PHOEG Helps Obtaining Extremal Graphs

Pierre Hauweele

Joint work with Gauvain Devillez and Hadrien Mélot

Algorithms Lab, Computer Science Departement

Faculty of Sciences, University of Mons

<u>U</u>MONS

CSD8, Mons, August 23, 2017

Introduction

We consider simple undirected graphs.

For a graph G = (V, E),

- its order |V| is denoted by n;
- its size |E| is denoted by m.

A graph invariant is a function on graphs that is constant on isomorphism classes.

Examples: order *n*, size *m*, chromatic number χ , maximum degree Δ , diameter *D*, planarity, . . .

Extremal Graph Theory

Extremal Graph Theory aims to find bounds on a graph invariant under some constraints.

Generally, those constraints are of two types:

- restricting class of graphs (e.g., connected graphs, trees);
- fixing (and restricting) values of other invariants (e.g., size, maximum degree).

Results in Extremal Graph Theory mainly consists in

- giving bounds;
- characterizing graphs achieving these bounds.

Computer-assisted discovery

- Context: Computer-assisted Discovery in Extremal Graph Theory
- Several existing systems: Graph, Graffiti, AutoGraphiX, GraPHedron, . . .
 - exploit different ideas to help graph theorists
- Objectives of this talk:
 - presentation of PHOEG, a successor of GraPHedron
 - use of an illustrative problem (Eccentric Connectivity Index, ECI)
- Remark: work in progress
 - PHOEG is currently a prototype
 - the problem about ECI is not fully solved

Overview of PHOEG

Eccentric Connectivity Index

Let v be a vertex of a graph G, recall that:

- degree d(v) = number of adjacent vertices of v;
- eccentricity $\epsilon(v)$ = maximal distance between v and any other vertex.

Example

Eccentric Connectivity Index

Definition

The Eccentric Connectivity Index (ECI) of a graph G, denoted by $\xi^{c}(G)$, is

$$\xi^{c}(G) = \sum_{v \in V} d(v)\epsilon(v).$$

Example

$$\xi^{c}(G) = (2 \times 2 + 3 \times 1) \times 2 = 14$$

Eccentric Connectivity Index

History and motivation

- Sharma, Goswani and Madan introduced ξ^c in 1997 in Chemistry;
- Useful as a discriminating topological descriptor for Structure Properties and Structure Activity studies;
- Since 1997, more than 200 chemical papers about ξ^c: applications in drug design, prediction of anti-HIV activities, etc.
- However, the first mathematical paper with extremal properties on ξ^c was published only in 2010;
- Since 2010, about a dozen papers containing bounds on ξ^c.

Some Extremal Theory problem about ξ^c

Now, let's make extremal graph theory about ξ^c with the help of a computer.

First step: define a problem by choosing constraints.

Some Extremal Theory problem about ξ^c

Now, let's make extremal graph theory about ξ^c with the help of a computer.

First step: define a problem by choosing constraints.

Several papers containing bounds on ξ^c — using various invariants as constraints — have been published (since 2010).

Some Extremal Theory problem about ξ^c

Now, let's make extremal graph theory about ξ^c with the help of a computer.

First step: define a problem by choosing constraints.

Several papers containing bounds on ξ^c — using various invariants as constraints — have been published (since 2010).

Problem

Among connected graphs of order *n* and size *m*, what is the maximum possible value for ξ^c ?

We define $E_{n,m}$ as follows :

n = 7, m = 14

We define $E_{n,m}$ as follows :

 The biggest possible clique without disconnecting the graph, leaving a path with the remaining vertices.

$$n = 7, m = 14$$

We define $E_{n,m}$ as follows :

- The biggest possible clique without disconnecting the graph, leaving a path with the remaining vertices.
- Add remaining edges between vertices of the clique and the first vertex of the path.

$$n = 7, m = 14$$

We define $E_{n,m}$ as follows :

- The biggest possible clique without disconnecting the graph, leaving a path with the remaining vertices.
- Add remaining edges between vertices of the clique and the first vertex of the path.

This graph is unique for given n and m. We define $d_{n,m}$ as the diameter of $E_{n,m}$.

Conjecture of Zhang, Liu and Zhou

Conjecture (Zhang, Liu and Zhou, 2014)

Let G be a graph of order n and size m such that $d_{n,m} \ge 3$. Then,

 $\xi^{c}(G) \leq \xi^{c}(E_{n,m}),$

with equality if and only if $G \simeq E_{n,m}$.

- The authors prove that the conjecture is true when m = n 1, n, ..., n + 4 (if *n* is large enough).
- There exists a "proof" published in a journal of University of Isfahan (Iran, 2014) but that is obviously wrong.

Conjecture of Zhang, Liu and Zhou

Conjecture (Zhang, Liu and Zhou, 2014)

Let G be a graph of order n and size m such that $d_{n,m} \ge 3$. Then,

 $\xi^{c}(G) \leq \xi^{c}(E_{n,m}),$

with equality if and only if $G \simeq E_{n,m}$.

- Is the conjecture true?
- If yes, how to prove it?
- If no, how to improve or correct it?
- What about graphs such that $d_{n,m} < 3$?

In the following, we will show how PHOEG can help to study all of the preceding questions and to raise new ones.

- Former system (GraPHedron): graphs and invariant's values written sequentially in files;
- PHOEG uses a PostgreSQL DB with tens of millions of non-isomorphic graphs and invariants' values;
- Invariant's values are computed once (useful for NP-hard invariants);

Database of the invariants

- Each graph has its unique signature used as primary key (canonical form, thanks to Nauty by Brendan McKay), sig(C₅) = "DqK", sig(K₃) = "Bw".
- 12 millions simple graphs up to order 10, 8 millions cubic graphs up to order 22.

Graphs	NumVerti	ces	NumEdg	ges		ECI	
signature	signature	val	signature	val	1	signature	val
A_	A_	2	A_	1		A_	2
Α?	Α?	2	Α?	0		BW	6
B?	B?	3	B?	0		Bw	6
BG	BG	3	BG	1		C^	14
Bw	Bw	3	Bw	3		C~	12
BW	BW	3	BW	2		CF	9
Cʻ	Cʻ	4	Cʻ	2		CN	13
C^	C^	4	C^	5		Cr	16
C~	C~	4	C~	6		CR	14
C?	C?	4	C?	0		D'[25
C@	C@	4	C@	1		D'{	20

GraPHedron's main principle

view graphs as points in the space of invariants;

> 0 50 20 0 \cap 40 • 0 0 ò multiplicity 15 0 30 0 Ε \mathcal{m} \mathcal{m} 20 mmm OC \cap 10 \odot 0 0 mmmmm 0000 0 C 10 ထထဝ mm 000 00 0 5 20 30 40 50 60 70

Polytope for n = 7

GraPHedron's main principle

view graphs as points in the space of invariants;

compute the convex hull of these points (for small values of n).

Polytope for n = 7

Database query – Points, multiplicities and polytope

SELECT P.val AS eci, num_edges.val AS m, COUNT(*) AS mult	eci		m 		mult
FROM eci P	47	i	8	i	5
JOIN num_vertices USING(signature)	46	T	8	I	3
JOIN num_edges USING(signature)	40	T	8	I	3
WHERE num_vertices.val = 7	32	L	7	I	3
GROUP BY m, eci;	48	T	12	I	55
	48	T	18	I	1
	61	L	14	I	4
	59	L	13	I	1
	48	T	11	I	17
SELECT ST_AsText(ST_ConvexHull(43	T	9	I	14
<pre>ST_Collect(ST_Point(eci, m))))</pre>	47	T	6	I	1
FROM poly;	64	T	10	I	1
	59	T	11	I	1
st_astext	45	T	9	I	7
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	38	T	6	I	2
PULIGUN((10 0,42 21,00 10,00 17,00 11,02 8,54 0,18 0))			[]	

Ε

Ε

Polytope for n = 7

Ε

Ε

Е

Observations and questions

- How to explain the grid?
- Is the conjecture of Zhang, Liu and Zhou true when $d_{n,m} \ge 3?$
- Upper bound when *d_{n,m}* < 3?

Database query – Polytope with some other information

SELECT num_edges.val AS m,
p.val AS eci, d.val AS d,
diam.val AS diam
FROM eci p
JOIN num_vertices USING(signature)
JOIN num_edges USING(signature)
JOIN d USING(signature)
JOIN diam USING(signature)
WHERE num_vertices.val = 7
ORDER BY diam, d, m, eci;

m	I	eci	I	d	I	diam			
	+-		+-		+-				
21	Ι	42	T	1	T	1			
16	Τ	46	T	2	T	2			
16	Τ	52	I	2	Т	2			
16	Τ	52	I	2	T	2			
16	Ι	52	I	2	Ι	2			
16	Τ	52	I	2	T	2			
16	Τ	52	I	2	T	2			
16	Τ	58	I	2	T	2			
16	Τ	58	I	2	T	2			
16	Τ	58	I	2	T	2			
16	Τ	58	I	2	T	2			
16	T	58	I	2	T	2			
16	Τ	58	I	2	T	2			
16	Τ	58	I	2	T	2			
16	Ι	58	I	2	Ι	2			
		[.		.]					

Coloring points with values of $d_{n,m}$

Recall that the conjecture is stated for $d_{n,m} \ge 3$. Is it true for n = 7?

Database query – Extremal graphs

```
WITH tmp AS (
  SELECT n.val AS n. m.val AS m.
    P.signature, P.val AS eci, d.val AS d,
    rank() OVER (
      PARTITION BY n.val, m.val
      ORDER BY P.val DESC
    ) AS pos
  FROM num vertices n
  JOIN num_edges m USING(signature)
  JOIN d USING(signature)
  JOIN eci P USING(signature)
  WHERE n.val = 7
)
SELECT signature AS sig, n, m, eci, d
FROM tmp
WHERE pos = 1 AND d \ge 3
ORDER BY n, m, d, eci;
```

sig	Ι	n	I	m	Ι	eci	I	d	
	+-		+-		+-		+-		-
F@IQO	T	7	Ι	6	T	54	T	6	
F@'J_	Ι	7	Ι	7	Ι	57	Ι	5	
FgCXW	Т	7	Ι	8	Τ	62	T	5	
FWCYw	Ι	7	Ι	9	Ι	62	Ι	4	
FgCxw	Τ	7	Ι	10	Τ	64	Τ	4	
FʻKyw	Τ	7	Ι	11	Τ	66	Τ	4	
FʻKzw	Т	7	Ι	12	Τ	65	T	3	
FʻLzw	Т	7	Ι	13	Τ	65	T	3	
Fʻ∖zw	Т	7	Ι	14	Τ	65	T	3	
FJ] w	Ι	7	Ι	15	Ι	65	Ι	3	
FJ∖∣w	Τ	7	Ι	15	Ι	65	Τ	3	

Database query – Extremal graphs

WITH tmp AS (sig	l n		m	eci	d	
SELECT n.val AS n, m.val AS m,		+	-+-	4	+	+	
P.signature, P.val AS eci, d.val AS d,	F@IQO	7	Ι	6	54	6	
TAIK() UVER (F@ʻJ	7	Т	7	57	5	
ORDER BY P.val DESC	FgCXW	7	Ι	8	62	5	
) AS pos	FWCYw	7		9	62	4	
FROM num_vertices n	FgCxw	7	Ι	10	64	4	
JUIN num_edges m USING(signature)	F'Kyw	7	Τ	11	66	4	
JOIN eci P USING(signature)	FʻKzw	7	Ι	12	65	3	
WHERE n.val = 7	FʻLzw	7	Ι	13	65	3	
)	Fʻ∖zw	7	Τ	14	65	3	
SELECT signature AS sig, n, m, eci, d	FJ] w	7	Ì	15	65	3	
WHERE pos = 1 AND d >= 3	FJ∖∣w	7	Ι	15	65	3	
ORDER BY n, m, d, eci;							
\Rightarrow counter-example to the	conject	ure	1				
Extremal graphs are not always unique							

Counter-example (n = 7 and m = 15)

Counter-example (n = 7 and m = 15)

Counter-example (n = 7 and m = 15)

It is possible to construct counter-examples for any values of $n \ge 6$ (with $d_{n,m} = 3$).

Coloring points with values of $d_{n,m}$

Upper bound when $d_{n,m} < 3$?

PHOEG Helps Obtaining Extremal Graphs

Upper facet of the polytope (n = 7)

Coloring points with values of the diameter

Coloring points with values of the diameter

Can the diameter explain the blue grid? Actually, yes!

P. Hauweele - UMONS

PHOEG Helps Obtaining Extremal Graphs

CSD8 - 2017 25 / 34

A new tight upper bound when $d_{n,m} < 3$

Theorem

Let G be a graph of order n and size m. Then,

$$\xi^{c}(G) \leq n(n-1)(n-2) - 2m(n-3),$$

with equality if and only if G is the complement of a matching.

Note that the bound is valid for all graphs but can be tight only if

$$m \ge \binom{n}{2} - \left\lfloor \frac{n}{2} \right\rfloor,$$

(and thus $d_{n,m} < 3$).

Number of non-equivalent colorings

We note P(G, k) the number of non-equivalent colorings of G that use exactly k colors.

Total number of non-equivalent colorings

Definition

The total number of non-equivalent colorings $\mathcal{P}(G)$ of a graph G is

$$\mathcal{P}(G) = \sum_{k=0}^{n} \mathsf{P}(G,k) = \sum_{k=\chi(G)}^{n} \mathsf{P}(G,k),$$

where $\chi(G)$ is the chromatic number of G.

Example:
$$\mathcal{P}(P_3) = P(P_3, 2) + P(P_3, 3) = 1 + 1 = 2$$

 $\mathcal{P}(G)$ is the value of the σ -polynomial when x = 1 and is also known as the Bell number of a graph [Duncan & Peele, 2009].

The Min-NumCol-NumEdges Problem

Problem

What is minimum possible value of \mathcal{P} for graphs of fixed order n and size m and what are the graphs attaining those bounds ?

Some extremal graphs

The extremal(?) graphs

Given *n* the order and *m* the size of graphs. Let t_k be the biggest triangular number such that $t_k \leq m$. We call $r_m = m - t_k$ the remainder.

We define $G^*(n, m)$ as the unique graph formed from $K_{k+1} \bigcup \overline{K}_{n-k-1}$, where one (if any) vertex of \overline{K}_{n-k-1} is connected to r_m vertices of the clique.

If $r_m = 1$, and $n - k - 1 \ge 2$, we define G'(n, m) as $K_{k+1} \bigcup \overline{K}_{n-k-1}$, where two vertices of $K_{k+1} \bigcup \overline{K}_{n-k-1}$ are connected.

Forbidden Graph Characterization

In this tool, we want a necessary *and* sufficient characterization of our graphs.

- Not only extremal graphs are useful to study extremal properties of an invariant
- Exact approach limited to small graphs ($n \le 10$)
- However, dealing with small graphs has already shown to be very useful and led to numerous results (AutoGraphiX, GraPHedron)

- Invariants' DB allows a form of dynamic programming;
- Create a simple interface for queries, define a domain specific language;
- Allow easy visualization and manipulation of outputs (GUI, PDF, etc.);
- Go up in the order of graphs, relaxing the *exact* constraint.

Appendix

Understanding the grid of blue points

- Suppose D(G) = 2 (light blue points)
- For each vertex v, since D(G) = 2, either ϵ(v) = 1 or ϵ(v) = 2
- If $\epsilon(v) = 1$, then v is dominant and d(v) = n 1
 - Let k be the number of dominant vertices of G
 The sum of degrees of non dominant vertices is
 2m k(n 1)

Thus,

$$\xi^{c}(G) = k(n-1) + 2(2m - k(n-1)) = 4m - k(n-1),$$

that is maximum if k = 0 and, moreover, explain the grid.

Definition

For positive integers *n* and *m* with $n-1 \le m \le \binom{n}{2}$, let

$$d_{n,m} = \left\lfloor \frac{2n+1-\sqrt{17+8(m-n)}}{2} \right\rfloor$$

In the following, we simply use d for $d_{n,m}$.

Definition

Let $E_{n,m}$ be the graph obtained from a clique K_{n-d-1} and a path $P_{d+1} = v_0 v_1 \dots v_d$ by joining each vertex of the clique to both v_d and v_{d-1} , and by joining

$$m-n+1-\binom{n-d}{2}$$

vertices of the clique to v_{d-2} .

т	4	5	6	7	8	9	10
d	4	3	3	2	2	2	1
n-d-1	0	1	1	2	2	2	3
# edges to v_{d-2}	0	0	1	0	1	2	0

т	4	5	6	7	8	9	10
d	4	3	3	2	2	2	1
n-d-1	0	1	1	2	2	2	3
$\#$ edges to v_{d-2}	0	0	1	0	1	2	0
				1			

т	4	5	6	7	8	9	10
d	4	3	3	2	2	2	1
n-d-1	0	1	1	2	2	2	3
$\#$ edges to v_{d-2}	0	0	1	0	1	2	0
				1			

т	4	5	6	7	8	9	10
d	4	3	3	2	2	2	1
n-d-1	0	1	1	2	2	2	3
$\#$ edges to v_{d-2}	0	0	1	0	1	2	0

What about other classes of graphs ?

Let's try to maximize ξ^c on cubic (3-regular) graphs.

```
SELECT t.n, t.signature, t.eci
FROM (
  SELECT n.val AS n, eci.signature, eci.val as eci,
    DENSE RANK() OVER (
      PARTITION BY n.val
      ORDER BY eci.val DESC
    ) AS pos
  FROM cubic
  JOIN num_vertices n USING(signature)
  JOIN eccentric connectivity index eci USING(signature)
  ) t
WHERE t.pos = 1
ORDER BY t.n;
```

Maximize ξ^c on cubic graphs

n	I	signature	I	eci
	+-		+-	
4	Ι	C~	Ι	12
6	Ι	Es\o	Ι	36
6	Ι	E{Sw	Ι	36
8	I	Gv?IXW	Ι	72
8	I	Gs@ipo	Ι	72
10	Ι	Iv?GOKFY?	Ι	126
12	Ι	Kt?GOKFOAOeA	Ι	177
14	Ι	Mt?GO?@@_KgKOWM??	Ι	270
16	I	Ot?G?CA?WB'oO?O?b_@?E	Ι	348
18	Ι	Qv??W[K?G??@?B?B?A??'G?p??o	Ι	474
20	Ι	Sv?GW?@?W??@?B????G?J??w?w?M?BO??	Ι	573
22	Ι	Uv?G?CK?oE@_?H?E??G?C??C??W?@??@C_?KD??o	Ι	726

