PHOEG Helps Obtaining Extremal Graphs

Pierre Hauweele
Joint work with Gauvain Devillez and Hadrien Mélot
Algorithms Lab, Computer Science Departement
Faculty of Sciences, University of Mons
\section*{UMONS}

CSD8, Mons, August 23, 2017

Introduction

We consider simple undirected graphs.

For a graph $G=(V, E)$,
■ its order $|V|$ is denoted by n;
■ its size $|E|$ is denoted by m.
A graph invariant is a function on graphs that is constant on isomorphism classes.
Examples: order n, size m, chromatic number χ, maximum degree Δ, diameter D, planarity, ...

Extremal Graph Theory

Extremal Graph Theory aims to find bounds on a graph invariant under some constraints.
Generally, those constraints are of two types:

- restricting class of graphs (e.g., connected graphs, trees);

■ fixing (and restricting) values of other invariants (e.g., size, maximum degree).
Results in Extremal Graph Theory mainly consists in

- giving bounds;
- characterizing graphs achieving these bounds.

Computer-assisted discovery

■ Context: Computer-assisted Discovery in Extremal Graph Theory
■ Several existing systems: Graph, Graffiti, AutoGraphiX, GraPHedron, ...

- exploit different ideas to help graph theorists

■ Objectives of this talk:

- presentation of PHOEG, a successor of GraPHedron
- use of an illustrative problem (Eccentric Connectivity Index, ECI)
- Remark: work in progress
- PHOEG is currently a prototype
- the problem about ECI is not fully solved

Overview of PHOEG

PHOEG

Eccentric Connectivity Index

Let v be a vertex of a graph G, recall that:

- degree $d(v)=$ number of adjacent vertices of v;

■ eccentricity $\epsilon(v)=$ maximal distance between v and any other vertex.

Example

Eccentric Connectivity Index

Definition

The Eccentric Connectivity Index (ECI) of a graph G, denoted by $\xi^{c}(G)$, is

$$
\xi^{c}(G)=\sum_{v \in V} d(v) \epsilon(v)
$$

Example

$$
\xi^{c}(G)=(2 \times 2+3 \times 1) \times 2=14
$$

Eccentric Connectivity Index

History and motivation
■ Sharma, Goswani and Madan introduced ξ^{c} in 1997 in Chemistry;

- Useful as a discriminating topological descriptor for Structure Properties and Structure Activity studies;
■ Since 1997, more than 200 chemical papers about ξ^{c} : applications in drug design, prediction of anti-HIV activities, etc.
■ However, the first mathematical paper with extremal properties on ξ^{c} was published only in 2010;

■ Since 2010, about a dozen papers containing bounds on ξ^{c}.

Some Extremal Theory problem about ξ^{c}

Now, let's make extremal graph theory about ξ^{c} with the help of a computer.

First step: define a problem by choosing constraints.

Some Extremal Theory problem about ξ^{c}

Now, let's make extremal graph theory about ξ^{c} with the help of a computer.

First step: define a problem by choosing constraints.
Several papers containing bounds on ξ^{c} - using various invariants as constraints - have been published (since 2010).

Some Extremal Theory problem about ξ^{c}

Now, let's make extremal graph theory about ξ^{c} with the help of a computer.

First step: define a problem by choosing constraints.
Several papers containing bounds on ξ^{c} - using various invariants as constraints - have been published (since 2010).

Problem

Among connected graphs of order n and size m, what is the maximum possible value for ξ^{c} ?

Upper bound on ξ^{c} for connected graphs with fixed size

We define $E_{n, m}$ as follows :

$$
n=7, m=14
$$

Upper bound on ξ^{c} for connected graphs with fixed size

We define $E_{n, m}$ as follows :

- The biggest possible clique
without disconnecting the graph, leaving a path with the remaining vertices.

$$
n=7, m=14
$$

Upper bound on ξ^{c} for connected graphs with fixed size

We define $E_{n, m}$ as follows :

- The biggest possible clique

$$
n=7, m=14
$$ without disconnecting the graph, leaving a path with the remaining vertices.

- Add remaining edges between vertices of the clique and the first vertex of the path.

Upper bound on ξ^{c} for connected graphs with fixed size

We define $E_{n, m}$ as follows :

- The biggest possible clique

$$
n=7, m=14
$$ without disconnecting the graph, leaving a path with the remaining vertices.

- Add remaining edges between vertices of the clique and the first vertex of the path.

This graph is unique for given n and m . We define $d_{n, m}$ as the diameter of

$$
E_{n, m}
$$

Conjecture of Zhang, Liu and Zhou

Conjecture (Zhang, Liu and Zhou, 2014)

Let G be a graph of order n and size m such that $d_{n, m} \geq 3$. Then,

$$
\xi^{c}(G) \leq \xi^{c}\left(E_{n, m}\right),
$$

with equality if and only if $G \simeq E_{n, m}$.

- The authors prove that the conjecture is true when $m=n-1, n, \ldots, n+4$ (if n is large enough).
■ There exists a "proof" published in a journal of University of Isfahan (Iran, 2014) but that is obviously wrong.

Conjecture of Zhang, Liu and Zhou

Conjecture (Zhang, Liu and Zhou, 2014)

Let G be a graph of order n and size m such that $d_{n, m} \geq 3$. Then,

$$
\xi^{c}(G) \leq \xi^{c}\left(E_{n, m}\right),
$$

with equality if and only if $G \simeq E_{n, m}$.

- Is the conjecture true?
- If yes, how to prove it?

■ If no, how to improve or correct it?
$■$ What about graphs such that $d_{n, m}<3$?

How can the computer help?

In the following, we will show how PHOEG can help to study all of the preceding questions and to raise new ones.

| P | $\mathrm{H}_{\text {elps }}$ | $\mathrm{O}_{\text {btaining }} \mathrm{E}_{\text {xtremal }}$ |
| :--- | :--- | :--- | $\mathrm{G}_{\text {raphs }}$

PHOEG - the database part

■ Former system (GraPHedron): graphs and invariant's values written sequentially in files;
■ PHOEG uses a PostgreSQL DB with tens of millions of non-isomorphic graphs and invariants' values;

- Invariant's values are computed once (useful for NP-hard invariants);

Database of the invariants

■ Each graph has its unique signature used as primary key (canonical form, thanks to Nauty by Brendan McKay), sig($\left.C_{5}\right)=$ " $D q K^{\prime}$ ", $\operatorname{sig}\left(K_{3}\right)=" B w "$.
■ 12 millions simple graphs up to order 10,8 millions cubic graphs up to order 22.

Graphs
signature
A_{-}
A?
B?
BG
BW
BW
C‘
C
C \sim
C?
C@

NumVertices	
signature	val
A_{-}	2
$\mathrm{~A} ?$	2
$\mathrm{~B} ?$	3
BG	3
BW	3
BW	3
$\mathrm{C}^{‘}$	4
C^{\sim}	4
$\mathrm{C} \sim$	4
$\mathrm{C} ?$	4
CQ	4

NumEdges	
signature	val
A_{-}	1
A?	0
$\mathrm{~B} ?$	0
BG	1
BW	3
BW	2
C C	2
C~	5
$\mathrm{C} \sim$	6
C?	0
C@	1

ECI	
signature	val
A_{-}	2
BW	6
Bw	6
$\mathrm{C}-$	14
$\mathrm{C} \sim$	12
CF	9
CN	13
Cr	16
CR	14
D ' $[$	25
D ' $\{$	20

GraPHedron's main principle

- view graphs as points in the space of invariants;

GraPHedron's main principle

- view graphs as points in the space of invariants;
- compute the convex hull of these points (for small values of n).

Database query - Points, multiplicities and polytope

SELECT P.val AS eci, num_edges.val AS m, COUNT (*) AS mult	eci \| m		
FROM eci P	47 \| 8		5
JOIN num_vertices USING(signature)	46 \| 8		3
JOIN num_edges USING(signature)	40 \| 8	3	
WHERE num_vertices.val $=7$	32 \| 7		3
GROUP BY m, eci;	48 \| 12		55
	48 \| 18	1	
	61 \| 14	4	
	59 \| 13	1	
	48 \| 11	17	
SELECT ST_AsText (ST_ConvexHull (43 \| 9	14	
ST_Collect(ST_Point(eci, m)))	47 \| 6	1	
FROM poly;	64 \| 10	1	
	59 \| 11		1
st_astext	45 \| 9		7
$\operatorname{POLYGON}((186,4221,6618,6817,6611,628,546,186)$)	$\begin{array}{cc} 38 & 1 \\ & 6 \\ {[\ldots .} \end{array}$	2	

Exploring ξ^{c} with PHOEG: polytopes

Exploring ξ^{c} with PHOEG: polytopes

Exploring ξ^{c} with PHOEG: polytopes

Polytope for $n=7$

Exploring ξ^{c} with PHOEG: polytopes

Exploring ξ^{c} with PHOEG: polytopes

Exploring ξ^{c} with PHOEG: polytopes

Observations and questions

- How to explain the grid?
- Is the conjecture of Zhang, Liu and Zhou true when $d_{n, m} \geq 3$?
- Upper bound when $d_{n, m}<3$?

Database query - Polytope with some other information

Coloring points with values of $d_{n, m}$

Recall that the conjecture is stated for $d_{n, m} \geq 3$. Is it true for $n=7$?

Database query - Extremal graphs

```
WITH tmp AS (
    SELECT n.val AS n, m.val AS m,
        P.signature, P.val AS eci, d.val AS d,
        rank() OVER (
            PARTITION BY n.val, m.val
            ORDER BY P.val DESC
            ) AS pos
    FROM num_vertices n
    JOIN num_edges m USING(signature)
    JOIN d USING(signature)
    JOIN eci P USING(signature)
    WHERE n.val = 7
)
SELECT signature AS sig, n, m, eci, d
FROM tmp
WHERE pos = 1 AND d >= 3
ORDER BY n, m, d, eci;
```


Database query - Extremal graphs

```
WITH tmp AS (
    SELECT n.val AS n, m.val AS m,
        P.signature, P.val AS eci, d.val AS d,
        rank() OVER (
            PARTITION BY n.val, m.val
            ORDER BY P.val DESC
            ) AS pos
    FROM num_vertices n
    JOIN num_edges m USING(signature)
    JOIN d USING(signature)
    JOIN eci P USING(signature)
    WHERE n.val = 7
)
SELECT signature AS sig, n, m, eci, d
FROM tmp
WHERE pos = 1 AND d >= 3
ORDER BY n, m, d, eci;
```

 \(\Rightarrow\) counter-example to the conjecture !
 Extremal graphs are not always unique

Counter-example ($n=7$ and $m=15$)

Counter-example $(n=7$ and $m=15)$

Counter-example $(n=7$ and $m=15)$

It is possible to construct counter-examples for any values of $n \geq 6$ (with $d_{n, m}=3$).

Coloring points with values of $d_{n, m}$

Upper bound when $d_{n, m}<3$?

Upper facet of the polytope $(n=7)$

Coloring points with values of the diameter

Polytope for $n=7$ with values for diameter D

Coloring points with values of the diameter

Polytope for $n=7$ with values for diameter D

Can the diameter explain the blue grid? Actually, yes!

A new tight upper bound when $d_{n, m}<3$

Theorem

Let G be a graph of order n and size m. Then,

$$
\xi^{c}(G) \leq n(n-1)(n-2)-2 m(n-3),
$$

with equality if and only if G is the complement of a matching.
Note that the bound is valid for all graphs but can be tight only if

$$
m \geq\binom{ n}{2}-\left\lfloor\frac{n}{2}\right\rfloor
$$

(and thus $d_{n, m}<3$).

Number of non-equivalent colorings

We note $P(G, k)$ the number of non-equivalent colorings of G that use exactly k colors.

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{P}_{3}, 2\right)=1 \\
\mathrm{O}-\mathrm{O} \\
\mathrm{P}\left(\mathrm{P}_{3}, 3\right)=1
\end{gathered}
$$

Total number of non-equivalent colorings

Definition

The total number of non-equivalent colorings $\mathcal{P}(G)$ of a graph G is

$$
\mathcal{P}(G)=\sum_{k=0}^{n} \mathrm{P}(G, k)=\sum_{k=\chi(G)}^{n} \mathrm{P}(G, k),
$$

where $\chi(G)$ is the chromatic number of G.

Example: $\mathcal{P}\left(\mathrm{P}_{3}\right)=\mathrm{P}\left(\mathrm{P}_{3}, 2\right)+\mathrm{P}\left(\mathrm{P}_{3}, 3\right)=1+1=2$
$\mathcal{P}(G)$ is the value of the σ-polynomial when $x=1$ and is also known as the Bell number of a graph [Duncan \& Peele, 2009].

The Min-NumCol-NumEdges Problem

Problem

What is minimum possible value of \mathcal{P} for graphs of fixed order n and size m and what are the graphs attaining those bounds ?

Some extremal graphs

The extremal(?) graphs

Given n the order and m the size of graphs. Let t_{k} be the biggest triangular number such that $t_{k} \leq m$. We call $r_{m}=m-t_{k}$ the remainder.

We define $G^{*}(n, m)$ as the unique graph formed from $K_{k+1} \bigcup \bar{K}_{n-k-1}$, where one (if any) vertex of \bar{K}_{n-k-1} is connected to r_{m} vertices of the clique.

If $r_{m}=1$, and $n-k-1 \geq 2$, we define $G^{\prime}(n, m)$ as $K_{k+1} \cup \bar{K}_{n-k-1}$, where two vertices of $K_{k+1} \cup \bar{K}_{n-k-1}$ are connected.

Forbidden Graph Characterization

In this tool, we want a necessary and sufficient characterization of our graphs.

Concluding remarks

■ Not only extremal graphs are useful to study extremal properties of an invariant

- Exact approach limited to small graphs ($n \leq 10$)
- However, dealing with small graphs has already shown to be very useful and led to numerous results (AutoGraphiX, GraPHedron)

Perspectives

■ Invariants' DB allows a form of dynamic programming;

- Create a simple interface for queries, define a domain specific language;
- Allow easy visualization and manipulation of outputs (GUI, PDF, etc.);

■ Go up in the order of graphs, relaxing the exact constraint.

Appendix

Understanding the grid of blue points

- Suppose $D(G)=2$ (light blue points)
- For each vertex v , since $D(G)=2$, either $\epsilon(v)=1$ or $\epsilon(v)=2$
- If $\epsilon(v)=1$, then v is dominant and $d(v)=n-1$
- Let k be the number of dominant vertices of G
- The sum of degrees of non dominant vertices is

$$
2 m-k(n-1)
$$

Thus,

$$
\xi^{c}(G)=k(n-1)+2(2 m-k(n-1))=4 m-k(n-1)
$$

that is maximum if $k=0$ and, moreover, explain the grid.

Upper bound on ξ^{c} for connected graphs with fixed size

Definition

For positive integers n and m with $n-1 \leq m \leq\binom{ n}{2}$, let

$$
d_{n, m}=\left\lfloor\frac{2 n+1-\sqrt{17+8(m-n)}}{2}\right\rfloor .
$$

In the following, we simply use d for $d_{n, m}$.

Definition

Let $E_{n, m}$ be the graph obtained from a clique K_{n-d-1} and a path $P_{d+1}=v_{0} v_{1} \ldots v_{d}$ by joining each vertex of the clique to both v_{d} and v_{d-1}, and by joining

$$
m-n+1-\binom{n-d}{2}
$$

vertices of the clique to v_{d-2}.

Upper bound on ξ^{c} for connected graphs with fixed size

Example ($n=5$)

m	$\mathbf{4}$	5	6	7	8	9	10
d	$\mathbf{4}$	3	3	2	2	2	1
$n-d-1$	$\mathbf{0}$	1	1	2	2	2	3
$\#$ edges to v_{d-2}	$\mathbf{0}$	0	1	0	1	2	0

Upper bound on ξ^{c} for connected graphs with fixed size

Example ($n=5$)

m	4	$\mathbf{5}$	6	7	8	9	10
d	4	$\mathbf{3}$	3	2	2	2	1
$n-d-1$	0	$\mathbf{1}$	1	2	2	2	3
$\#$ edges to v_{d-2}	0	$\mathbf{0}$	1	0	1	2	0

Upper bound on ξ^{c} for connected graphs with fixed size

Example ($n=5$)

m	4	5	$\mathbf{6}$	7	8	9	10
d	4	3	$\mathbf{3}$	2	2	2	1
$n-d-1$	0	1	$\mathbf{1}$	2	2	2	3
$\#$ edges to v_{d-2}	0	0	$\mathbf{1}$	0	1	2	0

Upper bound on ξ^{c} for connected graphs with fixed size

Example ($n=5$)

m	4	5	6	$\mathbf{7}$	8	9	10
d	4	3	3	2	2	2	1
$n-d-1$	0	1	1	2	2	2	3
$\#$ edges to v_{d-2}	0	0	1	$\mathbf{0}$	1	2	0

Upper bound on ξ^{c} for connected graphs with fixed size

Example ($n=5$)

m	4	5	6	7	$\mathbf{8}$	9	10
d	4	3	3	2	$\mathbf{2}$	2	1
$n-d-1$	0	1	1	2	$\mathbf{2}$	2	3
$\#$ edges to v_{d-2}	0	0	1	0	$\mathbf{1}$	2	0

Upper bound on ξ^{c} for connected graphs with fixed size

Example ($n=5$)

m	4	5	6	7	8	$\mathbf{9}$	10
d	4	3	3	2	2	$\mathbf{2}$	1
$n-d-1$	0	1	1	2	2	$\mathbf{2}$	3
$\#$ edges to v_{d-2}	0	0	1	0	1	$\mathbf{2}$	0

Upper bound on ξ^{c} for connected graphs with fixed size

Example ($n=5$)

m	4	5	6	7	8	9	$\mathbf{1 0}$
d	4	3	3	2	2	2	$\mathbf{1}$
$n-d-1$	0	1	1	2	2	2	$\mathbf{3}$
$\#$ edges to v_{d-2}	0	0	1	0	1	2	$\mathbf{0}$

What about other classes of graphs ?

Let's try to maximize ξ^{c} on cubic (3-regular) graphs.
SELECT t.n, t.signature, t.eci
FROM (
SELECT n.val AS n, eci.signature, eci.val as eci, DENSE_RANK() OVER (

PARTITION BY n.val
ORDER BY eci.val DESC
) AS pos
FROM cubic
JOIN num_vertices n USING(signature)
JOIN eccentric_connectivity_index eci USING(signature)
) t
WHERE t.pos = 1
ORDER BY t.n;

Maximize ξ^{c} on cubic graphs

n	signature	\| eci
4	C~	12
6	Es\o	36
6	E\{Sw	36
8	Gv? IXW	72
8	Gs@ipo	72
10	Iv?GOKFY?	\| 126
12	Kt?GOKFOAOeA	\| 177
14	Mt?Go?@@_KgKOWM??	\| 270
16	Ot?G?CA?WB'o0?0?b_@?E	\| 348
18	Qv??W[K?G??@?B?B?A??‘'G?p??0	\| 474
20		\| 573
22	Uv?G?CK?oE@_?H?E??G?C??C??W?@??@C_?K0??०	\| 726

