all
i > i0. Applying Condition 4, using the bounds a = xi0
and b = z, we conclude that |{i ∈ J, i > i0}| < ∞, which
contradicts the initial assumption that the chain has no last
element. The proof in case the chain has no first element
is similar. □

In preference to Beja and Gilboa’s Condition 3, we shall use
the (equivalent) Bounded P-chain condition, which seems more
compact. The latter condition actually implies that among all P-
chains contained in an interval [a, b], with a ≿ b, there is (at least)
one having maximal length. Putting it another way, there cannot
be P-chains of arbitrary length in a given interval.10 To prove this
result, we need a lemma.

Lemma 49. Let S = (P, I) be a semiorder on X and Z a denumerable
subset of X that is totally ordered by P. Then there is a denumerable
P-chain that is formed of elements of Z.

Proof. We distinguish three cases: Z (ordered by P) has no
greatest element or it has no least element or it has both a
greatest and a least element.

1. If Z has no least element, let us pick any element y0 ∈ Z .
Since y0 is not a least element in Z , there is y1 ∈ Z with
y0Py1. In turn, y1 is not a least element, so that there is
y2 ∈ Z with y1Py2. Iterating this, we generate a P-chain
(yi, i ∈ N), with yiPyi+1 for all i ∈ N.

2. If Z has no greatest element, a similar process leads to
generating a P-chain (y−i, i ∈ N).

3. If Z has both a least and a greatest element, let w0 denote
its greatest element. We construct wi recursively, starting
with w0 as follows. Assume that wi−1, i ≥ 1, has been
obtained. If the set {z ∈ Z, wi−1Pz} has no greatest element,
the construction process stops in wi−1, which is such that
Zi = {z ∈ Z, wi−1Pz} ⊆ Z has no greatest element. By

10 The Bounded P-chain condition has the flavor of an Archimedean axiom.
It sounds like ‘‘Every bounded standard sequence is finite’’ (Krantz et al., 1971,
p.25). Here the sequence of pairs of objects in P plays a role similar to that
of equally spaced preference intervals (see, in particular, the strong standard
sequences defined in Gonzales, 2003, p. 51). Such properties are required for
enabling representations using real numbers since the values assigned to two
elements of a P-chain (resp. a standard sequence) must at least differ by a
positive constant times the number of arcs of the P-chain (resp. the number of
equally spaced preference intervals) between these two elements.
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applying to Zi the construction described in item 2, we
obtain a P-chain (y−i, i ∈ N) included in Zi. Otherwise, if
{z ∈ Z, wi−1Pz} has a greatest element, we call it wi and
the construction of a P-chain (wj, j = 0, . . . , i) continues.
If a set Zi without a greatest element is never met, then a
P-chain (wi, i ∈ N) is eventually obtained.

n all these cases, a denumerable P-chain can be extracted from
he set Z , ordered by P . □

roposition 50. If P is the asymmetric part of a semiorder, the
ounded P-chain condition is equivalent to the following property:
or all a, b ∈ X, with a ≿ b, the length of the P-chains (xi, i ∈ J) such
hat a ≿ xi ≿ b for all i ∈ J is bounded.

roof. This property clearly implies the Bounded P-chain condi-
ion, so that we only have to prove the direct implication (since
ounded length chains are finite). Assume that Condition 4 holds
nd suppose that, contrary to the thesis, there are P-chains of
rbitrary large length contained in interval [a, b]. Consider such a
hain (x1, x2, . . . , xn) of finite length n. Since P is the asymmetric
art of a semiorder, its trace ≿ defined in Section 2 is a complete
reorder and we have a ≻ x1 ≻ x2 ≻ . . . ≻ xn ≻ b. The chain

determines a partition of interval [a, b] into n + 1 intervals. We
irst prove that the P-chain can be extended into a P-chain of
ength n + 1.

Since, by hypothesis, there are P-chains of arbitrary length, let
s consider a P-chain (yj, j ∈ J ′), with a ≿ yj ≿ b for all j and |J ′| ≥

2(n + 1) + 1. Among the intervals [a, x1], [x1, x2], . . . , [xi, xi+1],

. . , [xn, b] there is at least one containing three successive ele-
ents yj−1, yj, yj+1. These three elements lie in [a, x1], in [xn, b]

or in one of the intervals [xi, xi+1]. In the latter case, we have:
xiPyjPxi+1 (since xi ≿ yj−1Pyj implies xiPyj and yjPyj+1 ≿ xi+1
implies yjPxi+1). We can thus build a P-chain of length n + 1
by inserting an additional element yj between two elements of
the chain (xi, i = 1, . . . , n). The two remaining cases, i.e., [a, x1]
(resp. [xn, b]) contains three consecutive elements yj−1, yj, yj+1,
are dealt with similarly, all leading to prove the existence of a
P-chain of length (n + 1).

Under the hypothesis that there are P-chains of arbitrary
length in the interval [a, b], we can iterate the previous extension
of the chain, inserting, at each step k, at least one additional
element zk. The elements zk, for k ∈ N0 (the set of positive
integers), together with the elements x1, . . . , xn of the initial
chain, form a countably infinite set Z that is totally ordered by
P . It is not necessarily a P-chain but it contains a denumerable
P-chain by Lemma 49. All its elements belong to interval [a, b].
This contradicts the Bounded P-chain condition. □

An immediate consequence of this property is the following.

Corollary 51. If P is the asymmetric part of a semiorder and satisfies
the Bounded P-chain condition, any subset of an interval [a, b] which
is totally ordered by P is a finite P-chain. Such subsets have a
bounded cardinality which depends on a and b. If such a subset
contains a and b, it is a P-chain starting at a and terminating at
b.

Proposition 50 states, under the Bounded P-chain condition,
that there is a maximal finite length P-chain in each interval
[a, b]. If a and b belong to the same connected component D
of (X, I), this property is certainly true. Actually, we have the
following.

Proposition 52. The semiorder induced by S = (P, I) on a
connected component D of (X, I) satisfies the Bounded P-chain
condition.
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Proof. Let a and b be two elements of D and assume w.l.o.g. that
a ≿ b. By definition of a connected component of (X, I), a and b
are linked by a finite chain of I . Therefore, any P-chain in [a, b]
must be finite. □

This is no surprise since the Bounded P-chain condition is
a necessary condition for the existence of a unit representation
of a semiorder and it has been shown in Section 4 that any
denumerable connected semiorder admits such a representation.
In contrast, semiorders that are not connected may – or not –
satisfy the Bounded P-chain condition. Consider, for instance, the
set X = {(x, z), x ∈ Y = Z, z ∈ {0, 1}}. The semiorder S = (P, I)
on X defined by (x, 1)P(y, 0), for all x, y ∈ Y = Z, and (x, z)P(y, z),
for all x > y + 1 and z ∈ {0, 1}, does not satisfy the Bounded P-
chain condition and has two connected components. If the set Y
above is redefined as the integer interval [−n, n], for any fixed
n ∈ N, n ≥ 1, then the semiorder also has two connected
components but satisfies the Bounded P-chain condition.

5.3. Four equivalent existence conditions

We prove that the four conditions studied in the latter two
sections, including Manders’ and Beja and Gilboa’s, are equivalent.

Proposition 53. For a semiorder S = (P, I) on a set X, Condi-
tions 1–4 are equivalent.

Proof. We already proved that the first two and the last two
conditions are equivalent (Propositions 47 and 48). We prove
below that Conditions 2 and 4 are equivalent.

Assume that Condition 2 holds. Contrary to the thesis, assume
that (xi, i ∈ J) is a P-chain with aPxiPb, for all i ∈ J and |J| = ∞.
Since aPb, using Condition 2, we know that there is a P∗-chain
(x′

j, j = 0, . . . , n) with x0 = a and xn = b. Since |J| is infinite,
for some j and i, we have xj ≿ xiPxi+1Pxi+2 ≿ xj+1. This entails
that xjPxi+1Pxj+1, contrary to xjP∗xj+1. So, Condition 2 implies
Condition 4.

We now assume that Condition 4 holds. Let x, y ∈ X be such
that xPy. If there is no z1 ∈ X such that xPz1Py, then xP∗y and we
are done. If there is such a z1, we have got a P-chain of length 2
joining x to y. Again, there are two cases. Either, this is a P∗-chain
of length 2 (and we are done) or there is z2 such that xPz2Pz or
zPz2Py. In the latter case, a P-chain of length 3 can be obtained.
By such a process, longer and longer P-chains joining x to y can
be obtained recursively. More formally, let xi, i = 0, . . . , n, with
x0 = x and xn = y be the P-chain obtained at step n. At step
n + 1, there are two cases. Either all pairs (xi, xi+1) belong to
P∗, or there is at least one i and zn ∈ X such that xiPznPxi+1.
In the former case, we have constructed a P∗-chain of length n
joining x to y and we are done. In the latter case, we have a
P-chain of length n + 1 joining x to y. The elements of this P-
chain are x, y and all elements zi, i = 1, . . . , n inserted in the
previous and the current step. By renumbering them properly,
we have a P-chain (x′

i, i = 0, . . . , n + 1), with x′

0 = x and
x′

n+1 = y. The process stops if a P∗-chain is obtained at some step
n. Otherwise, it continues for ever, generating a denumerable set
{zn, n ∈ N0}, which is totally ordered by P but is not necessarily a
P-chain. However, by Lemma 49, there is a denumerable subset
of this set that can be ordered in a P-chain. This would contradict
Condition 4. Therefore, the algorithm described above stops after
a finite number of steps and returns a P∗-chain joining x to y. □

Remark 54. Note that Proposition 53 does not use the hypothesis
that X is a countable set. The four conditions are thus equivalent
independently of the cardinality of X .
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In the sequel, we shall mainly use the Bounded P-chain con-
dition (Condition 4) as a formulation of the necessary and suf-
ficient condition for the existence of a unit representation of a
semiorder on a countable set. In particular, we shall use it to
show that such a representation can be obtained by assembling
unit representations of the semiorder restricted to its I-connected
components.

5.4. Consequences of the bounded P-chain condition

In Section 2.5, we defined a relation on the set F of connected
components of the indifference relation. This relation was defined
by (4) and denoted by P , abusing notation. Lemma 14 tells us that
the relation P on the set F of connected components of (X, I) is
a strict linear order. The consequences of the Bounded P-chain
condition for this order are stated in the following result.

Proposition 55. Under the Bounded P-chain condition, there is an
order isomorphism between F, linearly ordered by P, and a subset
Γ ⊆ Z of consecutive integers endowed with the order >, i.e., each
I-connected component D ∈ F can be assigned an index i belonging
to a subset Γ ⊆ Z of consecutive integers in such a way that for all
i, j ∈ Γ ,

i > j ⇒ DiPDj. (8)

Proof. With the aim of indexing the elements of F, we start
with an arbitrary connected component D, which we index as
D0. Let us consider an arbitrary other element E ∈ F. Either

0PE or EPD0. We consider the former case only (the latter
eing dealt with similarly). As a straightforward consequence
f Proposition 50, there exists a maximal finite chain D−i, with

i = 1, . . . , n1 and D−n1 = E , such that D0PD−1P . . . PD−n1 = E .
ote that this maximal chain is unique, since it consists of all
he elements of F that lie between D and E w.r.t. P . If there
xists C ∈ F such that EPC, we iterate the process, indexing by
n1 − 1, . . . ,−n1 − n2 the elements of F lying between E and
, with D−n1−n2 = C. Such iterations can either stop after a finite
umber of steps or continue without limit. In the latter case all
egative integers will be used but the process will exhaust the
lements of F to which D0 is preferred. Indeed, by the Bounded
-chain condition, it is impossible that there is D ∈ F such that
−nPD for all n ∈ N. We can index in a similar way, using positive
ntegers, the elements of F that are preferred to D0. The set of
ndices that have been used at the end of this process constitutes
he set Γ of consecutive integers. This set can be bounded or
nbounded in either direction. The numbering of the connected
omponents fulfills condition (8). □

emark 56. Proposition 55 shows that, under the Bounded P-
hain condition, there is an order isomorphism between the set
of the connected components of the graph of the indifference

elation on X , ordered by P , and a subset of consecutive integers
ndowed with the usual order. The Bounded P-chain condition
s a sufficient condition for that. It is easy to show that it is not
necessary condition. Let X = Z × {0, 1}. For all z, w ∈ Z and
, β ∈ {0, 1}, we define (z, α)P(w, β) if α > β or [α = β and
> w + 1]. The indifference relation I of this semiorder has

wo connected components, namely D0 = {(z, 1), z ∈ Z} and
1 = {(z, 0), z ∈ Z}. We have D0PD1 although the semiorder
oes not satisfy the Bounded P-chain condition.
On the other hand it is also easy to construct examples of

emiorders that do not satisfy the Bounded P-chain condition and
or which F, ordered by P , is not order-isomorphic with a subset
f (Z, >).
18
A further consequence of the Bounded P-chain condition is the
ollowing.

roposition 57. Let S = (P, I) be a semiorder on the denumerable
et X and satisfying the Bounded P-chain condition. Let D be a
onnected component of (X, I) and let D =

⋃
m∈M Im where the Im

re convex subsets built as described in Section 3.2. If the sequence
f subsets (Im,m > 0) is infinite, then D is up-terminal, in the sense
here is no y ∈ X with y ≻ z for all z ∈ D. Similarly, if the sequence
f subsets (Im,m < 0) is infinite, then D is down-terminal, in the
ense there is no y ∈ X with z ≻ y for all z ∈ D.

roof. Assume that (Im,m = 0, 1, . . .) is an infinite sequence
f subsets. By Proposition 24.4, there is an infinite sequence of
lements (xm ∈ Im,m = 0, 1, . . .) such that xm+1Pxm, for all

> 0. If there were y such that y ≻ x for all x ∈ D, then, in
articular, y ≻ xm+1 and xm+1Pxm, for all m > 0, would imply
Pxm, for all m > 0, contrary to Beja and Gilboa’s Condition 3,
ence contrary to the Bounded P-chain condition. The other part
f the proof is similar (using Proposition 24.5). □

.5. Assembling unit representations

Let us assume that a unit representation is known for each
onnected component of (X, I) and that the semiorder S = (P, I)
n X satisfies the Bounded P-chain condition. We show how
unit representation of the whole semiorder can be built by

ssembling the representations on the connected components.
his description enables to understand exactly which additional
egrees of freedom are available when assembling unit represen-
ations. These complete the picture given in Section 4.6, regarding
he uniqueness of the representation.

Assuming the Bounded P-chain condition, we know by Propo-
ition 55 that the connected components of (X, I) can be indexed
y a subset Γ ⊆ Z of consecutive integers. We assume w.l.o.g.
hat 0 ∈ Γ . The following proposition distinguishes four possible
ases for a connected component Di. It provides bounds for the
epresentation on each I-connected component. These bounds
ill be essential for assembling the representations.

roposition 58. Let Di ∈ F be a connected component of (X, I) and
et ui be a representation of the semiorder (P, I) restricted to Di as
onstructed in Section 4.1. We have the following cases.

1. If Di decomposes in a finite number of subsets Ik, for k =

−ni, . . . , 0, . . . ,mi, then the representation ui is bounded, we
have: ui < ui(x) < ui, for all x ∈ Di and mi+ni−2 ≤ ui−ui ≤

2(mi + ni) + 2.
2. If the sequence of subsets Ik is not bounded above but bounded

below, i.e., if Ik exists for all k ∈ Z with k ≥ −ni, then
the representation ui has no upper bound but it has a lower
bound ui. In this case, there is no element of F above Di,
i.e. i = max{j ∈ Γ }.

3. If the sequence of subsets Ik is not bounded below but bounded
above, i.e., if Ik exists for all k ∈ Z with k ≤ mi, then the
representation ui has no lower bound but it has an upper
bound ui. In this case, there is no element of F below Di,
i.e. i = min{j ∈ Γ }.

4. If the sequence of subsets Ik is not bounded neither above nor
below, i.e., if Ik exists for all k ∈ Z, then the representation ui
has neither an upper nor a lower bound. In this case, Di is the
only element of F ordered by P, i.e. {i} = Γ .

roof. If the sequence Ik is bounded, the boundedness of ui
irectly results from Proposition 43. The inequality mi + ni − 2 ≤

u − u ≤ 2(m + n )+ 2 obtains from Proposition 43 by observing
i i i i
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hat for any fixed choice of a ∈ I0 and for all x ∈ Imi , y ∈ I−ni , we
ave

i − 1 < ui(x) − ui(a) ≤ 2mi + 1 (9)

ni − 1 < ui(a) − ui(y) ≤ 2ni + 1. (10)

f there are subsets Ik for arbitrary large values of k, Proposition 57
ntails that the connected component Di is up-terminal, which

means that j ≤ i for all j ∈ Γ . The existence of a lower bound
for ui results from Proposition 43. The case in which there are
subsets Ik for arbitrary large negative values of k is similar. □

The following result indicates how to build a unit numerical
epresentation of the semiorder on X . It is the second main result
f this paper (the first one being Proposition 36). It shows that
ny semiorder on a denumerable set satisfying the Bounded P-chain
ondition has a unit representation.

roposition 59. Let ui be a representation of the semiorder (P, I)
restricted to each connected component Di, for i ∈ Γ . For each
bounded ui, let ui (resp., ui) denote its lower (resp., upper) bound.
Let εi, for i ∈ Γ , i ̸= 0 be arbitrary nonnegative or positive real
numbers. For i ≥ 1, εi must be positive if both bounds ui and ui−1
re attained, otherwise it can also be set to zero. For i ≤ −1, εi must
e positive if both bounds ui+1 and ui are attained, otherwise it can
lso be set to zero. The function u : X → R defined by:

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(x) for all x ∈ D0

ui(x) + u0 − ui + 1 + εi

+

∑
1≤j≤i−1

(uj − uj + 1 + εj), for all x ∈ Di, i ∈ Γ , i ≥ 1

ui(x) + u0 − ui − 1 − εi

−

∑
i+1≤j≤−1

(uj − uj − 1 − εj), for all x ∈ Di, i ∈ Γ , i ≤ −1

s a unit numerical representation of the semiorder (P, I) on X.

roof. If i = 1 ∈ Γ , then u0 is bounded above and u(x) ≤ u0, for
ll x ∈ D0. Since D1 is not down-terminal, u1 is bounded below by
1 and, by definition of u, we have u(y) = u1(y)+u0−u1+1+ε1 for
ll y ∈ D1. In this expression, ε1 ≥ 0. Moreover, ε1 ̸= 0 iff there is
∈ D0 such that u0(x) = u0 and z ∈ D1 such that u1(z) = u1. For

all x ∈ D0 and y ∈ D1, we have u(y) ≥ u0+1+ε1 ≥ u0(x)+1+ε1,
hich represents correctly the fact that yPx.
If i + 1 ∈ Γ for i ≥ 1, then ui(x) ≤ ui, for all x ∈ Di. For

such an x, u(x) = ui(x) + u0 − ui + 1 + εi +
∑i−1

j=1(uj − uj +

+ εj) ≤ u0 +
∑i

j=1(uj − uj + 1 + εj). Since Di+1 is not down-
terminal, ui+1 is bounded below by ui+1. For all y ∈ Di+1, we have
(y) = ui+1(y) + u0 − ui+1 + 1 + εi+1 +

∑i
j=1(uj − uj + 1 + εj) ≥

u0 + 1+ εi+1 +
∑i

j=1(uj − uj + 1+ εj). Therefore, u(y) > u(x)+ 1,
or all y ∈ Di+1 and x ∈ Di, which represents correctly the fact
hat yPx.

On the negative side, if i = −1 ∈ Γ , then u0 is bounded below
nd u(x) ≥ u0, for all x ∈ D0. Since D−1 is not up-terminal, u−1 is
ounded above by u−1 and we have u(y) = u−1(y) + u0 − u−1 −

− ε−1 ≤ u0 − 1− ε−1 ≤ u0(x)− 1− ε−1 for all y ∈ D−1, x ∈ D0.
Therefore, u(x) ≥ u(y)+1+ε−1, for all x ∈ D0 and y ∈ D−1, which
represents correctly the fact that xPy.

If i− 1 ∈ Γ for i ≤ −1, then ui(x) > ui, for all x ∈ Di. For such
an x, u(x) = ui(x) + u0 − ui − 1 − εi −

∑i+1
j=−1(uj − uj − 1 − εj) ≥

0 −
∑i

j=−1(uj − uj − 1 − εj). Since Di−1 is not up-terminal,
i−1 is bounded above by ui−1 and we have, for all y ∈ Di−1,

u(y) = ui−1(y)+ u0 − ui−1 − 1− εi−1 −
∑i

j=−1(uj − uj − 1− εj) ≤

u −1−ε −
∑i (u −u −1−ε ) ≤ u(x)−1−ε . Therefore,
0 i−1 j=−1 j j j i−1

19
u(x) ≥ u(y) + 1 + εi−1, for all x ∈ D−i and y ∈ Di−1, which
epresents correctly the fact that xPy.

The semiorder is correctly represented in each connected com-
onent Di, for i ∈ Γ , due to the fact that ui represents the
estriction of the semiorder to Di and u(x) obtains by adding the
ame constant to ui(x) for all x ∈ Di. □

emark 60 (Uniqueness Issue). The construction of a unit repre-
entation of the whole semiorder by assembling unit representa-
ions of the semiorders on the connected components described
n Proposition 59 is general. All representations of the whole
emiorder can be obtained in this way. Indeed, it is clear that,
tarting with a unit representation u of the whole semiorder
P, I), we obtain unit representations ui by restricting u to Di for
ll i ∈ Γ . For all i − 1, i ∈ Γ , for all x ∈ Di, y ∈ Di−1, we have
(x) > u(y) + 1. Denoting by ui−1 (resp., ui) the upper (resp.,

lower) bound of u on Di−1 (resp., Di), we define εi = ui−ui−1−1.
e have that εi ≥ 0. This number can be 0 only if at least
ne of the bounds ui, ui−1 is not attained. These numbers, which
re also those used in Proposition 59, determine the minimal
ifference between the value of elements in consecutive con-
ected components. They are the additional degrees of freedom
vailable in the representation of a semiorder when the latter
as several connected components. Putting this result together
ith the analysis made in Section 4.6 gives a complete picture
f the degrees of freedom involved in unit representations of a
emiorder.

emark 61. As explained in Remark 38, on a single I-connected
component, it is always possible to build a representation that is
at the same time strict and non strict (see Eqs. (1) and (2)). It is
not difficult to check that the procedure used above to assemble
representations of several connected components allows to make
the same observation for semiorder that are not restricted to have
a single I-connected component. This gives an alternative proof
of the observation made in Beja and Gilboa (1992, Th. 3.8, p.
436) (a similar observation was already made by Roberts, 1971,
p. 36, footnote), as well as establishing the stronger statement
that representations that are at the same time strict and nonstrict
always exist on denumerable sets.

Notice also that, if the assembled representations are all ratio-
nal unit representations, as explained in Remark 38, the above
process can always be performed so as to guarantee that the
overall representation stays in Q. This gives an alternative proof
of Manders (1981, Prop. 7, p. 236).

Remark 62 (The Uncountable Case). The just described process
of assembling strict (resp. nonstrict) unit representations of the
restrictions of a semiorder to its I-connected components into a
strict (resp. nonstrict) unit representation of the whole semiorder
does not depend on the assumption that X is denumerable. It
only depends on the Bounded P-chain hypothesis and the ex-
istence of a strict (resp. nonstrict) unit representation of the
restrictions to each I-connected component. This results from the
fact that the decompositions of X described in Sections 2.5 and
3 are valid independently of the cardinality of X . Furthermore,
if a strict (resp. nonstrict) unit representation exists for each I-
connected component of the semiorder and the Bounded P-chain
condition is verified, then the bounds (9) and (10) hold (since
they only depend on the number of maximal indifference classes
in each I-connected component), which allows assembling the
epresentations, whatever the cardinality of X , in particular, for
ncountable X .

To conclude, we summarize the main results that we proved
in this paper as follows.
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heorem 63.

1. Any I-connected semiorder S = (P, I) has a unit representa-
tion.

2. A semiorder on a denumerable set has a unit representation
iff it satisfies the Bounded P-chain condition.

3. If a semiorder on a denumerable set has a unit representation,

• it has a representation that is at the same time strict and
non-strict;

• it has a representation on Q.

Statement 1 results from Proposition 36. Statement 2 is proved
by Proposition 59. Statement 3 is justified in Remark 61.

6. Discussion

We have offered a new proof of the existence of a unit rep-
resentation of semiorders on countably infinite sets. Our proof
uses only elementary considerations. It is based on the analy-
sis of each I-connected component of the semiorder. On each
such component, we build in a recursive way a partition of this
component into maximum indifference classes. One such class
is taken as a reference set and ghosts representing elements in
the other classes are adequately inserted into this reference set.
The numerical representation built on the reference set enriched
with all ghosts, is then lifted to build the desired unit numerical
representation. As announced, it unifies the treatment of the
finite and countably infinite cases. Moreover, we feel that our
proof is simpler and more direct than the two previous ones in
the literature (Beja & Gilboa, 1992; Manders, 1981).

In a companion paper (Bouyssou & Pirlot, 2020a), we show
that the same technique can be extended, through the introduc-
tion of adequate order-denseness conditions, to cover the general
case (see Candeal & Induráin, 2010). Hence, the tools presented
in this paper offer a common scheme to build unit numerical
representations of semiorders.

Besides the generalization of our results presented in Bouys-
sou and Pirlot (2020a), the field offers many opportunities for
further studies. Let us mention here one of the more intriguing
ones. It is clear that the function u used in the unit representation
f a semiorder can be constrained to take only values in the set of
ational numbers Q (it suffices to do so in Proposition 36, which
s always possible since any linearly ordered denumerable set can
e embedded into (Q, ≥)). Investigating which semiorders have

a representation using a function u taking its values in Z is an
open problem. Its solution would allow to generalize the analysis
of minimal integer representations in the finite case proposed
in Pirlot (1990, 1991).
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