PART III

ADDITIONAL COMMUNICATIONS

NON-MONOTONOUS TEMPERATURE DEPENDENCE OF INTERFACIAL TENSIONS

J. DE CONINCK, D. VILLERS AND J. PLATTEN

Faculté des Sciences, Université de Mons-Hainaut, B-7000 MONS, Belgium

Let us consider two media in coexistence A and B for instance. The interface between these two media is characterized by its interfacial tension τ . As a function of the temperature T, it is generally accepted that τ should be a decreasing function. However, for some substances, τ may become a more complicated function of T. This is the case for water -(n)- alcohol of 4-12 carbon atoms media. Indeed, as shown in figure 1, τ presents a parabolic profile as a function of T within a certain range of temperature. These data have been obtained using the Wilhelmy plate method [1]

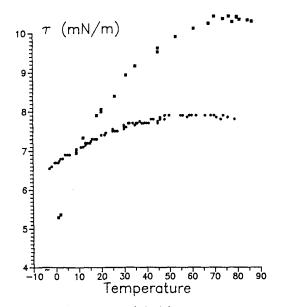


Fig. 1. The interfacial tension $\tau(T)$: (*) water-1-heptanol; \blacksquare water-1-decanol.

In this note, we would like to introduce a microscopic model which lead to a good description of these data. More details may be found in [2].

Due to the chemical characteristics of the molecules of alcohol, it is expected that these molecules will be perpendicular to the water-alcohol interface as represented in figure 2a. This means that, on a microscopic point of view, the interface may be viewed as a superposition of steps (fig 2.b).

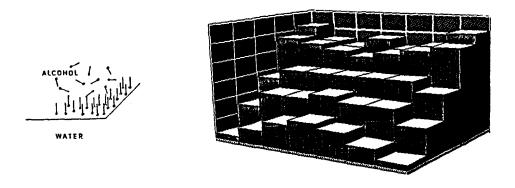


Fig. 2. Sketch of the interface between water and n-alcohol: (a) a schematic representation; (b) a step model.

Let J denote the energetic cost associated to this interface per unit of surface. The energy E_{Λ} of this interface Λ may thus be written as

$$E_{\Lambda} = J.S_{\Lambda}$$

where S_{Λ} represents the surface of Λ . To evaluate this surface, we shall introduce some variables h_i which give the height of the interface associated to the point *i* with respect to some reference plane (fig. 2.b).

To compute S_A as a function of $h_0 \cdots h_N$, we use some Gaussian approximation

$$S_A = rac{J}{4} \sum_{\underline{r}, \underline{r}'} \{ a^2 + rac{(h_{\underline{r}} - h_{\underline{r}'})^2}{2} \}$$

where a^2 is the surface of one elementary square. We therefore have the following Hamiltonian for this interface Λ .

$$H_{\Lambda}(h_{\underline{0}}\cdots h_{\underline{N}}) = -\frac{J}{4}\sum_{\underline{r},\underline{r}'} \{a^2 + \frac{(h_{\underline{r}} - h_{\underline{r}'})^2}{2}\}$$

The corresponding surface tension is given by

$$\tau(T) = \lim_{N \uparrow \infty} -\frac{1}{Na^2} \log \int dh_{\underline{0}} \cdots dh_{\underline{N}} e^{-\beta H_A(h_{\underline{0}} \cdots h_{\underline{N}})} \Pi_{k \in \partial A} \delta(h_{\underline{k}})$$

where $\beta = 1/k_B T$ and $\partial \Lambda$ is the boarder of Λ .

After some calculations [2], we get

$$\tau(T) = J + \frac{1}{2a^2\beta} \log \frac{\beta J a^2}{0.60981}$$

This explicit result allows us to plot the experimental data in terms of J. The corresponding graph is reproduced hereafter (figure 3) and reveals surprisingly a linear behaviour of J as a function of β .

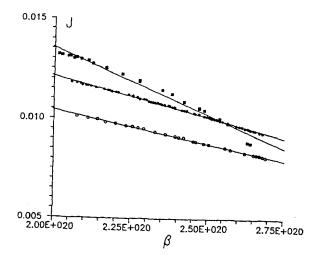


Fig. 3. The effective cost of energy J as a function of β from the experimental data given in fig. 1.

The adjusted constants of the form

$$J = c\beta + d$$

are given in the following table with the corresponding "best value" of a.

	a(A)	$c(J^2m^{-2})$	$d(Jm^{-2})$	$T_{max}(^{\circ}K)T^{*}$	$=\frac{kT_{max}}{a\sqrt{-c}}$
n-butanol	4.323	-2.813 10 ⁻²³	14.58 10-3	293	1.764
n-pentanol	3.574	$-4.648 \ 10^{-23}$	$23.48 \ 10^{-3}$	314	1.779
n-Hexanol	3.276	$-5.792 \ 10^{-23}$	29.06 10 ⁻³	322	1.783
n-Heptanol	3.403	$-5.844 \ 10^{-23}$	$28.76 \ 10^{-3}$	334	1.772
n-octanol	3.226	-7.019 10 ⁻²³	$33.29 \ 10^{-3}$	344	1.762
n-nonanol	2.778	-9.755 10 ⁻²³	44.34 10 ⁻³	347	1.746
n-Decanol	1.972	$-1.859 \ 10^{-22}$	82.53 10 ⁻³	345	1.772
n-Dodecanol	2.679	-1.885 10 ⁻²²	79.39 10 ⁻³	362	1.751

Let us point out here that the agreement with the experimental data is less than 1% for more than 150 experimental points.

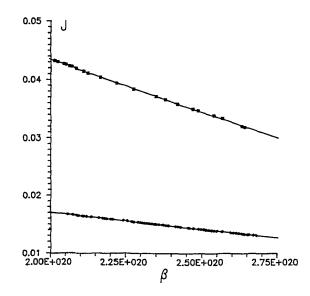


Fig. 4. The adjusted J as a function of β for (*) water-1-heptanol; (**E**) water-1-decanol.

Let us conclude this note by stressing the surprising linear character of J as a function of β . The origin of this property remains up to now an open question.

References

- 1. Villers, D. and Platten, J.; J. Phys. Chem. <u>92</u>, 4023 (1988).
- 2. De Coninck, J; Villers, D. and Platten, J.; J. Phys. Chem. <u>94</u>, 5057 (1990) and references therein.