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Introduction

We consider simple undirected graphs.

For a graph G = (V , E ),
its order |V | is denoted by n;
its size |E | is denoted by m.

A graph invariant is a function on graphs that is constant on isomorphism
classes.
Examples: order n, size m, chromatic number χ, maximum degree ∆,
diameter D, planarity, . . .
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Extremal Graph Theory

Extremal Graph Theory aims to find bounds on a graph invariant under
some constraints.
Generally, those constraints are of two types:

restricting class of graphs (e.g., connected graphs, trees);
fixing (and restricting) values of other invariants (e.g., size, maximum
degree).

Results in Extremal Graph Theory mainly consists in
giving bounds;
characterizing graphs achieving these bounds.
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Computer-assisted discovery

Context: Computer-assisted Discovery in Extremal Graph Theory
Several existing systems: Graph, Graffiti, AutoGraphiX,
GraPHedron, . . .

exploit different ideas to help graph theorists
Objectives of this talk:

presentation of PHOEG, a successor of GraPHedron
use of an illustrative problem (Eccentric Connectivity Index, ECI)

Remark: work in progress
PHOEG is currently a prototype
the problem about ECI is not fully solved
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Overview of PHOEG

PHOEG

CoreLib Forbidden subGraph
Characterization

Graph Database - Neo4J

Transproof
Graph transformations

Relational Database - PostgreSQL

Invariants Database

Convex Hull
Computation
Using PostGIS

Representation of graphs
Invariants computation

Various tools
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Eccentric Connectivity Index

Let v be a vertex of a graph G , recall that:
degree d(v) = number of adjacent vertices of v ;
eccentricity ε(v) = maximal distance between v and any other vertex.

Example

a2 | 2
b

3 | 1

c 2 | 2

d
3 | 1
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Eccentric Connectivity Index
Definition
The Eccentric Connectivity Index (ECI) of a graph G , denoted by ξc(G), is

ξc(G) =
∑
v∈V

d(v)ε(v).

Example

a2 | 2
b

3 | 1

c 2 | 2

d
3 | 1

ξc(G) = (2 × 2 + 3 × 1) × 2 = 14
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Eccentric Connectivity Index

History and motivation
Sharma, Goswani and Madan introduced ξc in 1997 in Chemistry;
Useful as a discriminating topological descriptor for Structure
Properties and Structure Activity studies;
Since 1997, more than 200 chemical papers about ξc : applications in
drug design, prediction of anti-HIV activities, etc.
However, the first mathematical paper with extremal properties on ξc

was published only in 2010;
Since 2010, about a dozen papers containing bounds on ξc .
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Some Extremal Theory problem about ξc

Now, let’s make extremal graph theory about ξc with the help of a
computer.

First step: define a problem by choosing constraints.

Several papers containing bounds on ξc — using various invariants as
constraints — have been published (since 2010).

Problem
Among connected graphs of order n and size m, what is the maximum
possible value for ξc?
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Upper bound on ξc for connected graphs with fixed size

We define En,m as follows :

The biggest possible clique
without disconnecting the graph,
leaving a path with the
remaining vertices.
Add remaining edges between
vertices of the clique and the
first vertex of the path.

n = 7, m = 14

This graph is unique for given n and m. We define dn,m as the diameter of
En,m.
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Conjecture of Zhang, Liu and Zhou

Conjecture (Zhang, Liu and Zhou, 2014)
Let G be a graph of order n and size m such that dn,m ≥ 3. Then,

ξc(G) ≤ ξc(En,m),

with equality if and only if G ' En,m.

The authors prove that the conjecture is true when
m = n − 1, n, . . . , n + 4 (if n is large enough).
There exists a “proof” published in a journal of University of Isfahan
(Iran, 2014) but that is obviously wrong.
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Conjecture of Zhang, Liu and Zhou

Conjecture (Zhang, Liu and Zhou, 2014)
Let G be a graph of order n and size m such that dn,m ≥ 3. Then,

ξc(G) ≤ ξc(En,m),

with equality if and only if G ' En,m.

Is the conjecture true?
If yes, how to prove it?
If no, how to improve or correct it?
What about graphs such that dn,m < 3?
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How can the computer help?

In the following, we will show how PHOEG can help to study all of the
preceding questions and to raise new ones.

P Helps Obtaining Extremal Graphs
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PHOEG — the database part

Former system (GraPHedron): graphs and invariant’s values written
sequentially in files;
PHOEG uses a PostgreSQL DB with tens of millions of non-isomorphic
graphs and invariants’ values;
Invariant’s values are computed once (useful for NP-hard invariants);
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Database of the invariants

Each graph has its unique signature used as primary key (canonical
form, thanks to Nauty by Brendan McKay), sig(C5) = ”DqK”,
sig(K3) = ”Bw”.
12 millions simple graphs up to order 10, 8 millions cubic graphs up to
order 22.

Graphs
signature
A_
A?
B?
BG
Bw
BW
C‘
C^
C~
C?
C@

NumVertices
signature val
A_ 2
A? 2
B? 3
BG 3
Bw 3
BW 3
C‘ 4
C^ 4
C~ 4
C? 4
C@ 4

NumEdges
signature val
A_ 1
A? 0
B? 0
BG 1
Bw 3
BW 2
C‘ 2
C^ 5
C~ 6
C? 0
C@ 1

ECI
signature val
A_ 2
BW 6
Bw 6
C^ 14
C~ 12
CF 9
CN 13
Cr 16
CR 14
D‘[ 25
D‘{ 20
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GraPHedron’s main principle

view graphs as points in the space of invariants;

compute the convex hull of these points (for small values of n).
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Database query – Points, multiplicities and polytope

SELECT P.val AS eci, num_edges.val AS m,
COUNT(*) AS mult

FROM eci P
JOIN num_vertices USING(signature)
JOIN num_edges USING(signature)

WHERE num_vertices.val = 7
GROUP BY m, eci;

SELECT ST_AsText(ST_ConvexHull(
ST_Collect(ST_Point(eci, m))))

FROM poly;

st_astext
--------------------------------------------------------

POLYGON((18 6,42 21,66 18,68 17,66 11,62 8,54 6,18 6))

eci | m | mult
----+----+------
47 | 8 | 5
46 | 8 | 3
40 | 8 | 3
32 | 7 | 3
48 | 12 | 55
48 | 18 | 1
61 | 14 | 4
59 | 13 | 1
48 | 11 | 17
43 | 9 | 14
47 | 6 | 1
64 | 10 | 1
59 | 11 | 1
45 | 9 | 7
38 | 6 | 2

[...]
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Exploring ξc with PHOEG: polytopes
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Exploring ξc with PHOEG: polytopes
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Exploring ξc with PHOEG: polytopes
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Exploring ξc with PHOEG: polytopes
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Exploring ξc with PHOEG: polytopes
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Observations and questions

20 40 60
5

10

15

20
How to explain the grid?
Is the conjecture of Zhang,
Liu and Zhou true when
dn,m ≥ 3?
Upper bound when
dn,m < 3?
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Database query – Polytope with some other information

SELECT num_edges.val AS m,
p.val AS eci, d.val AS d,
diam.val AS diam

FROM eci p
JOIN num_vertices USING(signature)
JOIN num_edges USING(signature)
JOIN d USING(signature)
JOIN diam USING(signature)

WHERE num_vertices.val = 7
ORDER BY diam, d, m, eci;

m | eci | d | diam
---+-----+---+------
21 | 42 | 1 | 1
16 | 46 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 52 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2
16 | 58 | 2 | 2

[...]
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Coloring points with values of dn,m
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Recall that the conjecture is stated for dn,m ≥ 3. Is it true for n = 7?
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Database query – Extremal graphs

WITH tmp AS (
SELECT n.val AS n, m.val AS m,

P.signature, P.val AS eci, d.val AS d,
rank() OVER (

PARTITION BY n.val, m.val
ORDER BY P.val DESC

) AS pos
FROM num_vertices n
JOIN num_edges m USING(signature)
JOIN d USING(signature)
JOIN eci P USING(signature)
WHERE n.val = 7

)
SELECT signature AS sig, n, m, eci, d
FROM tmp
WHERE pos = 1 AND d >= 3
ORDER BY n, m, d, eci;

sig | n | m | eci | d
------+---+----+-----+----
F@IQO | 7 | 6 | 54 | 6
F@‘J_ | 7 | 7 | 57 | 5
FgCXW | 7 | 8 | 62 | 5
FWCYw | 7 | 9 | 62 | 4
FgCxw | 7 | 10 | 64 | 4
F‘Kyw | 7 | 11 | 66 | 4
F‘Kzw | 7 | 12 | 65 | 3
F‘Lzw | 7 | 13 | 65 | 3
F‘\zw | 7 | 14 | 65 | 3
FJ]|w | 7 | 15 | 65 | 3
FJ\|w | 7 | 15 | 65 | 3

⇒ counter-example to the conjecture !
Extremal graphs are not always unique
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Counter-example (n = 7 and m = 15)

5 × 2

5 × 2

5 × 2

4 × 3 5 × 2 5 × 2 1 × 3

It is possible to construct counter-examples for any values of n ≥ 6 (with dn,m = 3).
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Coloring points with values of dn,m
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Upper bound when dn,m < 3?
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Upper facet of the polytope (n = 7)

20 30 40 50 60 70
5

10

15

20

1

2

3

4

5

6

d

K7

P. Hauweele — UMONS PHOEG Helps Obtaining Extremal Graphs CSD8 – 2017 24 / 34



Coloring points with values of the diameter

20 30 40 50 60 70
5

10

15

20

ξc

m
Polytope for n = 7 with values for diameter D

1

2

3

4

5

6

D

Can the diameter explain the blue grid? Actually, yes!
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Coloring points with values of the diameter
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A new tight upper bound when dn,m < 3

Theorem
Let G be a graph of order n and size m. Then,

ξc(G) ≤ n(n − 1)(n − 2) − 2m(n − 3),

with equality if and only if G is the complement of a matching.

Note that the bound is valid for all graphs but can be tight only if

m ≥
(

n
2

)
−
⌊n

2

⌋
,

(and thus dn,m < 3).
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Number of non-equivalent colorings

We note P(G , k) the number of non-equivalent colorings of G that use
exactly k colors.

P(P3, 2) = 1

P(P3, 3) = 1
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Total number of non-equivalent colorings

Definition
The total number of non-equivalent colorings P(G) of a graph G is

P(G) =
n∑

k=0
P(G , k) =

n∑
k=χ(G)

P(G , k),

where χ(G) is the chromatic number of G .

Example: P(P3) = P(P3, 2) + P(P3, 3) = 1 + 1 = 2

P(G) is the value of the σ-polynomial when x = 1 and is also known as the
Bell number of a graph [Duncan & Peele, 2009].

P. Hauweele — UMONS PHOEG Helps Obtaining Extremal Graphs CSD8 – 2017 28 / 34



The Min-NumCol-NumEdges Problem

Problem
What is minimum possible value of P for graphs of fixed order n and size m
and what are the graphs attaining those bounds ?
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Some extremal graphs

(n, m) = (5, 4) (n, m) = (5, 4) (n, m) = (5, 5) (n, m) = (5, 6)

(n, m) = (6, 10) (n, m) = (6, 11) (n, m) = (6, 12) (n, m) = (6, 13)

(n, m) = (8, 15) (n, m) = (8, 16) (n, m) = (8, 16) (n, m) = (8, 17)
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The extremal(?) graphs
Given n the order and m the size of graphs. Let tk be the biggest triangular
number such that tk ≤ m. We call rm = m − tk the remainder.

We define G∗(n, m) as the unique graph formed from Kk+1
⋃

Kn−k−1,
where one (if any) vertex of Kn−k−1 is connected to rm vertices of the
clique.

If rm = 1, and n − k − 1 ≥ 2, we define G ′(n, m) as Kk+1
⋃

Kn−k−1, where
two vertices of Kk+1

⋃
Kn−k−1 are connected.

G∗(8, 13) G ′(8, 11)
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Forbidden Graph Characterization

In this tool, we want a necessary and sufficient characterization of our
graphs.

S1 S2 S3
S4

S5
S6 S7
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Concluding remarks

Not only extremal graphs are useful to study extremal properties of an
invariant
Exact approach limited to small graphs (n ≤ 10)
However, dealing with small graphs has already shown to be very useful
and led to numerous results (AutoGraphiX, GraPHedron)
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Perspectives

Invariants’ DB allows a form of dynamic programming;
Create a simple interface for queries, define a domain specific language;
Allow easy visualization and manipulation of outputs (GUI, PDF, etc.);
Go up in the order of graphs, relaxing the exact constraint.
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Appendix
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Understanding the grid of blue points

20 30 40 50 60 70
5

10

15

20
Suppose D(G) = 2 (light blue points)
For each vertex v, since D(G) = 2, either
ε(v) = 1 or ε(v) = 2
If ε(v) = 1, then v is dominant and
d(v) = n − 1
Let k be the number of dominant vertices of G
The sum of degrees of non dominant vertices is

2m − k(n − 1)
Thus,

ξc(G) = k(n − 1) + 2(2m − k(n − 1)) = 4m − k(n − 1),

that is maximum if k = 0 and, moreover, explain the grid.
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Upper bound on ξc for connected graphs with fixed size

Definition
For positive integers n and m with n − 1 ≤ m ≤

(n
2
)
, let

dn,m =
⌊

2n + 1 −
√

17 + 8(m − n)
2

⌋
.

In the following, we simply use d for dn,m.

Definition
Let En,m be the graph obtained from a clique Kn−d−1 and a path
Pd+1 = v0v1 . . . vd by joining each vertex of the clique to both vd and vd−1,
and by joining

m − n + 1 −
(

n − d
2

)
vertices of the clique to vd−2.
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Upper bound on ξc for connected graphs with fixed size

Example (n = 5)

m 4 5 6 7 8 9 10
d 4 3 3 2 2 2 1
n − d − 1 0 1 1 2 2 2 3
# edges to vd−2 0 0 1 0 1 2 0
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What about other classes of graphs ?

Let’s try to maximize ξc on cubic (3-regular) graphs.

SELECT t.n, t.signature, t.eci
FROM (

SELECT n.val AS n, eci.signature, eci.val as eci,
DENSE_RANK() OVER (

PARTITION BY n.val
ORDER BY eci.val DESC

) AS pos
FROM cubic
JOIN num_vertices n USING(signature)
JOIN eccentric_connectivity_index eci USING(signature)
) t

WHERE t.pos = 1
ORDER BY t.n;
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Maximize ξc on cubic graphs

n | signature | eci
----+------------------------------------------+-----

4 | C~ | 12
6 | Es\o | 36
6 | E{Sw | 36
8 | Gv?IXW | 72
8 | Gs@ipo | 72

10 | Iv?GOKFY? | 126
12 | Kt?GOKFOAOeA | 177
14 | Mt?GO?@@_KgKOWM?? | 270
16 | Ot?G?CA?WB‘oO?O?b_@?E | 348
18 | Qv??W[K?G??@?B?B?A??‘G?p??o | 474
20 | Sv?GW?@?W??@?B????G?J??w?w?M?BO?? | 573
22 | Uv?G?CK?oE@_?H?E??G?C??C??W?@??@C_?KO??o | 726
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