PART III

ADDITIONAL COMMUNICATIONS

NON-MONOTONOUS TEMPERATURE DEPENDENCE OF INTERFACIAL TENSIONS

J. DE CONINCK, D. VILLERS AND J. PLATTEN

Faculté des Sciences, Université de Mons-Hainaut, B-7000 MONS, Belgium

Let us consider two media in coexistence A and B for instance. The interface between these two media is characterized by its interfacial tension τ. As a function of the temperature T, it is generally accepted that τ should be a decreasing function. However, for some substances, τ may become a more complicated function of T. This is the case for water -(n)- alcohol of $4-12$ carbon atoms media. Indeed, as shown in figure $1, \tau$ presents a parabolic profile as a function of T within a certain range of temperature. These data have been obtained using the Wilhelmy plate method [1]

Fig. 1. The interfacial tension $\tau(T)$: (*) water-1-heptanol; water-1-decanol.

In this note, we would like to introduce a microscopic model which lead to a good description of these data. More details may be found in [2].

Due to the chemical characteristics of the molecules of alcohol, it is expected that these molecules will be perpendicular to the water-alcohol interface as represented in figure 2a. This means that, on a microscopic point of view, the interface may be viewed as a superposition of steps (fig 2.b).

Fig. 2. Sketch of the interface between water and n-alcohol: (a) a schematic representation; (b) a step model.

Let J denote the energetic cost associated to this interface per unit of surface. The energy E_{Λ} of this interface A may thus be written as

$$
E_{\Lambda}=J . S_{\Lambda}
$$

where S_{Λ} represents the surface of Λ. To evaluate this surface, we shall introduce some variables h_{i} which give the height of the interface associated to the point i with respect to some reference plane (fig. 2.b).

To compute S_{Λ} as a function of $h_{0} \cdots h_{N}$, we use some Gaussian approximation

$$
S_{A}=\frac{J}{4} \sum_{\underline{r}, r^{\prime}}\left\{a^{2}+\frac{\left(h_{\underline{\underline{r}}}-h_{\underline{r}^{\prime}}\right)^{2}}{2}\right\}
$$

where a^{2} is the surface of one elementary square. We therefore have the following Hamiltonian for this interface Λ.

$$
H_{\Lambda}\left(h_{\underline{0}} \cdots h_{\underline{N}}\right)=-\frac{J}{4} \sum_{\underline{r}, \mathbf{r}^{\prime}}\left\{a^{2}+\frac{\left(h_{\underline{r}}-h_{\underline{r}^{\prime}}\right)^{2}}{2}\right\}
$$

The corresponding surface tension is given by

$$
\tau(T)=\lim _{N \nmid \infty}-\frac{1}{N a^{2}} \log \int d h_{\underline{0}} \cdots d h_{\underline{N_{N}}} e^{-\beta H_{\Lambda}\left(h_{\underline{Q}} \cdots h_{\underline{N}}\right) \Pi_{k \in \Omega \Lambda} \delta\left(h_{\underline{k}}\right)}
$$

where $\beta=1 / k_{B} T$ and $\partial \Lambda$ is the boarder of Λ.
After some calculations [z], we get

$$
\tau(T)=J+\frac{1}{2 a^{2} \beta} \log \frac{\beta J a^{2}}{0.60981}
$$

This explicit result allows us to plot the experimental data in terms of J. The corresponding graph is reproduced hereafter (figure 3) and reveals surprisingly a linear behaviour of J as a function of β.

Fig. 3. The effective cost of energy J as a function of β from the experimental data given in fig. 1.

The adjusted constants of the form

$$
J=c \beta+d
$$

are given in the following table with the corresponding "best value" of a.

	$a(\AA)$	$c\left(J^{2} m^{-2}\right)$	$d\left(J m^{-2}\right)$	$T_{\max }\left({ }^{\circ} K\right) T^{*}=\frac{k T_{\max }}{a \sqrt{-c}}$	
n-butanol	4.323	-2.81310^{-23}	14.5810^{-3}	293	1.764
n-pentanol	3.574	-4.64810^{-23}	23.4810^{-3}	314	1.779
n-Hexanol	3.276	-5.79210^{-23}	29.0610^{-3}	322	1.783
n-Heptanol	3.403	-5.84410^{-23}	28.7610^{-3}	334	1.772
n-octanol	3.226	-7.01910^{-23}	33.2910^{-3}	344	1.762
n-nonanol	2.778	-9.75510^{-23}	44.3410^{-3}	347	1.746
n-Decanol	1.972	-1.85910^{-22}	82.5310^{-3}	345	1.772
n-Dodecanol	2.679	-1.88510^{-22}	79.3910^{-3}	362	1.751

Let us point out here that the agreement with the experimental data is less than 1% for more than 150 experimental points.

Fig. 4. The adjusted J as a function of β for (*) water-1-heptanol; (■) water-1-decanol.

Let us conclude this note by stressing the surprising linear character of J as a function of β. The origin of this property remains up to now an open question.

References

1. Villers, D. and Platten, J.; J. Phys. Chem. 92, 4023 (1988).
2. De Coninck, J; Villers, D. and Platten, J.; J. Phys. Chem. 94, 5057 (1990) and references therein.
