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Metamaterials such as metal-dielectric multilayers and cylindrical nanowires are well known, for instance
because of their hyperbolic dispersion. Here we examine in detail the mode characteristics in an array of square
and rectangular metallic nanorods. In particular we propose a method to describe the dispersion via the coupling
of specific elementary excitations. Apparently, these fundamental modes depend on the size and shape of the
nanorods, and on the particular symmetry of the Bloch modes. Specifically, we show that arrays of relatively small
square nanorods are associated with coupling of single rod modes. In contrast, large nanorod arrays correspond
with a basic structure consisting of four metallic corners. In the medium size case, the nature of the elementary
excitation depends on the frequency range and Bloch mode symmetry. Finally, we study rectangular nanorods,
which turn out to derive from a basic geometry with two semi-infinite rods. The analysis method is thus useful
for a better comprehension of many other types of metamaterials.
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I. INTRODUCTION

Metamaterials have gained tremendous interest over the
last decade thanks to their ability of controlling light in
a manner impossible with natural optical materials [1–7].
These extraordinary behaviors are artificially engineered via
subwavelength structures, leading to remarkable properties in
left-handed media and hyperbolic metamaterials (also called
indefinite media) [8–11].

Hyperbolic media provide attractive properties such as a
very large density of states [12,13] and refractive index [14,15],
thanks to the extreme anisotropy, leading to new light-matter
interaction phenomena [16,17]. These materials turn out to be
a particular case of anisotropic media, where components of
the diagonalized permittivity tensor have opposite sign.

Typically, two types of structures provide for hyperbolic
properties: a periodic metal-dielectric multilayer structure
[Fig. 1(a)] [18–20] and an array of cylindrical metallic
nanorods in a dielectric host [21,22].

Recently, Zhukovsky et al. showed that the hyperbolic prop-
erties in multilayer configurations arise from the plasmonic
nature of the structure, and are specifically explained as the
coupling of short-range surface plasmon polaritons of each
unit cell [23,24]. Before, Rosenblatt and Orenstein proposed
a general procedure to describe the multilayer dispersion as
a competition between “gap” modes (coupling of surface
plasmons through the dielectric) and “slab” modes (coupling
of surface plasmons through the metal) [25]. This provides
for an intuitive picture to describe the modal properties in a
one-dimensional (1D) setting, by comparing the Bloch modes
]judiciously averaged over the Brillouin zone (BZ)] with
“elementary” structures.

In this paper we propose an extension for 2D arrays of
the previously mentioned method [25]. With this extended
procedure we study the dispersion of arrays of square and
rectangular silver nanorods in a TiO2 host [Fig. 1(b)]. The
method is in this case more complex because of the higher
number of modes and because of the 2D nature of the BZ for
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the transverse Bloch components (kx , ky). In addition, there
are more elementary modes to consider, compared to the 1D
case.

We show that the dispersion of the array arises from the
coupling of elementary excitations, and the particular basic
structure depends on the size of the nanorods. For small and
large square nanorods, the elementary geometries are a single
rod and a four-corner structure, respectively. The intermediate
size case arises from various elementary excitations in function
of the frequency range and mode symmetry. Finally, for
rectangular nanorods (one dimension much larger than the
other) we find a good description via two coupled semi-infinite
rods.

In Sec. II A we explain the geometries, the notation, and
the analysis procedure. In Sec. III we examine the dispersion
of arrays of small (compared to the period) square nanorods.
In Sec. IV and V arrays of large and medium size nanorods are
treated, respectively. Finally, in Sec. VI we break the symmetry
between the x and y directions with rectangular nanorods, and
we conclude in Sec. VII.

II. METHODS

A. Geometries

We study the dispersion of arrays of silver square and
rectangular nanorods of various size in a dielectric TiO2 host.
We take the refractive index of TiO2, n = 2.7, and a lossless
Drude model for silver:

εAg(ω) = 1 − ω2
p

ω2
, (1)

with ωp = 1.26 × 1016 Hz the plasma frequency.
We slightly round the corners of the rods (via quarter circles

of 1 nm radius) in order to avoid extreme hotspots for the
simulations. The influence of the period is not considered here;
we fix the period of all structures to P = 30 nm, which is much
smaller than the wavelength in the range analyzed (from visible
to near infrared spectrum).

For the square nanorod arrays, three cases are examined:
a first case with the width w of the rods being much smaller
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FIG. 1. (a) Multilayer consisting of periodic subwavelength
layers of metal [silver (Ag)] and dielectric (TiO2). (b) Geometry
consisting of an array of square (or rectangular) silver nanorods in a
TiO2 host. wx and wy are the sizes of the nanorods in the x and y

directions, respectively. P is the period of the array. wx = wy = w

for square nanorods.

than the period [we choose w = 8 nm, Fig. 2(a), analysed in
Sec. III]. A second case with the width of the rods slightly
smaller than the period [we choose w = 25 nm, Fig. 2(b),
analyzed in Sec. IV], and a third case with an intermediate
width [we choose w = 16.3 nm, Fig. 2(c), analyzed in Sec. V].

For these three cases the x and y directions are equivalent
because the structures are invariant under rotation of 90◦ (the
mode propagates along the z direction, out of the page here).
The irreducible Brillouin zone is a triangle [Fig. 2(e)] delimited
by three important points: the center of the BZ � where kx =
ky = 0, the X1 (X2) point where kx (ky) is equal to π

P
, and the

M point where kx = ky = π
P

.
We also study rectangular nanorods where we break the

x,y symmetry [with x direction width wx = 20 nm larger than
y direction width wy = 10 nm, Fig. 2(d)]. In this case, the
irreducible Brillouin zone is the square delimited by the four
points �, X1, X2, and M .

Unlike the simple multilayer case, purely transverse mag-
netic (TM) propagating modes do not exist here. All modes
present the six components of the fields [26]. Thus it is very
difficult to analytically study these lattices, and we employ the
numerical software COMSOL MULTIPHYSICS 5.1, with a mode
solver based on the finite element method.

FIG. 3. The lattice under study, which can be described from
different viewpoints. The blue rectangle represents single-rod excita-
tions. The green rectangle represents four metallic corners connected
via dielectric. The red rectangle is associated with structures made
of two coupled (semi-infinite) rods. Shown is the z component of the
electric field Ez for the aa mode (at the � point, kx = ky = 0) for the
medium size square nanorod array at the wavelength λ0 = 700 nm.

To obtain the dispersion of the structure, the solver
calculates the modes at a given frequency and provides the
propagation constant of these modes. For the periodic arrays
we simulate only one unit cell of the geometry with Floquet
conditions at the lateral boundaries, with predetermined values
for kx and ky . For the elementary geometries we do not use
perfectly matched layers, as the modes are confined enough
and a computational width of 200 nm with scattering boundary
conditions suffices.

In analogy with the multilayer case, we look for elementary
excitations or “simpler” structures that can describe the array
dispersions. To guide our search, the arrays can be seen as
lattices with different bases (Fig. 3): a lattice of single rods
(blue rectangle), a lattice of four metallic corners connected
via a dielectric medium (green rectangle), or a lattice of two
coupled rods (red rectangle).

The simplest excitation here is no longer the surface
plasmon polariton (as for the multilayer), but the plasmonic

FIG. 2. Single unit cell of the structures under study: array of square nanorods with period P = 30 nm and nanorod width (a) w = 8 nm,
(b) w = 25 nm, (c) w = 16.3 nm. (d) Array of rectangular nanorods of width wx = 20 nm and wy = 10 nm. (e) Reciprocal lattice and first
Brillouin zone (in red). For square nanorod arrays, the irreducible Brillouin zone is the triangle delimited by the �, X1, and M points. For
rectangular nanorod arrays, the irreducible Brillouin zone is the square delimited by the �, X1, X2, and M points.
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FIG. 4. Elementary structures: (a) Single rod in an infinite
dielectric host. (b) Four metallic corners connected via dielectric
medium. (c) Two coupled semi-infinite rods. Red arrows indicate the
principal ways of coupling between corners.

mode guided by a metallic corner. This corner plasmon can
couple to neigboring corners through a dielectric layer, via a
metallic edge, or with a combination (through the dielectric in
one direction and via the metallic edge in another direction).
This leads to three elementary structures: the single-rod
structure [Fig. 4(a)], the four-corner structure [Fig. 4(b)], and
the coupled-rod structure [Fig. 4(c)], respectively. According
to the size of the nanorods, we will see that the array dispersion
seems to be associated with one of these elementary excita-
tions. Note that various other fundamental geometries can be
constructed, but analysis showed they do not corroborate well
with the array modes.

B. Notations

Unlike the multilayer case, where only two different guided
modes are present (a symmetric and an asymmetric one), four
different symmetries for guided modes exist in our structures
(Fig. 5). We use a notation similar to the one adopted in [26]
to indicate the mode.

FIG. 5. Ez profiles of the electric field over a single unit cell
for an array mode at the � point for w = 16.3 nm at λ0 = 700 nm.
(a) aa mode. (b) as mode. (c) sa mode. (d) ss mode.

A mode is described by two letters: the first letter represents
the symmetry of Ez along a rod side in the x direction, and this
letter can be “a” for asymmetric or “s” for symmetric along
x. The second letter represents the symmetry along a rod side
in the y direction, with the same modalities. We only focus on
the lower frequency modes, so an extra notation for the order
of the mode is not needed.

The four possibilities are thus the aa mode [Fig. 5(a)], as

mode [Fig. 5(b)], sa mode [Fig. 5(c)], and ss mode [Fig. 5(d)].
The same nomenclature is used for the elementary structures.

Note that the sa and as modes for the arrays of square
nanorods at the � and M points are degenerate because the x

and y directions are equivalent and a rotation of 90◦ maps the
� point to itself and maps the M point to the M̃ point, which
is related via a vector of the reciprocal lattice [Fig. 5(e)].
However, the sa and as modes are not degenerate at the X1

(or X2) point because a rotation of 90◦ maps the X1 (X2) point
to the X2 (X̃1) point that is not connected via a vector of the
reciprocal lattice.

For the elementary structures, the sa and as modes are
degenerate for the single-rod and the four-corner structures,
because of 90◦ rotation equivalence, but they are not degener-
ate for the coupled-rod case (no 90◦ symmetry).

Finally, the rectangular nanorod array modes and their
elementary structure modes are not degenerate because the
equivalence between the x and y directions is broken.

C. Dispersion analysis method

We introduce a 2D extension of the method used in [25].
They showed that the mean of the plasmonic band dispersion
of a multilayer closely corresponds to the dispersion of
elementary excitations of the structure (“slab” or “gap”
modes), providing for an intuitive picture to understand the
1D array modes.

In the case of 2D arrays of square nanorods, where the
irreducible Brillouin zone is a triangle, the mean of the
plasmonic band is calculated as

ωm(kz) = ωa(�,kz) + ωa(X1,kz) + ωa(M,kz)

3
. (2)

For arrays of rectangular nanorods, where the irreducible
Brillouin zone is a square, we use

ωm(kz) = ωa(�,kz) + ωa(X1,kz) + ωa(X2,kz) + ωa(M,kz)

4
(3)

with ωm(kz) the mean of the plasmonic band for a given
propagating constant kz. ωa(�,kz), ωa(X1,kz), ωa(X2,kz), and
ωa(M,kz) are the frequencies of the propagating mode of the
periodic array at the �, X1, X2, and M points, respectively.

In analogy with the 1D case, we assume that a good
correspondence between the mean of the plasmonic band
and the dispersion of an elementary structure indicates that
the array modes “arise” from the modes of this elementary
geometry. The nature of the basic structure will depend on the
size and shape of the nanorods in the array. Mathematically,
this assumption is simply

ωm(kz) ≈ ωe(kz) (4)
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where ωe(kz) is the frequency of the elementary excitation for
a given kz.

One should pay attention that the symmetry of a given mode
at the center of the Brillouin zone (�) is not necessarily the
same at the X1 and M points, so it requires caution when using
Eqs. (2) and (3) to calculate the mean of the plasmonic band,
and to choose the adequate elementary mode.

A detailed application of this procedure is given in the next
sections.

III. SMALL NANORODS

We examine the dispersion for arrays of small (compared
to the period) square nanorods with a width w = 8 nm. Using
Eq. (2), we calculate the mean of the plasmonic band for each
mode. In this case, the symmetry of each mode does not change
between the �, X1, and M points.

Figure 6 shows the dispersion for the small nanorod case
at each specific point of the BZ. All the modes approach the
horizontal asymptote defined by ω = 0.255ωp, which is typi-
cal for the single corner plasmon mode. This effect is because
the modes are tightly confined to the corners at this frequency,
so that no coupling occurs between them. As we point out in
Section. II B, the sa and as modes are degenerate at the � and
M points [red curve in Figs. 6(a) and 6(c)], but not degenerate
at the X1 point [red and magenta curves in Fig. 6(b)].

Figure 6(d) shows the utilization of the procedure described
in Sec. II C for the ss mode. We apply Eq. (2) to calculate the
mean of the plasmonic band (black dashed curve), thus the
average of the ss dispersion at the � [red curve, Fig. 6(d)], X1

[green curve, Fig. 6(d)], and M [blue curve, Fig. 6(d)] points.
This mean is then compared to the three elementary structure
dispersions in Fig. 7(d), to determine which one best describes
the array.

Now Fig. 7 shows this mean for each mode, and compares
it with the three elementary modes of the same symmetry. We
clearly see that the calculated mean corresponds perfectly with
the dispersion of the single-rod geometry for each mode (the
dashed black curve overlaps well with the blue curve).

Therefore, according to our assumption [Eq. (4)], the
elementary excitation that best describes the array mode seems
to be the single rod structure, which comprises four corners that
are connected via metal-dielectric interfaces (the four sides of
the rods). The single-rod, being the “basic” excitation, is also
intuitively acceptable in these small rod arrays, as the rods are
too far from each other for efficient coupling.

IV. LARGE NANORODS

We proceed with the same treatment for large square
nanorod arrays (w = 25 nm). Again, using Eq. (2) we calculate
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FIG. 6. Dispersion of small square nanorod array (w = 8 nm). (a) At the � point (kx = ky = 0). (b) At the X1 point (kx = π

P
, ky = 0).

(c) At the M point (kx = ky = π

P
). (d) Mean of the dispersion calculated using Eq. (2) for the ss mode (black dashed line).
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FIG. 7. Comparison between the mean calculated with Eq. (2) and the three possible elementary excitations for the small nanorod array.
For each graph, the green curve corresponds to the four-corner structure, the red curve corresponds to coupled-rod, the blue curve corresponds
to single-rod, and the black dashed curve correspond to the calculated mean. (a) For aa mode. (b) For as mode. (c) For sa mode. (d) For ss

mode.

the mean of the plasmonic band for each mode. However,
unlike the small nanorod case, the symmetry of the mode
changes between the �, X1, and M points, so that the modes
need to be chosen carefully to apply Eq. (2). A summary of
the mode symmetry changes is given in Table I.

We see that when the wave vector in the x direction changes
from kx = 0 to kx = π

P
, the symmetry in the x direction

changes from symmetric to asymmetric (and vice versa). When
the wav evector in the y direction changes from ky = 0 to
ky = π

P
, the same phenomenon occurs for the y symmetry.

TABLE I. Symmetry changes for large square nanorod arrays
as functions of the Bloch wave vector for a given kz. Each row
corresponds to a particular mode. This table is also valid for the
medium size nanorod array above ω = 0.246ωp .

�(0,0) X1( π

P
,0) M( π

P
, π

P
)

aa sa ss

as ss sa

sa aa as

ss as aa

Figure 8 shows the mean for each mode and compares it
again with the elementary excitations of the same symmetry.
In this case, the calculated mean corresponds very well with
the dispersion of the four-corner structure for each mode. This
implies that the plasmonic mode of the large nanorod array
originates from the four-corner structure, thus the plasmonic
corners mainly couple through the dielectric [Fig. 4(b)].

This statement is also confirmed by the field plots of the
lattice at the three specific BZ points; see for example Fig. 9
for the profiles of the aa band (first row of Table I). At the
three BZ points the same pattern emerges [Figs. 9(a)–9(c)]
and this pattern is very similar to the aa mode of the
four-corner structure [Fig. 9(d)], which is thus the elementary
excitation.

Note that the single-rod elementary structure does not at all
correspond with the mean dispersion in this case: in Fig. 8 the
blue curves are not aligned with the dashed black curves. This
is intuitively acceptable again: for the large nanorod structure
the four nearby corners communicate strongly, which thus
mainly happens through the thin dielectric.

We remark that a coupling through the dielectric is
accompanied by a change of symmetry in one given direction
when the Bloch wave vector is equal to π

P
in this direction. For
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FIG. 8. Comparison between the mean calculated with Eq. (2) and the three possible elementary excitations for the large nanorod array.
For each graph, the green curve corresponds to the four-corner structure, the red curve corresponds to coupled-rod, the blue curve corresponds
to single-rod, and the black dashed curve correspond to the calculated mean. (a) For aa mode. (b) For as mode. (c) For sa mode. (d) For ss

mode.

FIG. 9. Ez field plots for the aa band (first row of Table I) of the large nanorod array at three specific points for kz = 3 × 108m−1. (a) At the
� point. (b) At the X1 point. (c) At the M point. At the three specific points, the same pattern highlighted by the blue dashed square emerges.
(d) Mode aa of the four-corner structure related to the large nanorod array, also for kz = 3 × 108m−1.
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FIG. 10. Dispersion at the center of the Brillouin zone for nanorod arrays of width (a) w = 8 nm, (b) w = 16.3 nm, (c) w = 25 nm.
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TABLE II. Symmetry changes for medium size arrays below ω =
0.246ωp as functions of the Bloch wave vector for a given kz. Each
row corresponds to a particular mode.

�(0,0) X1( π

P
,0) M( π

P
, π

P
)

aa aa as

as ss ss

sa sa sa

ss as aa

example for the first row in Table I, we see that the symmetry
in the x direction of the mode aa changes between the � and
X1 points (where kx = π

P
) and thus aa becomes sa. When the

wave vector in the y direction is equal to π
P

, the symmetry in
the y direction changes between the X1 and M points and the
mode sa becomes ss.

This change of symmetry does not happen when the
coupling occurs via metal-dielectric interfaces (as for the small
rod case of the previous section).

V. MEDIUM SIZE NANORODS

We study arrays of medium size square nanorods (w =
16.3 nm). This particular size was chosen by examining the
dispersion at the � point for varying widths.

For small nanorods, the aa mode dispersion is always above
the ss mode [Fig. 10(a), green above blue curve]. In the case

of large nanorods however, the ss mode is above the aa mode
curve [Fig. 10(c), blue above green curve]. At the particular
width w = 16.3 nm, the aa and ss curves intersect each other
and the modes are very close [Fig. 10(b)].

This width thus indicates a boundary between the two
regimes analyzed in the previous sections, and a mix is
expected between coupling via metal-dielectric interfaces
(small nanorod case) and through the dielectric (large nanorod
case).

Again, using Eq. (2) we determine the mean for each mode.
Here, the symmetry changes are not straightforward, because
they depend on the frequency range. We delimit two frequency
ranges by the intersection between the aa and the sa/as modes
around ω = 0.246ωp. Note that the ss and sa/as curves are
very close but do not intersect. The symmetry changes for the
two ranges are given in Table II (below ω = 0.246ωp) and
Table I (above ω = 0.246ωp).

As we can see in the first two rows of Table II, below
ω = 0.246ωp the modes aa and as change symmetry only in
one direction (y and x direction, respectively) and, as seen
before for large nanorod arrays, this is a sign of coupling
through the dielectric in the y direction for the aa mode and
in the x direction for the as mode (and thus coupling via
metal-dielectric interface in the x direction for the aa mode and
in the y direction for the as mode). The elementary excitation
is thus likely to be the coupled-rod structure, and this statement
is confirmed by Figs. 11(a) and 11(b).

In the third row of Table II, we notice that the mode sa does
not change symmetry in any direction, a coupling via metal-
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FIG. 11. Comparison between the mean calculated with Eq. (2) and the three possible elementary excitations for the medium size nanorod
array. For each graph, the green curve corresponds to the four-corner structure, the red curve to coupled-rod, the blue curve to single-rod, and
the black dashed curve to the calculated mean. (a) aa mode. (b) as mode. (c) sa mode. (d) ss mode.
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TABLE III. Symmetry changes for rectangular nanorod arrays
as functions of the Bloch wave vector for a given kz. Each row
corresponds to a particular mode.

�(0,0) X1( π

P
,0) X2(0, π

P
) M( π

P
, π

P
)

aa sa aa sa

as ss as ss

sa aa sa aa

ss as ss as

dielectric interface occurs, and the elementary excitation is the
single-rod. This statement is also confirmed with Fig. 11(c).

Finally, in the last row of Table II, the symmetry of the
ss mode changes in the two directions, a coupling through
dielectric occurs, and the elementary excitation is the four-
corner structure, which is confirmed in Fig. 11(d).

Above ω = 0.246,,,,ωp the dispersion is difficult to ana-
lyze from Fig. 11, as the confinement is so strong that all ele-
mentary modes converge to the single corner dispersion, so one
cannot discriminate between them. However, the symmetry
changes (Table I) lead us to state that the elementary excitation
is the four-corner structure for all modes, because the changes
of symmetry are the same as for large nanorod arrays.

At medium size, the resulting elementary excitations thus
depend on the symmetry and frequency range, which is
intuitively true because the coupling strengths via interfaces
and dielectrics are similar. This is also indicated because the
calculated average is not as perfectly superposed with the
elementary modes, in contrast with small and large widths.

VI. RECTANGULAR NANORODS

Now, we break the symmetry between the x and y directions
by studying rectangular nanorods instead of square ones; see
Fig. 2(d). The width in the x direction is much larger than the
width in the y direction. A change of symmetry of the modes
between the specific points is also present in this situation and
is summarized in Table III.

We note that the symmetry in the x direction changes (as in
the case of large square nanorods), but not in the y direction
(similar to small square arrays). The coupling between corners
is thus through the dielectric in the x direction, and via
metal-dielectric interface in the y direction. The leading
elementary excitation is therefore the coupled-rod structure,
which is confirmed by Fig. 12.

This is again intuitively acceptable because the corners are
strongly connected through the dielectric in the x direction,
and through the metal-dielectric interfaces in the y direction.
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FIG. 12. Comparison between the mean calculated with Eq. (3) and the three possible elementary excitations for the rectangular nanorod
array. For each graph, the green curve corresponds to the four-corner structure, the curve to coupled-rod, the blue curve to single-rod, and the
black dashed curve to the calculated mean. (a) aa mode. (b) as mode. (c) sa mode. (d) ss mode.
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FIG. 13. Ez field plots for the as band (second row of Table III) for the rectangular nanorod array at the four specific BZ points for
kz = 3 × 108m−1. (a) At the � point. (b) At the X1 point. (c) At the X2 point. (d) At the M point. At the four points the same pattern highlighted
by the blue dashed square emerges. (e) Mode as of the coupled-rod structure related to the rectangular nanorod array, also for kz = 3 × 108m−1.

This can also be confirmed via the field profiles at the four
BZ points; see Figs. 13(a)–13(d) for the as band (second row
of Table III). The same pattern emerges, which corresponds
with the as mode of the coupled-rod structure [Fig. 13(e)],
thus forming the elementary excitation.

Note that the coupled-rod structure is the basic geometry in
this case, because one dimension of the nanorods (wx) is much
larger than the other one (wy), with respect to the period. If
wx and wy were much smaller than the period, the elementary
structure would be the single-rod. If both widths were close to
the period, the elementary structure would be the four-corner
structure.

VII. CONCLUSIONS

The dispersion of an array of square or rectangular metallic
nanorods in a dielectric host can be connected directly to
the modes of simpler geometries. This leading “elementary
excitation” depends strongly on the size and shape of the
nanorods, and can be determined via the proposed analysis
method, which compares the elementary dispersion with a
judiciously averaged array dispersion.

The analysis also provides information on the symmetries
of the modes at the particular BZ points. In fact, a strong
coupling of the corners through the dielectric in a given
direction is accompanied by a change of symmetry when
the Bloch wave vector in this direction is equal to π

P
. This

behavior is not observed for coupling via a metal-dielectric
interface.

We demonstrated that the dispersion of small square
nanorod arrays originates from single-rod excitations, and that
large square nanorod arrays are associated with four-corner
structures. Indeed, for small squares the corners are coupled
via the metallic sides, whereas for large squares the corners
couple through the dielectric.

In the intermediate size regime, the array modes result from
various elementary modes, depending on the frequency and
mode symmetry. This complication is due to the balanced
strength of coupling via the metal sides or through the
dielectric.

Finally, rectangular nanorod arrays (with one relatively
large dimension) can be described by the coupled-rod struc-
ture. The corners are thus connected via the metal rod sides
in the narrow direction, and through the dielectric in the wide
direction.

In short, via the introduced analysis method one gains
understanding of the dispersion in arrays of metallic nanorods,
which opens the way to comprehend other types of metamate-
rials via their elementary excitations. Further work would be
to exhaustively determine the coupling type in function of the
nanorod dimensions, and to understand the transition between
the leading basic modes.
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