
ar
X

iv
:0

80
6.

05
36

v2
  [

he
p-

th
] 

 2
6 

Se
p 

20
08

Cosmic strings in a space-time with positive cosmological

constant

Yves Brihaye a), ∗ and Betti Hartmann b), †
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Abstract

We study Abelian strings in a fixed de Sitter background. We find that the gauge and

Higgs fields extend smoothly across the cosmological horizon and that the string solutions

have oscillating scalar fields outside the cosmological horizon for all currently accepted values

of the cosmological constant. If the gauge to Higgs boson mass ratio is small enough, the

gauge field function has a power-like behaviour, while it is oscillating outside the cosmological

horizon if Higgs and gauge boson mass are comparable. Moreover, we observe that Abelian

strings exist only up to a maximal value of the cosmological constant and that two branches of

solutions exist that meet at this maximal value. We also construct radially excited solutions

that only exist for non-vanishing values of the cosmological constant and are thus a novel

feature as compared to flat space-time. Considering the effect of the de Sitter string on the

space-time, we observe that the deficit angle increases with increasing cosmological constant.

Lensed objects would thus be separated by a larger angle as compared to asymptotically flat

space-time.

1 Introduction

Topological defects are believed to have formed during the phase transitions in the early uni-

verse. While magnetic monopoles and domain walls are catastrophic for the universe since they

overclose it, cosmic strings [1] were believed to be important for the structure formation for

a long time. Recent Cosmic Microwave background (CMB) measurements however excluded

cosmic strings as seeds for structure formation [2].

In recent years, cosmic strings have been linked to the fundamental superstrings of string

theory and this has boosted renewed interest in these objects. The low energy limit of certain

string theories contain so-called F- and D-strings, where “F” stands for fundamental and “D”

for Dirichlet. It was also realized that supersymmetric bound states of F- and D-strings exist,

so-called (p, q)-strings [3]. The formation of networks of such strings has been discussed in a
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variety of string-inspired, hybrid inflation models [4] and the signatures of such networks in the

CMB anisotropies have been investigated [5].

A field theoretical model that contains string-like defects is the Abelian Higgs model [6].

Abelian Higgs strings are infinitely extended with a core radius inversely proportional to the

Higgs boson mass and magnetic flux tubes with radius inversely proportional to the gauge boson

mass. Recently, two copies of the Abelian Higgs model interacting via a potential term have

been discussed as field-theoretical realizations of (p, q)-strings [7].

The gravitational effects of Abelian strings have also been investigated [8]. The main obser-

vation is that the space-time far away from the string is conical, i.e. contains a deficit angle.

The consequence of this is that cosmic strings would act as gravitational lenses, which opens a

possibility to detect them indirectly [9].

Since diverse astrophysical observations, e.g. redshift measurements of type Ia supernovae

[10] lead to the assumption that our universe is dominated by a form of dark energy, a positive

cosmological constant, it is surely of interest to understand the effects of a positive cosmological

constant on cosmic string solutions. That the effect of a positive cosmological constant is non-

trivial has been shown e.g. in the study of cosmic string loops, which form unavoidably in the

evolution of cosmic string networks. While cosmic string loops collapse under their own tension

in space-times with Minkowski or Robertson-Walker metric, this is not the case for large loops in

de Sitter space-time [11]. Thus string loops can survive in space-times with positive cosmological

constant.

Moreover, the so-called “de Sitter/Conformal Field Theory” (dS/CFT) correspondence [12]

suggests a holographic duality between a d-dimensional dS space and a conformal field theory

“living” on the boundary of dS.

The properties of Abelian strings in de Sitter space-time have been discussed using analytic

tools [13] as well as numerical ones [14, 15]. In [14], a model describing Abelian strings coupled

minimally to gravity including a positive cosmological constant have been studied. While this

model describes the interaction of the matter fields with the gravitational fields properly, the

space-time was assumed to have the same symmetries as the string, namely, it was assumed

to be cylindrically symmetric. However, the space-time describing our universe with positive

cosmological constant is genuinely spherically symmetric for an inertial observer. Thus, it is e.g.

not difficult to study spherically symmetric topological defects such as magnetic monopoles in

a spherically symmetric de Sitter space [16], while it becomes more difficult if one tries to study

objects with symmetry different from spherical symmetry. It was, however, realized in [15, 17]

that if one studies strings in a fixed (Anti-)de Sitter background that the equations describing

this situation become ordinary differential equations if one assumes that the fields of the string
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depend only on a specific combination of the spherical coordinates.

Abelian strings have been studied in a background space-time with positive cosmological

constant before [15]. In this paper, we reinvestigate the solutions given in [15]. The authors of

[15] have constructed these solutions (in static coordinates) only inside the cosmological horizon,

while we show here that they extend smoothly across the cosmological horizon. We also present

the asymptotic behaviour of the solutions, which is qualitatively similar to that of magnetic

monopoles in de Sitter space [16]. Our results indicate that for all currently accepted values

of the cosmological constant, the solutions have oscillating scalar fields outside the horizon.

Moreover, we present new, radially excited solutions that don’t exist in the flat space-time limit.

Our paper is organized as follows: in Section 2, we give the model and equations of motion,

while in Section 3, we present the asymptotic behaviour of the solutions. In Section 4, we discuss

our numerical results and conclude in Section 5.

2 The model

We study Abelian strings in a fixed de Sitter background. The metric of the background in static,

spherical coordinates (representing the coordinates of an inertial observer) can be parametrized

as follows:

ds2 = −
(

1 − r2

l2

)

dt2 +

(

1 − r2

l2

)−1

dr2 + r2
(

dθ2 + sin2 θdϕ2
)

(1)

where l =
√

3/Λ is the de Sitter radius and Λ is the (positive) cosmological constant.

The Lagrangian for the Abelian strings reads [6]:

L = −1

4
FµνFµν − (Dµφ)∗Dµφ − β

4
(φ∗φ − η2)2 (2)

with the field strength tensor Fµν = ∂µAν − ∂νAµ of the U(1) gauge field and the covariant

derivative Dµφ = ∂µφ − ieAµφ of a with coupling constant e minimally coupled complex scalar

field φ. The Lagrangian is invariant under a local U(1). When φ attains a non-vanishing vacuum

expectation value η, the symmetry breaks down from U(1) to 1. The particle content of the

theory is then a massive gauge boson with mass MW = eη and a massive scalar field (the Higgs

field) with mass mH =
√

2βη.

The Ansatz for the gauge and Higgs fields parametrized in spherical coordinates (r, θ, ϕ)

reads:

At = Ar = Aθ = 0 , Aϕ =
1

e
(n − P (r, θ)) , φ = ηf(r, θ)einϕ (3)

where n is an integer, which corresponds to the winding number of the string.

We want to study cylindrical configurations here and thus assume that in the following the

matter field functions P and f depend only on the specific combination r sin θ ≡ ρ. The partial
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differential equations then reduce to ordinary differential equations that depend only on the

coordinate ρ and in the limit l → ∞ correspond to the equations of the Abelian string [6].

2.1 The equations and boundary conditions

Varying the Lagrangian with respect to the gauge and Higgs fields gives the Euler-Lagrange

equations, which here reduce to ordinary differential equations for the field functions P and f .

These equations describe a cylindrical, string-like configuration in a fixed de Sitter background

and read:
(

1 − ρ2

l2

)

P ′′ = 2η2e2Pf2 +
P ′

ρ

(

1 +
2ρ2

l2

)

(4)

for the gauge field function and
(

1 − ρ2

l2

)

f ′′ =
β

2
η2f(f2 − 1) − f ′

ρ

(

1 − 4ρ2

L2

)

+
P 2f

ρ2
(5)

for the Higgs field function, where the prime denotes the derivative with respect to ρ.

One can use rescaled coordinates and quantities and define

x =
√

βηρ , α =
2M2

W

M2
H

=
e2

β
, L =

√

βηl (6)

The equations then depend only on the parameters L and α, where the half of the latter rep-

resents the square of ratio of the gauge boson mass to Higgs boson mass. Note that with this

rescaling, we “measure” the cosmological constant in units of the square of the Higgs boson

mass. Furthermore, the case L → ∞ and α = 0.5 corresponds to the self-dual, i.e. BPS limit.

The positive cosmological constant leads to the presence of a cosmological horizon at ρ = l,

i.e. x = L. Here, we impose boundary conditions at x = L such that the matter fields are

regular at this cosmological horizon. Numerically, we first integrate the equations on the interval

x ∈ [0 : L] subject to the following boundary conditions:

P (0) = n , f(0) = 0 ,
[

2αxPf2 + 3P ′
]

x=L
= 0 ,

[

x2f(f2 − 1) + 6xf ′ + 2P 2f
]

x=L
= 0 . (7)

In a second step, we integrate the equations for x ∈ [L,∞] by using as initial conditions the

numerical values P (L), P ′(L), f(L), f ′(L) obtained during the integration for x ∈ [0 : L]. We

then match the solution for x ∈ [0 : L] and for x ∈ [L : ∞] at the horizon x = L.

The energy density ǫ = −T 0
0 reads:

ǫ = η4

[(

1 − x2

L2

)

(f ′)2 +

(

1 − x2

L2

)

1

2α

(P ′)2

x2
+

P 2f2

x2
+

1

4
(1 − f2)2

]

. (8)

The inertial mass per unit length inside the cosmological horizon, Min, can then be defined

by integrating T 0
0 over a section of constant z, leading to

Min = 2πη2

∫ L

0
dx x T 0

0 . (9)
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3 Asymptotic behaviour

The asymptotic behaviour of the solutions of Eqs.(4),(5) plays a major role in the discussion

and depends crucially on the signs of two dimensionless combinations of the mass scales of the

theory, namely on R1 ≡ 1 − 8αL2 and R2 ≡ 9 − 4L2. We discuss the different cases separately.

1. For R1 > 0 and R2 > 0, we have

P (x >> 1) = P0x
c , c =

−1 ±
√

R1

2
, (10)

f(x >> 1) = 1 − F0x
d , d =

−3 ±
√

R2

2
(11)

where P0, F0 are constants to be determined. Note that in contrast to the case with Λ = 0,

the gauge and Higgs field functions decay power-like and not exponentially.

2. For R1 < 0, R2 < 0, which turns out to be the most relevant case since we expect L ≫ 1,

i.e. the cosmological constant to be much smaller than the square of the Higgs boson mass

from astrophysical observations, we have instead

P (x >> 1) = P0x
−1/2 sin

(

√

−R1/2 log x + φ1

)

, (12)

f(x >> 1) = 1 − F0x
−3/2 sin

(

√

−R2/2 log x + φ2

)

(13)

where P0, F0 and φ1, φ2 are constants. We see in particular that both the gauge and Higgs

field functions develop oscillations for x >> 1.

3. For R1 > 0, R2 < 0 the gauge field behaves like in (10) and the Higgs field like in (13).

4. For R1 < 0, R2 > 0 the gauge field behaves like in (12) and the Higgs field like in (11).

4 Numerical results

Because the equations (4),(5) do not, to our knowledge, admit explicit solutions, we have solved

them numerically using the ODE solver COLSYS [18].

Studying the equations numerically, we found that next to the natural deformations of the

standard Abelian Higgs strings (which we call “fundamental string solutions” is the following),

there exist solutions for which the Higgs field function vanishes at some intermediate value of

the radial coordinate between the origin and the cosmological horizon. The scalar field function

thus develops nodes. In the following, we will discuss these two different types of solutions and

index them by the number k of nodes. The fundamental solution thus corresponds to k = 0.
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4.1 Fundamental string solutions

First, we have constructed solutions corresponding to n = 1.

As a first step, we have chosen to find a solution with R1 < 0 and R2 < 0 (which we believe

is the physically most relevant case). We have thus chosen L = 3, i.e. R2 = −27 and α = 2, i.e.

R1 = −144. The solution is shown in Fig.1. In order to see the asymptotic behaviour predicted

in (12) and (13), we plot the quantities P (x)x1/2 and (1− f(x))x3/2. The oscillations for x > L

are then apparent.

We also present a n = 1-solution for R1 > 0 and R2 < 0 in Fig.2. We have chosen again

L = 3, but this time α = 0.01, i.e. R1 = 0.28. The oscillation in the scalar field is apparent

when plotting (1 − f(x))x3/2, while it is obvious from the plotted quantity xP ′(x)/P (x) that

the gauge field is behaving power-like as in (10). Note that xP ′(x)/P (x) tends to a constant

∼ −0.23 for x → ∞.

We would like to stress that in both cases this correct asymptotic behaviour was NOT im-

posed as boundary condition, but was found numerically by imposing the appropriate conditions

at the horizon.
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P(x)⋅ x1/2

((1−f(x))⋅ x3/2)/10

Figure 1: The profiles of the quantities P (x)x1/2 and ((1 − f(x))x3/2)/10 are shown for a de

Sitter string with L = 3 and α = 2. The localisation of the horizon at x = L = 3 is also

indicated.

The energy density T 0
0 of a typical de Sitter string solutions with n = 1, L = 10, α = 2
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Figure 2: The profiles of the quantities xP ′(x)/P (x) and (1 − f(x))x3/2/10 are shown for a de

Sitter string with L = 3 and α = 0.01. The location of the cosmological horizon at x = 3 is also

indicated.

and α = 0.5, respectively, is shown in Fig.3 (the k = 0 curves). Apparently, the energy density

is peaked around x = 0 for the fundamental string. The corresponding inertial mass per unit

length Min for this solution is Min/(2πη2) ≈ 0.75 for α = 2 and Min/(2πη2) ≈ 0.99 for α = 0.5,

respectively. We observe that when increasing L, the inertial mass increases and reaches the

well-known values for L → ∞, i.e. in the flat space-time limit. Note that α = 0.5 corresponds

to the self-dual limit. We would thus expect that Min/(2πη2) → 1 for α = 0.5 and L → ∞.

This is indeed what we find numerically.

One could then ask whether solutions with a power-like behaviour of the Higgs field (R1 < 0

and R2 > 0) or even solutions with a power-like behaviour of both the gauge and Higgs field

(R1 > 0 and R2 > 0) are possible. We will show in the following that solutions of this type do

not exist - at least in our numerical study they don’t and we believe that we have constructed

all possible de Sitter string solutions.

Let us explain this in more detail. In order to understand the solutions, we have studied their

domain of existence in the α-L-plane. One would expect that some sort of limiting behaviour

exists, namely when Λ ∝ 1/L2 becomes comparable to the two other mass scales in the theory,

i.e. M2
H and M2

W .

Let us first mention that -fixing α > 0- we were able to construct solutions which approach the
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Figure 3: The energy density T 0
0 inside the cosmological horizon is shown for k = 0, k = 1,

k = 2. k = 0 corresponds to the fundamental solution, k = 1 and k = 2 to the first and second

radially excited solutions, respectively. Here, we have chosen n = 1, L = 10, α = 2 (solid) and

α = 0.5 (dashed), respectively.

corresponding well-known string solution in flat space-time for L → ∞, i.e. Λ → 0. Accordingly

we find for the values of the matter field functions and their derivatives at the cosmological

horizon P (L), f(L), P ′(L), f ′(L): P (L → ∞) → 0, f(L → ∞) → 1, P ′(L → ∞) → 0 and

f ′(L → ∞) → 0 - irrespectively of the value of α. Decreasing the radius L, we find a branch of

de Sitter strings which extends smoothly for the flat space-time limit with P (L) > 0, f(L) < 1,

P ′(L) > 0 and f ′(L) > 0. This branch extends all the way back to a minimal value of the

horizon radius at L = Lmin(α, n) > 0. This is shown in Fig.s 4, 5. E.g. for n = 1, we find

Lmin ≈ 2.725 for α = 1 and Lmin ≈ 2.572 for α = 2. Lmin thus decreases with increasing α.

The explanation is obvious: when α is increased, the core radius of the string solution decreases

and thus the de Sitter radius can also be decreased before it becomes comparable to the core

radius.

For large values of α, we find that a second branch of de Sitter strings exists which extends

back to a critical value of the horizon radius L = Lcr at which it bifurcates with the trivial
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solution P (x) = 1, f(x) = 0. This is shown in Fig.s 4,5 for α = 2. The existence of the

two branches can be explained as follows. Since L is defined as L =
√

βηl, the variation of

L can either be understood as fixing l and varying
√

βη, i.e. the Higgs boson mass, or by

fixing
√

βη and varying l. The limit L → ∞ on the first branch corresponds to the flat space-

time background with l → ∞. In flat space-time and
√

βη fixed string solutions with a well

defined core radius that is inversely proportional to
√

βη exist. Decreasing l, i.e. increasing the

cosmological constant, a branch of de Sitter string solutions exists. These solutions describe

strings with a well-defined core radius inside a cosmological horizon. l can be decreased down to

where it becomes comparable to the core radius. This point corresponds to the minimal value of

L, Lmin. From there, a second branch of solutions exists, on which l is kept fixed while
√

βη is

varied up to Lcr. This works as long as the core radius is larger or comparable to the radius of

the corresponding magnetic flux tube that is given by the inverse of the gauge boson mass. For

smaller values of α, i.e. when the radius of the magnetic flux tube is larger than the core radius,

no second branch exists and the branch of de Sitter solutions bifurcates with the trivial solution

at L = Lmin = Lcr. Decreasing L in this case, the cosmological horizon “sees” the magnetic

flux tube first, since the core of the string lies within the flux tube. Since the variation of L

can result from the variation of the Higgs boson mass, but not from the variation of the gauge

boson mass at fixed l, there is no possibility for a second branch in this case. Interestingly, our

numerical results indicate that Lcr depends only slightly on α. We find Lcr ≈ 2.83.

In Fig.6, we show the dependence of Lmin and Lcr on α. We find that Lmin becomes equal to

Lcr at α ≈ 0.466. Note that de Sitter string solutions exist only in the parameter domain above

the solid line. While solutions that fulfill the bound R1 = 1 − 8αL2 > 0, i.e. have power-like

decaying gauge fields are possible, no solutions with R2 = 9−4L2 > 0, i.e. L < 3/2 exist. Thus,

all de Sitter strings have an oscillating Higgs field function outside the cosmological horizon. We

believe that we have constructed all possible de Sitter strings and that no “isolated” branches

exist in the α-L-plane.

We have also studied higher winding solutions. In Fig.7, we present the profiles of a solution

for n = 2 and α = 2 (blue curves). The study of the dependence of the solutions on α and

L leads to a similar pattern as in the n = 1 case. We observe that for fixed α the minimal

value of the horizon radius increases with n, e.g. we find Lmin(α = 2, n = 2) ≈ 3.460, while

Lmin(α = 2, n = 1) ≈ 2.572 (see previous discussion). This is related to the fact that the n = 2

solution has a larger core radius as compared to the n = 1 solution.

We believe that the qualitative features are similar for n ≥ 3, this is why we don’t discuss

them here.
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P(L), α=2
f(L), α=2
P(L),α=0.1
f(L),α=0.1

L

α=0.1

α=2

Figure 4: The quantities P (L) and f(L) are plotted as functions of L for α = 2 (black) and

α = 0.1 (red).

4.2 Radially excited solutions

As mentioned above, our numerical results strongly suggest that new types of solutions exist in

the presence of a positive cosmological constant. These solutions are characterized by nodes of

the Higgs field function and can be interpreted as radially excited solutions of the fundamental

string solutions discussed in the previous subsection. Here we present our results for solutions

with one and two nodes. We believe that these are the first members of a tower of solutions

labelled by the number of nodes k ≥ 1 of the function f(x). Note that with this notation the

k = 0 solution corresponds to the fundamental solution discussed above.

The comparison of a k = 0, k = 1 and k = 2 solution is given for n = 2, α = 2 and L = 7

for k = 0, k = 1, while L = 9 for k = 2 in Fig.7. We observe that the function f(x) of the k = 1

solution first decreases, reaches a minimum and then crosses zero before reaching its asymptotic

value. Note that the value of the radial coordinate x = x0 at which f(x0) = 0 (x0 ≈ 5.05 for

the solution shown in Fig.7) is smaller than the corresponding L. The gauge field function P (x)

remains monotonically decreasing, but develops a “shoulder” in the region of x0. Moreover,

the radius of the core of the excited solution is larger than that of the fundamental solution.

Similarly, the function f(x) of the k = 2 solution reaches its asymptotic value after crossing the

x-axis twice, while the gauge field function P (x) develops two shoulders at the respective zeros
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−P‘(L), α=2
f(L), α=2
−P‘(L),α=0.1
f‘(L),α=0.1

L

α=2

α=0.1

Figure 5: The quantities −P ′(L) and f ′(L) are plotted as functions of L for α = 2 (black) and

α = 0.1 (red).

of the function f(x). We have not studied the critical behaviour of the k = 2 solution in detail,

but we believe that it is qualitatively equal to the k = 0 and k = 1 cases.

We also show the energy density T 0
0 of the k = 1 and k = 2 radially excited solutions in

Fig.3. Here n = 1, L = 10, α = 2 and α = 0.5, respectively. Clearly, for the excited solutions,

T 0
0 develops local maxima around the radii coresponding to the nodes of the function f .

For k = 1, we find Min/(2πη2) ≈ 6.91 for α = 2.0 and Min/(2πη2) ≈ 7.15 for α = 0.5,

respectively. As expected, the mass inside the cosmological horizon of the excited solution is

higher than the mass of the fundamental, i.e. k = 0 solution. Equally, one would expect that

the mass of the excited solutions with more than one node of the Higgs field function is even

higher. This is confirmed by our data for k = 2: we find Min/(2πη2) ≈ 11.21 for α = 2.0 and

Min/(2πη2) ≈ 11.44 for α = 0.5, respectively.

Since radially excited solutions don’t exist for the flat space-time limit it is natural to study

the evolution of the solutions in terms of L and α, especially for L → ∞. For this, we present

the profiles of f(x) for increasing L in Fig.8.

The numerical results given in Fig.8 suggest that the minimal value of f(x) tends to −1 in

the limit L → ∞ and that the value of x0 tends to infinity. Thus for L → ∞, the solution

approaches the corresponding Higgs field function of the Abelian string tending monotonically
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2.8

2.85

2.9
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L
min

L
cr

n=1

Figure 6: The domain of existence of de Sitter strings is shown in the α-l-plane. Plotted are the

value of Lmin, the minimal possible value of the de Sitter radius in dependence on α, the square

of the ratio of the gauge to Higgs boson mass. Also shown is the critical value of l, lcr, where

the solutions become trivial P (x < ∞) = 1 and f(x < ∞) = 0. Note that solutions exist only

above the solid line.

from 0 to −1. (Note that normally the Higgs field function of the Abelian string tends from 0

to 1, but that the equations of motion are invariant under f → −f .)

A detailed analysis of the excited solution in the limit L → ∞ is not aimed at in this paper.

Within the accuracy of our numerical results, it seems that, for a sufficiently large L, the function

|f | attains a maximum |f(xm)| = 1 at a relatively small value of x = xm (i.e. with xm/L ≪ 1)

and that |f(L) = 1|. In the interval x ∈ [xm, L], we have P (x) ∼ 0 while f(x) develops several

oscillations. The investigation of a relation between the corresponding equation for f and some

special function is currently underway.

We have also studied the critical behaviour of the k = 1 solutions and found a qualitatively

similar pattern as for k = 0 case.

In Fig.9, we show the values of the gauge field and Higgs field functions at the cosmological

horizon P (L) and f(L), respectively, as functions of L for α = 2 and α = 0.1. Here, we have

chosen n = 1. Again, the radially excited solutions bifurcate with the trivial solution P (x) ≡ n

and f(x) ≡ 0 at a critical value of L: Lcrit(α, n). We find Lcrit(α, n = 1) ≈ 6, where our

numerical results indicate that Lcrit depends very weakly on α.
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             P(x)

              f(x)
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Figure 7: We show the profiles of the gauge field function P (x) (solid) and of the Higgs field

function f(x) (dashed) of the fundamental (k = 0, blue), the 1. excited (k = 1, red) and 2.

excited (k = 2, green) n = 2 solution, respectively. Here, α = 2 and L = 7 for k = 0, k = 1,

while L = 9 for k = 2.

For small values of α, the critical value is attained directly by decreasing L, while for larger

α, a second branch of solutions exists that extends backwards from a minimal value of the

cosmological horizon radius Lmin with Lmin(α = 2, n = 1) ≈ 5.885.

In Fig.10, we show the profiles of the k = 1 solution for n = 1, α = 2 and different values

of L along the two branches. L = 12 (blue) corresponds to a solution on the first branch and

the oscillations of the functions outside the cosmological horizon are so small that they are not

apparent in the plot. The case L = 5.885 (green) corresponds to the minimal value of L for this

choice of n and α. Here, the amplitude of the oscillations of the fields outside the horizon are

larger and can be seen in the figure. Finally, we also present a solution on the second branch,

very close to the critical value of L at L = 5.99 (red). Here, both P (x) as well as f(x) deviate

only slightly from their values at the origin inside the horizon, while outside the horizon, they

reach their asymptotic values after large amplitude oscillations around these values.
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Figure 8: The profiles of the Higgs field function f(x) of the 1.excited solution are shown for

n = 2, α = 2 and different values of L.

5 Deficit angle

In all our numerical calculations, we have assumed the de Sitter background to be fixed. To

study the full dynamical space-time is very difficult since the resulting equations are partial

differential equations. In [17], an approximation for weak gravitational fields was used to study

the effects of a string on Anti-de-Sitter space-time. In that case, the Einstein equations can be

linearized. We employ this method here for the de Sitter case. The metric used reads [17]

ds2 = exp(2z/l)
(

− exp(A)dt̂2 + dρ̂2 + F 2dϕ2
)

+ exp(C)dz2 (14)

where A, F and C are functions of ρ̂ and z. Introducing the rescaled coordinate x̂ =
√

βηρ̂,

letting z →
√

βηz, t →
√

βηt and assuming that the functions depend only on the combination

x = x̂ exp(z/L), the linearized Einstein equation for F reads

2

L2
+

1

F

d

dx

(

(1 − x2

L2
)
dF

dx

)

= γT 0
0 (15)

where γ = 8πG and T 0
0 is the energy-momentum tensor of the string in the de Sitter background

(8). The deficit angle δ of the space-time is then given by δ = 2π(1−F ′|x=x0
), where we choose

x0 < L.
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Figure 9: The values of the gauge and Higgs field functions at the horizon, P (L) and f(L),

respectively, are shown as functions of L for α = 2 (black) and α = 0.1 (red). Here n = 1 and

k = 1.

Outside the core of the string where T 0
0 = 0, we find as solutions to (15)

F = c1y + c2

(

1

2
y log

(

1 + y

1 − y

)

− 1

)

(16)

where y := x/L and c1 and c2 are constants to be fixed by the boundary conditions of F at the

origin. Note that (within the linearized approximation) the function F (y) becomes singular for

y → 1, i.e. at the cosmological horizon x = L, if c2 6= 0. Integrating the above equation for our

solutions, we find that the function F ′(y) develops a plateau inside the cosmological horizon if

L is large enough. This signals that the space-time inside the cosmological horizon has a deficit

angle. We observe that this deficit angle increase with the decrease of L. Choosing x0 = L/2

and integrating (15) we find the following approximated behaviour of the deficit angle from our

numerics

δ ≈ γMin

(

1 +
8

3L2

)

(17)

In astrophysical observations it has thus to be taken into account that the presence of a

positive cosmological constant tends to increase the deficit angle as compared to asymptotically

flat-space time. The separation between two lensed objetcs would thus increase with increasing

cosmological constant.
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Figure 10: The profiles of the gauge and Higgs field functions P (x) and f(x) are shown for three

different values of L and α = 2, k = 1, n = 1.

6 Conclusions

We have studied Abelian Higgs strings in a fixed de Sitter background. While these solutions

have already been discussed in [15], we find new features of the solutions here and especially

study the behaviour of the matter field functions outside the cosmological horizon. We find that

all possible de Sitter strings have oscillating Higgs fields outside their horizon. This observation

is important when calculating the mass of these solutions using the so-called counterterm method

[19]. For this, we would have to couple the Abelian Higgs model minimally to gravity. However,

in that case, the differential equations would not reduce to ordinary differential equations (like

in our case), but one would have to solve the “full” partial differential equations. Since it

was observed for magnetic monopoles, that the background limit is qualitatively comparable to

the fully coupled case [16], we believe that if we would couple our model to gravity that the

oscillating Higgs fields outside the horizon would still be a feature of the model. Like in the

case of magnetic monopoles this would then lead to the conclusion that Abelian strings have

diverging mass as evaluated at infinity. The verification of this statement is currently underway

and is left for a future publication.

Moreover, we observe a new feature of the Abelian Higgs model: for non-vanishing cosmo-

logical constant, radially excited solutions exist. Interestingly, the Higgs field function has nodes
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in this case. We find that these excited solutions have inertial mass per unit length inside the

cosmological horizon much larger than the fundamental string solutions.
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