
On Model-Checking Timed Automata with

Stopwatch Observers ?

Thomas Brihaye a Véronique Bruyère a Jean-François Raskin b

a Faculté des Sciences,
Université de Mons-Hainaut,

Avenue du Champ de Mars 6, B-7000 Mons, Belgium
b Département d’Informatique, Université Libre de Bruxelles,
Boulevard du Triomphe CP 212, B-1050-Bruxelles, Belgium

Abstract

In this paper we study the model-checking problem for weighted timed automata
and the weighted CTL logic ; we also study the finiteness of bisimulations of weighted
timed automata. Weighted timed automata are timed automata extended with costs
on both edges and locations. When the costs act as stopwatches, we get stopwatch
automata with the restriction that the stopwatches cannot be reset nor tested.
The weighted CTL logic is an extension of TCTL that allows to reset and test
the cost variables. Our main results are: (i) the undecidability of the proposed
model-checking problem for discrete and dense time in general, (ii) its PSpace-

Completeness in the discrete case, and its undecidability in the dense case, for a
slight restriction of the weighted CTL Logic, (iii) the precise frontier between finite
and infinite bisimulations in the dense case for the subclass of stopwatch automata.

Key words: Weighted timed automata, model-checking, bisimulations.

1 Introduction

During the last decade, hybrid automata have been widely studied and espe-
cially the reachability problem for hybrid automata. In this article, we study
a model-checking problem for a particular class of hybrid automata. Our mo-
tivation is the important open problem of model-checking timed automata
extended with stopwatches used as observers [2].

? Supported by the FRFC project “Centre Fédéré en Vérification” funded by the
Belgian National Science Foundation (FNRS) under grant nr 2.4530.02

Preprint submitted to Elsevier Science 2 December 2005

We consider the model of weighted timed automata, which is an extension of
timed automata with tuples of costs on both edges and locations. This model
has been independently introduced in [7] and [8] (with single costs instead of
tuples of costs).

The properties of weighted timed automata that we want to check are for-
malised by formulas of the weighted CTL logic, WCTL for short. This logic is
close to the DTL logic of [9] and the ICTL logic of [5].

Our approach is a systematic study of the tool bisimulation as done in the
works [12], [13] and [19]. Indeed when the transition system of an hybrid
automaton has a finite bisimulation that can be constructed effectively, the
reachability problem and the model-checking problem of branching logics are
decidable. For instance this technique has been successfully applied to timed
automata thanks to the region graph (see [4]). However the converse does not
hold in general.

Related works. There are few results on the model-checking of hybrid au-
tomata. Indeed the wide study of the particular case of the reachability prob-
lem has identified a frontier between decidability and undecidability. Among
the numerous results about this problem, let us mention the following ones.
The important class of initialized rectangular automata has a decidable reach-
ability problem; however several slight generalisations of these automata lead
to an undecidable reachability problem, in particular for timed automata aug-
mented with one stopwatch [16]. The reachability problem is also undecid-
able for the simple class of constant slope hybrid systems which are timed
automata augmented with integrators; the reachability problem becomes de-
cidable when the integrators are used as observers (they are neither reset
nor tested) [17]. The latter case has also been studied in [2]. Of course the
well-known class of timed automata has a decidable reachability problem [4].
Recently the minimum-cost reachability problem has been introduced, that is,
determine the minimum cost of runs of a weighted timed automaton from an
initial location to a target location. This problem has been proved decidable
independently in [7] and [8]. Lately an interesting extension of the minimum
cost-reachability problem, namely the optimal conditional reachability prob-
lem, has been introduced and proved to be decidable in [18].

Concerning the model-checking problem of hybrid systems, let us mention two
references. In [5], a model-checking procedure and its implementation in the
HyTech tool are proposed for linear hybrid automata and the ICTL logic.
This procedure is not guaranteed to terminate. In [9], the model-checking
problem is proved to be decidable for some fragments of the DTL logic and a
restrictive class of weighted timed automata.

2

Our contribution. In this paper, we investigate the WCTL model-checking
problem for weighted timed automata. The weighted timed automata can
be seen as constant slope hybrid systems where the integrators are used as
observers and the edges have been enriched with costs. We have chosen this
class of hybrid automata since they have a decidable reachability problem,
even in the case of minimum cost. We also focus on the subclass of automata
with stopwatch observers, which are weighted timed automata such that every
integrator is a stopwatch. The WCTL logic is similar to the ICTL logic. It is a
natural extension of the TCTL logic to formulate properties about integrators
instead of the total elapsed time.

Our first result is the undecidability of the model-checking problem. This
proves that there are situations where the model-checking procedure of [5]
will never terminate, even for classes of hybrid automata with a decidable
reachability problem. What is surprising is that the undecidability holds even
for the discrete time, a case where positive results usually happen. The proof
is based on the halting problem for 2-counter machines, with its reduction
distributed to both a weighted timed automaton and a WCTL formula. This
proof works for automata with stopwatch observers equipped with 1 clock and
3 stopwatches and for WCTL formulas where two integrators are compared.

In the sequel of the paper, we limit our study to the WCTLr logic, that is,
WCTL where integrators can only be compared with constants. One way to
prove that the model-checking problem is decidable is the effective construc-
tion of a finite bisimulation for weighted timed automata. This is the approach
already proposed in [12], [13] and [19]. The effectiveness is always guaranteed
as our automata are particular linear hybrid automata. It should be noted
that the existence of a finite bisimulation is sufficient but not necessary for
decidability of the model-checking problem.

For discrete time, when working with the WCTLr logic, we show that the
bisimulations are always finite. It follows that the WCTLr model-checking
problem for weighted timed automata is PSpace-Complete.

However for dense time, the panorama completely changes. In this case, we
first prove that the WCTLr model-checking problem becomes undecidable.
As before for the WCTL logic, the proof is based on the halting problem
for 2-counter machines, and it works for automata with stopwatch observers
using 5 clocks and 1 stopwatch. In the case of dense time, we also identify the
precise frontier between finite and infinite bisimulations for automata with
stopwatch observers. Our results are the following. There exist automata with
stopwatch observers that have no finite bisimulations already with 2 clocks and
1 stopwatch, or with 1 clock and 2 stopwatches. This is no longer true with 1
clock and 1 stopwatch and in this particular case the WCTLr model-checking
problem is decidable.

3

A part of these results has been published in [11], namely the undecidability of
the WCTL model-checking problem and the precise frontier between finite and
infinite bisimulations for automata with stopwatch observers. Additionally in
this paper we give proofs of the previous results and we completely study the
WCTLr model-checking problem.

2 Weighted Timed Automata

In this section, we introduce the notion of weighted timed automaton, which
is an extension of timed automata with costs on both locations and edges. We
begin with the usual notations on timed automata.

Notations. Let X = {x1, . . . , xn} be a set of n clocks. The same notation
x = (x1, . . . , xn) is used for the clock variables and for an assignment of values
to these variables. Depending on whether the time is dense or discrete, the
values are taken in domain T equal to the set R+ of nonnegative reals or to the
set N of natural numbers. Given a clock assignment x and τ ∈ T, x+ τ is the
clock assignment (x1+τ, . . . , xn+τ). The set G denotes the set of guards which
are finite conjunctions of atomic guards of the form xi ∼ c where xi is a clock,
c ∈ N is an integer constant, and ∼ is one of the symbols {<,≤,=, >,≥}.
Notation x |= g means that the clock assignment x satisfies the guard g. A
reset r ∈ 2X indicates which clocks are reset to 0, that is, x′ = [xi := 0]xi∈rx.
We use notation Σ for the set of atomic propositions.

Definition 1 A weighted timed automaton A = (L,E, I,L, C) has the fol-
lowing components: (i) L is a finite set of locations, (ii) E ⊆ L×G × 2X ×L

is a finite set of edges, (iii) I : L → G assigns an invariant to each location,
(iv) L : L → 2Σ is the labeling function and (v) C : L ∪ E → Nm assigns a
m-tuple of costs to both locations and edges.

An automaton with stopwatch observers is a weighted timed automaton such
that for every location l, C(l) ∈ {0, 1}m (instead of Nm).

The concept of weighted timed automata has been independently introduced
in [7] and [8] (with single costs instead of m-tuples of costs). In the previous
definition, we say that C(l) (resp. C(e)) is the cost of location l (resp. edge
e). We will sometimes use the notation ż1 = d1, . . . , żm = dm at location l

instead of C(l) = (d1, . . . , dm); the variables z = (z1, . . . , zm) are called cost
variables 1 . Note that the variables z1, . . . , zm cannot be reset nor tested in

1 This notation comes from automata with integrators, the variables z1, . . . , zm

being the integrators, see for instance [17].

4

weighted timed automata, they are just observers.

When an edge e or a location l has null costs, that is, C(e) = (0, . . . , 0) or
C(l) = (0, . . . , 0), we say that it has no cost. On figures, if a cost is not
indicated, it is assumed to be null. When an edge has no cost, no reset and a
guard that is always true, it is called an empty edge.

Definition 2 The semantics of a weighted timed automaton A = (L,E, I,L, C)
is defined as a transition system TA = (Q,→) with a set of states Q equal
to {(l, x, z) | l ∈ L, x ∈ Tn, x |= I(l), z ∈ Tm} and a transition relation
→ =

⋃

τ∈T

τ
→ defined as follows

(l, x, z)
τ
→ (l′, x′, z′)

• case τ > 0 (elapse of time at location l): l = l′, x′ = x+τ and z′ = z+C(l)·τ ,
• case τ = 0 (instantaneous switch): (l, g, r, l′) ∈ E, x |= g, x′ = [xi := 0]xi∈rx

and z′ = z + C(e).

In the previous definition, note that the value of τ (strictly positive, or null)
indicates an elapse of time or an instantaneous switch. The m-tuple z of a state
(l, x, z) indicates global costs that accumulate the individual costs described
by the function C: either the cost rate of staying in a location (per time unit),
or the cost of an edge. A transition (l, x, z)

τ
→ (l′, x′, z′) is shortly denoted by

q → q′ (given q and q′, it is easy to compute the unique τ such that q
τ
→ q′).

When τ > 0, we also shortly denote by q + τ the state q′ of the transition
q

τ
→ q′.

Definition 3 Given a transition system TA, a run ρ = (qi)i≥0 is an infinite
path in TA

ρ = q0
τ0→ q1

τ1→ q2 · · · qi
τi→ qi+1 · · ·

such that Σi≥0τi = ∞ (divergence of time). A finite run ρ = (qi)0≤i≤j is any
finite path in TA. A position in ρ is any state qi or qi + τ with 0 < τ < τi.
The set of positions in ρ is totally ordered in a natural way.

We illustrate the definitions with the classical example of the gas burner sys-
tem.

Example 4 The weighted timed automaton of Figure 1 represents a gas burner
system with two locations l and l′, one where the system is leaking and the other
where it is not leaking. There is 1 clock variable x to express that a continuous
leaking period cannot exceed 1 time unit and two consecutive leaking periods
are separated by at least 30 time units. There are 3 costs variables z1, z2, z3
such that z1 describes the total elapsed time, z2 the accumulated leaking time
and z3 the number of leaks.

5

l l′

leak not leak

(1, 1, 0)

x ≤ 1
(1, 0, 0)

x ≤ 1 x := 0

(0, 0, 1)

x ≥ 30 x := 0

(0, 0, 0)

Fig. 1. The gas burner system.

3 Weighted CTL Logic

In this section, we introduce the weighted CTL logic, WCTL logic for short
(close to the ICTL logic of [5] and to the DTL logic of [9]). Two logics, discrete
and dense, are proposed according to discrete or dense time.

Notations. Let Z = {z1, . . . , zm} be a set of m cost variables. As done
previously for clocks, the same notation z = (z1, . . . , zm) is used for the cost
variables and for an assignment of values to these variables. A cost constraint
π is of the form zi ∼ c or zi−zj ∼ c where zi, zj are cost variables and c ∈ N is
an integer constant. Notation z |= π means that the cost assignment z satisfies
the cost constraint π.

Definition 5 The syntax of the discrete WCTL logic is given by the following
grammar

ϕ ::= σ | π | ¬ϕ | ϕ ∨ ϕ | ∃© ϕ | ϕ∃Uϕ | ϕ∀Uϕ | zi · ϕ

where σ ∈ Σ, π is a cost constraint and z ∈ Z. Dense WCTL formulae are
defined in the same way, except that operator ∃© is forbidden.

The WCTL logic uses freeze quantifiers “zi ·” on the cost variables zi, 1 ≤ i ≤
m. This logic allows to reset such variables and to test them. These actions
are forbidden in weighted timed automata, where the cost variables are only
observers. Note that the TCTL logic [1] is a particular case of WCTL when
each cost variable zi describes the total elapsed time.

We impose that different freeze quantifiers bind different cost variables, i.e. two
occurrences of the freeze quantifier zi· are forbidden in the same formula. For
convenience, we use the following abbreviations: ∃3ϕ ≡ >∃Uϕ, ∀3ϕ ≡ >∀Uϕ,
∃2ϕ ≡ ¬∀3¬ϕ, and ∀2ϕ ≡ ¬∃3¬ϕ. 2

The formulae of WCTL are evaluated on a given weighted timed automaton
A. The sets Σ and Z are supposed to be the same for both A and WCTL.

We now give the semantics of WCTL.

2 Notation > means true and ⊥ means false.

6

Definition 6 Suppose T = N. Let A be a weighted timed automaton and
q = (l, x, z) be a state of the transition system TA of A. Let ϕ be a discrete
WCTL formula. Then the satisfaction relation A, q |= ϕ is defined inductively
as indicated below.

• A, q |= σ iff σ ∈ L(l);
• A, q |= π iff z |= π;
• A, q |= ¬ϕ iff A, q 6|= ϕ;
• A, q |= ϕ ∨ ψ iff A, q |= ϕ or A, q |= ψ;
• A, q |= ∃©ϕ iff there exists a run ρ = (qi)i≥0 in TA with q = q0 and q0

τ
→ q1

satisfying τ = 0 or τ = 1, such that A, q1 |= ϕ;
• A, q |= ϕ∃Uψ iff there exists a run ρ = (qi)i≥0 in TA with q = q0, there exists

a position p in ρ such that A, p |= ψ and A, p′ |= ϕ for all p′ < p;
• A, q |= ϕ∀Uψ iff for any run ρ = (qi)i≥0 in TA with q = q0, there exists a

position p in ρ such that A, p |= ψ and A, p′ |= ϕ for all p′ < p;
• A, q |= zi · ϕ iff A, (l, x, [zi := 0]z) |= ϕ.

In case T = R+ and ϕ is a dense WCTL formula, the satisfaction relation is
defined in the same way, except that A, q |= ∃© ϕ does not exist. When A is
clear from the context, we simply write q |= ϕ instead of A, q |= ϕ.

Let us come back to the gas burner system of Example 4 and formalise some
properties by WCTL formulas.

Example 7 Consider the first property “there exists a run with an average
leaking time always bounded by 0.5” (which formalises 2z2 ≤ z3). Since the
cost constraints π allowed in WCTL are of the form zi ∼ c or zi − zj ∼ c, we
replace the cost C(l) = (1, 1, 0) by (1, 2, 0) in the automaton of Figure 1. The
WCTL formula for the given property is therefore

z2 · z3 · (∃2z2 ≤ z3).

The next property we want to formalise is “in any time interval longer than 60
time units, the accumulated leaking time is at most 5% of the interval length”
(that is, z1 ≥ 60 ⇒ 20z2 ≤ z1). Again we have to modify the automaton by
replacing C(l) by (1, 20, 0). The related WCTL formula is

z1 · z2 · (∀2(z1 ≥ 60 ⇒ z2 ≤ z1)).

Finally, the property “there exists a run such that the accumulated leaking
time is at most 5% of the time interval length and the average leaking time is
bounded by 0.5, until the system never leaks” is formalised as

z1 · z2 · z3 · ((z2 ≤ z1 ∧ z2 ≤ z3) ∃U (∀2¬leak))

if C(l) is replaced by (1, 20, 0) and C(l, x ≤ 1, x := 0, l′) by (0, 0, 10).

7

• k : goto k′ ;
• k : if Ci > 0 then goto k′ else goto k′′ ;
• k : Ci := Ci + 1 ;
• k : Ci := Ci − 1 (this operation is not defined if Ci = 0) ;
• k : stop .

Fig. 2. Instructions of a 2-counter machine

4 Undecidability of WCTL Model-Checking

The problem that we want to study in this article is the following model-
checking problem, for discrete and dense time.

Problem 8 Given a weighted timed automaton A and a state q of TA, given
a WCTL formula ϕ, does A, q |= ϕ hold ? (T = N or T = R+)

The next theorem states that this problem is undecidable, already for au-
tomata with stopwatch observers.

Theorem 9 In both cases of discrete and dense time, the WCTL model-
checking problem for automata with stopwatch observers is undecidable.

Corollary 10 Problem 8 is undecidable.

PROOF. (of Theorem 9) The proof is based on a reduction of the halting
problem for a 2-counter machine. We recall that a machine with 2 counters
C1 and C2 can be described by a linear labeled program allowing the basic
instructions given on Figure 2. 3

The emulation of the 2-counter machine is done partly by an automaton with
stopwatch observers A and partly by a WCTL formula ϕ. Suppose that the
first label of the program is k0 and the last instruction is a stop instruction
labeled by kt. The 2 counters are encoded by 3 cost variables as follows:

C1 = z1 − z2, C2 = z1 − z3.

The automaton A = (L,E, I,L, C) has 1 clock x and no cost on its edges.
The set Σ of atomic propositions labeling L contains an atomic proposition
σk for each label k of the program and 4 additional atomic propositions ρ1,
ρ′1, ρ2 and ρ′2. The set L contains a location for each label k of the program,
which is labeled by σk; it contains additional locations.

3 We assume that there is an if instruction before each decrementation instruction
such that in the case the counter has a value zero, the counter value is not modified,
otherwise it is decremented.

8

σk

(0, 0, 0) (1, 0, 1)

x ≤ 1

σk+1

(0, 0, 0)
x := 0 x = 1

Fig. 3. Incrementing counter C1.

σk

(0, 0, 0) (0, 1, 0)

x ≤ 1

σk+1

(0, 0, 0)
x := 0 x = 1

Fig. 4. Decrementing counter C1.

σk

(0, 0, 0)

ρ1

(0, 0, 0)

ρ′
1

(0, 0, 0)

σk′

(0, 0, 0)

σk′′

(0, 0, 0)

Fig. 5. If instruction with test on C1.

The goto and stop instructions are easily encoded in A.

The instruction for incrementing counter C1 is encoded by the subautomaton
given on Figure 3. The subautomaton for incrementing C2 is similar except
that the cost of the central state is (1, 1, 0).

Considering the previous footnote, the instruction for decrementing counter
C1 is encoded in Figure 4. A similar subautomaton is given for counter C2

with the cost of the central state equal (0, 0, 1).

The if instruction is encoded as indicated on Figure 5. The atomic proposition
ρ1 is a witness that C1 > 0 while ρ′1 is a witness that C1 = 0. Since the
automaton A is not allowed to test its cost variables, the formula ϕ will check if
C1 = 0 orC1 > 0 depending on the values of z1 and z2. A similar subautomaton
is given for counter C2 with atomic propositions ρ2 and ρ′2.

Let us now give formula ϕ:







ρ1 ⇒ z1 − z2 > 0 ∧ ρ′1 ⇒ z1 − z2 = 0

∧ ρ2 ⇒ z1 − z3 > 0 ∧ ρ′2 ⇒ z1 − z3 = 0





∃U σkt
.

Clearly, the 2-counter machine halts on the stop instruction if and only if
q |= ϕ with the following state

q = (l, x, z1, z2, z3) = (l0, 0, 0, 0, 0)

9

σk

(1, 0, 1)
σk+1

Fig. 6. Incrementing counter C1 with no cost in the locations.

such that l0 is the location labeled by σk0
. It follows that the model-checking

problem is undecidable. 2

Comments. The previous proof works for discrete or dense time. The au-
tomaton A is an automaton with stopwatch observers using 1 clock x and 3
cost variables z1, z2, z3. All its edges have no cost. The formula ϕ uses cost
constraints of the form zi − zj ∼ 0. It does not use any freeze quantifier. The
later comment implies that the model-checking for automata with stopwatch
observers is already undecidable for the fragment of WCTL where the freeze
operator is forbidden.

The proof can be easily adapted if one prefers an automaton with all its
locations having no cost. In this case, A has no clock and again 3 cost variables.
In Figure 6 an incrementation of counter C1 is depicted. The formula ϕ remains
identical. One can imagine a third proof with 1 clock and 3 cost variables, as
a mix of both previous approaches, such that there exist non null costs on
certain locations and on certain edges.

In Section 6 we will restrict to a fragment of WCTL which can not compare
between two cost variables.

5 Bisimulations

We recall in this section useful notions on time abstracting bisimulations (see
[12] or [6]). Indeed in the sequel of the article we want to study the relations
between finite bisimulations and Problem 16.

Definition 11 Let A be a weighted timed automaton and TA = (Q,→) its
transition system. A bisimulation of A is an equivalence relation ≈ ⊆ Q×Q

such that for all q1, q2 ∈ Q satisfying q1 ≈ q2,

• whenever q1
0
→ q′1 with q′1 ∈ Q, there exists q′2 ∈ Q such that q2

0
→ q′2 and

q′1 ≈ q′2 ;
• whenever q1

τ
→ q′1 with τ > 0 and q′1 ∈ Q, there exist τ ′ > 0 and q′2 ∈ Q

such that q2
τ ′

→ q′2 and q′1 ≈ q′2.

A bisimulation ≈ is finite if it has a finite number of equivalence classes. It
is said to respect a partition P0 of the set Q if any P ∈ P0 is a union of

10

equivalence classes of ≈. A set P ⊆ Q will be sometimes called a region.

Given a region P ⊆ Q, the set Pre(P) of predecessor states of P is defined as
Pre0 or Pre>0 according to both kinds of transitions: instantaneous switch or
elapse of time, by

Pre0(P) = {q ∈ Q | ∃q′ ∈ P q
0
→ q′};

Pre>0(P) = {q ∈ Q | ∃q′ ∈ P ∃τ > 0 q
τ
→ q′}.

A crucial property of a bisimulation ≈ is that for every equivalence class P
of ≈, the predecessor Pre(P) is a union of equivalence classes. It follows that
the coarsest bisimulation respecting a partition P0 can be computed by the
next procedure.

Procedure Bisim.

Initially P := P0 ;

While there exist P, P ′ ∈ P such that ∅ (P ∩ Pre(P ′) (P , do

P1 := P ∩ Pre(P ′), P2 := P \ Pre(P ′)

P := (P \ {P}) ∪ {P1, P2} ;

Return P .

Proposition 12 [6] [12] Let A be a weighted timed automaton. The procedure
Bisim terminates if and only if the coarsest bisimulation of A that respects a
partition P0 is finite.

An important property of bisimulations is that they preserve WCTLr formulas
if they respect a well-chosen initial partition. We omit the proof since it is
similar to the proof given in [1] for timed automata and the TCTL logic.

Proposition 13 Let A be a weighted timed automaton and ϕ be a WCTLr

formula. If A has a bisimulation ≈ that respects the partition P0 induced by

(1) the atomic propositions σ labeling the locations of A,
(2) the cost constraints π appearing in ϕ,
(3) the reset of the cost variables in ϕ (operator z·),

then for any states q, q′ of TA such that q ≈ q′, we have q |= ϕ iff q′ |= ϕ.

As a consequence of this proposition, it can be proved that if each step of Pro-
cedure Bisim is effective and if this procedure terminates, then Problem 16 is
decidable. Note that the effectiveness hypothesis does not need to be proved

11

since weighted timed automata are linear hybrid automata for which the ef-
fectiveness of Procedure Bisim is known [12].

Corollary 14 Let A be a weighted timed automaton and ϕ a WCTLr formula.
If A has a finite bisimulation respecting the partition of Proposition 13, then
the WCTLr model-checking problem is decidable. 4

To conclude this section, let us recall the classical bisimulation ≈t for timed
automata [4].

Definition 15 Let TA be the transition system of a timed automaton A. Let
C ∈ N be the supremum of all constants c used in guards of A. For τ ∈ T,
τ denotes its fractional part and bτc its integral part. Two states q = (l, x),
q′ = (l′, x′) of TA are equivalent, q ≈t q

′, if and only if the following conditions
hold

• l = l′ ;
• For any i, 1 ≤ i ≤ n, either bxic = bx′ic or xi, x

′
i > C ;

• For any i 6= j, 1 ≤ i, j ≤ n such that xi, xj ≤ C, xi ≤ xj iff x′i ≤ x′j ;
• For any i, 1 ≤ i ≤ n such that xi ≤ C, xi = 0 iff x′i = 0.

Note that for discrete time, only the first two conditions have to be considered
in this definition. Thus given a clock xi, its possible values in an equivalence
class are 1, 2, . . ., C and C+ = {n ∈ N | n > C}.

6 Model-Checking for WCTLr

In the sequel of the article, we will work with the WCTL logic restricted to
cost constraints π of the form zi ∼ c. It is denoted WCTLr. The related
model-checking problem is the following one, for discrete and dense time.

Problem 16 Given a weighted timed automaton A and a state q of TA, given
a WCTLr formula ϕ, does A, q |= ϕ hold ? (T = N or T = R+)

Example 17 For the gas burner system of Example 4, the property “if the
number of leaks is less than 5, then the leaking time is strictly bounded by 5”
is formalised in WCTLr by the next formula

z2 · z3 · ∀2(z3 < 5 ⇒ z2 < 5).

The next property “at each position of every run, the number of leaks does not

4 The same result holds for WCTL (instead of WCTLr) if the cost constraints in
Condition 2 of Proposition 13 are general constraints zi ∼ c or zi − zj ∼ c.

12

x

z

Fig. 7. Example of a finite bisimulation in the discrete case.

exceed 2 in any time interval less than 100 time units” is formalised by

∀2(z1 · z3 · ∀2(z1 ≤ 100 ⇒ z3 ≤ 2)).

Finally, the property “as soon as a leak is detected, the gas burner stops leaking
after at most 1 time unit” is formalised by

∀2(leak ⇒ z1 · ∀3(¬leak ∧ z1 ≤ 1)).

This section is devoted to the study of Problem 16. We begin with the simple
case of discrete time before studying the more complex case of dense time.

6.1 Discrete Time

In the case of discrete time, the model-checking problem for WCTLr is decid-
able thanks to Corollary 14.

Theorem 18 Let T = N. Let A be a weighted timed automaton and ϕ be a
WCTLr formula. Then A has a finite bisimulation respecting the partition of
Proposition 13.

PROOF. (Sketch) This result is proved in [15] for more general automata
which are the discrete-time rectangular automata, but without costs on the
edges. However, the proposed bisimulation remains valid for weighted timed
automata. It is the usual bisimulation of timed automata (see Definition 15)
adapted as follows: the cost variables are treated as clock variables, and con-
stant C is the supremum of the constants used in the guards of A and in the
cost constraints of ϕ. 2

Figure 7 indicates an example of the finite bisimulation discussed in the pre-
vious proof for 1 clock x and 1 cost variable z.

13

Corollary 19 In the case of discrete time, the WCTLr model-checking prob-
lem for weighted timed automata is PSpace-Complete.

PROOF. (Sketch). The PSpace-Hardness is a direct consequence of the
fact that TCTL model-checking on timed automata is PSpace-Complete [1].
The PSpace-Easiness is established using classical arguments, see [1]. First
note that the number of equivalence classes of the bisimulation given in the
proof of Theorem 18 is bounded by an exponential in the size of the input
of the model-checking problem (sum of the sizes of the automaton and the
formula). We can turn the usual labeling algorithm used for CTL-like logics
into a nondeterministic algorithm that uses polynomial space and computes
the labels of regions as they are required. By Savitch’s theorem, we know that
there also exists a deterministic version of this algorithm that uses polynomial
space. 2

6.2 Dense Time

For dense time, the panorama is completely different since the model-checking
becomes undecidable, already for automata with stopwatch observers.

Theorem 20 Let T = R+. The WCTLr model-checking problem for automata
with stopwatch observers is undecidable.

Corollary 21 In the case of dense time, Problem 16 is undecidable.

PROOF. (of Theorem 20) As for Theorem 9, the proof is based on a reduction
of the halting problem for 2-counter machines. The emulation of the 2-counter
machine M is done partly by an automaton with stopwatch observers A and
partly by a WCTLr formula ϕ.

We refer to Figure 2 for the basic instructions used by the 2-counter machine
M . Let us denote by K the list of instructions of M . A configuration of M is
given by a triple (k, c1, c2) ∈ K×N2 which represents the (label of the) current
instruction and the value of the two counters C1 and C2. The first instruction
of M is supposed to be labeled by k0 and the stop instruction for which M

halts, is supposed to be labeled by kt. The initial configuration of M is thus
(k0, 0, 0).

The automaton A contains a special clock τ which is reset to 0 whenever it
reaches the value 1. The ith configuration of the machine M is encoded by
the state of the transition system TA of A at time i (i.e. at the ith reset of τ).

14

τ := 0

σk

(0, 0, 0, 0)

τ = 0

τ = 0

Fig. 8. location labeled by σk

First we explain how to encode the value of the counters C1, C2 of M . Let us
consider pairs (x, z), where x is a clock and z is a cost variable, whose values
are of the form (2−n, 1−2−n), n ≥ 1, when τ = 0. We will explain later how we
obtain those values. By means of 4 pairs (x1, z1), (x2, z2), (x3, z3) and (x4, z4),
we encode the 2 counters C1 and C2 as follows:

C1 = c1 ⇔ (x1 = 1
2n1

) and (x2 = 1
2n2

) and n1 − n2 = c1,

C2 = c2 ⇔ (x3 = 1
2n3

) and (x4 = 1
2n4

) and n3 − n4 = c2.

(1)

We can already notice that incrementing the counter C1 corresponds to divide
the clock x1 by 2, and decrementing the counter C1 corresponds to divide the
clock x2 by 2 (similarly for the counter C2). We will explain how to proceed
in detail later in the proof.

The automaton A = (L,E, I,L, C) has 5 clocks (the special clock τ and the
clocks x1, x2, x3, x4), 4 cost variables (z1, z2, z3, z4) and no cost on its edges.
The set Σ of atomic propositions labeling L contains an atomic proposition
σk for each label k of the instructions of K. It also contains additional atomic
propositions ρi, ρ

′
i, ςi, ς

′
i, for i = 1, 2, and µj, µ

′
j for j = 1, 2, 3, 4. The set L

contains a location for each label k of the machine M , which is labeled by
σk. For each such k, the related location is as depicted in Figure 8, i.e. with
an invariant τ = 0 and an outgoing edge labeled by the guard τ = 0. So
the transition system TA spends no time in these locations. This means that
the ith configuration (k, c1, c2) of M is encoded by the state of TA at time
i exactly. The set L also contains additional locations that will be described
later.

Formula ϕ will be constructed in parallel with A in a way that M starting
with the initial configuration (k0, 0, 0) halts with the stop instruction if and
only if q0 |= ϕ for the state q0 of TA given by

q0 = (l, τ, x1x2, x3, x4, z1, z2, z3, z4) =
(

l0, 0,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)

where l0 is the location labeled by σk0
. Notice that the pair (xi, zi) appearing

in q0 are of the desired form (2−n, 1 − 2−n).

We are now ready to encode the instructions of M with A and ϕ. The stop

instruction is trivially implemented by a location labeled σkt
.

15

The goto instruction is encoded by the subautomaton of A given on Figure 9.

σk

(0, 0, 0, 0)

τ = 0

(0, 0, 0, 0)

τ ≤ 1

σk′

(0, 0, 0, 0)

τ = 0

τ = 0 τ = 1

τ := 0

∀i xi = 1 ; xi := 0

Fig. 9. k: goto k′.

We do not use formula ϕ in this case. The values of the 4 pairs (xi, zi) have to
be kept unchanged since the values of the 2 counters are not changed. To let
the value of each zi unchanged is simple, it suffices to assign a null cost to all
the locations of Figure 9 (i.e. C(l) = (0, 0, 0, 0)). To keep the value of the clocks
xi unchanged, we use a classical trick (see for example [3]). Since the emulation
of the goto instruction takes exactly one unit of time, guaranteed by the clock
τ , it suffices to reset to 0 each clock xi whenever it reaches value 1. Considering
the central location of Figure 9, this requires to add the 4 invariants xi ≤ 1,
and several loops labeled by the guards xi = 1 and the resets xi := 0 (taking
into account that 2 or more resets could be simultaneous). This is indicated
on Figure 9 with notation ∀i xi = 1 ; xi := 0. Hence we can conclude that if
the 4 pairs (xi, zi) have the desired form (2−ni, 1−2−ni) in the location labeled
σk, they will recover the same value when A enters the location labeled σk′ .
This ends the emulation of the goto instruction.

This construction, that allows to keep the value of the pairs (xi, zi) unchanged,
will be applied again in the sequel of the proof. However we will not give an
explicit construction but only refer to the widget. This widget takes exactly
one time unit, and ensures that the value of the clocks xi are kept constant
by adding loops coupled with guards, resets and invariants in order to reset
xi whenever it reaches 1 (this will be indicated on the next figures by using
notation ∀i xi = 1 ; xi := 0).

We now turn to the if instruction. We treat the test of the counter C1, the
other case is similar. To test whether the counter C1 is equal to 0 is equivalent
to test whether x1 is equal to x2, see (1). But testing equality between two
clocks is not allowed in the automaton. We need to introduce a more tricky
encoding which uses both the automaton A and the formula ϕ. Let us consider
the subautomaton of A given on Figure 10. The atomic proposition ρ1 is a
witness for x1 = x2 and the atomic proposition ρ′1 is a witness for x1 < x2.

5

Since A is not allowed to compare its clocks, we use instead the branching
power of WCTLr through ϕ. To check if x1 = x2 in the location labeled by ρ1

is equivalent to check later on that x1 = x2 = 1 (letting time elapse), that is
to check with a subformula ψ1 of ϕ that the location labeled ς1 can be reached
from it. We proceed in a similar way to check if x1 < x2 in the location labeled

5 The index 1 in ρ1 and ρ′1 is used to recall that it is counter C1 which is tested.

16

σk

(0, 0, 0, 0)

τ = 0

ς1

(0, 0, 0, 0)

ρ1

(0, 0, 0, 0) (0, 0, 0, 0)

(0, 0, 0, 0)

ρ′
1

(0, 0, 0, 0)

ς′
1

(0, 0, 0, 0)

τ = 0

τ = 0

(x1 = 1) ∧ (x2 = 1)

(x1 < 1) ∧ (x2 = 1)

τ = 0

τ = 0

σk′

(0, 0, 0, 0)

τ = 0

τ = 1

τ := 0

σk′′

(0, 0, 0, 0)

τ = 0

τ = 1

τ := 0

widget

widget

∀i, xi = 1; xi := 0

∀i, xi = 1; xi := 0

Fig. 10. k: if C1 = 0 then goto k′ else goto k′′.

ς ′1. This subformula ψ1 is defined as follows:

ψ1 ≡ (ρ1 ⇒ ρ1∃Uς1) ∧ (ρ′1 ⇒ ρ′1∃Uς
′
1).

In the if instruction, depending on whether C1 = 0 or C1 > 0, there is a goto

k′ or a goto k′′. This is encoded in the automaton of Figure 10 by using two
widgets such that the value of the pairs (xi, zi) are left unchanged.

The if instruction for counter C2 is treated similarly. The subautomaton is the
same except that atomic propositions ρ2, ρ

′
2, ς2 and ς ′2 are used instead of ρ1,

ρ′1, ς1 and ς ′1, and clocks x3, x4 are used instead of x1, x2. The subformula is
the following one:

ψ2 ≡ (ρ2 ⇒ ρ2∃Uς2) ∧ (ρ′2 ⇒ ρ′2∃Uς
′
2).

It remains to emulate the incrementation and decrementation instructions. In
both cases, it suffices to divide the value of a clock by 2 while the value of
the other clocks remain unchanged. We only go into detail for the instruction
C1 := C1+1, the other cases being similar. Let us consider the subautomaton of
A given on Figure 11. In order to increment C1, if A enters the location labeled
σk with (x1, z1) = (2−n, 1− 2−n), it has to reach the location labeled σk′ with
(x1, z1) = (2−(n+1), 1 − 2−(n+1)), the values of the 3 other pairs (xi, zi) being
unchanged. To force A to adopt this behaviour, we again use the branching

17

aspect of the logic through the following subformula 6 :

φ1 ≡ µ1 ⇒ µ1∃U(µ′
1 ∧ z1 = 1) (2)

where the atomic propositions µ1 and µ′
1 are witness that the pair (x1, z1) is

modified.

σk

(0, 0, 0, 0) (0, 0, 0, 0) (1, 0, 0, 0)

µ1

(0, 0, 0, 0)

τ = 0

σk+1

(0, 0, 0, 0)

τ = 0

µ1

(0, 0, 0, 0)

µ1

(1, 0, 0, 0)

µ′

1

(0, 0, 0, 0)

τ = 1

(0, 0, 0, 0)

τ = 0

x1 := 0

(τ = 1)∧

(0 < x1 < 1)

τ := 0

τ = 0

τ = 0

x1 = 1τ = 1

∀i 6= 1
xi = 1 ; xi := 0

∀i 6= 1
xi = 1 ; xi := 0

l1 l2 l3 l4 l9

l5l6l7l8

widget

Fig. 11. k: C1 := C1 + 1.

The proof that the evolution of the pair (x1, z1) is done correctly is rather
technical and is formalised in Lemma 22. The other pairs are left unchanged
using the widget (see locations l2, l3 and l4 of Figure 11).

We have a similar subautomaton and subformula for decrementing C1 such
that x1, z1, µ1, µ

′
1 and φ1 are replaced respectively by x2, z2, µ2, µ

′
2 and φ2.

(Similarly for the incrementation and the decrementation of counter C2 by
using indexes 3 and 4).

We are now able to give the whole formula ϕ:

ϕ ≡ (ψ1 ∧ ψ2 ∧ φ1 ∧ φ2 ∧ φ3 ∧ φ4)∃U σkt
. (3)

Clearly M halts on the stop instruction if and only if q0 |= ϕ. It follows
that the model-checking problem for automata with stopwatch observers is
undecidable. 2

Lemma 22 Let us consider Figure 11. If A enters location l1 with (x1, z1) =
(2−n, 1−2−n) and if formula φ1 is satisfied at location l4, then A enters location
l9 with the value of (x1, z1) equal to (2−(n+1), 1 − 2−(n+1)).

6 The index 1 in µ1 and µ′
1 is used to recall that the pair (x1, z1) is modified.

18

PROOF. By hypothesis, A enters location l1 with (x1, z1) = (2−n, 1 − 2−n)
and τ = 0. By construction, we can see that (x1, z1) = (0, 1 − 2−n) when
entering location l3.

Since φ1 is satisfied at location l4, we have z1 = 1 in location l7. This implies
that z1 = τ = 1 in location l7 and so z1 = τ when leaving location l5 with
x1 = 1.

We have to show that the value of (x1, z1) in l4 is (2−(n+1), 1 − 2−(n+1)). Let
us notice that the value of (x1, z1) entering l5 is equal to its value in l4.

Figure 12 represents the evolution of the variables x1, z1 and τ along the path
from l3 to l5. It indicates in bold face a quantity α kept constant along the lines.
In the first line, recall that (x1, z1) has value (0, 1 − 2−n). In the second line,
it has value (α, β) with β = 1− 2−n + α. In the third line, we have α+ β = 1
showing that α = 2−(n+1). Thus (x1, z1) has value (2−(n+1), 1 − 2−(n+1)) at
location l4. 2

leaving l5

leaving l3

being in l4

entering l5

entering l3
x1 z1

τ x1 z1

x1

z1 = τ

0 1

0 1

0 1

α α

αβ

Fig. 12. Evolution of the variables from l3 to l5.

Comments. The previous proof uses an automaton A with stopwatch ob-
servers and a WCTLr formula ϕ. The automaton has 5 clocks and 4 cost
variables (clock τ and pairs (xi, zi), 1 ≤ i ≤ 4). It has no cost on its edges.
The formula does not use the freeze operator. In particular, the model-checking
problem for automata with stopwatch observers is already undecidable for the
fragment of WCTLr where the freeze operator is forbidden.

In the next corollary, we show that the WCTLr model-checking problem is
already undecidable for automata with stopwatch observers using 5 clocks
and 1 cost variable only. The proof will now use the freeze operator.

The fact that we were able to reduce the number of cost variables to only
one is very interesting, when one recalls that the minimum-cost reachability
problem has been proved to be decidable for weighted timed automata with 1
cost variable [7] [8].

19

Corollary 23 Let T = R+. The WCTLr model-checking problem is undecid-
able for automata with stopwatch observers using 5 clocks and 1 cost variable.

PROOF. Let us show how to modify the proof of Theorem 20 in a way to
use only 1 cost variable.

We first recall the role of the 4 cost variables zi in the proof of Theorem 20. In
addition to the special clock τ , the clocks xi, 1 ≤ i ≤ 4, are used to encode the
2 counters as indicated in (1). Each clock xi is coupled with the cost variable
zi such that (xi, zi) has values of the form (2−n, 1 − 2−n), n ≥ 1, when τ = 0.
Looking at the encoding of each basic instruction of the 2-counter machine,
we notice that the cost variables zi are useful only for the incrementation and
decrementation instructions (see Figure 11).

We are now going to show that the 4 cost variables zi can be replaced by 1 cost
variable z. The encoding of the stop, goto and if instructions is done exactly
as in the proof of Theorem 20, except that the 4-tuple (0, 0, 0, 0) appearing in
the locations of Figures 8, 9 and 10 is replaced by ż = 0.

It remains to detail the encoding of the incrementation and decrementation
instructions. We explain the idea for the incrementation of counter C1. Con-
sidering Figure 11, we have shown in the proof of Theorem 20 that if the
automaton A enters location l1 with (x1, z1) = (2−n, 1 − 2−n), it will reach
location l9 with (x1, z1) = (2−(n+1), 1−2−(n+1)), the values of the 3 other pairs
(xi, zi) being unchanged. Figure 13 is now used instead of Figure 11 such that
z is the only cost variable and µ, µ′ are the witness that z is correctly used to
modify the pair (x1, z).

σk

ż = 0 ż = 0 ż = 1

µ

ż = 0
τ = 0

σk+1

ż = 0
τ = 0

µ

ż = 0

µ

ż = 1

µ′

ż = 0
τ = 1

ż = 0

τ = 0

x1 := 0

(τ = 1)∧
(0 < x1 < 1)

τ := 0

τ = 0

τ = 0

x1 = 1τ = 1

∀i 6= 1
xi = 1 ; xi := 0

∀i 6= 1
xi = 1 ; xi := 0

l1

widget

Fig. 13. k: C1 := C1 + 1 (with the cost variable z)

Assume that in Figure 13, one enters l1 with x1 = 2−n and z equal to 0. Then
it is easy to replace location l1 of Figure 13 by a subautomaton in a way that if
one enters it with (x1, z) = (2−n, 0), one leaves it with (x1, z) = (2−n, 1−2−n).

20

σk ; ν

ż = 0

τ = 0

l1

τ = 0

ż = 1

x1 ≤ 1

∀i 6= 1
xi = 1 ; xi := 0

x1 = 1

x1 := 0

ż = 0

z ≤ 1

∀i
xi = 1 ; xi := 0

τ = 1

τ := 0

ż = 0

τ = 0

l′
1

widget

Fig. 14. Modification of the value of (x1, z) from (2−n, 0) to (2−n, 1 − 2−n)

This subautomaton is given on Figure 14. On the later figure, one can verify
that if one enters l1 with (x1, z) = (2−n, 0), then z is equal to 1−2−n when the
guard x1 = 1 is satisfied, and thus one reaches l′1 with (x1, z) = (2−n, 1−2−n).
Finally, to impose that z is equal to 0 at location l1 of Figure 14 is done thanks
to the logic, since this is impossible inside the automaton. This means that
formula φ1 of (2) is replaced by

φ′ ≡ ν ⇒ z · (µ ⇒ µ∃U(µ′ ∧ z = 1))

where ν is a witness that the cost variable z must be reset to 0.

Subautomata for decrementing C1, incrementing and decrementing C2 are con-
structed in a similar way. The same formula φ′ can be used in each of these
cases since it concerns the unique cost variable z. Notice that whereas incre-
menting or decrementing a counter requires one time unit for their encoding
in the proof of Theorem 20, it here requires two time units.

To complete the proof, the final formula ϕ given in (3) must be replaced by:

ϕ ≡ (ψ1 ∧ ψ2 ∧ φ
′)∃U σkt

.

2

7 Bisimulations of Automata with Stopwatch Observers

In the previous section, we have shown that in the case of dense time, the
WCTLr model-checking problem for automata with stopwatch observers is
undecidable (Theorem 20). Looking at the proof of this result, it follows by
Corollary 14 that there exist an automaton with stopwatch observers using 5
clocks and 1 cost variable and a WCTLr formula ϕ for which any bisimulation
respecting the partition P0 of Proposition 13 is infinite.

In this section, we will identify the precise frontier between finite and infinite
bisimulations for the class of automata with stopwatch observers. The next

21

x := 0

ż1 = 0

ż2 = 0

ż1 = 1

ż2 = 0

ż1 = 0

ż2 = 1

ż1 = 1

ż2 = 1

l

Fig. 15. 1 clock and 2 cost variables.

x1 := 0

x2 := 0

ż = 0 ż = 1

Fig. 16. 2 clocks and 1 cost variable.

theorem states that there are already infinite bisimulations in the case of 1
clock and 2 cost variables, as well as of 2 clocks and 1 cost variable.

Theorem 24 Let T = R+. There exist an automaton with stopwatch ob-
servers A using either 1 clock and 2 cost variables, or 2 clocks and 1 cost
variable, and a WCTLr formula ϕ, such that no bisimulation respecting the
partition P0 of Proposition 13 is finite.

PROOF. The two automata that we are going to consider are given in Fig-
ures 15 and 16. Note that these automata have several empty edges and no
labeling of the locations by atomic propositions.

The proof is based on Procedure Bisim and Proposition 12 with the initial
partition P0 given in Proposition 13. Note that Condition 1 of Proposition 13
is trivially satisfied.

Let us begin with the case of 1 clock variable x and 2 cost variables z1, z2.

(1) 1 clock variable x and 2 cost variables z1, z2.

As initial partition, instead of the partition P0 of Proposition 13, we take the
partition P induced by the bisimulation given in Definition 15. The following
discussion justifies this choice.

At location of Figure 15 where ż1 = ż2 = 1 (we denote this location by l),
the behaviour of z1, z2 is the one of a clock. We have thus 3 clocks x, z1, z2
at location l. As shown in [4], if x, z1 and z2 are compared with constant 1,
then Procedure Bisim leads to the bisimulation ≈t of Definition 15 in the cube
[0, 1]3 and in location l. A way to get these comparisons with constant 1 is
simply to add some guard or invariant x = 1 in the automaton of Figure 15
and to consider some WCTLr formula ϕ with the two cost constraints π1 and
π2 respectively equal to z1 = 1 and z2 = 1. Again by Procedure Bisim, the
bisimulation ≈t is transfered to the other locations by applying Pre0 on the
empty edges of the automaton. Therefore, as announced before, we can take
as partition P the partition of the cube [0, 1]3 induced by ≈t.

22

0

1

2

1

z2

z1

Fig. 17. Region S (x = 0).

z1 = z2 x P1

z2 = xz1 S′

x z1 z2 S
0 1

Fig. 18. Its construction.

Let us now show that Procedure Bisim applied on partition P does not ter-
minate because it generates an infinite number of regions Rn, n ≥ 1 7 , each
containing exactly one triple (x, z1, z2) such that 8

(x, z1, z2) = (0,
1

3n
,
3n + 1

2 · 3n
).

(a) We need to work with a particular region generated by the procedure (see
Figure 17)

S : 0 = x < z1 < z2 < 1, 2z2 − z1 = 1.

It is constructed as (see Figure 18)

• S ′ = Pre>0(P1) ∩ P2 with P1 : 0 < z1 = z2 < x = 1, P2 : 0 < z1 < z2 =
x < 1, and ż1 = 1, ż2 = 0,

• S = Pre>0(S
′) ∩ P3 with P3 : 0 = x < z1 < z2 < 1, and ż1 = ż2 = 0.

Looking at the bold intervals in Figure 18, we see that on line S, we have
z2 − z1 = 1 − z2. It follows that 2z2 − z1 = 1 must be satisfied in S 9 .

(b) The first region R1 = {0, 1
3
, 2

3
} is then constructed as (see Figures 19

and 20)

• R′
1 = Pre>0(P1) ∩ P2 with P1 : 0 < x = z1 < z2 = 1, P2 : 0 = x < z1 <

z2 < 1, and ż1 = 0, ż2 = 1,
• R1 = Pre0(R

′
1) ∩ S.

Looking at the bold intervals in Figure 20, one verifies that R′
1 is the region

R′
1 : 0 = x < z1 < z2 < 1, z1 + z2 = 1.

In Figure 19, the intersection of R′
1 and S, which is nothing else than R1 =

Pre0(R
′
1) ∩ S, is the point (0, 1

3
, 2

3
).

7 We were able to discover the particular regions Rn with experiments performed
with the HyTech tool [14].
8 When speaking about the constructed regions, we can omit the locations since
the empty edges transfer the information to each location.
9 Notice that P1, P2 and P3 belong to partition P.

23

0

1

2

1

2

1

z2

z1

R1

R′

1

Fig. 19. Region R1.

z2x = z1 P1

x z1 z2 R′

1

0 1

Fig. 20. Its construction.

(c) It remains to explain how to construct Rn+1 from Rn, assuming that Rn

is the point (0, 1
3n ,

3n+1
2·3n). It is done as follows (see Figures 21 and 22)

• S ′
1 = Pre0(Rn) ∩ P1 with P1 : 0 < z1 < z2 < x = 1,

• S ′
2 = Pre>0(S

′
1) ∩ P2 with P2 : 0 < x = z1 < z2 < 1, and ż1 = 0, ż2 = 0,

• S ′
3 = Pre>0(S

′
2) ∩ P3 with P3 : 0 < x < z1 < z2 < 1, and ż1 = 0, ż2 = 1,

• R′
n+1 = Pre>0(S

′
3) ∩ P4 with P4 : 0 = x < z1 < z2 < 1, and ż1 = 1, ż2 = 0,

• Rn+1 = Pre0(R
′
n+1) ∩ S.

Recall that Rn = (0, 1
3n ,

3n+1
2·3n). Thus looking at the bold intervals of Figure 22

(in particular at lines R′
n+1, S

′
3 and Rn)), the next equality must hold on R′

n+1

z1 + z2 =
3n + 1

2 · 3n
.

On Figure 21, the intersection of R′
n+1 and S, which is Rn+1, is therefore the

point (0, 1
3n+1 ,

3n+1+1
2·3n+1).

This completes the proof of the case of 1 clock variable and 2 cost variables.
We now proceed to the case of 2 clock variables and 1 cost variable.

(2) 2 clock variables x1, x2 and 1 cost variable z.

0

1

2

1

2

1

z2

z1

R1

Rn+1

R′

1
R′

n+1

Fig. 21. Region Rn+1.

z2z1x
Rn

z2z1 x S′

1

z2x = z1
S′

2

z2z1x
S′

3

z2z1x
R′

n+1

0 1

Fig. 22. Its construction from Rn.

24

x2

z

R1

R2

Rn+1

R′

2

R′

n+1

Fig. 23. Region Rn+1.

x2zx1 Rn

x2z x1 S′

1

zx1x2
S′

2

zx1 x2
S′

3

x2zx1 R′

n+1

0 1

Fig. 24. Its construction from Rn.

The proof for this second case is in the same vein as before; it will be less
detailed. As before, we consider the partition P induced by ≈t as initial parti-
tion. Let us show that Procedure Bisim here generates the regions Rn, n ≥ 1,
each formed by the unique triple

(x1, x2, z) = (0, 1 −
1

2n
,

1

2n
).

(a) We first consider the particular region

S : 0 = x1 < z < x2 < 1, x2 + z = 1

constructed as R = Pre>0(P1) ∩ P2 with P1 : 0 < x1 = z < x2 = 1,
P2 : 0 = x1 < z < x2 < 1, and ż = 0. This construction is the same as in
Figure 20 except that x1, z, x2 respectively replace x, z1, z2.

(b) The first region R1 = {0, 1
2
, 1

2
} is then constructed as S except that P2

equals 0 = x1 < z = x2 < 1 (instead of z < x2).

(c) The construction of Rn+1 from Rn is performed as follows (see Figures 23
and 24)

• S ′
1 = Pre0(Rn) ∩ P1 with P1 : 0 < z < x2 < x1 < 1,

• S ′
2 = Pre>0(S

′
1) ∩ P2 with P2 : 0 = x2 < x1 < z < 1, and ż = 0,

• S ′
3 = Pre0(S

′
2) ∩ P3 with P3 : 0 < x1 < z < x2 = 1,

• R′
n+1 = Pre>0(S

′
3) ∩ P4 with P4 : 0 = x1 < z < x2 < 1, and ż = 1,

• Rn+1 = Pre0(R
′
n+1) ∩ S.

From the bold and dashed intervals of Figure 24, we see that on R′
n+1, we

must have z + (1 − x2) = 1
2n . Thus on Rn+1, the intersection of this equality

with S is the point (0, 1 − 1
2n+1 ,

1
2n+1). 2

From the previous theorem, it follows that the remaining case to fix the precise

25

x

z

Fig. 25. Infinite bisimulation when d1 = 1, d2 = 3.

frontier between finite and infinite bisimulations is the case of 1 clock variable
and 1 cost variable. Indeed for the case of no cost variable, i.e. the case of timed
automata, it is known that they have a finite bisimulation (see Definition 15).

Theorem 25 Let T = R+. Let A be an automaton with stopwatch observers
using 1 clock variable x and 1 cost variable z. Let ϕ be a WCTLr formula.
Then A has a finite bisimulation respecting the partition P0 of Proposition 13.

PROOF. (Sketch) The proposed bisimulation is the one of Definition 15,
where z is treated as a clock. It is not difficult to verify that the conditions of
Definition 11 are satisfied. 2

The next result follows by Corollary 14.

Corollary 26 In the case of dense time, the WCTLr model-checking prob-
lem for automata with stopwatch observers using 1 clock variable and 1 cost
variable is decidable. 10

Comments. All the results of this section are concerned with automata
with stopwatch observers. If we consider weighted timed automata, the fron-
tier between finite and infinite bisimulations is easily established. There exist
weighted timed automata with 1 clock variable x and 1 cost variable z such
that ż = d1, ż = d2, with d1, d2 > 0 two integer constants, for which no finite
bisimulation exists [13] (see Figure 25). If for automata with 1 clock x and 1
cost variable z, we impose that there exists an integer constant d > 0 such
that ż ∈ {0, d} in each location, then a finite bisimulation exists. It is the
bisimulation of Definition 15, where z is treated as a clock and each diagonal
z − x = c is replaced by z − dx = c (see Figure 26). Note that a finite bisim-
ulation still exists if we allow to add to the variables x and z additional cost
variables z2, . . . , zm having a null cost on the locations and an arbitrary cost
on the edges. In Example 4, z3 is such a variable. The required finite bisim-
ulation is a direct product of the bisimulation given before for x and z with

10 This result also holds for the WCTL logic, since when there is only 1 cost variable,
the two logics WCTL and WCTLr are equivalent.

26

x

z

Fig. 26. Finite bisimulation when d = 3.

the bisimulation of Definition 15 applied to the variables z2, . . . , zm treated as
clocks.

8 Conclusion

In this paper, we have studied the model-checking problem for weighted timed
automata and the WCTL logic. We have also studied the subclass of automata
with stopwatch observers and the slight restriction WCTLr.

We have obtained several results, most of them for automata with stopwatch
observers, that are recalled on Figure 27. The WCTL model-checking problem
is undecidable in discrete and dense time, already for automata with stopwatch
observers using 1 clock and 3 cost variables (Theorem 9). For WCTLr and dis-
crete time, the model-checking problem becomes decidable with a complexity
in PSpace because weighted timed automata all have finite bisimulations
(Theorem 18 and Corollary 19). However, in dense time, the WCTLr model-
checking problem remains undecidable. The undecidability already holds for
automata with stopwatch observers using 5 clocks and 1 cost variable (Corol-
lary 23) 11 . This later result is interesting since it indicates an undecidabil-
ity result, whereas the minimum-cost reachability problem is decidable for
weighted timed automata with 1 cost variable [7] [8]. In dense time, the pre-
cise frontier between finite and infinite bisimulations of automata with stop-
watch observers is the following one: (i) finite bisimulations in the case of 1
clock and 1 cost variable 12 (Theorem 25), (ii) infinite bisimulations in the
case of 1 clock and 2 cost variables, as well as for 2 clocks and 1 cost variable
(Theorem 24). It follows that in the particular case of automata with stop-
watch observers equipped with only 1 clock and 1 cost variable, the WCTLr

model-checking problem is decidable (Corollary 26). It was a difficult task to
obtain Theorem 20. Historically, we have first proved Theorem 24 in [11], and
this was already difficult since stopwatches can be neither reset nor tested in

11 Recently in [10] the authors were able to prove the same result with only 3 clocks
and 1 cost variable.
12 and of course in the case of any number of clocks and no cost variable, i.e. of
timed automata.

27

Time Logic Clocks Stopw. Bisim. Mod.-Check.

Discrete WCTL 1 3 infinite undecidable

WCTLr any any (costs) finite decidable

Dense WCTL 1 3 infinite undecidable

WCTLr 1 1 finite decidable

1 2 infinite ?

2 1 infinite ?

5 1 infinite undecidable

Fig. 27. Summary of the results.

the automata. After, thanks to our knowledge of the infinite bisimulations we
have constructed, we were able to prove Theorem 20.

As mentioned on Figure 27, several problems are left open in dense time. What
is the precise frontier between decidability and undecidability of the model-
checking problem for automata with stopwatch observers and the WCTLr

logic? Similarly for weighted timed automata and the WCTL logic? For which
fragments of WCTLr or WCTL is the model-checking problem decidable?

References

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.

[2] R. Alur, C. Courcoubetis, and T. A. Henzinger. Computing accumulated delays
in real-time systems. In CAV’93: Computer Aided Verification, volume 697 of
Lecture Notes in Computer Science, pages 181–193. Springer, 1993.

[3] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems.
In Hybrid Systems, volume 736 of Lecture Notes in Computer Science, pages
209–229. Springer-Verlag, 1993.

[4] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[5] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of
embedded systems. IEEE Transactions on Software Engineering, 22:181–201,
1996.

[6] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete abstractions
of hybrid systems. Proceedings of the IEEE, 88:971–984, 2000.

28

[7] R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed
automata. In HSCC’01: Hybrid Systems: Computation and Control, volume
2034 of Lecture Notes in Computer Science, pages 49–62. Springer, 2001.

[8] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. W. Vaandrager. Minimum-cost reachability for priced timed automata. In
HSCC’01: Hybrid Systems: Computation and Control, volume 2034 of Lecture
Notes in Computer Science, pages 147–161. Springer, 2001.

[9] A. Bouajjani, R. Echahed, and J. Sifakis. On model checking for real-time
properties with durations. In LICS’93: Logic in Computer Science, pages 147–
159. IEEE Computer Society Press, 1993.

[10] P. Bouyer, T. Brihaye, and N. Markey. Improved undecidability results on
priced timed automata. Research Report LSV-05-18, Laboratoire Spécification
et Vérification, ENS Cachan, France, August 2005. 16 pages.

[11] T. Brihaye, V. Bruyère, and J.-F. Raskin. Model-Checking for Weighted
Timed Automata. In FORMATS-FTRTFT’04: Joint International Conferences
on Formal Modelling and Analysis of Timed Systems and Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 3253 of Lecture Notes in
Computer Science, pages 277–292. Springer, 2004.

[12] T.A. Henzinger. Hybrid automata with finite bisimulations. In ICALP’95:
Automata, Languages, and Programming, volume 944 of Lecture Notes in
Computer Science, pages 324–335. Springer-Verlag, 1995.

[13] T.A. Henzinger. The theory of hybrid automata. In LICS’96: Logic in Computer
Science, pages 278–292. IEEE Computer Society Press, 1996.

[14] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In
TACAS’95: Tools and Algorithms for the Construction and Analysis of Systems,
volume 1019 of Lecture Notes in Computer Science, pages 41–71. Springer-
Verlag, 1995.

[15] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid
automata. In ICALP’97: Automata, Languages, and Programming, volume 1256
of Lecture Notes in Computer Science, pages 582–593. Springer-Verlag, 1997.

[16] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? In Proceedings of the 27th Annual Symposium on Theory of
Computing, pages 373–382. ACM Press, 1995.

[17] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Decidable integration graphs.
Information and Computation, 150(2):209–243, 1999.

[18] K. G. Larsen and J. I. Rasmussen. Optimal conditional reachability for multi-
priced timed automata. In FoSSaCS’05: Foundations of Software Science and
Computational Structures, volume 3441 of Lecture Notes in Computer Science,
pages 234–249. Springer-Verlag, 2005.

[19] S. Tripakis and S. Yovine. Analysis of timed systems using time-abstracting
bisimulations. Form. Methods Syst. Des., 18:25–68, 2001.

29

