
Weighting Strategies for a Recommender System Using
Item Clustering Based on Genres?

Sébastien Frémala, Fabian Lecrona,∗

aUniversity of Mons, Faculty of Engineering, 20 place du parc, 7000 Mons, Belgium

Abstract

Recommender Systems are effective to identify items that could interest clients
on e-commerce web sites or predict evaluations that people could give to items
such as movies. In this context, clustering can be used to improve predictions or
to reduce computational time. In this paper, we present a clustering approach
based on item metadata informations. Evaluations are clustered according to
item genre. As items can have several genres, evaluations can be placed in
several clusters. Each cluster provides its own rating prediction and weighting
strategies are then used to combine these results in one evaluation. Coupled with
an existing collaborative filtering recommender system and applied on Yahoo!
and MovieLens datasets, our method improves the MAE between 0.3 and 1.8%,
and the RMSE between 4.7 and 9.8%.

Keywords: Recommender System, Clustering, Weighting Strategies

1. Introduction

Recommender Systems are powerful tools to predict which products will
interest clients according to their habits and preferences (Leskovec et al., 2014;
Adomavicius & Tuzhilin, 2005; Breese et al., 1998). These systems are mainly
used on e-commerce websites as these sites generate huge data volumes. For
example, in 2015, the Amazon catalog provided 480 million distinct products
and presented an average growth of 485 000 new products per day1. Each
month, the website has veen visited in average by 188 million users2. These
users create data either implicitly by browsing item pages or buying products,
either explicitly by creating desired item lists or by evaluating items. With so

? c©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

∗Corresponding author. Tel.: +32 65 37 40 67
Email addresses: sebastien.fremal@umons.ac.be (Sébastien Frémal),

fabian.lecron@umons.ac.be (Fabian Lecron)
1https://export-x.com/2013/05/01/how-big-is-amazon/ Accessed 29.09.16
2http://www.statista.com/statistics/271450/monthly-unique-visitors-to-us-retail-

websites/ Accessed 29.09.16

Preprint submitted to Expert Systems with Applications September 25, 2020

many items and without a good recommender system, clients could miss items
that would really interest them, leading to a shortfall for companies. Therefore,
expert systems are needed to analyze all these data and infer predictions.

Many researches have been led on recommender systems since the 90s. The
first objective was to build systems able to predict evaluations or to recommend
items. Then, a second objective was to reduce the computational time for pro-
viding recommendations. To do so, a much explored method is data clustering
(Kuzelewska, 2014; DuBois et al., 2009; Sarwar et al., 2002; Altingovde et al.,
2013; Sarwar et al., 2001; Rashid et al., 2006). As data are really disparate,
similar items or users are clustered together to reduce the dataset on which rec-
ommendation algorithms are applied. First clustering algorithms were designed
only to reduce the computational time without precision loss, but some are now
used to improve recommendations (Selamat & Moghaddam, 2012; Wei et al.,
2012; Pitsilis et al., 2011; Quan et al., 2006; Gong, 2010; Ma et al., 2014; Pham
et al., 2011; Banerjee et al., 2007; Xue et al., 2005; O’Donovan & Smyth, 2005;
Kohrs & Merialdo, 1999; Nathanson et al., 2007). Clustering can refine data to
keep only useful informations and therefore avoid noising effect. Many efficient
clustering algorithms have already been investigated, but as they become more
complex, they also become more time-consuming.

Our research is focused on implementing a clustering approach based on
metadata informations which does not require much computational time and
which improves prediction results. Some sophisticated website databases classify
their products, also known as items, in different categories. For example, IMDb
3 and MovieLens (Harper & Konstan, 2015) classify their movies in about twenty
categories: Adventure, Romance, Fantasy, Children... A movie can belong to
several categories such as Fantasy/Action/Children. As people have generally
a tendency to prefer some genres above others, it is judicious to cluster items,
i.e. movies, according to their categories. Unlike other clustering techniques, an
item can belong to several clusters and have different evaluations. Therefore,
there is a need to reduce these opinions in one final evaluation. Several weighting
strategies have been experimented to get the most accurate evaluations.

The rest of the paper is organized as follows :

• Section 2 introduces the problem and presents related works concerning
Collaborative Filtering and clustering methods.

• Section 3 describes our contributions. Firstly, it details our clustering
method based on item genre. Secondly, it presents our weighting strategies
used to combine clusters evaluations and provide predictions.

• Section 4 describes the evaluation environment and protocol. It provides
experiment results demonstrating the utility of our weighting strategies.
Our contributions improve the MAE between 0.3 and 1,8%, and the RMSE
between 4.7 and 9.8%.

3IMDB. Internet Movie DataBase. (1990) http://www.imdb.com/ Accessed 29.06.16

2

• Section 5 presents our conclusions and our future works.

2. Contributions and Related Works

Recommender systems are used to help identifying items that should inter-
est clients (Leskovec et al., 2014). Nowadays, it is mostly used in the field of
web applications where data regarding products and clients are generated ev-
eryday. These data are used by recommender systems to identify similarities
between products or consumers and then to extrapolate client preferences. Most
standard systems consist of a set of users U = {u1, u2, ..., um}, a set of items
I = {i1, i2, ..., in} and a set of evaluations. Among possible evaluations, there
are ratings given by users. A rating given by a user i for an item j is denoted
R(i, j). Ratings constitute a m×n matrix R, called utility matrix. This matrix
is used to extrapolate data of two kinds (Selamat & Moghaddam, 2012):

1. Prediction: the objective is to compute an unknown element R(i, j) of the
utility matrix, R, to propose an evaluation of the jth item to the ith user.

2. Recommendation: the objective is to compute a list of the most interest-
ing, and not yet purchased, products for a user.

There are different ways for recommender systems to achieve these objectives.
These systems are classified in three broad groups (Adomavicius & Tuzhilin,
2005):

1. Content-based systems: it exploits item properties to find items similar to
those previously liked by the active user. For example, if a user watched
jazz music video on Youtube, the website will recommend videos tagged
as music and jazz.

2. Collaborative Filtering (CF): it exploits similarities between users and/or
items to extrapolate new utility measures (e.g. ratings). These systems
can be of two types (Breese et al., 1998):

(a) Memory-based: it uses previous ratings or user interactions to antic-
ipate future behaviour.

(b) Model-based: a model is computed based on available data and is
then used to generate new data.

3. Hybrid approaches: it exploits a combination of content-based and CF
methods.

As CF is a popular and efficient strategy (Linden et al., 2003; Balabanović &
Shoham, 1997; Cöster & Svensson, 2002), our research relies on these systems.
A model-based example of CF is based on the Singular Value Decomposition
(SVD) model. SVD is a really efficient model which has already proved its
worth in ratings prediction (Sarwar et al., 2000; Paterek, 2007; Lee et al., 2014).
The idea is to find two matrices V , of size m × f , and D, of size f × n, such
as V × D = R, with f a factor of dimensionality chosen by the user. This
equation is verified on known values of R, the utility matrix. It is then supposed
that if the equation is true for known values, then it will be near of the truth

3

for unknown values. The rating prediction of the jth item by the ith user
is then computed by multiplying the ith row of V by the jth column of D.
The open-source recommender system library MyMediaLite (Gantner et al.,
2011) is used in our research to achieve this matrix factorization. To compute
V and D, the library begins by initializing these two matrices with normally
distributed random numbers. Then, for each known value, the error is computed
with the formulas E(i, j) = R(i, j) − DT

j Vi, with Vi, the ith row of V , and

Dj , the jth column of D. These errors are used to correct V and D matrices
according to the stochastic gradient descent method (Koren et al., 2009). Once
V and D matrices are computed for each cluster, clusters collaborate to predict
evaluations. Firstly, a prediction is computed for each active genres (genres at
which the active item belongs to). Then, these local predictions are reduced to
compute the global prediction.

This approach have some main issues. Firstly, as users rate only a small
percentage of the entire item collection, under 1% for most systems (Sarwar
et al., 2000), the utility matrix has mainly unknown data. This sparsity impacts
negatively the accuracy of predictions.

Secondly, computation of collaborative filtering algorithms grows with the
number of users and items. As web-based recommenders have a sustain growth
of both these factors, their systems could encounter serious problems of scala-
bility if they are not handled properly.

Thirdly, users can have similar opinions for a subset of items, but divergent
opinions for another subset. For example, on a website like MovieLens, two
users could share the same opinion for action movies but they could disagree
on romance movies. These differences could mask their similarities and infor-
mations about the subset on which both users agree would not be used while
computing predictions.

To improve these three points, different clustering methods have been stud-
ied. These methods mainly cluster users. The most often used clustering meth-
ods are adjusted cosine, k-nearest neighbors and k-means algorithms (Kuzelewska,
2014; Sarwar et al., 2001). Each user is represented by a vector of item ratings
and users with similar vectors are grouped together. Early researches mainly
aimed to reduce the computational time of recommendations or predictions.
Most recommender systems are used in website and must provide a real-time
service with a short response time. Therefore, clustering was used to improve
sparsity and scalability at the cost of results accuracy (DuBois et al., 2009; Sar-
war et al., 2002; Altingovde et al., 2013; Sarwar et al., 2001). Then, researchers
developed more complex clustering algorithms to also get results improvements.
For example, explicit trust information and social networks have been used
to propagate affinity (Pitsilis et al., 2011; Ma et al., 2014; Pham et al., 2011;
O’Donovan & Smyth, 2005), demographic data such as sex, age or location were
used to identify similar users (Selamat & Moghaddam, 2012)... Clustering items
before searching similar users (Wei et al., 2012; Xue et al., 2005) and biclus-
tering (items and users clustering) (Gong, 2010; Banerjee et al., 2007; Kohrs &
Merialdo, 1999; Nathanson et al., 2007; Konstan et al., 1997; Cho et al., 2004)

4

also improve results.
In the literature, works proposing strategies to aggregate recommendations

from multiple clusters are always based on multi-view clustering, where each
data source represents a view. For instance, authors presented a framework
which considers a trust-based similarity clustering, a similarity-based user clus-
tering and a similarity-based item clustering (Ma et al., 2016). In another
context, social relationships were incorporated into a clustering-based method
(Guo et al., 2015). The two views considered are the user similarity and the user
trust. Therefore, one user can belong to two different clusters and used support
vector regression (SVR) in order to handle the situation where two predictions
are generated from two clusters. The problem with SVR is the choice of the
kernel and the need to perform cross-validation in order to fix parameters.

In (He et al., 2014), the authors detailed co-regularized nonnegative matrix
factorization (CoNMF), which is an extension of NMF for multi-view clustering
by jointly factorizing multiple matrices. As a consequence, multiple views are
fused during the clustering process. Experiments were performed in the context
of comment-based multi-view clustering.

Heterogeneous networks were also aggregated in order to improve trust pre-
diction performance in social networks (Zhang et al., 2016). These networks are
actually an explicit trust graph and a rating graph used at the end to combine
explicit and implicit similarities using a linear combination method implying a
parameter to be fixed by the user.

Unlike the aforementioned approaches, the present work cannot be seen as a
multi-view clustering problem. Clustering is only performed by considering one
view: the item genre. Our research is focused on setting up an original hybrid
method, mixing content-based clustering and CF, based on the exploitation of
multi-genre items. Our objective is to improve movie rating predictions with
a clustering method less time consuming than the examples introduced in the
previous paragraph. Such as (Quan et al., 2006), we suppose that people rat-
ings can depend on the item category. For example, someone can really love
War movies and give many useful ratings for this genre. At the contrary, the
same person could be less attracted by Romance movies and would rate less
movies of this category. In (Quan et al., 2006), authors defend that some users
could disagree about movies inside a category and they therefore use a complex
mechanism to identify and cluster similar movies. However, our goal is to study
the impact of a less time consuming clustering method.

In the next section, we introduce how clustering is computed and different
methods to reduce predictions.

3. Item Clustering and Weighting Strategies

3.1. Clustering According to Item Genre

The item content-based clustering is executed during the ratings reading.
The process creates a cluster for each movie genre. Then, ratings are put in
one or several clusters depending on the active genres of the related movie. For

5

example, the movie “Avatar” belongs to three movie genres: Action, Adventure
and Fantasy. Ratings concerning these movies will therefore be put in three
clusters: the Action cluster, the Adventure cluster and the Fantasy cluster. By
doing so, we create overlapping groups of ratings related to movies sharing at
least one common genre.

To do so, the number of genres, denoted G, is identified using metadata
informations and a rating set R′k is created for each of them. Then, while
reading the rating database, each rating is put in the clusters corresponding to
its active movie genres. The G clusters are then used to create utility matrices
for each genre. The matrix dimensions are adapted to the number of users and
items belonging to each cluster. There are more matrices, but they are smaller
and denser than the original utility matrix. To achieve this, each item and user
get new local identifiers for each cluster they belong to. Dictionaries are used to
make the correspondence between global and local identifiers. This is depicted
in Figure 1. This Figure introduces 5 movies (“Grumpier Old Men”, “Waiting
to Exhale”, “Sense and Sensibility”, “Wings of Courage” and “White Squall”)
belonging to 4 different genres (Comedy, Romance, Drama and Adventure).
The first movie of the list is “Grumpier Old Men”, with an identifier equal to 3.
As it has 2 genres, it will be associated to 2 clusters: Comedy and Romance. As
it is the first movie to be associated with both these clusters, it has 0 as local
identifier in these two clusters. The dictionaries corresponding to these clusters
retain that the film with the identifier 3 has 0 as local identifier. Then, the
second film, “Waiting to Exhale”, with an identifier equato to 4, has 2 movie
genres: “Comedy” and “Drama”. As the “Comedy” cluster already possesses
one movie, the local identifier of “Waiting to Exhale” for this cluster is 1. As it
is the first “Drama” movie, the film gets the 0 local identifier for this cluster.
The clustering method repeats these steps for each film. It is not depicted
in Figure 1, but a dictionnary associating global movie identifiers and movie
genres, represented by a binary mask, is computed to represent movie-clusters
association. When reading ratings, these dictionaries are used to know in which
cluster ratings must be put and which is the local identifier of the active movie.

The open-source recommender system library MyMediaLite (Gantner et al.,
2011) is then used to compute V and D matrices for each cluster of ratings.
As these clusters are independent, matrices are factorized in parallel by several
cores.

3.2. Weighting Strategies

After the item content-based clustering, Vk and Dk are used to compute
local predictions R′k(i, j) for each k ∈ K, where K is the set of active genres.
It is then necessary to reduce each contribution to get the global prediction
R′(i, j). If the active item belongs to only one genre, the local prediction is also
the global prediction and it becomes a standard case of CF.

The predictions computation is depicted at Figure 2. Figure 2 takes for
example the movie “White Squall” introduced in Figure 1. The movie identifier
is 86. When looking at the local movie identifier dictionaries associated to
Drama and Adventure clusters, we find respectively 2 and 1 as local identifiers.

6

3::Grumpier Old Men (1995)::Comedy|Romance

4::Waiting to Exhale (1995)::Comedy|Drama

17::Sense and Sensibility (1995)::Drama|Romance

33::Wings of Courage (1995)::Adventure|Romance

86::White Squall (1996)::Adventure|Drama

Comedy Cluster Romance Cluster

Drama Cluster Adventure Cluster

0::1 0::1::2

0::1::2 0::1

Clustering

3 0

4 1
Dictionary:

3 0

17 1

33 2

33 0

86 1
Dictionary:

4 0

17 1

86 2

Movies :

Figure 1: The clustering process firstly checks which genres are associated to the movies so
it can later know in which cluster ratings must be put. Movies get local identifiers for each

cluster they are associated to and a dictionary is assigned to each cluster to retrieve internal
identifiers from global identifiers. With these informations, the clustering method can

properly put each rating in the clusters associated to their active genres.

It was not depicted in these Figures, but users also get local identifiers for each
cluster just like movies did. We consider here that the local identifier of the user
with the identifier 3 is 0 for both clusters. Therefore, to get the prediction of
the Drama cluster, the first row of V2 is multiplied by the third column of D2.
To get the prediction of the Adventure cluster, the first row of V3 is multiplied
by the second column of D3. The two predictions, 3.9 and 3.3, must then be
reduced to obtain the global prediction. Figure 2 computes the average of these
two predictions to get the global prediction.

Several reduction strategies were experimented to get the best results. Some
are well-known approaches and other are strategies based on the conclusions
of our observations. Most of these strategies are focused on training cluster
weights to compute weighted averages. To do so, a subset of known data is used
as a training set accordingly to the following strategies :

• Average: local predictions R′k(i, j) are computed for each active genre and
are then used to compute a standard average (N is the number of active

7

Evaluation request: User - 3 / Movie - 86

Adventure Cluster

Drama Cluster

3.3/5

3.9/5

Reduction

(Average) 3.6/5

V

V

D

D

2

2

3

3

Figure 2: Once genres of a movie have been identified, user and movie local identifiers are
used to determine respectively which row of Vk and which column of Dk must be used to
compute cluster predictions. These predictions are then reduced accordingly to the chosen

weighting strategy (i.e. Average).

genres):

R′(i, j) =
1

N

∑
k∈K

R′k(i, j).

• Democracy: with Average, each active genre has the same weight while
balancing out predictions. With Democracy, a larger cluster is considered
as smarter than the other clusters. If there are more contributions to com-
pute a local prediction, it should be more accurate. Each local prediction
is therefore weighted by its cluster size sk:

R′(i, j) =

∑
k∈K skR

′
k(i, j)∑

k∈K sk
.

• Smart Weights I (SW I): this strategy is developped to work with more
precision. For each combination of genres, SW I associates a weight to each
genre. The hypothesis is that each genre of a combination of genre has
its own importance, depending on the combination it belongs to. There
are therefore G ∗ 2G weights wkc, where c is the combination of genres.
For example, Figure 1 displays 5 different genres combinations (each film
has its own genres combination). Ratings sharing the same movie genre
combination, like “Comedy—Romance”, are group and then this strategy
computes weights specific to this genre combination for the Comedy and
the Romance cluster. To do so, predictions R′k(i, j) are computed ∀k ∈ K
and wk′c′ is increased by one, where c′ is the active genre combination and

8

k′ is the cluster providing the closest result of the known rating. Then,
R′(i, j) is found with the formula:

R′(i, j) =

∑
k∈K wkc′R

′
k(i, j)∑

k∈K wkc′
.

• Smart Weights II (SW II): the previous idea creates a huge partition of
films for the weight training. If the MovieLens dataset (Harper & Kon-
stan, 2015), collected by the GroupLens Research lab, and its 19 movie
categories are taken for example, the strategy creates 524 288 genre com-
binations. As these datasets have between 100 000 and 22 million ratings,
some weights are not properly trained. Therefore SW II uses only one
weight wk per genre. For each evaluation of the training set the weight
associated to the category the closest of the solution is increased by one.
This formula is then used to compute global predictions:

R′(i, j) =

∑
k∈K wkR

′
k(i, j)∑

k∈K wk
.

• Best Category: it exploits weights of SW I. Instead of computing a weighted
average, it chooses the prediction of the category having the highest SW I
weight:

R′(i, j) = R′k(i, j).

where wk′c′ > wkc′ ∀k ∈ K, k 6= k′. The hypothesis is that there is one
best prediction and that the other predictions will just deteriorate this
best prediction. Only one prediction is picked to avoid this deterioration.

• Multiple Linear Regression: it is based on the same hypothesis than SW I.
For each combination of categories, evaluations are modeled by a linear
equation:

R′(i, j) = βc′0 +
∑
k∈K

βkc′ ∗R′k(i, j).

Evaluations of the training dataset are used to form systems of equations
for each combination of categories. Then, the GNU Scientific Library 4 is
used to solve the system and find the β parameters.

• Confusion Matrices I (CM I): confusion matrices check if forecasted val-
ues fit with the reality. Lines represent forecasted predictions values and
columns represent known evaluations values (see Figure 3). If the diago-
nal of a matrix is more populated than the rest of the matrix, it means
that the model fits the reality and that predictions are near of the correct
value. I.e., the matrix pictured at Figure 4.(a) will provide results near of

4Free Software Foundation. GNU Scientific Library. (2009).
https://www.gnu.org/software/gsl/ Accessed 29.09.16

9

[0,1[

[1,2[

[2,3[

[3,4[

[4,5]

[0,1[[1,2[[2,3[[3,4[[4,5]

18

0 0

20

16

22

16

3

2

2

0

3

1

0

21

0

1

0

0

1

2 0 1

0

Real Evaluation

F

o

r

e

c

a

s

t

e

d

E

v

a

l

u

a

t

i

o

n

(a) Most forecasted evalutations

match real evaluations.

The cluster prediction is valuable.

[0,1[

[1,2[

[2,3[

[3,4[

[4,5]

[0,1[[1,2[[2,3[[3,4[[4,5]

4

2 4

5

6

4

3

3

3

7

4

3

8

3

21

2

3

5

1

4

2 2 1

2

Real Evaluation

F

o

r

e

c

a

s

t

e

d

E

v

a

l

u

a

t

i

o

n

(b) Forecasted evaluations does not

match real evaluations.

The cluster prediction is not valuable.

Figure 3: Example of confusion matrices with evaluation intervals of 1. If the diagonal of a
matrix is more populated than the rest, it means that the model fits the reality and that

predictions are near of the correct value.

the correct value, while the matrix pictured at Figure 4.(b) will provide
poor results. One confusion matrix per cluster is used in our method. The
result spectrum is divided in 10 intervals. As evaluations we analyzed are
between 0 and 5, each interval is 0.5 (while matrices of Figure 4 use an
interval of 1). These matrices need training. For each known evaluation,
clusters compute their predictions. For each evaluation the matrix ele-
ment located at the intersection of the forecasted prediction and the real
evaluation is incremented by 1. To compute cluster weights, a first strat-
egy is to select a line of the corresponding matrix according to the interval
in which falls the cluster prediction and to divide the diagonal element by
the sum of all the line elements:

wky =
Mk(y, y)∑
nMk(y, n)

.

R′(i, j) =

∑
k∈K wkyR

′
k(i, j)∑

k∈K .wky

with Mk the confusion matrix corresponding at the kth cluster and y the
interval identifier in which the prediction is located.

• Confusion Matrices II (CM II): the problem of the previous method is
that it requires many known evaluations to train and fill matrices. Even
with 20 millions of ratings, many intervals of the confusion matrices have
no inputs. Therefore, some wyk stays at 0 and some R′(i, j) cannot be
computed as the denominator of the formula is 0. Instead of measuring the
reliability of prediction intervals for a cluster, the reliability of the entire

10

cluster is measured. For each cluster, the sum of the diagonal elements
is divided by the sum of all the matrix elements. Once computed, these
weights do not change:

wk =

∑
yMk(y, y)∑

y

∑
zMk(y, z)

.

R′(i, j) =

∑
k∈K wkR

′
k(i, j)∑

k∈K .wk

• Global Best Category: as for Best Category, the hypothesis is that there
is always a category which is the nearest of the real evaluation and the
others will just deteriorate the global result. Each previous method mea-
sures the reliability of the clusters involved in the prediction computation.
For Global Best Category, each previous method is considered as a voter
naming the best cluster according to its criteria. The cluster having the
more votes is used to provide the prediction.

All these different weighting strategies were evaluated with different datasets.
The experimental protocol and its results are showed and discussed in the next
section.

4. Experiments

4.1. Data

For this research, metadata with detailed informations about item genre
are necessary. Most available datasets only assign one genre to items. However,
there are, to our knowledge, two interesting dataset sources. MovieLens datasets
(Harper & Konstan, 2015) are more descriptive and movies can have several
genres. The Yahoo! movie dataset 5 does not have such a description, but it has
a correspondence table which maps some Yahoo! movie identifiers to MovieLens
movie identifiers. It is then possible to attribute several genres to some Yahoo!
movies. Datasets from these two sources were used in our experiments.

Besides these two sources, the Amazon product dataset (McAuley et al.,
2015b,a) also has detailed metadata, but it has hierarchical categories rather
than a flat genre set. For example, these hierarchizations can be found: [“Elec-
tronics”, “eBook Readers & Accessories”, “Power Adapters”], [“Electronics”,
“eBook Readers & Accessories”, “Bundles”], [“Electronics”, “Computers & Ac-
cessories”, “Touch Screen Tablet Accessories”, “Bundles”] ... With these hier-
archies of categories, we could compute predictions more and more specialized.
For example, the classification [“Electronics”, “eBook Readers & Accessories”,
“Power Adapters”] would give three clusters : “Electronics”, “eBook Readers

5Yahoo! R4 - Yahoo! Movies User Ratings and Descriptive Content Information, v.1.0 (23
MB) (2006) https://webscope.sandbox.yahoo.com/catalog.php?datatype=r Accessed 29.09.16

11

& Accessories” and “Power Adapters”. The “Electronics” cluster would give a
general prediction based on opinions about all electronic devices (such as musical
instruments for example) ; the “eBook Readers” cluster will give a prediction
based on opinions concerning eBook Readers (including those of people who
never bought a power adapters) and the “Power Adapters” will provide a spe-
cialized opinion based on other evaluations of power adapters made by power
adapters consumers. It would be very interesting to investigate the prediction
accuracy of clusters depending on their level of specialization, but it would be
a different study. In this study, we are seeking for:

• clusters producing specialized predictions for each movie genre.

• different opinions for a same item such as, if a proper weighting strategy
is used, the reduced prediction is more accurate than a prediction based
on the entire item set.

Thus, we did not use the Amazon dataset in our experiments.
Four sets were selected to experiment the different weighting strategies: the

Yahoo! Webscope movies dataset and three MovieLens movies datasets. Here
are their description:

• Yahoo! Webscope Dataset R4: it contains 221,367 ratings from 7,642 users
on 11,915 movies (with 43.56% of one-genre movies).

• MovieLens 1M Dataset: it contains 1 million ratings from 6000 users on
4000 movies (with 52.15% of one-genre movies).

• MovieLens 10M Dataset: it contains 10 million ratings from 72,000 users
on 10,000 movies (with 37.50% of one-genre movies).

• MovieLens 20M Dataset: it contains 20 million ratings from 138,000 users
on 27,000 movies (with 36.69% of one-genre movies).

4.2. Evaluation Environment and Protocol

Evaluations were executed on a 6-core AMD Phenom(tm) II X6 1090T Pro-
cessor with 8GB of RAM. The operating system used is Linux Ubuntu 3.19.0-
25-generic.

In the following experiments, the datasets were randomly divided into n
subsets, with n = 10, and the algorithms were executed n times, following a
n-fold cross-validation. In each run, one of the n subsets, containing about 10%
of the ratings, was used as the test set while the other n-1 subsets were merged
into a training set. Then, the train set is used to train the model, that means
computing Dk and Vk matrices. After that, the test set is used to estimate
differences between the model and the reality. To estimate these differences,
Mean Absolute Error (MAE) and the Root-Mean-Square Error (RMSE) were
used:

MAE =
1

N

∑
(i,j)∈τ

|rij − r′ij |.

12

RMSE =

√√√√ 1

N

∑
(i,j)∈τ

(rij − r′ij)2.

where τ is the test set of size N , rij are known ratings and r′ij are predicted
values. MAE is a measure of the efficiency of predictions. The more it is near
of 0, the more accurate predictions are. RMSE is a measure of the stability
of predictions. As it squares errors, its value grows faster than MAE when
predictions are far from correct values. If a dataset has a small MAE but a high
RMSE, it means that even if predictions are generally near of correct values,
some results are strongly incorrect.

As the file mapping Yahoo! identifier on MovieLens identifier does not map
all movies, only 35% of Yahoo! movies have been used.

The evaluation program is structured in two parts. Firstly, the MyMedi-
aLite Recommender System Library is used to compute a matrix factorization
of the entire utility matrix to get a baseline. Some parts of the library, orig-
inally written in C#, were translated in C to improve performances. When
evaluating performances on a dataset of 90 570 ratings, the rewriting reduced
the computational time from 2.33s to 1.15s. Some other code optimizations
were brought and reduced the computational time to 0.58s. Finally, the use of
the optimization flag -O3 reduced the computational time to 0.259s.

Secondly, the evaluation program clusters items and ratings while reading
data files. Then, a matrix factorization is executed for each cluster. As clus-
ters are independent, these factorizations are computed in parallel. After these
operations, weights are trained and, finally, MAE and RMSE are computed for
each weighting strategies.

In the following, we first display and comment efficiency of weighting strate-
gies and then we display detailed computational times for the original and the
clustered version of the recommender system algorithm.

4.3. Weighting Strategies

MAEs and RMSE are presented in Table 1. This table displays means
and standard deviations computed from results of the 10-fold cross-validation.
Best results are bolded and second-best results are underlined. Most standard
deviations represent 0.05% of means. In the Yahoo! dataset case, the worst case
for standard deviations, it represents 3% of means. Results are therefore stable.
The Baseline MAE line of Table 1 displays results of the original algorithm,
which is applied on the entire dataset. The next two lines present best and worst
achievable results. Best MAE results are obtained by selecting, among cluster
predictions, the nearest evaluation of the true rating. It is the ideal goal to
reach. Worst MAE results are obtained by selecting poorest evaluations. These
figures set boundaries between which results of weighting strategies are located.
The other lines of Table 1 displays the results of our weighting strategies. Here
are our conclusions based on the analysis of this table :

• Average, which is the simplest solution, is also the worst solution for this
kind of reduction (in average, it is 3.9% worse than the best solution).

13

Weighting strategies are necessary to get better results.

• Weighting strategies taking only one genre into account, like Best Category
and Global Best Category, provide better results than Average, but they
are less efficient than strategies combining results of several clusters.

• Among multi-genre weighting strategies, SW II does not deliver interesting
results. Its results are near of CM II results, there is less than 1% of
difference, but CM II is always better than SW II.

• So far, interesting strategies are SW I, MLR, CM I, CM II and Democracy.
They all offer at least one result which is the first or the second-best result.
Within these strategies, CM I and Democracy are the least effective. CM
I offers the best MAE result for the Yahoo dataset, but it is the only

Table 1: Presentation of the Mean Absolute Error and the Root-Mean-Square Error for the
different weighting strategies. This table displays means and standard deviations (put in
brackets) computed from results of the 10-fold cross-validation. The best result is bolded.
The second-best result is underlined. Demo. = Democracy, Best Cat. = Best Category,

Global Best Cat. = Global Best Category

ML – 20M ML – 10M ML – 1M Yahoo!

Baseline MAE 0.7112 (0.0003) 0.7185 (0.0005) 0.7641 (0.0019) 0.6763 (0.0095)
Best MAE 0.6169 (0.0005) 0.6282 (0.0006) 0.6931 (0.0019) 0.5545 (0.0077)
Worst MAE 0.8131 (0.0005) 0.8165 (0.0005) 0.8431 (0.0016) 0.7986 (0.0086)
Average MAE 0.7139 (0.0004) 0.7212 (0.0004) 0.7674 (0.0016) 0.7307 (0.1157)
Demo. MAE 0.7081 (0.0004) 0.7153 (0.0004) 0.7619 (0.0018) 0.6681 (0.0074)
SW I MAE 0.7054 (0.0004) 0.7136 (0.0005) 0.7616 (0.0017) 0.6643 (0.0080)

SW II MAE 0.7079 (0.0004) 0.7152 (0.0004) 0.7619 (0.0018) 0.6681 (0.0073)
Best Cat. MAE 0.7103 (0.0004) 0.7193 (0.0006) 0.7669 (0.0017) 0.6719 (0.0089)
MLR MAE 0.7027 (0.0004) 0.7106 (0.0006) 0.7611 (0.0019) 0.7157 (0.0119)
CM I MAE 0.7073 (0.0004) 0.7152 (0.0005) 0.7659 (0.0016) 0.6569 (0.0086)
CM II MAE 0.7064 (0.0004) 0.7141 (0.0005) 0.7615 (0.0017) 0.6679 (0.0077)

Global Best Cat. 0.7105 (0.0005) 0.7192 (0.0006) 0.7663 (0.0016) 0.6719 (0.0089)

Baseline RMSE 0.9096 (0.0005) 0.9151 (0.0006) 0.9542 (0.0026) 0.9728 (0.0153)
Best RMSE 0.6849 (0.0010) 0.6983 (0.0011) 0.7999 (0.0051) 0.7413 (0.0260)
Worst RMSE 1.0125 (0.0014) 1.0125 (0.0014) 1.0588 (0.0055) 1.1404 (0.0314)
Average RMSE 0.8412 (0.0010) 0.8356 (0.0382) 0.9245 (0.0052) 0.9319 (0.0279)
Demo. RMSE 0.8241 (0.0010) 0.8311 (0.0011) 0.9091 (0.0052) 0.8997 (0.0267)
SW I RMSE 0.8207 (0.0010) 0.8296 (0.0013) 0.9096 (0.0051) 0.8992 (0.0283)
SW II RMSE 0.8240 (0.0010) 0.8310 (0.0011) 0.9092 (0.0053) 0.9009 (0.0265)
Best Cat. RMSE 0.8413 (0.0010) 0.8507 (0.0015) 0.9293 (0.0056) 0.9439 (0.0310)
MLR RMSE 0.8309 (0.0010) 0.8374 (0.0015) 0.9212 (0.0052) 1.1412 (0.0468)
CM I RMSE 0.8244 (0.0010) 0.8329 (0.0011) 0.9192 (0.0053) 0.9205 (0.0286)
CM II RMSE 0.8216 (0.0010) 0.8296 (0.0012) 0.9086 (0.0051) 0.9008 (0.0275)

Global Best Cat. 0.8390 (0.0010) 0.8466 (0.0019) 0.9255 (0.0049) 0.9453 (0.0306)

14

achievement of this strategy. For other datasets, CM II povide better
results. Democracy provides two second-best RMSE results, but RMSE
SW I and CM II results are near (less than 0.5%) and often better than
Democracy RMSE results.

• MLR supplies 3 best MAE results but no best or second-best RMSE re-
sults. However, there is only a slight difference of about 1% between MLR
and SW I RMSE results. Also, the Yahoo! dataset reveals that MLR is
the worst strategy for small datasets. MLR is therefore one of the best
strategies for datasets which size is at least 1M but is not recommended
for small datasets.

• SW I delivers most of the second-best MAE results (and it is only at about
0.3% of the best results) and most of the best RMSE results. It is also
effective for all sizes. It is therefore a balanced and effective solution.

• CM II delivers some best and second-best results, but, even if it is not the
best, it stays really close of SW I results. It is therefore a good alternative
to SW I.

• Finally, comparing SW I results to the baseline, we observe an improve-
ment of 0.9% in average (between 0.3 and 1.8%) of MAE results and an
improvement of 7.8% in average (between 4.7 and 9.8%) of RMSE results.

4.4. Computational Times

Computational times of the different algorithms and their steps have been
observed. Computational times of the original algorithm are displayed at Table
2 and those of the clustering algorithm are displayed at Table 3. The clustering
is executed when reading data files and doubles the duration of this operation. It
takes between 2 and 3% of the entire computational time for MovieLens datasets
and about 15% of the computational time for the Yahoo! dataset. Clustering
costs are therefore not high. Moreover, clustering creates independent clusters
which are then factorized simultaneously by several cores. As most ratings
are put in different clusters, there is an increase of ratings, but the factorization
duration decreases thanks to the parallelization. With 6 cores, there is a decrease
of between 22 and 47% of this operation computational time compared with the
original version. Finally, some weight strategies need to train weights, which
is an additional step that was not part of the original algorithm. This step
adds between 15 and 20% of the computational time of the original algorithm.
Globally, computational times of the two methods are similar. This can be
seen on Figure 4. Therefore, clustering improves slightly results by stabilizing
evaluations without costing much additional time if enough resources are used.

Moreover, Table 3 displays the computational time needed to train all strat-
egy weights together. If only one strategy is used, which is the most probable
case, the computational time falls. Details of weights computational times are
displayed at Table 4. Weights I are used in SW I, Best Category and Global Best
Category strategies. Weights II are used in SW II strategy. Confusion matrices

15

Figure 4: Algorithms detailed computational times

are used for both CM and regression parameters are used for MLR. Computing
one set of weights takes approximately half the computational time taken to
compute all weights at once. Regression parameters are the most costly weights
to be computed as they take between 15 and 60% more time than Weights I.
Other weights are computed with slightly different computational times, but
the difference is of maximum 18%.

4.5. Experiments synthesis

In section 4.3, SW I, MLR and CM II were identified as efficient strategies.
In section 4.4, we have seen that MLR weights require the biggest computational
time, CM II saves 22.25% of that computational time and SW I 31.1%. SW I
had already been identified as one of the best solution for the results accuracy,
it is also the solution requiring the less computing time to train weights.

Democracy is in average 0.45% less accurate than other solutions, but it
does not require weight training. It is therefore a good and cheaper alternative
to SW I, MLR and CM II.

File Reading Matrix Factorization Total
ML – 20M 5.207 170.702 175.909
ML – 10M 2.442 77.324 79.766
ML – 1M 0.233 6.235 6.469
Yahoo! 0.075 0.433 0.508

Table 2: Measure of the computational time of the original algorithm (s).

16

File Reading
Matrix

Factorization
Weight Training Total

ML – 20M 10.019 133.916 28.817 172.752
ML – 10M 4.633 58.677 13.041 76.351
ML – 1M 0.435 3.354 0.997 4.787
Yahoo! 0.144 0.271 0.105 0.520

Table 3: Measure of the computational time of the clustering algorithm (s).

Weights I Weights II
Confusion
Matrices

Regression
Parameters

ML – 20M 12.776 13.985 15.174 17.103
ML – 10M 6.069 6.724 7.111 8.186
ML – 1M 0.494 0.560 0.549 0.571
Yahoo! 0.048 0.048 0.048 0.119

Table 4: Measure of our weights computational time (s).

5. Conclusions

Recommender systems are useful tools for online activities such as e-commerce
or recommendation websites such as IMDb. This paper described a clustering
approach based on item metadata informations aiming at a result improvement.
Items are clustered according to the genre(s) they belong to. As an item can
belong to several genres, it can be placed in several clusters. Therefore, several
evaluations may be available when requesting a prediction for an item and a
reduction of clusters evaluations is required. Several reduction strategies were
experimented on movie rating databases. The most useful ones are Democracy,
Smart Weights I (SW I) and Multiple Linear Regression (MLR). MLR per-
forms really well for large datasets, but becomes inefficient for small datasets.
For small datasets, SW I becomes more interesting (its MAE is 7.2% better
than MLR MAE and its RMSE is 21.3% better). Democracy is not as good
as the two first strategies (it is in average 0.45% less accurate) but it does not
require weight computation and it is therefore the fastest strategy offering an
improvement compared to the original algorithm.

If MAE is generally only slightly improved, with a maximum of 1.8% of the
baseline, RMSE has a better improvement as it reaches between 4.7 and 9.8%
of the baseline for SW I strategy. A smallest RMSE means that inaccurate
evaluations are closer to correct solutions than before.

Computational times were also analyzed. The clustering allows a code par-
allelization as each cluster is computed independently, but weighting strategies
require weight training, which adds some computational time. Globally, our
method is better than the baseline method. SW I weights training is the cheap-
est training (31.1% faster than MLR). Then comes the Confusion Matrices (CM)

17

weights training (22.25% faster than MLR) and then the MLR parameters com-
putation (17.103 s for the 20M dataset). Democracy does not need weight
training and is consequently the fastest solution. SW I is a good candidate for
general recommender systems. For more specific systems, the weighting strategy
should be chosen accordingly to its size and objectives.

For future work, it would be interesting to test these weights on other
datasets, with a clustering on something else than the genre. For example,
if a dataset contains metadata on users about their hobbies, it would be possi-
ble to experiment the methodology on a user-based clustering. Moreover, results
of our weighting strategies are halfway between the best and the worst MAE,
it would be interesting to find new strategies bringing results closer to the best
MAE. Finally, we used matrix factorization to proof our clustering method ad-
vantages with an existing recommender system algorithm, but it does not proof
that every recommender systems will bring the same results. It would be inter-
esting to test our approach with other recommender systems to verify if other
algorithms would bring the same results.

References

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions.
IEEE Trans. on Knowl. and Data Eng., 17 , 734–749. doi:10.1109/TKDE.
2005.99.

Altingovde, I. S., Subakan, O. N., & Ulusoy, O. (2013). Cluster searching
strategies for collaborative recommendation systems. Inf. Process. Manage.,
49 , 688–697. doi:10.1016/j.ipm.2012.07.008.

Balabanović, M., & Shoham, Y. (1997). Fab: Content-based, collaborative
recommendation. Commun. ACM , 40 , 66–72. doi:10.1145/245108.245124.

Banerjee, A., Dhillon, I., Ghosh, J., Merugu, S., & Modha, D. S. (2007). A
generalized maximum entropy approach to bregman co-clustering and matrix
approximation. J. Mach. Learn. Res., 8 , 1919–1986.

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of pre-
dictive algorithms for collaborative filtering. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence UAI’98 (pp. 43–52). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Cho, H., Dhillon, I. S., Guan, Y., & Sra, S. (2004). Minimum sum-squared
residue based co-clustering of gene expression data. Proceedings of the Fourth
SIAM International Conference on Data Mining (SDM), (pp. 114–125).

Cöster, R., & Svensson, M. (2002). Inverted file search algorithms for collabo-
rative filtering. In Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval SIGIR ’02
(pp. 246–252). New York, NY, USA: ACM. doi:10.1145/564376.564420.

18

DuBois, T., Golbeck, J., Kleint, J., & Srinivasan, A. (2009). Improving rec-
ommendation accuracy by clustering social networks with trust. In RecSys
workshop on Recommender Systems and the Social Web. New York, NY USA.

Gantner, Z., Rendle, S., Freudenthaler, C., & Schmidt-Thieme, L. (2011). My-
medialite: A free recommender system library. In Proceedings of the Fifth
ACM Conference on Recommender Systems RecSys ’11 (pp. 305–308). New
York, NY, USA: ACM. doi:10.1145/2043932.2043989.

Gong, S. (2010). A collaborative filtering recommendation algorithm based on
user clustering and item clustering. In Journal of Software (pp. 745–752).
Academy Publisher volume 5.

Guo, G., Zhang, J., & Yorke-Smith, N. (2015). Leveraging multiviews of trust
and similarity to enhance clustering-based recommender systems. Knowledge-
Based Systems, 74 , 14 – 27.

Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History
and context. ACM Trans. Interact. Intell. Syst., 5 , 19:1–19:19. doi:10.1145/
2827872.

He, X., Kan, M.-Y., Xie, P., & Chen, X. (2014). Comment-based multi-view
clustering of web 2.0 items. In Proceedings of the 23rd International Confer-
ence on World Wide Web WWW ’14 (pp. 771–782). ACM.

Kohrs, A., & Merialdo, B. (1999). Clustering for collaborative filtering applica-
tions. In Proceedings of International Conference on Computational Intelli-
gence for Modeling, control and automation. Vienna, Austria: IOS Press.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., &
Riedl, J. (1997). Grouplens: Applying collaborative filtering to usenet news.
Commun. ACM , 40 , 77–87. URL: http://doi.acm.org/10.1145/245108.
245126. doi:10.1145/245108.245126.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer , 42 , 30–37. doi:10.1109/MC.2009.263.

Kuzelewska, U. (2014). Clustering algorithms in hybrid recommender system on
movielens data. In Studies in Logic, Grammar and Rhetoric (pp. 125–139).
volume 37.

Lee, J., Bengio, S., Kim, S., Lebanon, G., & Singer, Y. (2014). Local col-
laborative ranking. In Proceedings of the 23rd International Conference on
World Wide Web WWW ’14 (pp. 85–96). New York, NY, USA: ACM.
doi:10.1145/2566486.2567970.

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining of Massive
Datasets. (2nd ed.). Cambridge: Cambridge University Press.

19

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-
to-item collaborative filtering. IEEE Internet Computing , 7 , 76–80. doi:10.
1109/MIC.2003.1167344.

Ma, X., Lu, H., Gan, Z., & Ma, Y. (2014). Improving recommendation ac-
curacy with clustering-based social regularization. In Web Technologies and
Applications (pp. 177–188). Springer International Publishing.

Ma, X., Lu, H., Gan, Z., & Zhao, Q. (2016). An exploration of improving predic-
tion accuracy by constructing a multi-type clustering based recommendation
framework. Neurocomputing , 191 , 388 – 397.

McAuley, J., Pandey, R., & Leskovec, J. (2015a). Inferring networks of sub-
stitutable and complementary products. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing KDD ’15 (pp. 785–794). New York, NY, USA: ACM. URL: http://doi.
acm.org/10.1145/2783258.2783381. doi:10.1145/2783258.2783381.

McAuley, J., Targett, C., Shi, Q., & van den Hengel, A. (2015b). Image-
based recommendations on styles and substitutes. In Proceedings of the
38th International ACM SIGIR Conference on Research and Development
in Information Retrieval SIGIR ’15 (pp. 43–52). New York, NY, USA:
ACM. URL: http://doi.acm.org/10.1145/2766462.2767755. doi:10.
1145/2766462.2767755.

Nathanson, T., Bitton, E., & Goldberg, K. (2007). Eigentaste 5.0: Constant-
time adaptability in a recommender system using item clustering. In Proceed-
ings of the 2007 ACM Conference on Recommender Systems RecSys ’07 (pp.
149–152). New York, NY, USA: ACM. doi:10.1145/1297231.1297258.

O’Donovan, J., & Smyth, B. (2005). Trust in recommender systems. In Pro-
ceedings of the 10th International Conference on Intelligent User Interfaces
IUI ’05 (pp. 167–174). New York, NY, USA: ACM. doi:10.1145/1040830.
1040870.

Paterek, A. (2007). Improving regularized singular value decomposition for col-
laborative filtering. In Proceedings KDD Cup Workshop at SIGKDD’07, 13th
ACM International Conference on Knowledge Discovery and Data Mining
(pp. 39–42). San Jose, California, USA.

Pham, M. C., Cao, Y., Klamma, R., & Jarke, M. (2011). A clustering approach
for collaborative filtering recommendation using social network analysis. Jour-
nal of Universal Computer Science, 17 , 583–604.

Pitsilis, G., Zhang, X., & Wang, W. (2011). Clustering recommenders in col-
laborative filtering using explicit trust information. In IFIP Advances in
Information and Communication Technology (Vol. 358).

20

Quan, T. K., Fuyuki, I., & Shinichi, H. (2006). Improving accuracy of rec-
ommender system by clustering items based on stability of user similar-
ity. In Proceedings of the International Conference on Computational In-
teligence for Modelling Control and Automation and International Confer-
ence on Intelligent Agents Web Technologies and International Commerce
CIMCA ’06 (pp. 61–68). Washington, DC, USA: IEEE Computer Society.
doi:10.1109/CIMCA.2006.123.

Rashid, A. M., Lam, S. K., Karypis, G., & Riedl, J. (2006). Clustknn: A highly
scalable hybrid model- and memory-based cf algorithm. In Proceedings of
WebKDD-06, KDD Workshop on Web Mining and Web Usage Analysis, at
12 th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining .

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms. In Proceedings of the 10th Interna-
tional Conference on World Wide Web WWW ’01 (pp. 285–295). New York,
NY, USA: ACM. doi:10.1145/371920.372071.

Sarwar, B., Karypis, G., Konstan, J. A., & Riedl, J. T. (2000). Application
of dimensionality reduction in recommender system – a case study. In ACM
WebKDD 2000 Web Mining for E-Commerce Workshop.

Sarwar, B. M., Karypis, G., Konstan, J., & Riedl, J. (2002). Recommender
systems for large-scale e-commerce: Scalable neighborhood formation using
clustering. In 5th International Conference on Computer and Information
Technology .

Selamat, A., & Moghaddam, S. G. (2012). Improved collaborative filtering on
recommender based systems using smoothing density-based user clustering.
In International Journal of Advancements in Computing Technology (pp. 352–
359). ACM volume 4.

Wei, S., Ye, N., Zhang, S., & Huang, X. (2012). Collaborative filtering rec-
ommendation algorithm based on item clustering and global similarity. In
Business Intelligence and Financial Engineering (BIFE), 2012 Fifth Interna-
tional Conference on. Lanzhou: IEEE.

Xue, G.-R., Lin, C., Yang, Q., Xi, W., Zeng, H.-J., Yu, Y., & Chen, Z. (2005).
Scalable collaborative filtering using cluster-based smoothing. In Proceedings
of the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval SIGIR ’05 (pp. 114–121). New York,
NY, USA: ACM. doi:10.1145/1076034.1076056.

Zhang, W., Wu, B., & Liu, Y. (2016). Cluster-level trust prediction based on
multi-modal social networks. Neurocomputing , 210 , 206 – 216.

21

