Effect of nitrocarburising treatment on the microstructure and wear resistance of Cr-Mo and Ni-Mo-Cu low-alloyed PM steels

V. Stanciu*, R. Orban*, M. Rosso**, M.A.Grande**

*Technical University of Cluj Napoca **Politecnico di Torino, Italia

THE PAPER PURPOSE:

To establish an efficient thermochemical treatment for improving the wear resistance of parts made from low-alloyed PM steels.

EXPERIMENTAL CONDITIONS

➤ Used powders:

- →Astaloy CrM (Höganäs AB)
- →Distaloy AB (Höganäs AB)
- →Graphite

Chemical composition of studied samples:

Code	Base powder	Carbon	Cr	Mo	Cu	Ni
		content	[%]	[%]	[%]	[%]
		[%]				
A-C01	Astaloy CrM	0.1	3	0.5	-	-
A-C04	Astaloy CrM	0.4	3	0.5	-	-
D-C02	Distaloy AB	0.2	-	0.5	1.5	1.75
D-C04	Distaloy AB	0.4	-	0.5	1.5	1.75

> Compactation:

 \rightarrow Cold uniaxial compaction in a steel die, at 800 MPa

> Sintering cycles:

- \rightarrow Sintering temperature: 1120°C
- \rightarrow Atmosphere: 90% N₂ 10% H₂

 \rightarrow Time at temperature: 30 minutes

> Nitrocarburizing treatment:

- \rightarrow Atmosphere: 74% N₂, 18.5%H₂ and 7.5%C₃H₈
- \rightarrow Temperature: 580°C and 720°C
- \rightarrow Time at temperature: 15 h

Product characterisation by determination of:

- \rightarrow Vickers microhardness
- \rightarrow Disk on disk wear test
 - Load: 500 N
 - Sliding speed: 0.0762 m/s

RESULTS AND DISCUSSION

> The effect of nitrocarburizing treatment on the samples microstructure:

 \rightarrow The thickness of the layer influenced by the treatment is about 0.5 mm

 \rightarrow Samples treated at lower temperature present a microstructure formed by bainite with separation of secondary cementite on the diffusion layer for the samples with a higher carbon content

 \rightarrow Samples treated at a higher temperature present hardening structure in the surface layer

> Microhardness profile:

 \rightarrow Treatment at 580°C

- Increasing the microhardness of samples made from Astaloy CrM
- Have an insignificant effect on the microhardness of samples made from Distaloy AB
- At this temperature predominate the nitriding effect, Cr having a high a higher affinity for N₂
- \rightarrow Treatment at 720°C
 - Have no improve samples made from Astaloy CrM have a microhardness similar
 - Microhardness of samples made from Distaloy AB have an important increase
 - At this temperature the carburising effect becomes predominant. This higher temperature is able to determine the formation of proper hardened diffusion layers on Fe-Cu-Ni-Mo-C systems

Microhardness profile of samples nitrocarburized in plasma at 580°C.

Microhardness profile of samples nitrocarburized in plasma at $720^{\circ}C$.

Wear resistance of samples nitrocarburized in plasma at 580°C

Microstructure of sample A-C01 treated at 580°C

Microstructure of sample A-C04 treated at 580°C

Microstructure of sample D-C02 treated at 580°C

Microstructure of sample D-C04 treated at 580°C

Microstructure of sample A-C01 treated at 720°C

Microstructure of sample A-C04 treated at 720°C

Microstructure of sample D-C02 treated at 720°C

Microstructure of sample D-C04 treated at 720°C

CONCLUSIONS

The effect of nitrocarburizing treatments at two different temperatures has been examined

> The first evident difference is in the microhardness profile that relives a decrease from diffusion layer to the matrix

➤ The different temperatures of nitrocarburizing treatment have not an important influence on the microhardness of samples made from Astaloy CrM, but influence the wear resistance

➤ The treatment at 720°C determines significant improvements in the microhardness and wears resistance of the sample made from Distaloy AB