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Abstract

We review some aspects of the dramatic consequences of supersymmetry break-
ing on string vacua. In particular, we focus on the issue of vacuum stability in ten-
dimensional string models with broken, or without, supersymmetry, whose perturbative
spectra are free of tachyons. After formulating the models at stake, we introduce their
unified low-energy effective description and present a number of vacuum solutions to
the classical equations of motion. In addition, we present a generalization of previous
no-go results for de Sitter vacua in warped flux compactifications. Then we analyze
the classical and quantum stability of these vacua, studying linearized field fluctuations
and bubble nucleation. Then, we describe how the resulting instabilities can be framed
in terms of brane dynamics, examining in particular brane interactions, back-reacted
geometries and commenting on a brane-world string construction along the lines of a
recent proposal. After providing a summary, we conclude with some perspectives on
possible future developments.
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1 Introduction
The issue of supersymmetry breaking in string theory is of vital importance, both technically
and conceptually. On a foundational level, many of the richest and most illuminating lessons
appear obscured by a lack of solid, comprehensive formulations and of befitting means to
explore these issues in depth. As a result, unifying guiding principles to oversee our efforts
have been elusive, although a variety of successful complementary frameworks [1–5] hint
at a unique, if tantalizing, consistent structure [6]. Despite these shortcomings, string the-
ory has surely provided a remarkable breadth of new ideas and perspectives to theoretical
physics, and one can argue that its relevance as a framework has thus been established to
a large extent, notwithstanding its eventual vindication as a realistic description of our uni-
verse. On a more phenomenological level, the absence of low-energy supersymmetry and
the extensive variety of mechanisms to break it, and consequently the wide range of relevant
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energy scales, point to a deeper conundrum, whose resolution would conceivably involve
qualitatively novel insights. However, the paradigm of spontaneous symmetry breaking in
gauge theories has proven pivotal in model building, both in particle physics and condensed
matter physics, and thus it is natural to envision spontaneous supersymmetry breaking as
an elegant resolution of these bewildering issues. Yet, in the context of string theory this
phenomenon could in principle occur around the string scale, perhaps even naturally so,
and while the resulting dramatic consequences have been investigated for a long time, the
ultimate fate of these settings appears still largely not under control.

All in all, a deeper understanding of the subtle issues of supersymmetry breaking in string
theory is paramount to progress toward a more complete picture of its underlying founda-
tional principles and more realistic phenomenological models. While approaches based on
string world-sheets would appear to offer a more fundamental perspective, the resulting anal-
yses are typically met by gravitational tadpoles, which signal an incongruous starting point
of the perturbative expansion and whose resummation entails a number of technical and
conceptual subtleties [7–11]. On the other hand, low-energy effective theories appear more
tractable in this respect, but connecting the resulting lessons to the underlying microscopic
physics tends to be more intricate. A tempting analogy for the present state of affairs would
compare current knowledge to the coastline of an unexplored island, whose internal regions
remain unscathed by any attempt to further explore them.

Nevertheless, the material presented in this review is motivated by an attempt to shed
some light on these remarkably subtle issues. Indeed, as we shall discuss, low-energy effec-
tive theories, accompanied by some intuition drawn from well-understood supersymmetric
settings, appear to provide the tools necessary to elucidate matters, at least to some extent.
A detailed analysis of the resulting models, and in particular of their classical solutions and
the corresponding instabilities, suggests that fundamental branes play a crucial rôle in un-
veiling the microscopic physics at stake. Both the relevant space-time field configurations
and their (classical and quantum) instabilities dovetail with a brane-based interpretation,
whereby controlled flux compactifications arise as near-horizon limits within back-reacted
geometries, strongly warped regions arise as confines of the space-time “carved out” by the
branes in the presence of runaway tendencies, and instabilities arise from brane interactions.
In addition to provide a vantage point to build intuition from, the rich dynamics of fundamen-
tal branes offers potentially fruitful avenues of quantitative investigation via world-volume
gauge theories and holographic approaches. Furthermore, settings of this type naturally ac-
commodate cosmological brane-world scenarios alongside the simpler bulk cosmologies that
have been analyzed, and the resulting models offer a novel and intriguing perspective on the
long-standing problem of dark energy in string theory. Indeed, many of the controversies
regarding the ideas that have been put forth in this respect [12–16] point to a common origin,
namely an attempt to impose static configurations on systems naturally driven toward dy-
namics. As a result, uncontrolled back-reactions and instabilities can arise, and elucidating
the aftermath of their manifestation has proven challenging.

While in supersymmetric settings the lack of a selection principle generates seemingly
unfathomable “landscapes” of available models, in the absence of supersymmetry their very
consistency has been questioned, leading to the formulation of a number of criteria and pro-
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posals collectively dubbed “swampland conjectures” [17–20]. Among the most ubiquitous
stands the weak gravity conjecture [21], which appears to entail far-reaching implications
concerning the nature of quantum-gravitational theories in general. In this review we shall
approach matters from a complementary viewpoint, but, as we shall discuss, the emerging
lessons resonate with the results of “bottom-up” programs of this type. Altogether, the in-
dications that we have garnered appear to portray an enticing, if still embryonic, picture of
dynamics as a fruitful selection mechanism for more realistic models and as a rich area to
investigate on a more foundational level, and to this end a deeper understanding of high-
energy supersymmetry breaking would constitute an invaluable asset to string theory insofar
as we grasp it at present.

Synopsis.— The material presented in this review mainly covers the results of [22–25]
within the larger context of supersymmetry breaking in string theory. Its contents are orga-
nized as follows.

We shall begin in Section 2 with an overview of the formalism of vacuum amplitudes
in string theory, and the construction of three ten-dimensional string models with broken
supersymmetry. These comprise two orientifold models, the USp(32) model of [26] and the
U(32) model of [27, 28], and the SO(16)× SO(16) heterotic model of [29, 30], and their
perturbative spectra feature no tachyons. Despite this remarkable property, these models also
exhibit gravitational tadpoles, whose low-energy imprint includes an exponential potential
which entails runaway tendencies. The remainder of this review is focused on investigating
the consequences of this feature, and whether interesting phenomenological scenarios can
arise as a result.

In Section 3 we shall describe a family of effective theories which encodes the low-
energy physics of the string models that we have introduced in Section 2, and we present
a number of solutions to the corresponding equations of motion. In order to balance the
runaway effects of the dilaton potential, the resulting field profiles can be warped [23, 31] or
involve large fluxes [32]. Then we address the issue of dS cosmology, considering warped
flux compactifications and extending the no-go results of [33, 34]. We conclude discussing
how our findings connect with recent swampland conjectures [19, 35–37].

In Section 4 we shall present a detailed analysis of the classical stability of the Dudas-
Mourad solutions of [31] and of the AdS×S solutions of [32]. To this end, we shall derive
the linearized equations of motion for field perturbations, and obtain criteria for the stability
of modes. In the case of the cosmological Dudas-Mourad solutions, an intriguing instability
of the homogeneous tensor mode emerges [22], and we offer as an enticing, if speculative,
explanation a potential tendency of space-time toward spontaneous compactification.

In Section 5 we shall turn to the non-perturbative instabilities of the AdS compactifica-
tions discussed in Section 3, in which charged membranes nucleate [23] reducing the flux in
the space-time inside of them. We shall compute the decay rate associated to this process,
and frame it in terms of fundamental branes via consistency conditions that we shall derive
and discuss.

In Section 6 we shall further develop the brane picture presented in Section 5, starting
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from the Lorentzian expansion that bubbles undergo after nucleation. The potential that
drives the expansion encodes a renormalized charge-to-tension ratio that is consistent with
the weak gravity conjecture. In addition, we shall comment on a string-theoretic embedding
of the brane-world scenarios recently revisited in [24, 38–40]. Then we shall turn to the
gravitational back-reaction of the branes, studying the resulting near-horizon and asymptotic
geometries. In the near-horizon limit we shall recover AdS×S throats, while the asymptotic
region features a “pinch-off” singularity at a finite distance, mirroring the considerations
of [31].

In Section 7 we provide a summary and collect some concluding remarks.

2 String models with broken supersymmetry
In this section we introduce the string models with broken supersymmetry that we shall
investigate in the remainder of this review. To this end, we begin in Section 2.1 with a re-
view of one-loop vacuum amplitudes in string theory, starting from the supersymmetric ten-
dimensional models. Then, in Section 2.2 we introduce orientifold models, or “open descen-
dants”, within the formalism of vacuum amplitudes, focusing on the USp(32) model [26]
and the U(32) model [27, 28]. While the latter features a non-supersymmetric perturbative
spectrum without tachyons, the former is particularly intriguing, since it realizes supersym-
metry non-linearly in the open sector [41–44]. Finally, in Section 2.3 we move on to het-
erotic models, constructing the non-supersymmetric SO(16)× SO(16) projection [29, 30].
The material presented in this section is largely based on [45]. For a more recent review,
see [46].

2.1 Vacuum amplitudes
Vacuum amplitudes probe some of the most basic aspects of quantum systems. In the func-
tional formulation, they can be computed evaluating the effective action Γ on vacuum con-
figurations. While in the absence of supersymmetry or integrability exact results are gener-
ally out of reach, their one-loop approximation only depends on the perturbative excitations
around a classical vacuum. In terms of the corresponding mass operator M2, one can write
integrals over Schwinger parameters of the form

Γ =− Vol

2(4π)
D
2

∫
∞

Λ−2

dt

t
D
2 +1

STr
(

e−tM2
)
, (2.1)

where Vol is the volume of (Euclidean) D-dimensional space-time, and the supertrace Str
sums over signed polarizations, i.e. with a minus sign for fermions. The UV divergence
associated to small values of the world-line proper time t is regularized by the cut-off scale
Λ.

Due to modular invariance1, one-loop vacuum amplitudes in string theory can be recast
as integrals over the moduli space of Riemann surfaces with vanishing Euler characteristic,

1We remark that, in this context, modular invariance arises as the residual gauge invariance left after fixing
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and the corresponding integrands can be interpreted as partition functions of the world-sheet
conformal field theory. Specifically, in the case of a torus with modular parameter q≡ e2πiτ ,
in the RNS light-cone formalism one ought to consider2 (combinations of) the four basic
traces

Z(−−)(τ)≡ TrNS qL0 =
∏

∞
m=1

(
1+qm− 1

2

)8

q
1
2 ∏

∞
n=1 (1−qn)8

,

Z(+−)(τ)≡ TrR qL0 = 16
∏

∞
m=1 (1+qm)8

∏
∞
n=1 (1−qn)8 ,

Z(−+)(τ)≡ TrNS
(
(−1)F qL0

)
=

∏
∞
m=1

(
1−qm− 1

2

)8

q
1
2 ∏

∞
n=1 (1−qn)8

,

Z(++)(τ)≡ TrR
(
(−1)F qL0

)
= 0 ,

(2.2)

which arise from the four spin structures depicted in fig. 1. The latter two correspond to
“twisted” boundary conditions for the world-sheet fermions, and are implemented inserting
the fermion parity operator (−1)F . While Z(++) vanishes, its structure contains non-trivial
information about perturbative states, and its modular properties are needed in order to build
consistent models.

Figure 1: inequivalent spin structures on the torus, specified by a choice of periodic (−) or
anti-periodic (+) conditions along each independent cycle.

The modular properties of the traces in eq. (2.2) can be highlighted recasting them in

world-sheet diffeomorphisms and Weyl rescalings. Hence, violations of modular invariance would result in
gauge anomalies.

2We work in ten space-time dimensions, since non-critical string perturbation theory entails a number of
challenges.
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terms of the Dedekind η function

η(τ)≡ q
1
24

∞

∏
n=1

(1−qn) , (2.3)

which transforms according to

η(τ +1) = e
iπ
12 η(τ) , η

(
− 1

τ

)
= (−iτ)

1
2 η(τ) (2.4)

under the action of the generators

T : τ → τ +1 , S : τ → − 1
τ

(2.5)

of the modular group on the torus, and the Jacobi ϑ functions. The latter afford both the
series representation [47]

ϑ

[
α

β

]
(z|τ)≡ ∑

n∈Z
q

1
2 (n+α)2

e2πi(n+α)(z−β ) (2.6)

and the infinite product representation

ϑ

[
α

β

]
(z|τ) = e2πiα(z−β ) q

α2
2

∞

∏
n=1

(1−qn)

×
(

1+qn+α− 1
2 e2πi(z−β )

)(
1+qn−α− 1

2 e−2πi(z−β )
)
,

(2.7)

and they transform under the action of T and S according to

ϑ

[
α

β

]
(z|τ +1) = e−iπα(α+1)

ϑ

[
α

β −α− 1
2

]
(z|τ) ,

ϑ

[
α

β

](
z
τ

∣∣∣∣− 1
τ

)
= (−iτ)

1
2 e−2πiαβ+ iπz2

τ ϑ

[
−β

α

]
(z|τ) .

(2.8)

Therefore, both the Dedekind η function and the Jacobi ϑ functions are modular forms of
weight 1

2 . In particular, we shall make use of ϑ functions evaluated at z = 0 and α ,β ∈
{0 , 1

2}, which are commonly termed Jacobi constants3. Using these ingredients, one can
recast the traces in eq. (2.2) in the form

Z(−−)(τ) =
ϑ 4
[

0
0

]
(0|τ)

η12(τ)
, Z(+−)(τ) =

ϑ 4
[

0
1
2

]
(0|τ)

η12(τ)
,

Z(−+)(τ) =
ϑ 4
[ 1

2
0

]
(0|τ)

η12(τ)
, Z(++)(τ) =

ϑ 4
[

1
2
1
2

]
(0|τ)

η12(τ)
,

(2.9)

3Non-vanishing values of the argument z of Jacobi ϑ functions are nonetheless useful in string theory. They
are involved, for instance, in the study of string perturbation theory on more general backgrounds and D-brane
scattering.
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and, in order to obtain the corresponding (level-matched) torus amplitudes, one is to inte-
grate products of left-moving holomorphic and right-moving anti-holomorphic contributions
over the fundamental domain F with respect to the modular invariant measure d2τ

Im(τ)2 . The
absence of the UV region from the fundamental domain betrays a striking departure from
standard field-theoretic results, and arises from the gauge-fixing procedure in the Polyakov
functional integral.

All in all, modular invariance is required by consistency, and the resulting amplitudes are
constrained to the extent that the perturbative spectra of consistent models are fully deter-
mined. In order to elucidate their properties, it is quite convenient to introduce the characters
of the level-one affine so(2n) algebra

O2n ≡
ϑ n
[

0
0

]
(0|τ)+ϑ n

[
0
1
2

]
(0|τ)

2ηn(τ)
,

V2n ≡
ϑ n
[

0
0

]
(0|τ)−ϑ n

[
0
1
2

]
(0|τ)

2ηn(τ)
,

S2n ≡
ϑ n
[ 1

2
0

]
(0|τ)+ i−n ϑ n

[
1
2
1
2

]
(0|τ)

2ηn(τ)
,

C2n ≡
ϑ n
[ 1

2
0

]
(0|τ)− i−n ϑ n

[
1
2
1
2

]
(0|τ)

2ηn(τ)
,

(2.10)

which comprise contributions from states pertaining to the four conjugacy classes of SO(2n).
Furthermore, they also inherit the modular properties from ϑ and η functions, reducing the
problem of building consistent models to matters of linear algebra4. While n = 4 in the
present case, the general expressions can also encompass heterotic models, whose right-
moving sector is built from 26-dimensional bosonic strings. As we have anticipated, these
expressions ought to be taken in a formal sense: if one were to consider their actual value,
one would find for instance the numerical equivalence S8 = C8, while the two correspond-
ing sectors of the Hilbert space are distinguished by the chirality of space-time fermionic
excitations. Moreover, a remarkable identity proved by Jacobi [47] implies that

V8 = S8 =C8 . (2.11)

This peculiar identity was referred to by Jacobi as aequatio identica satis abstrusa, but in
the context of superstrings its meaning becomes apparent: it states that string models built
using an SO(8) vector and a SO(8) Majorana-Weyl spinor, which constitute the degrees of
freedom of a ten-dimensional supersymmetric Yang-Mills multiplet, contain equal numbers
of bosonic and fermionic excited states at all levels. In other words, it is a manifestation of
space-time supersymmetry in these models.

4We remark that different combinations of characters reflect different projections at the level of the Hilbert
space.
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2.1.1 Modular invariant closed-string models

Altogether, only four torus amplitudes built out of the so(8) characters of eq. (2.10) satisfy
the constraints of modular invariance and spin-statistics5. They correspond to type IIA and
type IIB superstrings,

TIIA : (V8−C8)(V8−S8) ,

TIIB : (V8−S8)(V8−S8) ,
(2.12)

which are supersymmetric, and to two non-supersymmetric models, termed type 0A and
type 0B,

T0A : O8 O8 +V8V8 +S8C8 +C8 S8 ,

T0B : O8 O8 +V8V8 +S8 S8 +C8C8 ,
(2.13)

where we have refrained from writing the volume prefactor and the integration measure∫
F

d2τ

τ6
2

1

|η(τ)|16 , τ2 ≡ Im(τ) (2.14)

for clarity. We shall henceforth use this convenient notation. Let us remark that the form
of (2.12) translates the chiral nature of the type IIB superstring into its world-sheet symmetry
between the left-moving and the right-moving sectors6.

2.2 Orientifold models
The approach that we have outlined in the preceding section can be extended to open strings,
albeit with one proviso. Namely, one ought to include all Riemann surfaces with vanishing
Euler characteristic, including the Klein bottle, the annulus and the Möbius strip.

To begin with, the orientifold projection dictates that the contribution of the torus am-
plitude be halved and added to (half of) the Klein bottle amplitude K . Since the resulting
amplitude would entail gauge anomalies due to the Ramond-Ramond (R-R) tadpole, one
ought to include the annulus amplitude A and Möbius strip amplitude M , which comprise
the contributions of the open sector and signal the presence of D-branes. The corresponding
modular parameters are built from the covering tori of the fundamental polygons, depicted
in fig. 2, while the Möbius strip amplitude involves “hatted” characters that differ from the

5In the present context, spin-statistics amounts to positive (resp. negative) contributions from space-time
bosons (resp. fermions).

6Despite this fact the type IIB superstring is actually anomaly-free, as well as all five supersymmetric
models owing to the Green-Schwarz mechanism [48]. This remarkable result was a considerable step forward
in the development of string theory.
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Figure 2: the string world-sheet topologies (excluding the torus) which contribute to the
one-loop vacuum amplitude, and the corresponding fundamental polygons. From the point
of view of open strings, they can be associated to boundary conditions with boundaries or
cross-caps. The corresponding space-time picture involves D-branes or orientifold planes.

ordinary one by a phase7. so that in the case of the type I superstring

K :
1
2
(V8−S8)(2iτ2)

η8(2iτ2)
,

A :
N2

2

(V8−S8)
(

iτ2
2

)
η8
(

iτ2
2

) ,

M :
ε N
2

(
V̂8− Ŝ8

)(
iτ2
2 + 1

2

)
η̂8
(

iτ2
2 + 1

2

) ,

(2.15)

7The “hatted” characters appear since the modular paramater of the covering torus of the Möbius strip is
not real, and they ensure that states contribute with integer degeneracies.
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where the sign ε is a reflection coefficient and N is the number of Chan-Paton factors. Here,
analogously as in the preceding section, we have refrained from writing the volume prefactor
and the integration measure ∫

∞

0

dτ2

τ6
2
, (2.16)

for clarity. At the level of the closed spectrum, the projection symmetrizes the NS-NS
sector, so that the massless closed spectrum rearranges into the minimal ten-dimensional
N = (1,0) supergravity multiplet, but anti-symmetrizes the R-R sector, while the massless
open spectrum comprises a super Yang-Mills multiplet. It is instructive to recast the “loop
channel” amplitudes of eq. (2.15) in the “tree-channel” using a modular transformation. The
resulting amplitudes describe tree-level exchange of closed-string states, and read

K̃ =
25

2

∫
∞

0
d`

(V8−S8)(i`)
η8(i`)

,

Ã =
2−5 N2

2

∫
∞

0
d`

(V8−S8)(i`)
η8(i`)

,

M̃ =
2ε N

2

∫
∞

0
d`

(
V̂8− Ŝ8

)(
i`+ 1

2

)
η̂8
(
i`+ 1

2

) .

(2.17)

The UV divergences of the loop-channel amplitudes are translated into IR divergences,
which are associated to the `→ ∞ regime of the integration region. Physically they describe
the exchange of zero-momentum massless modes, either in the NS-NS sector or in the R-R
sector, and the corresponding coefficients can vanish on account of the tadpole cancellation
condition

25

2
+

2−5 N2

2
+

2ε N
2

=
2−5

2
(N +32ε)2 = 0 . (2.18)

Let us stress that these conditions apply both to the NS-NS sector, where they grant the
absence of a gravitational tadpole, and to the R-R sector, where they grant R-charge neutral-
ity and thus anomaly cancellation via the Green-Schwarz mechanism. The unique solution
to eq. (2.18) is N = 32 and ε = −1, i.e. the SO(32) type I superstring. The correspond-
ing space-time interpretation involves 32 D9-branes8 and an O9−-plane, which has negative
tension and charge.

2.2.1 The Sugimoto model: brane supersymmetry breaking

On the other hand, introducing an O9+-plane with positive tension and charge one can pre-
serve the R-R tadpole cancellation while generating a non-vanishing NS-NS tadpole, thus
breaking supersymmetry at the string scale. At the level of vacuum amplitudes, this is re-
flected in a sign change in the Möbius strip amplitude, so that now

8Since the D9-branes are on top of the O9−-plane, counting conventions can differ based on whether one
includes “image” branes.
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MBSB :
ε N
2

(
V̂8 + Ŝ8

)(
iτ2
2 + 1

2

)
η̂8
(

iτ2
2 + 1

2

) . (2.19)

The resulting tree-channel amplitudes are given by

M̃BSB =
2ε N

2

∫
∞

0
d`

(
V̂8 + Ŝ8

)(
i`+ 1

2

)
η̂8
(
i`+ 1

2

) , (2.20)

from which the R-R tadpole condition now requires that ε = 1 and N = 32, i.e. a USp(32)
gauge group. However, one is now left with a NS-NS tadpole, and thus at low energies
runaway exponential potential of the type

T
∫

d10x
√
−gS e−φ (2.21)

emerges in the string frame, while its Einstein-frame counterpart is

T
∫

d10x
√
−geγφ , γ =

3
2
. (2.22)

Exponential potentials of the type of eq. (2.22) are smoking guns of string-scale super-
symmetry breaking, and we shall address their effect on the resulting low-energy physics in
following sections. Notice also that the fermions are in the anti-symmetric representation
of USp(32), which is reducible. The corresponding singlet is a very important ingredient:
it is the Goldstino that is to accompany the breaking of supersymmetry, while the closed
spectrum is supersymmetric to lowest order and contains a ten-dimensional gravitino. The
relevant low-energy interactions manifest an expected structure à la Volkov-Akulov [49],
but a complete understanding of the super-Higgs mechanism in this ten-dimensional context
remains elusive [31, 50].

All in all, a supersymmetric closed sector is coupled to a non-supersymmmetric open
sector, which lives on 32 D9-branes where supersymmetry is non-linearly realized9 [49, 60,
61] in a manner reminiscent of the Volkov-Akulov model, and due to the runaway potential
of eq. (2.21) the effective space-time equations of motion do not admit Minkowski solutions.
The resulting model is a special case of more general D9-D9 branes systems, which were
studied in [26], and the aforementioned phenomenon of “brane supersymmetry breaking”
(BSB) was investigated in detail in [41–44]. On the phenomenological side, the peculiar
behavior of BSB also appears to provide a rationale for the low-` lack of power in the Cosmic
Microwave Background [46, 62–64].

While the presence of a gravitational tadpole is instrumental in breaking supersymmetry
in a natural fashion, in its presence string theory back-reacts dramatically10 on the original

9The original works can be found in [51–58]. For reviews, see [45, 46, 59].
10In principle, one could address these phenomena by systematic vacuum redefinitions [7–11], but carrying

out the program at high orders appears prohibitive.

13



Minkowski vacuum, whose detailed fate appears, at present, largely out of computational
control. Let us remark that these difficulties are not restricted to this type of scenarios. In-
deed, while a variety of supersymmetry-breaking mechanisms have been investigated, they
are all fraught with conceptual and technical obstacles, and primarily with the generic pres-
ence of instabilities, which we shall address in detail in Section 4 and Section 5. Although
these issues are ubiquitous in settings of this type, it is worth mentioning that string-scale
supersymmetry breaking in particular appears favored by anthropic arguments [65, 66].

2.2.2 The type 0′B string

Let us now describe another instance of orientifold projection which leads to non-tachyonic
perturbative spectra, starting from the type 0B model11 described by eq. (2.13). There are a
number of available projections, encoded in different choices of the Klein bottle amplitude.
Here we focus on

K0′B :
1
2
(−O8 +V8 +S8−C8) , (2.23)

which, in contrast to the more standard projection defined by the combination O8+V8−S8−
C8, implements anti-symmetrization in the O8 and C8 sectors. This purges tachyons from the
spectrum, and thus the resulting model, termed type “0′B”, is particularly intriguing. The
corresponding tree-channel amplitude is given by

K̃0′B =− 26

2

∫
∞

0
d`C8 . (2.24)

In order to complete the projection one is to specify the contributions of the open sector,
consistently with anomaly cancellation. Let us consider a family of solution that involves
two Chan-Paton charges, and is described by [28]

A0′B : nnV8−
n2 +n2

2
C8 ,

M0′B :
n+n

2
Ĉ8 .

(2.25)

This construction is a special case of a more general four-charge solution [28], and involves
complex “eigencharges” n ,n with corresponding unitary gauge groups. Moreover, while
we kept the two charges formally distinct, consistency demands n = n, while the tadpole
conditions fix n = 32, and the resulting model has a U(32) gauge group12. As in the case
of the USp(32) model, this model admits a space-time description in terms of orientifold
planes, now with vanishing tension, and the low-energy physics of both non-supersymmetric
orientifold models can be captured by effective actions that we shall discuss in Section 3.

11The corresponding orientifold projections of the type 0A model were also investigated. See [45], and
references therein.

12Strictly speaking, the anomalous U(1) factor carried by the corresponding gauge vector disappears from
the low-lying spectrum, thus effectively reducing the group to SU(32).
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In addition to orientifold models, the low-energy description can also encompass the non-
supersymmetric heterotic model, which we shall now discuss in detail, with a simple re-
placement of numerical coefficients in the action.

2.3 Heterotic strings
Heterotic strings are remarkable hybrids of the bosonic string and superstrings, whose exis-
tence rests on the fact that the right-moving sector and the left-moving sector are decoupled.
Indeed, their right-moving sector can be built using the 26-dimensional bosonic string13,
while their left-moving sector is built using the ten-dimensional superstring. In order for
these costructions to admit a sensible space-time interpretation, 16 of the 26 dimensions
pertaining to the right-moving sector are compactified on a torus defined by a lattice Λ,
of which there are only two consistent choices, namely the weight lattices of SO(32) and
E8×E8. These groups play the rôle of gauge groups of the two corresponding supersymmet-
ric heterotic models, aptly dubbed “HO” and “HE” respectively. Their perturbative spectra
are concisely captured by the torus amplitudes

THO : (V8−S8)(O32 +S32) ,

THE : (V8−S8)(O16 +S16)
2
,

(2.26)

which feature so(16) and so(32) characters in the right-moving sector. As in the case of
type II superstrings, these two models can be related by T-duality, which in this context acts
as a projection onto states with even fermion number in the right-moving (“internal”) sec-
tor. However, a slightly different projection yields the non-supersymmetric heterotic string
of [29, 30], which we shall now describe.

2.3.1 The non-supersymmetric heterotic model

Let us consider a projection of the HE theory onto the states with even total fermion number.
At the level of one-loop amplitudes, one is to halve the original torus amplitude and add
terms obtained changing the signs in front of the S characters, yielding the two “untwisted”
contributions

T(++) :
1
2
(V8−S8)(O16 +S16)

2
,

T(+−) :
1
2
(V8 +S8)(O16−S16)

2
.

(2.27)

The constraint of modular invariance under S, which is lacking at this stage, further leads to
the addition of the image of T+− under S, namely

T(−+) :
1
2
(O8−C8)(V16 +C16)

2
. (2.28)

13One can alternatively build heterotic right-moving sectors using ten-dimensional strings with auxiliary
fermions.
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The addition of T−+ now spoils invariance under T transformations, which is restored
adding

T(−−) : − 1
2
(O8 +C8)(V16−C16)

2
. (2.29)

All in all, the torus amplitude arising from this projection of the HE theory yields a the-
ory with a manifest SO(16)×SO(16) gauge group, and whose torus amplitude finally reads

TSO(16)×SO(16) : O8 (V16C16 +C16V16)

+V8 (O16 O16 +S16 S16)

−S8 (O16 S16 +S16 O16)

−C8 (V16V16 +C16C16) .

(2.30)

The massless states originating from the V8 terms comprise the gravitational sector, con-
structed out of the bosonic oscillators, as well as a (120,1)⊕ (1,120) multiplet of SO(16)×
SO(16), i.e. in the adjoint representation of its Lie algebra, while the S8 terms provide
spinors in the (1,128)⊕ (128,1) representation. Furthermore, the C8 terms correspond to
right-handed (16,16) spinors. The terms in the first line of eq. (2.30) do not contribute at the
massless level, due to level matching and the absence of massless states in the correspond-
ing right-moving sector. In particular, this entails the absence of tachyons from this string
model, but the vacuum energy does not vanish14, since it is not protected by supersymmetry.
Indeed, up to a volume prefactor its value can be computed integrating eq. (2.30) against the
measure of eq. (2.14), and, since the resulting string-scale vacuum energy couples with the
gravitational sector in a universal fashion15, its presence also entails a dilaton tadpole, and
thus a runaway exponential potential for the dilaton. In the Einstein frame, it takes the form

T
∫

d10x
√
−geγφ , γ =

5
2
, (2.31)

and thus the effect of the gravitational tadpoles on the low-energy physics of both the ori-
entifold models of Section 2.2 and the SO(16)× SO(16) heterotic model can be accounted
for with the same type of exponential dilaton potential. On the phenomenological side, this
model has recently sparked some interest in non-supersymmetric model building [71, 73]16

in Calabi-Yau compactifications [77], and in Section 3 we shall investigate in detail the con-
sequences of dilaton tadpoles on space-time.

14In some orbifold models, it is possible to obtain suppressed or vanishing leading contributions to the
cosmological constant [67–72].

15At the level of the space-time effective action, the vacuum energy contributes to the string-frame cosmo-
logical constant. In the Einstein frame, it corresponds to a runaway exponential potential for the dilaton.

16In the same spirit, three-generation non-tachyonic heterotic models were constructed in [74]. Recently,
lower-dimensional non-tachyonic models have been realized compactifying ten-dimensional tachyonic super-
strings [75, 76].
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3 Non-supersymmetric vacuum solutions
In this section we investigate the low-energy physics of the string models that we have de-
scribed in Section 2, namely the non-supersymmetric SO(16)×SO(16) heterotic model [29,
30], whose first quantum correction generates a dilaton potential, and two orientifold mod-
els, the non-supersymmetric U(32) type 0′B model [27, 28] and the USp(32) model [26]
with “Brane Supersymmetry Breaking” (BSB) [41–44], where a similar potential reflects
the tension unbalance present in the vacuum. To begin with, in Section 3.1 we discuss
the low-energy effective action that we shall consider. Then we proceed to discuss some
classes of solutions of the equations of motion. Specifically, in Section 3.2 we present the
Dudas-Mourad solutions of [31], which comprise nine-dimensional static compactifications
on warped intervals and ten-dimensional cosmological solutions. In Section 3.3 we introduce
fluxes, which lead to parametrically controlled Freund-Rubin [78] compactifications [23,
32], and we show that, while the string models at stake admit only AdS solutions of this
type, in a more general class of effective theories dS solutions always feature an instability
of the radion mode. In Section 3.4 we complete our discussion on dS solutions, examin-
ing general warped flux compactifications and extending previous no-go results, connecting
them to recent swampland conjectures.

3.1 The low-energy description
Let us now present the effective (super)gravity theories related to the string models at stake.
For the sake of generality, we shall often work with a family of D-dimensional effective
gravitational theories, where the bosonic fields include a dilaton φ and a (p+2)-form field
strength Hp+2 = dBp+1. Using the “mostly plus” metric signature, the (Einstein-frame)
effective actions

S =
1

2κ2
D

∫
dDx
√
−g
(

R− 4
D−2

(∂φ)2−V (φ)− f (φ)
2(p+2)!

H2
p+2

)
(3.1)

subsume all relevant cases17, and whenever needed we specialize them according to

V (φ) = T eγφ , f (φ) = eαφ , (3.2)

which capture the lowest-order contributions in the string coupling for positive18 γ and T .
In the orientifold models, the dilaton potential arises from the non-vanishing NS-NS tadpole
at (projective-)disk level, while in the heterotic model it arises from the torus amplitude.
The massless spectrum of the corresponding string models also includes Yang-Mills fields,

17This effective field theory can also describe non-critical strings [79, 80], since the Weyl anomaly can be
saturated by the contribution of an exponential dilaton potential.

18The case γ = 0, which at any rate does not arise in string perturbation theory, would not complicate matters
further.
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whose contribution to the action takes the form

Sgauge =−
1

2κ2
D

∫
dDx
√
−g
(

w(φ)
4

TrFMN F MN
)

(3.3)

with w(φ) an exponential, but we shall not consider them. Although AdS compactifications
supported by non-Abelian gauge fields, akin to those discussed in Section 3.3, were stud-
ied in [32], their perturbative corners appear to forego the dependence on the non-Abelian
gauge flux. On the other hand, an AdS3×S7 solution of the heterotic model with no coun-
terpart without non-Abelian gauge flux was also found [32], but it is also available in the
supersymmetric case.

The (bosonic) low-energy dynamics of both the USp(32) BSB model and the U(32) type
0′B model is encoded in the Einstein-frame parameters

D = 10 , p = 1 , γ =
3
2
, α = 1 , (3.4)

whose string-frame counterpart stems from the effective action19 [49]

Sorientifold =
1

2κ2
10

∫
d10x
√
−gS

(
e−2φ

[
R+4(∂φ)2

]
−T e−φ − 1

12
F2

3

)
. (3.5)

The e−φ factor echoes the (projective-)disk origin of the exponential potential for the dilaton,
and the coefficient T is given by

T = 2κ
2
10×64TD9 =

16
π2 α ′

(3.6)

in the BSB model, reflecting the cumulative contribution of 16 D9-branes and the orientifold
plane [26], while in the type 0′B model T is half of this value.

On the other hand, the SO(16)×SO(16) heterotic model of [29] is described by

D = 10 , p = 1 , γ =
5
2
, α =−1 , (3.7)

corresponding to the string-frame effective action

Sheterotic =
1

2κ2
10

∫
d10x
√
−gS

(
e−2φ

[
R+4(∂φ)2− 1

12
H2

3

]
−T

)
, (3.8)

which contains the Kalb-Ramond field strength H3 and the one-loop cosmological constant
T , which was estimated in [29]. One can equivalently dualize the Kalb-Ramond form and
work with the Einstein-frame parameters

D = 10 , p = 5 , γ =
5
2
, α = 1 . (3.9)

19In eq. (3.5) we have used the notation F3 = dC2 in order to stress the Ramond-Ramond (RR) origin of the
field strength.
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One may wonder whether the effective actions of eq. (3.1) can be reliable, since the dilaton
potential contains one less power of α ′ with respect to the other terms. The AdS landscapes
that we shall present in Section 3.3 contain weakly coupled regimes, where curvature correc-
tions and string loop corrections are expected to be under control, but their existence rests on
large fluxes. While in the orientifold models the vacua are supported by R-R fluxes, and thus
a world-sheet formulation appears subtle, the simpler nature of the NS-NS fluxes in the het-
erotic model is balanced by the quantum origin of the dilaton tadpole20. On the other hand,
the solutions discussed in Section 3.2 do not involve fluxes, but their perturbative corners do
not extend to the whole space-time.

The equations of motion stemming from the action in eq. (3.1) are

RMN = T̃MN ,

8
D−2

2φ −V ′(φ)− f ′(φ)
2(p+2)!

H2
p+2 = 0 ,

d ? ( f (φ)Hp+2) = 0 ,

(3.10)

where the trace-reversed stress-energy tensor

T̃MN ≡ TMN−
1

D−2
T A

A gMN (3.11)

is defined in terms of the standard stress-energy tensor TMN , and with our conventions

TMN ≡−
δSmatter

δgMN . (3.12)

From the effective action of eq. (3.1), one obtains

T̃MN =
4

D−2
∂Mφ ∂Nφ +

f (φ)
2(p+1)!

(
H2

p+2
)

MN

+
gMN

D−2

(
V − p+1

2(p+2)!
f (φ)H2

p+2

)
,

(3.13)

where
(

H2
p+2

)
MN
≡ HMA1...Ap+1 HN

A1...Ap+1 . In the following sections, we shall make ex-
tensive use of eqs. (3.10) and (3.13) to obtain a number of solutions, both with and without
fluxes.

3.2 Solutions without flux
Let us now describe in detail the Dudas-Mourad solutions of [31]. They comprise static
solutions with nine-dimensional Poincaré symmetry21, where one dimension is compactified
on an interval, and ten-dimensional cosmological solutions.

20At any rate, it is worth noting that world-sheet conformal field theories on AdS3 backgrounds have been
related to WZW models, which can afford α ′-exact algebraic descriptions [81].

21For a similar analysis of a T-dual version of the USp(32) model, see [82].
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3.2.1 Static Dudas-Mourad solutions

Due to the presence of the dilaton potential, the maximal possible symmetry available to
static solutions is nine-dimensional Poincaré symmetry, and therefore the most general solu-
tion of this type is a warped product of nine-dimensional Minkowski space-time, parametrized
by coordinates xµ , and a one-dimensional internal space, parametrized by a coordinate y. As
we shall discuss in Section 6, in the absence of fluxes the resulting equations of motion can
be recast in terms of an integrable Toda-like dynamical system, and the resulting Einstein-
frame solution reads

ds2
orientifold =

∣∣αO y2∣∣ 1
18 e−

αOy2

8 dx2
1,8 + e−

3
2 Φ0
∣∣αO y2∣∣− 1

2 e−
9αOy2

8 dy2 ,

φ =
3
4

αO y2 +
1
3

log
∣∣αO y2∣∣+Φ0

(3.14)

for the orientifold models, where here and in the remainder of this review

dx2
1,p ≡ ηµν dxµ dxν (3.15)

is the (p+1)-dimensional Minkowski metric. The absolute values in eq. (3.14) imply that
the geometry is described by the coordinate patch in which y ∈ (0,∞). The corresponding
Einstein-frame solution of the heterotic model reads

ds2
heterotic = (sinh |

√
αH y|)

1
12 (cosh |

√
αH y|)−

1
3 dx2

1,8

+ e−
5
2 Φ0 (sinh |

√
αH y|)−

5
4 (cosh |

√
αH y|)−5 dy2 ,

φ =
1
2

log sinh |
√

αH y|+2 log cosh |
√

αH y|+Φ0 .

(3.16)

In eqs. (3.14) and (3.16) the scales αO,H ≡ T
2 , while Φ0 is an arbitrary integration constant.

As we shall explain in Section 6, the internal spaces parametrized by y are actually intervals
of finite length, and the geometry contains a weakly coupled region in the middle of the
parametrically wide interval for gs ≡ eΦ0 � 1. Moreover, the isometry group appears to be
connected to the presence of uncharged 8-branes [23].

It is convenient to recast the two solutions in terms of conformally flat metrics, so that
one is led to consider expressions of the type

ds2 = e2Ω(z) (dx2
1,8 +dz2) , φ = φ(z) , (3.17)

In detail, for the orientifold models the coordinate z is obtained integrating the relation

dz =
∣∣αO y2∣∣− 5

18 e−
3
4 Φ0 e−

αOy2

2 dy , (3.18)

while
e2Ω(z) =

∣∣αO y2∣∣ 1
18 e−

αOy2

8 . (3.19)
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On the other hand, for the heterotic model

dz = e−
5
4 Φ0 (sinh |

√
αH y|)−

2
3 (cosh |

√
αH y|)−

7
3 dy , (3.20)

and the corresponding conformal factor reads

e2Ω(z) = (sinh |
√

αH y|)
1
12 (cosh |

√
αH y|)−

1
3 . (3.21)

Notice that one is confronted with an interval whose (string-frame) finite length is propor-
tional to 1√

gs αO
and 1√

g2
s αH

in the two cases, but which hosts a pair of curvature singularities

at its two ends, with a local string coupling eφ that is weak at the former and strong at the lat-
ter. Moreover, the parameters αO,H are proportional to the dilaton tadpoles, and therefore as
one approaches the supersymmetric case the internal length diverges22. Despite these short-
comings, one can still attempt to assess the qualitative importance of string loop corrections
studying integrable potentials [83, 84].

3.2.2 Cosmological Dudas-Mourad solutions

The cosmological counterparts of the static solutions of eqs. (3.14) and (3.16) can be ob-
tained via the analytic continuation y → it, and consequently under z → iη in conformally
flat coordinates. For the orientifold models, one thus finds

ds2
orientifold =

∣∣αO t2∣∣ 1
18 e

αOt2

8 dx2− e−
3
2 Φ0
∣∣αO t2∣∣− 1

2 e
9αOt2

8 dt2 ,

φ =− 3
4

αO t2 +
1
3

log
∣∣αO t2∣∣+Φ0 ,

(3.22)

where the parametric time t takes values in (0,∞), as usual for a decelerating cosmology
with an initial singularity. The corresponding solution of the heterotic model reads

ds2
heterotic = (sin |

√
αH t|)

1
12 (cos |

√
αH t|)−

1
3 dx2

− e−
5
2 Φ0 (sin |

√
αH t|)−

5
4 (cos |

√
αH t|)−5 dt2 ,

φ =
1
2

logsin |
√

αH t|+2 logcos |
√

αH t|+Φ0 ,

(3.23)

where now 0<
√

αH t < π

2 . Both cosmologies have a nine-dimensional Euclidean symmetry,
and in both cases, as shown in [85], the dilaton is forced to emerge from the initial singularity
climbing up the potential. In this fashion it reaches an upper bound before it begins its
descent, and thus the local string coupling is bounded and parametrically suppressed for
gs� 1.

22The supersymmetry-breaking tadpoles cannot be sent to zero in a smooth fashion. However, it is instructive
to treat them as parameters, in order to highlight their rôle.
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As in the preceding section, it is convenient to recast these expressions in conformal time
according to

ds2 = e2Ω(η)
(
dx2−dη

2) ,
φ = φ(η) ,

(3.24)

and for the orientifold models the conformal time η is obtained integrating the relation

dη =
∣∣αO t2∣∣− 5

18 e−
3
4 Φ0 e

αOt2

2 dt , (3.25)

while the conformal factor reads

e2Ω(η) =
∣∣αO t2∣∣ 1

18 e
αOt2

8 . (3.26)

On the other hand, for the heterotic model

dη = (sin |
√

αH t|)−
2
3 (cos |

√
αH t|)−

7
3 e−

5
4 Φ0 dt , (3.27)

and
e2Ω(η) = (sin |

√
αH t|)

1
12 (cos |

√
αH t|)−

1
3 . (3.28)

In both models one can choose the range of η to be (0,∞), with the initial singularity
at the origin, but in this case the future singularity is not reached in a finite proper time.
Moreover, while string loops are in principle under control for gs� 1, curvature corrections
are expected to be relevant at the initial singularity [86].

3.3 Flux compactifications
While the Dudas-Mourad solutions that we have discussed in the preceding section feature
the maximal amount of symmetry available in the string models at stake, they are fraught
with regions where the low-energy effective theory of eq. (3.1) is expected to be unreliable.
In order to address this issue, in this section we turn on form fluxes, and study Freund-
Rubin compactifications. While the parameters of eq. (3.4) and (3.9) allow only for AdS
solutions, it is instructive to investigate the general case in detail. To this effect, we remark
that the results presented in the following sections apply to general V (φ) and f (φ), up to the
replacement

γ → V ′(φ0)

V (φ0)
, α → f ′(φ0)

f (φ0)
, (3.29)

since the dilaton is stabilized to a constant value φ0.

3.3.1 Freund-Rubin solutions

Since a priori both electric and magnetic fluxes may be turned on, let us fix the convention
that α > 0 in the frame where the field strength Hp+2 is a (p+2)-form. With this convention,
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the dilaton equation of motion implies that a Freund-Rubin solution23 can only exist with an
electric flux, and is thus of the form Xp+2×Mq. Here Xp+2 is Lorentzian and maximally
symmetric with curvature radius L, while Mq is a compact Einstein space with curvature
radius R. The corresponding ansatz takes the form

ds2 = L2 ds2
Xp+2

+R2 ds2
Mq

,

Hp+2 = cVolXp+2 ,

φ = φ0 ,

(3.30)

where ds2
Xp+2

is the unit-radius space-time metric and VolXp+2 denotes the canonical volume
form on Xp+2 with radius L. The dilaton is stabilized to a constant value by the electric form
flux on internal space24,

n =
1

Ωq

∫
Mq

f ?Hp+2 = c f Rq , (3.31)

whose presence balances the runaway tendency of the dilaton potential. Here Ωq denotes
the volume of the unit-radius internal manifold. Writing the Ricci tensor

Rµν = σX
p+1

L2 gµν ,

Ri j = σM
q−1

R2 gi j

(3.32)

in terms of σX , σM ∈ {−1 , 0 , 1}, the geometry exists if and only if

σM = 1 , α > 0 , q > 1 , σX

(
(q−1)

γ

α
−1
)
< 0 , (3.33)

and using eq. (3.2) the values of the string coupling gs = eφ0 and the curvature radii L , R are
given by

c =
n

gα
s Rq ,

g(q−1)γ−α
s =

(
(q−1)(D−2)(
1+ γ

α
(p+1)

)
T

)q
2γT
αn2 ,

R2 (q−1)γ−α

γ =

(
α +(p+1)γ

(q−1)(D−2)

)α+γ

γ
(

T
α

)α

γ n2

2γ
,

L2 =−σX R2
(

p+1
q−1

· (p+1)γ +α

(q−1)γ−α

)
≡ R2

A
.

(3.34)

23The Laplacian spectrum of the internal space Mq can have some bearing on perturbative stability.
24The flux n in eq. (3.31) is normalized for later convenience, although it is not dimensionless nor an integer.
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From eq. (3.34) one can observe that the ratio of the curvature radii is a constant independent
on n but is not necessarily unity, in contrast with the case of the supersymmetric AdS5×S5

solution of type IIB supergravity. Furthermore, in the actual string models the existence
conditions imply σX =−1, i.e. an AdSp+2×Mq solution.

These solutions exhibit a number of interesting features. To begin with, they only exist
in the presence of the dilaton potential, and indeed they have no counterpart in the supersym-
metric case for p 6= 3. Moreover, the dilaton is constant, but in contrast to the supersymmetric
AdS5×S5 solution its value is not a free parameter. Instead, the solution is entirely fixed
by the flux parameter n. Finally, in the case of AdS the large-n limit always corresponds to
a perturbative regime where both the string coupling and the curvatures are parametrically
small, thus suggesting that the solution reliably captures the dynamics of string theory for its
special values of p and q. As a final remark, let us stress that only one sign of α can sup-
port a vacuum with electric flux threading the internal manifold. However, models with the
opposite sign admit vacua with magnetic flux, which can be included in our general solution
dualizing the form field, and thus also inverting the sign of α . No solutions of this type exist
if α = 0, which is the case relevant to the back-reaction of D3-branes in the type 0′B model.
Indeed, earlier attempts in this respect [87–89] were met by non-homogeneous deviations
from AdS5, which are suppressed, but not uniformly so, in large-n limit25.

3.3.2 In the orientifold models: AdS3×M7 solutions

For later convenience, let us present the explicit solution in the case of the two orientifold
models. Since α = 1 in this case, they admit AdS3×M7 solutions with electric flux, and
in particular M7 = S7 ought to correspond to near-horizon geometries of D1-brane stacks,
according to the microscopic picture that we shall discuss in Section 5 and Section 6. On the
other hand, while D5-branes are also present in the perturbative spectra of these models [50],
they appear to behave differently in this respect, since no corresponding AdS7×S3 vacuum
exists26. Using the values in eq. (3.4), one finds

gs = 3×2
7
4 T−

3
4 n−

1
4 ,

R = 3−
1
4 ×2−

5
16 T

1
16 n

3
16 ,

L2 =
R2

6
.

(3.35)

Since every parameter in this AdS3×M7 solution is proportional to a power of n, one can
use the scalings

gs ∝ n−
1
4 , R ∝ n

3
16 (3.36)

to quickly derive some of the results that we shall present in Section 5.

25Analogous results in tachyonic type 0 strings were obtained in [90].
26This is easily seen dualizing the three-form in the orientifold action (3.4), which inverts the sign of α , in

turn violating the condition of eq. (3.33).
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3.3.3 In the heterotic model: AdS7×M3 solutions

The case of the heterotic model is somewhat subtler, since the physical parameters of eq. (3.7)
only allow for solutions with magnetic flux,

n =
1

Ω3

∫
M3

H3 . (3.37)

The corresponding microscopic picture, which we shall discuss in Section 5 and Section 6,
would involve NS5-branes, while the dual electric solution, which would be associated to
fundamental heterotic strings, is absent. Dualities of the strong/weak type could possibly
shed light on the fate of these fundamental strings, but their current understanding in the
non-supersymmetric context is limited27.

In the present case the Kalb-Ramond form lives on the internal space, so that dualizing
it one can recast the solution in the form of eq. (3.34), using the values in eq. (3.9) for the
parameters. The resulting AdS7×M3 solution is described by

gs = 5
1
4 T−

1
2 n−

1
2 ,

R = 5−
5
16 T

1
8 n

5
8 ,

L2 = 12R2 ,

(3.38)

so that the relevant scalings are

gs ∝ n−
1
2 , R ∝ n

5
8 . (3.39)

As a natural generalization of the Freund-Rubin solutions that we have described in the
preceding section, one can consider flux compactifications on products of Einstein spaces [25].
The resulting multi-flux landscapes appear considerably more complicated to approach an-
alytically, but can feature regimes where some of the internal curvatures are parametrically
smaller than the other factors, including space-time [95]. However, this type of scale sepa-
ration does not reduce the effective space-time dimension at low energies, which appears to
resonate with the results of [95] and with recent conjectures regarding scale separation in the
absence of supersymmetry [37, 96]28.

As a final remark, it is worth noting that the stability properties of multi-flux landscapes
appear qualitatively different from the those of single-flux landscapes. This issue has been
addressed in [99] in the context of models with no exponential dilaton potentials.

27Despite conceptual and technical issues, non-supersymmetric dualities connecting the heterotic model to
open strings have been explored in [91, 92]. Similar interpolation techniques have been employed in [93]. A
non-perturbative interpretation of non-supersymmetric heterotic models has been proposed in [94].

28For recent results on the issue of scale separation in supersymmetric AdS compactifications, see [97]. For
a more general approach, see [98].
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3.4 de Sitter cosmology: no-gos and brane-worlds
In this section we address the possibility of dS flux compactifications, starting from the
Freund-Rubin case that we have described in the preceding section. In order to assess
whether dS are allowed in the string models discussed in Section 3, in Section 3.4.2 we
examine general warped flux compactifications, along the lines of [100, 101], and we obtain
conditions that fix the (sign of the) resulting cosmological constant in terms of the parame-
ters of the model, generalizing the results of [33, 34, 101, 102] to models with exponential
potentials. In Section 3.4.3 we discuss how our results connect to recent swampland conjec-
tures [19, 35–37, 103–106].

The issue of dS configurations in string theory has proven to be remarkably challeng-
ing, to the extent that the most well-studied constructions [13] have been subject to thor-
ough scrutiny and discussion. We shall not attempt to provide a comprehensive account
of this extensive subject and its state of affairs, since our focus in the present case lies on
higher-dimensional approaches [14–16, 107–110] and, in particular, in the search for new
solutions [111–123]. Specifically, the issue at stake is whether the ingredients provided by
string-scale supersymmetry breaking can allow for dS compactifications. While a number
of parallels between lower-dimensional anti-brane uplifts and the ten-dimensional BSB sce-
nario discussed in Section 2 appear encouraging to this effect, as we shall see shortly the
presence of exponential potentials does not ameliorate the situation, insofar as (warped) flux
compactifications are concerned. On the other hand, as explained in [24, 25], the very pres-
ence of exponential potentials allows for intriguing brane-world scenarios within the AdS
landscapes discussed in Section 3, whose non-perturbative instabilities, addressed in Sec-
tion 5, play a crucial rôle in this respect.

3.4.1 No-go for de Sitter compactifications: first hints

From the general Freund-Rubin solution one can observe that dS Freund-Rubin compactifi-
cations exist only whenever29

(q−1)
γ

α
−1 < 0 . (3.40)

However, this requirement also implies the existence of perturbative instabilities. This can
be verified studying fluctuations of the (p+ 2)-dimensional metric, denoted by d̃s

2
p+2(x),

and of the radion ψ(x), writing

ds2 = e−
2q
p ψ(x) d̃s

2
p+2(x)+R2

0 e2ψ(x) ds2
Mq

(3.41)

with R0 an arbitrary reference radius, thus selecting the (p+2)-dimensional Einstein frame.
The corresponding effective potential for the dilaton and radion fields

V (φ ,ψ) =V (φ)e−
2q
p ψ − q(q−1)

R2
0

e−
2(D−2)

p ψ +
n2

2R2q
0

e−
q(p+1)

p ψ

f (φ)

≡ VT +VM +Vn

(3.42)

29The same result was derived in [124].
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reproduces the Freund-Rubin solution when extremized30, and identifies three contributions:
the first arises from the dilaton tadpole, the second arises from the curvature of the internal
space, and the third arises from the flux. Since each contribution is exponential in both φ

and ψ , extremizing V one can express VM and Vn in terms of VT , so that

V =
p

D−2

(
1− (q−1)

γ

α

)
VT , (3.43)

which is indeed positive whenever eq. (3.40) holds. Moreover, the same procedure also
shows that the determinant of the corresponding Hessian matrix is proportional to (q−1) γ

α
−

1, so that de Sitter solutions always entail an instability.
While the results of our analysis, presented in [24], resonate with the ones of [124], one

could wonder whether similar conditions hold for more general dS settings, e.g. for fluxes
threading cycles of complicated internal manifolds.

3.4.2 Warped flux compactifications: no-go results

In order to address the problem of dS solutions to low-energy effective theories with expo-
nential potentials in more generality, let us consider a compactification of the D-dimensional
theory discussed in Section 3 on a dY -dimensional closed manifold Y parametrized by coordi-
nates yi, while the dX -dimensional space-time is parametrized by coordinates xµ . Excluding
the Freund-Rubin compactifications, which we have already described in 3, in the models
of interest the space-time dimension does not match the rank of the form field strength, and
thus there cannot be any electric flux. Since at any rate one can dualize the relevant forms,
we shall henceforth work in the magnetic frame, which in our convention involves a q-form
field strength with the coupling f (φ) = e−αφ to the dilaton, and we shall seek configurations
where Hq is supported on Y , and where each field only depends on the yi. Writing the metric

ds2 = e2bu(y) d̂s
2
(x)+ e2u(y) d̃s

2
(y) , (3.44)

with b = − dY
dX−2 in order to select the dX -dimensional Einstein frame, one finds that suffi-

ciently well-behaved functions h(y) satisfy∫
Y

ddY y
√

g̃ e2bu(y)2Dh(y) = 0 ,
∫

Y
ddY y

√
g̃∆Y h(y) = 0 , (3.45)

where 2D and ∆Y denote the D-dimensional d’Alembert operator and the Laplacian operator
on Y respectively. Furthermore, let us define

IV ≡
∫

Y
ddY y

√
g̃ e2bu(y)V > 0 , IH ≡

∫
Y

ddY y
√

g̃ e2bu(y) f
q!

H2
q > 0 (3.46)

30Notice that, in order to derive eq. (3.42) substituting the ansatz of eq. (3.41) in the action, the flux contri-
bution is to be expressed in the magnetic frame, since the correct equations of motion arise varying φ and Bp+1
independently, while the electric-frame ansatz relates them.

27



for convenience. Using these relations, integrating the equation of motion for the dilaton
yields

IH =
2γ

α
IV . (3.47)

In order to proceed, let us collect general results concerning warped products. Let us con-
sider a multiple warped product described by a metric of the type

ds2 = d̃s
2
(x)+∑

I
e2aI(x) d̂s

2
(I) , (3.48)

where the dimensions of the I-th internal space is denoted by qI . The Ricci tensor is then
block-diagonal, and its space-time components read

Rµν = R̃µν −∑
I

qI
(
∇µ∇νaI +(∇µaI)(∇νaI)

)
, (3.49)

while its internal components in the I-th internal space read

R(I)
i j = R̂(I)

i j − e2aI(x)

(
∆aI +∑

J
qJ (∂

µaJ)
(
∂µaI

))
ĝ(I)i j , (3.50)

where ∆ denotes the Laplacian operator associated to space-time and we have kept the
notation signature-independent for the sake of generality. Employing eqs. (3.49) and (3.50),
the space-time Ricci tensor takes the form

Rµν = R̂µν −be−2u
(

∆Y u− 2(D−2)
dX −2

|∇u|2
)

gµν

= R̂µν −
dY

2(D−2)
e−2bu

∆Y

(
e−

2(D−2)
dX−2 u

)
.

(3.51)

Hence, assuming a maximally symmetric space-time with R̂µν = 2Λ

dX−2 ĝµν , integrating the
space-time Einstein equations finally yields [24]

vol(Y )Λ =
dX −2

2(D−2)

(
IV −

q−1
2

IH

)
=

dX −2
2(D−2)

(
1− (q−1)

γ

α

)
IV ,

(3.52)

where vol(Y )≡
∫

Y

√
g̃ is the (unwarped) volume of Y . This result31 shows that the existence

condition for de Sitter Freund-Rubin compactifications actually extends to general warped
flux compactifications as well, thus excluding this class of solutions for the string models that

31As we have anticipated, eq. (3.52) can be thought of as a generalization of the no-go results of [33, 34] to
models with exponential potentials.
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we have studied in the preceding sections. All in all, the no-go result of eq. (3.52) shows that
the effective action of eqs. (3.1) and (3.2), including an exponential dilaton potential, does
not admit dS warped flux compactifications of the form of eq. (3.44) whenever (q−1) γ

α
> 1.

In particular, this inequality holds for the string models described by eqs. (3.4) and (3.7), for
which the contribution of the gravitational tadpole does not suffice to obtain dS vacua. This
result can be further extended including the presence of localized sources [24, 25], in the
spirit of [101].

3.4.3 Relations to swampland conjectures

Let us now comment on whether our results support the recent conjectures concerning the
existence of dS solutions in string theory [19, 36], showing that the ratio |∇V |

V is bounded
from below by an O(1) constant c whenever the effective potential V > 0. Extending our
preceding arguments to the effect that dS Freund-Rubin compactifications are unstable in
the dilaton-radion sector, let us recall the corresponding (magnetic-frame) effective potential,
whose relevant features are highlighted in fig. 3 (resp. fig. 4) for the orientifold models (resp.
for the heterotic model), reads

V (φ ,ψ) =V (φ)e−
2q
p ψ − q(q−1)

R2 e−
2(D−2)

p ψ +
n2

2R2q f (φ)e−
q(p+1)

p ψ , (3.53)

where we have shifted the radion in order to place its on-shell value to zero, and we have
replaced R0 → R accordingly. Then, introducing the canonically normalized radion ρ ,
defined by

− q
p

ψ ≡
√

q
2 p(D−2)

ρ , (3.54)

the ratio of interest takes the form

|∇V |
V

=

√(
∂φV

)2
+
(
∂ρV

)2

V
,

(3.55)

while shifting φ one can also do away with the remaining parametric dependence on the
dimensionless combination ν ≡ nT

q−1
2 . Altogether, the resulting ratios depend only on φ

and ρ , and we have minimized them numerically imposing the constraint32 V > 0, finding
approximately 2 (resp. 2.5) for the orientifold models (resp. the heterotic model). This
result resonates with the dS swampland conjecture of [19, 36], showing that in this case dS
solutions are behind an O(1) “barrier” in the sense of eq. (3.55).

The above considerations can be extended to the more general warped flux compacti-
fications that we have discussed in Section 3.4.2. In this case, in terms of the canonically
normalized dilaton and radion fields33 φ ,ρ , the effective potential is given by

V (φ ,ρ) = IV e2kρ −
∫

Y
ddY y

√
−g̃ e2bu(y)RMq e

2k(D−2)
dY

ρ
+

1
2

IH e2k(dX−1)ρ , (3.56)

32The constraint V > 0 can also be recast in terms of φ and ρ only, with no parametric dependence left.
33Notice that, in order to canonically normalize the radion, one needs to rescale the field ψ(x) that we have

introduced in Section 3.
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Figure 3: plots of the sign of the potential of eq. (3.53) in units of T , with its minimum
marked, and of the signature of its Hessian matrix in the orientifold models. Left: regions
where the potential is positive (orange) and negative (blue), for n = 106. Right: region where
its Hessian matrix is positive-definite (green).

Figure 4: plots of the sign of the potential of eq. (3.53) in units of T , with its minimum
marked, and of the signature of its Hessian matrix in the heterotic model. Left: regions
where the potential is positive (orange) and negative (blue), for n = 10. Right: region where
its Hessian matrix is positive-definite (green).

where we have introduced

k ≡

√
dY

2(dX −2)(D−2)
(3.57)

in order to canonically normalize ρ . Using the integrals defined in eq. (3.46), one can recast
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the potential of eq. (3.56) in terms of its derivatives according to

V =
dY (dX −1)
α(D−2)

∂φV +
dY

2k(D−2)
∂ρV

+
dX −2
D−2

(
1− (dY −1)

γ

α

)
IV e2kρ ,

(3.58)

and, since dY ≥ q in order to allow for magnetic fluxes, one finds that

dY (dX −1)
α(D−2)

∂φV +
dY

2k(D−2)
∂ρV ≥ V (3.59)

holds off-shell whenever the no-go result discussed in Section 3.4.2 applies. Then, applying
the Cauchy-Schwartz inequality one arrives at√(

∂φV
)2

+
(
∂ρV

)2 ≥
√

2α (D−2)√
dY

(
2dY (dX −1)2 +α2 (D−2)(dX −2)

) V ,
(3.60)

which whenever V > 0 provides an O(1) lower bound c for the ratio of eq. (3.55).
This result, along with the further developments of [24], constitutes non-trivial evidence

for a number of swampland conjectures in top-down non-supersymmetric settings. It would
be interesting to investigate additional swampland conjectures in the absence of supersym-
metry and the resulting constraints on phenomenology [71, 73, 125, 126]. In [24] we have
also investigated the ‘Transplanckian Censorship conjecture’ [127–129] and pointed out pos-
sible realizations of the ‘distance conjecture’ [35–37, 103–106], identifying Kaluza-Klein
states as the relevant tower of states that become massless at infinite distance in field space.
A more detailed analysis would presumably require a deeper knowledge of the geometry
of the moduli spaces which can arise in non-supersymmetric compactifications, albeit our
arguments rest solely on the existence of the ubiquitous dilaton-radion sector. It would be
also interesting to address whether the ‘Distant Axionic String conjecture’ [130, 131], which
predicts the presence of axionic strings within any infinite-distance limit in field space, holds
also in non-supersymmetric settings.

4 Classical stability: perturbative analysis
In this section we investigate in detail the classical stability of the solutions that we have
described in the preceding section, presenting the results of [22]. To this end, we derive the
linearized equations of motion for field fluctuations around each background, and we study
the resulting conditions for stability. In Section 4.1 we study fluctuations around the Dudas-
Mourad solutions, starting from the static case, and subsequently applying our results to the
cosmological case in Section 4.2. Intriguingly, in this case a logarithmic instability of the
homogeneous tensor mode suggests a tendency toward dynamical compactification34. Then,

34An analogous idea in the context of higher-dimensional dS space-times was put forth in [132].
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in Section 4.3 we proceed to the AdS×S solutions35, deriving the linearized equations of
motion and comparing the resulting masses to the Breitenlohner-Freedman bounds. While
the AdS compactifications that we have obtained in the preceding section allow for general
Einstein internal spaces, choosing the sphere simplifies the analysis of tensor and vector
perturbations. Moreover, as we shall argue in Section 6, the case of AdS×S appears to
relate to near-horizon geometries sourced by brane stacks.

4.1 Stability of static Dudas-Mourad solutions
Let us begin deriving the linearized equations of motion for the static Dudas-Mourad solu-
tions that we have presented in the preceding section. The equations of interest are now

2φ −V ′(φ) = 0 ,

RMN +
1
2

∂Mφ ∂Nφ +
1
8

gMN V = 0 ,
(4.1)

and the corresponding perturbed fields take the form

ds2 = e2Ω(z) (ηMN +hMN(x,z))dxM dxN ,

φ = φ(z)+ϕ(x,z) .
(4.2)

As a result, the perturbed Ricci curvature can be extracted from

R(1)
MN = 8∇M∇NΩ+(ηMN +hMN)∇

A
∇AΩ

−8
(

∇MΩ∇NΩ− (ηMN +hMN)∇
A
Ω∇AΩ

)
+

1
2

((
29 +∂

2
z
)

hMN−∇M (∇ ·h)N−∇N (∇ ·h)M +∇M∇NhA
A

)
,

(4.3)

an expression valid up to first order in the perturbations. Here and henceforth 29 denotes the
d’Alembert operator pertaining to Minkowski slices, while in the following we shall denote
derivatives ∂z with respect to z by f ′ ≡ ∂z f (except for the dilaton potential V ). In addition,
covariant derivatives do not involve Ω, and thus refer to ηMN + hMN , which is also used to
raise and lower indices. Up to first order the metric equations of motion thus read

R(1)
MN +

1
2

∂Mφ ∂Nφ +
1
2

∂Mφ ∂Nϕ +
1
2

∂Mϕ ∂Nφ

+
1
8

e2Ω
(
(ηMN +hMN)V +ηMN V ′ϕ

)
= 0 ,

(4.4)

35A family of non-supersymmetric AdS7 solutions of the type IIA superstring was recently studied in [133],
and its stability properties were investigated in [134].
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and combining this result with the dilaton equation of motion in eq. (4.1) yields the unper-
turbed equations of motion

Ω
′′+8

(
Ω
′)2

+
1
8

e2ΩV = 0 ,

9Ω
′′+

1
8

e2ΩV +
1
2
(
φ
′)2

= 0 ,

φ
′′+8Ω

′
φ
′− e2ΩV ′ = 0 ,

(4.5)

where V and V ′ shall henceforth denote the potential and its derivative computed on the
classical vacuum. Notice that the first two equations can be equivalently recast in the form

72
(
Ω
′)2− 1

2
(
φ
′)2

+ e2ΩV = 0 ,

8
(

Ω
′′−
(
Ω
′)2
)
+

1
2
(
φ
′)2

= 0 ,
(4.6)

and that the equation of motion for φ is a consequence of these.
All in all, eq. (4.3) finally leads to

− 1
8

e2Ω
ηµν V ′ϕ = − 4Ω

′
(

∂µhν9 +∂νhµ9−h′µν

)
−ηµν

[(
Ω
′′+8

(
Ω
′)2
)

h99

+Ω
′
(

∂αhα9− 1
2
(
h′α α −h′99

))]
+

1
2

[
29 hµν +h′′µν −∂µ

(
∂αhα

ν +h′ν9
)

−∂ν

(
∂αhα

µ +h′µ9

)]
− 1

2
∂µ∂ν (hα

α +h99) ,

− 1
2

φ
′
∂µϕ = − 4Ω

′
∂µh99

+
1
2
(
29 hµ9−∂µ∂αhα

9−∂αh′α µ +∂µh′α α

)
,

−φ
′
ϕ
′− 1

8
e2Ω
(
V h99 +V ′ϕ

)
= − 4Ω

′ h′99−Ω
′
(

∂αhα
9−

1
2
(
h′α α −h′99

))
+

1
2
(
29 h99−2∂αh′α 9 +h′′α α

)
,

(4.7)

while the perturbed dilaton equation of motion reads

29 ϕ +ϕ
′′+8Ω

′
ϕ
′+φ

′
(

1
2

h′α α −
1
2

h′99−∂αhα
9−8Ω

′ h99

)
−φ

′′ h99− e2ΩV ′′ϕ = 0 .
(4.8)

Starting from eqs. (4.7) and (4.8) we shall now proceed separating perturbations into tensor,
vector and scalar modes.
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4.1.1 Tensor and vector perturbations

Tensor perturbations are simpler to study, and to this end one only allows a transverse trace-
less hµν . After a Fourier transform with respect to x one is thus led to

h′′µν +8Ω
′ h′µν +m2 hµν = 0 , (4.9)

where m2 ≡ − pµ pν ηµν , which defines a Schrödinger-like problem along the lines of
eq. (4.25), with b = 0 and a = 8Ω′. Hence, with Dirichlet or Neumann boundary condi-
tions the argument of Section 4.1.2 applies, and one obtains a discrete spectrum of masses.
Moreover, one can verify that there is a normalizable mode with hµν independent of z, which
signals that at low energies gravity is effectively nine-dimensional36.

Vector perturbations entail some mixings, since in this case they originate from transverse
hµ9 and from the trace-less combination

hµν = ∂µΛν +∂νΛµ , (4.10)

so that
∂

µ
Λµ = 0 . (4.11)

The relevant vector combination
Cµ = hµ9−Λ

′
µ (4.12)

satisfies the two equations(
pµ Cν + pν Cµ

)′
+8Ω

′ (pµ Cν + pν Cµ

)
= 0 ,

m2Cµ = 0 ,
(4.13)

the first of which is clearly solved by

Cµ =C(0)
µ e−8Ω , (4.14)

with a constant C(0)
µ . In analogy with the preceding discussion, one might be tempted to

identify a massless vector. However, one can verify that, contrary to the case of tensors, this
is not associated to a normalizable zero mode. The result is consistent with standard expec-
tations from Kaluza-Klein theory, since the internal manifold has no translational isometry.

4.1.2 Scalar perturbations

The scalar perturbations are defined by37

hµν = ηµν eip·x A(z) , hµ9 = ipµ D(z)eip·x , h99 = eip·xC(z) , (4.15)

36The same conclusion can be reached computing the effective nine-dimensional Newton constant [31].
37We reserve the symbol B for scalar perturbations of the form field, which we shall introduce in Section 4.3.
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with p · x ≡ pµ xν ηµν , so that altogether the four scalars A, C, D and φ obey the linearized
equations

− 1
8

e2ΩV ′ϕ = −Ω
′
(

m2 D− 1
2
(
17A′−C′

))
+

1
2
(
m2 A+A′′

)
−C

(
Ω
′′+8

(
Ω
′)2
)
,

−φ
′
ϕ
′− 1

8
e2Ω
(
V C+V ′ϕ

)
= −Ω

′
(

m2 D− 9
2
(
A′−C′

))
+

1
2
(
m2 (C−2D′

)
+9A′′

)
,

7A+C−2D′−16Ω
′D = 0 ,

4Ω
′C−4A′− 1

2
φ
′
ϕ = 0 .

(4.16)

Notice that some of the metric equations, the third one and the fourth one above, are con-
straints, and that there is actually another constraint that obtains combining the first and the
last so as to remove A′′. Moreover, the dilaton equation of motion is a consequence of these.

The system, however, has a residual local gauge invariance, a diffeomorphism of the type

z′ = z+ ε(x,z) , (4.17)

which is available in the presence of a single internal dimension and implies

dz = dz′
(

1− dε

dz′

)
−dxµ

∂µε . (4.18)

Taking into account the original form of the metric, which in terms of the scalar perturbations
of eq. (4.15) reads

ds2 = e2Ω
(
(1+A)dx2

1,8 +2dzdxµ
∂µD+(1+C)dz2) , (4.19)

one can thus identify the transformations

A → A−2Ω
′
ε ,

C → C−2Ω
′
ε−2ε

′ ,

D → D− ε ,

ϕ → −φ
′
ε .

(4.20)

Notice that D behaves as a Stückelberg field, and can be gauged away, leaving only one
scalar degree of freedom after taking into account the constraints, as expected from Kaluza-
Klein theory. After gauging away D the third equation of eq. (4.16) implies that

C =−7A , (4.21)
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while the third equation of eq. (4.16) implies that

ϕ =− 8
φ ′
(
A′+7Ω

′A
)
. (4.22)

Substituting these expressions in the first equation of eq. (4.16) finally leads to a second-
order eigenvalue equation for m2:

A′′+
(

24Ω
′− 2

φ ′
e2ΩV ′

)
A′+

(
m2− 7

4
e2ΩV −14e2Ω

Ω
′ V
′

φ ′

)
A = 0 . (4.23)

There is nothing else, since differentiating the fourth equation of eq. (4.16) and using eq. (4.6)
gives

−φ
′
ϕ
′ =−8A′′−120Ω

′A′+8e2Ω V ′

φ ′
A′+7e2Ω

(
V +8Ω

′ V
′

φ ′

)
A . (4.24)

Taking this result into account, one can verify that the second equation of eq. (4.16) also
leads to eq. (4.23), whose properties we now turn to discuss.

The issue at stake is the stability of the solution, which in this case reflects itself in the
sign of m2: a negative value would signal a tachyonic instability in the nine-dimensional
Minkowski space, and one can show that the solution corresponding the lowest-order level
potentials is stable, in both the orientifold and heterotic models. To this end, let us recall that
a generic second-order equation of the type

f ′′(z)+a(z) f ′(z)+
(
m2−b(z)

)
f (z) = 0 (4.25)

can be turned into a Schrödinger-like form via the transformation

f (z) = Ψ(z)e−
1
2
∫

adz . (4.26)

One is thus led to

Ψ
′′+

(
m2−b− a′

2
− a2

4

)
Ψ = 0 , (4.27)

and tracing the preceding steps one can see that Ψ ∈ L2. Eq. (4.27) can be conveniently
discussed connecting it to a more familiar problem of the type

Ĥ Ψ = m2
Ψ , Ĥ ≡ b+A †A , (4.28)

with
A ≡− d

dz
+

a
2
, A † ≡ d

dz
+

a
2
. (4.29)

Once these relations are supplemented with Dirichlet or Neumann conditions at each end in
z, one can conclude that in all these cases the operator

A †A ≥ 0 . (4.30)
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All in all, positive b then implies positive values of m2, and this condition is indeed realized
for the static Dudas-Mourad solutions, since

b =
7
4

e2Ω

(
V +8Ω

′ V
′

φ ′

)
, (4.31)

and the corresponding V ∝ e
3
2 φ , so that

b =
7
4

e2ΩV
(

1+12
Ω′

φ ′

)
. (4.32)

The ratio of derivatives can be computed in terms of the y coordinate using the expressions
that we have presented in the preceding section, yielding

b =
7e2ΩV

1+ 9
4 αO y2

≥ 0 . (4.33)

For the heterotic model V ∝ e
5
2 φ , so that

b =
7
4

e2ΩV
(

1+20
Ω′

φ ′

)
. (4.34)

Making use of the explicit solutions that we have presented in the preceding section, one
thus finds

b =
8
3

e2ΩV
1− 1

2 tanh2 (
√

αH y)

1+4 tanh2 (
√

αH y)
≥ 0 , (4.35)

which is again non negative, so that both nine-dimensional Dudas-Mourad solutions are per-
turbatively stable solutions of the respective Einstein-dilaton systems for all allowed choices
of boundary conditions at the ends of the interval. The presence of regions where curvature
or string loop corrections are expected to be relevant, however, makes the lessons of these
results less evident for string theory.

As a final comment, let us mention that one can repeat the calculations that we have
presented in D dimensions without further difficulties, and one finds

b = 2(D−3)e2Ω

(
V

D−2
+

D−2
8

Ω
′ V
′

φ ′

)
≥ 0 , (4.36)

so that the resulting solutions are perturbatively stable in any dimension.

4.2 Stability of cosmological Dudas-Mourad solutions
Let us now turn to the issue of perturbative stability of the Dudas-Mourad cosmological so-
lutions that we have presented in the preceding section. The following analysis is largely
analogous to the one of the preceding section, and we shall begin discussing tensor pertur-
bations, which reveal an interesting feature in the homogeneous case.
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4.2.1 Tensor perturbations: an intriguing instability

The issue at stake, here and in the following sections, is whether solutions determined by
arbitrary initial conditions provided some time after the initial singularity can grow in the
future evolution of the universe. This can be ascertained rather simply at large times, which
translate into large values of the conformal time η , where many expressions simplify. More-
over, for finite values of η the geometry is regular, and the coefficients in eq. (4.37) are
bounded, so that the solutions are also not singular. However, a growth of order O(1) is
relevant for perturbations, and therefore we shall begin with the late-time asymptotics and
then, at the end of the section, we shall also approach the problem globally.

In the ten-dimensional orientifold and heterotic models of interest, performing spatial
Fourier transforms and proceeding as in the preceding section, one can show that tensor
perturbations evolve according to

h′′i j +8Ω
′ h′i j +k2 hi j = 0 , (4.37)

where “primes” denote derivatives with respect to the conformal time η . Let us begin
observing that, for all exponential potentials

V = T eγφ (4.38)

with γ ≥ 3
2 , and therefore for the potentials pertaining to the orientifold models, which have

γ = 3
2 and are “critical” in the sense of [85], but also for the heterotic model, which has

γE = 5
2 and is “super-critical” in the sense of [85], the solutions of the background equations

Ω
′′+8

(
Ω
′)2− 1

8
e2ΩV = 0 ,

9Ω
′′− 1

8
e2ΩV +

1
2
(
φ
′)2

= 0 ,

φ
′′+8Ω

′
φ
′+ γ e2ΩV = 0

(4.39)

are dominated, for large values of η , by

φ ∼− 3
2

log(
√

αH η) , Ω∼ 1
8

log(
√

αH η) . (4.40)

In the picture of [85], in this region the scalar field has overcome the turning point and is
descending the potential, so that the (super)gravity approximation is expected to be reliable,
but the potential contribution is manifestly negligible only in the “super-critical” case, where
e2ΩV decays faster than 1

η2 for large η . However, the result also applies for γ = 3
2 , which

marks the onset of the “climbing behavior”. This can be appreciated retaining subleading
terms, which results in

φ ∼− 3
2

log(
√

αO η)− 5
6

loglog(
√

αO η) ,

Ω∼ 1
8

log(
√

αO η)+
1
8

loglog(
√

αO η) ,

(4.41)
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so that the potential decays as

e2ΩV ∼ T
2αO η2 log(

√
αO η)

, (4.42)

which is faster than 1
η2 . Notice that a similar behavior, but with the scalar climbing up the

potential, also emerges for small values of η , for which

φ ∼ 3
2

log(
√

αO,H η) , Ω∼ 1
8

log(
√

αO,H η) (4.43)

for all γ ≥ 3
2 , and thus in all orientifold and heterotic models of interest. However, these

expressions are less compelling, since they concern the onset of the climbing phase. The
potential is manifestly subleading for small values of η , but curvature corrections, which are
expected to be relevant in this region, are not taken into account. In conclusion, for γ ≥ 3

2 and
for large values of η eq. (4.40) holds and eq. (4.37), which describes tensor perturbations,
therefore approaches

h′′i j +
1
η

h′i j ∼−k2 hi j . (4.44)

Consequently, for k 6= 0
hi j ∼ Ai j J0 (kη)+Bi j Y0 (kη) , (4.45)

and the oscillations are damped for large times, so that no instabilities arise.
On the other hand, an intriguing behavior emerges for k = 0. In this case the solution of

eq. (4.44) implies that

hi j ∼ Ai j +Bi j log
(

η

η0

)
, (4.46)

and therefore spatially homogeneous tensor perturbations experience in general a logarith-
mic growth. This result indicates that homogeneity is preserved while isotropy is generally
violated in the ten-dimensional “climbing-scalar” cosmologies [85] that emerge in string the-
ory with broken supersymmetry. One can actually get a global picture of the phenomenon:
the linearized equation of motion for k = 0 can be solved in terms of the parametric time t,
and one finds

hi j = Ai j +Bi j log(
√

αO t) (4.47)

for the orientifold models, while

hi j = Ai j +Bi j log tan(
√

αH t) (4.48)

for the heterotic model. These results are qualitatively similar, if one takes into account the
limited range of t in the heterotic model, and typical behaviors are displayed in fig. 5.

The general lesson is that perturbations acquire O(1) variations toward the end of the
climbing phase, where curvature corrections do not dominate the scene anymore, thus pro-
viding support to the present analysis. This result points naturally to an awaited tendency
toward lower-dimensional space-times, albeit without a selection criterion for the resulting
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Figure 5: the scale factor eΩ (red, dotted), the unstable homogeneous tensor mode (blue) and
the dilaton φ (green, dashed) as functions of the parametric time

√
αO t.

dimension38. While perturbation theory is at most a clue to this effect, the resulting picture
appears enticing, and moreover the dynamics becomes potentially richer and more stable in
lower dimensions, where other branes that become space-filling can inject an inflationary
phase devoid of this type of instability [22].

4.2.2 Scalar perturbations

Scalar perturbations exhibit a very different behavior in the presence of the exponential po-
tentials of eq. (4.38) with γ ≥ 3

2 . Our starting point is now the analytic continuation of
eq. (4.23) with respect to z→ iη , which reads

A′′+
(

24Ω
′+2e2Ω V ′

φ ′

)
A′+

(
k2 +

7
4

e2ΩV +14e2Ω
Ω
′ V
′

φ ′

)
A = 0 . (4.49)

As in eq. (4.37), we have also replaced m2 with−k2, which originates from a spatial Fourier
transform, and “primes” denote again derivatives with respect to the conformal time η . As
we have stressed in the preceding section, the potential is subdominant in eq. (4.49) for
γ ≥ 3

2 , which leads to the asymptotic behaviors of eq. (4.43) during the climbing phase, and
of eq. (4.40) during the descending phase. As a result, during the latter eq. (4.49) reduces to

A′′+
3
η

A+k2 A = 0 , (4.50)

38This result resonates at least with some previous investigations [135, 136] of matrix models related to the
type IIB superstring [137].
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whose general solution takes the form

A = A1
J1 (kη)

η
+A2

Y1 (kη)

η
, (4.51)

with A1, A2 constants. For k 6= 0 the amplitude always decays proportionally to η−
3
2 , while

for k = 0 the two independent solutions of eq. (4.49) are dominated by

A = A3 +
A4

η2 , (4.52)

with A3, A4 constants. Therefore, scalar perturbations do not grow in time, even for the
homogeneous mode with k = 0, for γ ≥ 3

2 , and thus, in particular, for the orientifold models
and for the heterotic model. Similar results can be obtained studying the perturbative stability
of linear dilaton backgrounds, both in the static case and in the cosmological case [22].

4.3 Stability of AdS flux compactifications
In this section we discuss the perturbative stability of the AdS flux compatifications that we
have presented in the preceding section. In order to simplify the analysis of tensor and vector
perturbations, we shall work with internal spheres, but the resulting equations for scalar
perturbations are independent of this choice39, insofar as the internal space is Einstein. In
the following we shall work in the duality frames where p = 1, which is the electric frame in
the orientifold models, for which α = 1, and the magnetic frame in the heterotic model, for
which α =−1. Let us begin from the orientifold models, writing the perturbations

gMN = g(0)MN +hMN , φ = φ0 +ϕ , BMN = B(0)
MN +

e−αφ0

c
bMN , (4.53)

where the background metric is split as

ds2
(0) = L2

λµν dxµ dxν +R2
γi j dyi dy j , (4.54)

and linearizing the resulting equations of motion. We shall also make use of the convenient
relations

[∇µ ,∇ν ]Vρ =
1
L2

(
λνρVµ −λµρVν

)
,

[∇i ,∇ j]Vk =−
1

R2

(
γ jkVi− γikVj

)
,

(4.55)

39The stability analysis of scalar perturbations can also be carried out in general dimensions and for general
parameters without additional difficulties, but we have not found such generalizations particularly instructive
in the context of this review.
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valid for maximally symmetric spaces. The linearized equations of motion for the form field
are40

210 bµν −∇µ∇
MbMν −∇ν∇

MbµM +
2
L2 bµν

+4R+
O εµνρ

(
α ∇

ρ
φ −∇

ihi
ρ − 1

2
∇

ρ
λ ·h+ 1

2
∇

ρ
γ ·h
)
= 0 ,

210 bµi−∇µ∇
MbMi−∇i∇

MbµM +2R−O bµi +4R+
O εαβ µ ∇

αhβ
i = 0 ,

210 bi j−∇i∇
MbM j−∇ j∇

MbiM−
10
R2 bi j = 0 ,

(4.56)

where, here and in the following, the ten-dimensional d’Alembert operator

210 =2+∇
2 (4.57)

is split in terms of the AdS and sphere contributions, and we have defined

R±O ≡
1
L2 ±

3
R2

(4.58)

for convenience. Similarly, the linearized equation of motion for the dilaton is

210 ϕ−V ′′0 ϕ +2R+
O

(
α

2
ϕ−α λ ·h

)
− α

2
ε

µνρ
∇µbνρ = 0 . (4.59)

Finally, the linearized Einstein equations rest on the linearized Ricci tensor

R(1)
MN = R(0)

MN +
1
2

(
2hMN−∇M (∇ ·h)N−∇N (∇ ·h)M +∇M∇NhA

A

)
+

1
2

R(0)A
M hAN +

1
2

R(0)A
N hAM−R(0)A

M
B

N hAB ,

(4.60)

and read

210 hµν +
2
L2 hµν −∇µ (∇ ·h)ν

−∇ν (∇ ·h)µ
+∇µ∇ν (λ ·h+ γ ·h)

+λµν

(
− 5α

2
R+

O ϕ−3R−O λ ·h− 3
4

ε
αβγ

∇αbβγ

)
= 0 ,

210 hµi +2R+
O hµi−∇µ (∇ ·h)i−∇i (∇ ·h)µ

+∇µ∇i (λ ·h+ γ ·h)

+
1
2

ε
αβ

µ

(
∇ibαβ +∇αbβ i +∇β biα

)
= 0 ,

210 hi j−
2

R2 hi j−∇i (∇ ·h) j−∇ j (∇ ·h)i +∇i∇ j (λ ·h+ γ ·h)

+ γi j

(
2

R2 γ ·h+R+
O

(
3α

2
ϕ−λ ·h

)
− 1

4
ε

αβγ
∇αbβγ

)
= 0 ,

(4.61)

40Here and in the following ε denotes the Levi-Civita tensor, which includes the metric determinant prefactor.
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where λ · h and γ · h denote the partial traces of the metric perturbation with respect to
AdS and the internal sphere. In all cases and models, the perturbations depend on the AdS
coordinates xµ and on the sphere coordinates yi, and they will be expanded in terms of the
corresponding spherical harmonics41, whose structure is briefly reviewed in Appendix A.
For instance, expanding internal scalars with respect to Sn spherical harmonics will always
result in expressions of the type

hµν(x,y) = ∑
`

hµν , I1...I`(x)Y
I1...I`
(n) (y) , (4.62)

where Ii = 1, . . . ,n and hµν , I1...I`(x) is totally symmetric and trace-less in the Euclidean Ii
labels. However, the eigenvalues of the internal Laplace operator ∇2 will only depend on `.
Hence, for the sake of brevity, we shall leave the internal labels implicit, although in some
cases we shall refer to their ranges when counting multiplicities. For tensors in internal space
there are some additional complications. For example, expanding mixed metric components
one obtains expressions of the type

hµi(x,y) = ∑
`

hµJ , I1...I`(x)Y
I1...I` ,J
(n) i (y) , (4.63)

where hµJ, I1...I`(x) corresponds to a “hooked” Young tableau of mixed symmetry and `≥ 1,
as explained in Appendix A. Here the Y(n) i are vector spherical harmonics, and we shall
drop all internal labels, for brevity, also for the internal tensors that we shall consider.

In the heterotic model the linearized equations of motion for the form field read

210 bi j−∇i∇
MbM j−∇ j∇

MbiM−
2

R2 bi j

+4R+
H εi jk

(
α ∇

k
φ −∇

αhα
k− 1

2
∇

k
γ ·h+ 1

2
∇

k
λ ·h

)
= 0 ,

210 biµ −∇i∇
MbMµ −∇µ∇

MbiM +2R−H biµ +4R+
H εkli ∇

khl
µ = 0 ,

210 bµν −∇µ∇
MbMν −∇ν∇

MbµM +
10
L2 bµν = 0 ,

(4.64)

where now
R±H ≡

3
L2 ±

1
R2 , (4.65)

while the linearized equation of motion for the dilaton is

210 ϕ−V ′′0 ϕ−2R+
H
(
α

2
ϕ−α γ ·h

)
− α

2
ε

i jk
∇ib jk = 0 . (4.66)

41Choosing a different internal space would require knowledge of its (tensor) Laplacian spectrum.
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Finally, the linearized Einstein equations rest on eq. (4.60) and read

210 hi j−
2

R2 hi j−∇i (∇ ·h) j−∇ j (∇ ·h)i +∇i∇ j (λ ·h+ γ ·h)

+ γi j

(
5α

2
R+

H ϕ−3R−H γ ·h− 1
4

ε
klm

∇kblm

)
+

1
2

ε
kl

i
(
∇ jbkl +∇kbl j +∇lb jk

)
+(i↔ j) = 0 ,

210 hiµ −2R+
H hiµ −∇i (∇ ·h)µ

−∇µ (∇ ·h)i +∇i∇µ (λ ·h+ γ ·h)

+
1
2

ε
kl

i
(
∇µbkl +∇kblµ +∇lbµk

)
= 0 ,

210 hµν +
2
L2 hµν −∇µ (∇ ·h)ν

−∇ν (∇ ·h)µ
+∇µ∇ν (λ ·h+ γ ·h)

+λµν

(
− 2

L2 λ ·h−R+
H

(
3α

2
ϕ− γ ·h

)
− 1

4
ε

i jk
∇ib jk

)
= 0 .

(4.67)

In order to simplify the linearized equations of motion for tensor, vector and scalar pertur-
bations it is convenient to introduce (minus) the eigenvalues of the scalar Laplacian on the
unit Sn,

Λn ≡ `(`+n−1) , ` ∈ {0 ,1 ,2 , . . .} , (4.68)

as well as the two parameters

σ3 ≡ 1+3
L2

R2 =
3
2
, τ3 ≡ L2V ′′0 =

9
2

(4.69)

for the orientifold models, and

σ7 ≡ 3+
L2

R2 = 15 , τ7 ≡ L2V ′′0 = 75 (4.70)

for the heterotic model. These parameters are related to the first and second derivatives of the
dilaton tadpole potential evaluated on the background solutions, and thus we shall explore
the stability of these solutions varying their values. While in principle including curvature
corrections or string loop corrections would modify the values in eqs. (4.69) and (4.70), one
could expect that the differences would be subleading in the regime of validity of the present
analysis, which corresponds to large fluxes.

4.3.1 Tensor and vector perturbations in AdS

Let us now move on to study tensor and vector perturbations, starting from the orientifold
models. Following standard practice, we classify them referring to their behavior under
the isometry group SO(2,2)× SO(8) of the AdS3× S7 background. In this fashion, the
possible unstable modes violate the Breitenlohner-Freedman (BF) bounds, which depend
on the nature of the fields involved and correspond, in general, to finite negative values of
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(properly defined) squared AdS masses. Indeed, as reviewed in [22], care must be exercised
in order to identify the proper masses to which the bounds apply [138, 139], since in general
they differ from the eigenvalues of the corresponding AdS d’Alembert operator. In particular,
aside from the case of scalars, massless field equations always exhibit gauge invariance.

4.3.2 Tensor perturbations

Let us begin considering tensor perturbations, which result from transverse trace-less hµν ,
with all other perturbations vanishing. The corresponding equations of motion(

2− Λ7 (σ3−1)
3L2

)
hµν +

2
L2 hµν = 0 , (4.71)

where we have replaced the internal radius R with the AdS radius L using eq. (4.69), is
obtained expanding the perturbations in spherical harmonics using the results summarized
in Appendix A. These harmonics are eigenfunctions of the internal Laplacian in eq. (4.57).
In order to properly interpret this result, however, it is crucial to observe that the massless
tensor equation in AdS is the one determined by gauge invariance. In fact, the linearized
Ricci tensor determined by eq. (4.60) is not invariant under linearized diffeomorphisms of
the AdS background, since

δξ Rµν =
2
L2

(
∇µξν +∇νξµ

)
. (4.72)

However, the fluxes that are present endow, consistently, the stress-energy tensor with a
similar behavior, and `= 0 in eq. (4.71) corresponds precisely to massless modes. Thus, as
expected from Kaluza-Klein theory, eq. (4.71) describes a massless field for ` = 0, and an
infinite tower of massive ones for ` > 0. These perturbations are all consistent with the BF
bound, and therefore no instabilities are present in this sector.

There are also (space-time) scalar excitations resulting from the trace-less part of hi j that
is also divergence-less, which is a tensor with respect to the internal rotation group and thus
`≥ 2. According to the results in Appendix A, they satisfy(

L22− Λ7 (σ3−1)
3

)
hi j = 0 , (4.73)

so that their squared masses are all positive. Finally, there are massive bi j perturbations,
which are divergence-less and satisfy(

L22− (Λ7 +8)(σ3−1)
3

)
bi j = 0 , (4.74)

where again `≥ 2.
The corresponding tensor perturbations in the heterotic model satisfy(

L22−Λ3 (σ7−3)
)

hµν +
2
L2 hµν = 0 , (4.75)
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which, for `= 0, describes a massless field, accompanied by a tower of Kaluza-Klein fields
for higher `. Hence, once again there are no instabilities in this sector.

Analogously to the case of the orientifold models, there are massive (space-time) scalar
excitations resulting from the trace-less part of hi j that is also divergence-less, which satisfy(

L22−Λ3 (σ7−3)
)

hi j = 0 , (4.76)

so that the results in Appendix A imply that again no instabilities are present. There are also
no instabilities arising from transverse bµν excitations, which satisfy(

L22−Λ3 (σ7−3)+10
)

bµν = 0 , (4.77)

so that the lowest ones, corresponding to `= 0, are massless.

4.3.3 Vector perturbations

The analysis of vector perturbations is slightly more involved, due to mixings between hµi
and bµi induced by fluxes. The relevant equations are

210 bµi +2R−O bµi +4R+
O εαβ µ ∇

αhβ
i = 0 ,

210 hµi +2R+
O hµi +

1
2

ε
αβ

µ

(
∇αbβ i +∇β biα

)
= 0 ,

(4.78)

where hµi and bµi are divergence-less in both indices. It is now possible to write

bµi = εαβ µ ∇
αFβ

i , (4.79)

but this does not determine Fβ

i uniquely, since the redefinitions

Fβ
i → Fβ

i +∇
β wi (4.80)

do not affect bµi. The divergence-less bµi of interest, in particular, corresponds to a Fβ

i that
is divergence-less in its internal index i, and divergence-less wi do not affect this condition.
One is thus led to the system42(

L22− Λ7 +5
3

(σ3−1)+2
)

Fi
µ +4σ3 hi

µ = 0 ,(
L22− Λ7 +5

3
(σ3−1)−2

)
hi

µ +
Λ7 +5

3
(σ3−1)Fi

µ = 0 .
(4.81)

42In all these expressions that refer to vector perturbations `≥ 1, as described in Appendix A.
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Due to the redundancy expressed by eq. (4.80), the system in eq. (4.81) could in principle
accommodate a source term of the type ∇µ w̃i. However, its contribution can be absorbed
by a redefinition according to eq. (4.80), and thus we shall henceforth neglect it. Similar
arguments apply to the ensuing analysis of scalar perturbations. The eigenvalues of the
resulting mass matrix43, here and henceforth expressed in units of 1

L2 , are thus

Λ7 +5
3

(σ3−1)±2

√
Λ7 +5

3
(σ3−1)σ3 +1 . (4.82)

In order to refer to the BF bound [138, 139], one should add 2 to these expressions and
compare the result with zero [22]. All in all, there are no modes below the BF bound in
this sector, and thus no instabilities. The vector modes lie above it for ` > 1 for σ3 > 1,
while they are massless for `= 1 and all allowed values of σ3 > 1, and also, for all `, in the
singular case where σ3 = 1, which would translate into a seven-sphere of infinite radius. For
` = 1 there are 28 massless vectors corresponding to one of the eigenvalues above. Indeed,
according to the results in Appendix A they build up a second-rank anti-symmetric tensor in
the internal vector indices, and therefore an adjoint multiplet of SO(8) vectors. This counting
is consistent with Kaluza-Klein theory and reflects the internal symmetry of S7, although the
massless vectors originate from mixed contributions of the metric and the two-form field in
the present case.

The above considerations extend to the heterotic model, for which we let

biµ = εi jk ∇
jFµ

k , (4.83)

which is transverse in internal space. The resulting system reads(
L22− (`+1)2 (σ7−3)+6

)
Fµ

i +4σ7 hµ
i = 0 ,(

L22− (`+1)2 (σ7−3)−6
)

hµ
i +(`+1)2 (σ7−3)Fµ

i = 0 ,
(4.84)

and the eigenvalues of the corresponding mass matrix are given by

(`+1)2 (σ7−3)±2
√
(`+1)2 (σ7−3)σ7 +9 . (4.85)

In order to refer to the BF bound [138, 139] one should add 6 to these expressions and com-
pare the result with −4 [22]. Hence, there are no modes below the BF bound in this sector.
The vector modes are massive for ` > 1 in the region σ7 > 3, while they become massless
for `= 1 and all allowed values of σ7 > 3, and for all values of ` in the singular limit σ7 = 3,
which would correspond to a three-sphere of infinite radius. All in all, for ` = 1 there are 6
massless vectors arising from one of the two eigenvalues above, and according to the results
in Appendix A they build up an second-rank anti-symmetric tensor in the internal vector

43We use the convention in which the mass matrix M 2 appears alongside the d’Alembert operator in the
combination 2−M 2.
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indices, and therefore an adjoint multiplet of SO(4) vectors. The counting is consistent with
Kaluza-Klein theory and with the internal symmetry of S3, although the massless vectors
originate once again from mixed contributions of the metric and the two-form field. In light
of these results, one could expect that choosing a different internal space with non-trivial
isometries would not result in instabilities of tensor or vector modes, since tensors are de-
coupled and the gauge invariance arising from Kaluza-Klein arguments underpins massless
modes.

4.3.4 Scalar perturbations in AdS

Let us now discuss scalar perturbations. Since there are seven independent such perturbations
in the present cases, the analysis of the resulting systems is more involved with respect to
the case of tensor and vector perturbations. While the results in this section can be obtained
using a suitable gauge fixing of the metric, we shall proceed along the lines of [22], where
algebraic constraints arise from the Einstein equations.

4.3.5 Scalar perturbations in the orientifold models

Let us now focus on scalar perturbations in the orientifold models. To begin with, bµν

contributes to scalar perturbations, as one can verify letting

bµν = εµνρ ∇
ρB , (4.86)

an expression that satisfies identically

∇
µbµν = 0 . (4.87)

On the other hand, they do not arise from bµi and bi j, since the corresponding contributions
would be pure gauge. On the other hand, scalar metric perturbations can be parametrized as

hµν = λµν A ,

hµi = R2
∇µ∇iD ,

hi j = γi j C ,

(4.88)

up to a diffemorphism with independent parameters along AdS3 and S7 directions. The
linearized equations of motion for bµν yield

210 B+4R+
O

(
α ϕ−R2

∇
2D− 3

2
A+

7
2

C
)
= 0 , (4.89)

where ∇2 denotes the internal background Laplacian, according to the decomposition of
eq. (4.57). Expanding with respect to spherical harmonics, so that ∇2 → − Λ7

R2 , eq. (4.89)
becomes (an AdS derivative of44)(

2− Λ7

R2

)
B+4R+

O

(
α ϕ +Λ7 D− 3

2
A+

7
2

C
)
= 0 . (4.90)

44The overall derivative can be removed on account of suitable boundary conditions.
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Notice that a redefinition B → B+ δB(y), where δB(y) depends only on internal coordi-
nates, would not affect bµν in eq. (4.86). As a result, while eqs. (4.89) and (4.90) could in
principle contain a source term, this can be eliminated taking this redundancy into account.
Similar considerations apply for the heterotic model.

In a similar fashion, the linearized equation of motion for the dilaton becomes(
2− Λ7

R2 −V ′′0

)
ϕ +2R+

O

(
α

2
ϕ−3α A

)
+α 2B = 0 , (4.91)

where the last term can be eliminated using eq. (4.90). Analogously, the linearized Einstein
equations take the form

λµν

[(
2− Λ7

R2 −
4
L2

)
A+R+

O

(
7α

2
ϕ +21C+6Λ7 D

)
− 3Λ7

2R2 B
]

+∇µ∇ν (A+7C+2Λ7 D) = 0 ,
∇µ∇i (12D−B+2A+6C) = 0 ,

γi j

[(
2− Λ7 +9

R2 − 7
L2

)
C− Λ7

2

(
4R+

O D− 1
R2 B

)
− α

2
R+

O ϕ

]
+∇i∇ j

(
3A+5C−2R22D

)
= 0 .

(4.92)

Although these equations have an unfamiliar form, the terms involving gradients must vanish
separately, as discussed in detail in [22]. For `= 0 nothing depends on internal coordinates,
the terms involving ∇µ∇i and ∇i∇ j become empty and D also disappears. In this case one is
thus led to the simplified system(

L22−4−3σ3
)

A+
7α

2
σ3 ϕ = 0 ,(

L22− τ3−2α
2

σ3
)

ϕ +2α σ3 A = 0 ,

L22B−8σ3 A+4α σ3 ϕ = 0 ,

(4.93)

to be supplemented by the linear relation

A =−7C , (4.94)

and the last column of the resulting mass matrix vanishes, so that there is a vanishing eigen-
value whose eigenvector is proportional to B. This perturbation is however pure gauge, since
eq. (4.86) implies that the corresponding field strength vanishes identically. Leaving it aside,
one can work with the reduced mass matrix determined by the other two equations, whose
eigenvalues are (

α
2 +

3
2

)
σ3 +

τ3

2
+2± 1

2

√
∆ , (4.95)

where the discriminant

∆≡ 4α
4

σ
2
3 +16α

2
(

σ3 +
τ3

4
−1
)

σ3 +(3σ3− τ3 +4)2 . (4.96)
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There are regions of instability as one varies the parameters σ3, τ3 of eq. (4.69), but for
the actual orientifold models, where (β ,σ3 ,τ3) =

(
1 , 3

2 ,
9
2

)
, the two eigenvalues evaluate to

12 and 4, and thus lie well above the BF bound. To reiterate, there are no unstable scalar
modes for the orientifold models in the ` = 0 sector for the internal S7. In view of the
ensuing discussion, let us add that the stability persists for convex potentials, with τ3 > 0,
independently of σ3.

For ` 6= 0 the system becomes more complicated, since it now includes the two algebraic
constraints

A+7C+2Λ7 D = 0 ,
2A−B+6C+12D = 0 ,

(4.97)

and the five dynamical equations(
2− Λ7

R2 −
4
L2

)
A+R+

O

(
7α

2
ϕ−3A

)
− 3Λ7

2R2 B = 0 ,(
2− Λ7

R2

)
B+4R+

O (α ϕ−2A) = 0 ,(
2− Λ7 +9

R2 − 7
L2

)
C− Λ7

2

(
4R+

O D− 1
R2 B

)
− α

2
R+

O ϕ = 0 ,

2D− 3
2R2 A− 5

2R2 C = 0 ,(
2− Λ7

R2 −V ′′0

)
ϕ +

α Λ7

R2 B−2R+
O

(
α

2
ϕ−α A

)
= 0 .

(4.98)

Let us first observe that this set of seven equations for the five unknowns (A , B,C, D, ϕ) is
consistent: one can indeed verify that the algebraic constraints of eq. (4.97) are identically
satisfied by the system in eq. (4.98). One can thus concentrate on the equations relating A, ϕ

and B, which do not involve the other fields and read

(
L22− Λ7

3
(σ3−1)−4−3σ3

)
A+

7α

2
σ3 ϕ− Λ7

2
(σ3−1)B = 0 ,(

L22− Λ7

3
(σ3−1)− τ3−2α

2
σ3

)
ϕ +2α σ3 A− α Λ7

3
(σ3−1)B = 0 ,(

L22− Λ7

3
(σ3−1)

)
B−8σ3 A+4α σ3 ϕ = 0 ,

(4.99)

to then determine C and D via the algebraic constraints. The mass matrix of interest is now
3× 3, and in all cases one is to compare its eigenvalues with the Breitenlohner-Freedman
(BF) bound for scalar perturbations, which in this AdS3×S7 case reads

m2 L2 ≥−1 . (4.100)
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One is thus led, in agreement with [140]45, to the simple results(
`(`+6)

6
+4 ,

(`+6)(`+12)
6

,
`(`−6)

6

)
(4.101)

for the seven-sphere, and thus the BF bound is violated by the third eigenvalue for ` =
2 , 3 , 4, as displayed in fig. 6. Decreasing the value of α could remove the problem for `= 4,
but the instability would still be present for `= 2 , 3. On the other hand, increasing the value
of α instabilities would appear also for higher values46 of `.

Figure 6: violations of the scalar BF bound in the orientifold models. The dangerous eigen-
value is displayed in units of 1

L2 , and the BF bound is −1 in this case. Notice the peculiar
behavior, already spotted in [140], whereby the squared masses decrease initially, rather than
increasing, as ` increases between 1 and 3.

One could now wonder whether there exist regions within the parameter space spanned
by σ3 and τ3 where the violation does not occur. We did find them, for all dangerous values

45For an earlier analysis in general dimensions, see [141]. A subsequent analysis for two internal sphere
factors was performed in [142]. In supersymmetric cases [143], recently techniques based on Exceptional
Field Theory have proven fruitful [144, 145].

46For recent results on unstable modes of non-vanishing angular momentum in AdS compactifications,
see [146].
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of `, for values of σ3 that are close to one, and therefore for negative V0, and for positive τ3,
i.e. for potentials that are convex close to the background configuration. These results are
displayed in figs. 7 and 8.

Figure 7: comparison between the lowest eigenvalue m2 L2 and the BF bound, which is −1
in this case. There are regions of stability for values of σ3 close to 1, which correspond
to R2

L2 > 9 and negative values of V0. The example displayed here refers to ` = 3, which
corresponds to the minimum in fig. 6, and the peak identifies the tree-level values σ3 =

3
2 ,

τ3 =
9
2 .

4.3.6 Scalar perturbations in the heterotic model

Let us now move on to the stability analysis of scalar perturbations the heterotic model.
Proceeding as in the preceding section, we let

bi j = εi jk ∇
kB , (4.102)

a choice that also identically satisfies

∇
ibi j = 0 . (4.103)
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Figure 8: a different view. Comparison between the lowest eigenvalue of m2 L2 and the BF
bound, which is −1 in this case, as functions of ` and σ3, for τ3 =

9
2 . There are regions of

stability for values of σ3 close to 1, which correspond to large values for the ratio R2

L2 and to
negative values of V0.

In addition, let us parametrize scalar metric perturbations as

hµν = λµν A ,

hµi = L2
∇µ∇iD ,

hi j = γi j C ,

(4.104)

along the lines of the preceding section. For scalar perturbations one arrives again at seven
equations for five unknowns, and one can verify that the system is consistent. All in all, one
can thus work with C, ϕ and B, restricting the attention to
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(
L22−Λ3 (σ7−3)−5σ7−12

)
C+

5α

2
σ7 ϕ− 3Λ3

2
(σ7−3)B = 0 ,(

L22−Λ3 (σ7−3)− τ7−2α
2

σ7
)

ϕ +6α σ7C+α Λ3 (σ7−3)B = 0 ,(
L22−Λ3 (σ7−3)

)
B−8σ7C+4α σ7 ϕ = 0 ,

(4.105)

here expressed in terms of the two variables σ7 and τ7 of eq. (4.70), to then determine A
and D algebraically. For `= 0 B again decouples, and the eigenvalues of the corresponding
reduced mass matrix are (

α
2 +

5
2

)
σ7 +

τ7

2
+6± 1

2

√
∆ , (4.106)

with

∆≡
(
4α

4 +40α
2 +25

)
σ

2
7 +4

(
α

2− 5
2

)
(τ7−12)σ7 +(τ7−12)2 . (4.107)

In particular, in the heterotic model they read 24
(

4±
√

6
)
> 0. We can now move on to

the ` 6= 0 case, where the three scalars (C , φ , B) all contribute, so that one is led to a 3× 3
mass matrix. In most of the parameter space, two eigenvalues are not problematic, but there
is one dangerous eigenvalue, depicted in fig. 9, which corresponds to `= 1 and k = 0 in the
expression

64+12Λ3−16
√

34+15Λ3 cos
(

δ −2π k
3

)
, (4.108)

where

δ ≡ arg

(
152−45Λ3 +3 i

√
3(5Λ3 +3)

(
(5Λ3 +14)2 +4

))
. (4.109)

Still, there is again a stability region for values of σ7 that are close to 12, for negative
V0, and typically for positive τ7, i.e. for potentials that are convex close to the background
configuration. These results are displayed in figs. 10 and 11.

4.3.7 Removing the unstable modes

Since the number of unstable modes is finite, one can try to eliminate the unstable modes
present, in the orientifold models, for `= 2,3,4 by projections in the internal S7. According
to the results in Appendix A, scalar spherical harmonics of order ` correspond to harmonic
polynomials of degree `, and the issue is how to project out the dangerous ones. While in
the orientifold models it is not clear how to identify a suitable projection that leaves no fixed
sub-varieties47 [22], in the heterotic case one could eliminate the bad eigenvalue by a Z2

47Projections that leave a sub-variety fixed could entail subtleties related to twisted states that become mass-
less.
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Figure 9: violations of the BF bound in the heterotic model. The dangerous eigenvalue is
displayed in units of 1

L2 , and the BF bound is −9 in this case.

antipodal projection in the internal sphere S3, which can be identified with the SU(2) group
manifold. This operation has no fixed points, and reduces the internal space to the SO(3)
group manifold, without affecting the massless vectors with ` = 1 that we have identified.
However, non-perturbative instabilities would be in principle relevant to the story in this
case, and we shall analyze them in detail in Section 5. Curvature corrections and string loop
corrections would also deserve a closer look, since they could drive the potential to a nearby
stability domain, providing an interesting alternative for these AdS×S solutions.

Let us conclude with a few remarks. To begin with, a suitable choice of internal manifold
could rid the AdS flux compactifications of perturbative instabilities altogether, but in general
the study of tensor and vector perturbations would become more involved. Moreover, in
case the instabilities that we have discusses were not present, one would need to take into
account the fluctuations of the remaining degrees of freedom of the low-energy effective
theory, which include non-Abelian gauge fields that couple to the gravitational sector. At any
rate, one would eventually also have to exclude non-perturbative instabilities, the analysis of
which is the subject of the following section.
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Figure 10: comparison between the lowest eigenvalue m2 L2 and the BF bound, which is −9
in this case. There are regions of stability for values of σ7 close to 3, which correspond to
R2

L2 > 9, and to negative values of V0. The example displayed here refers to ` = 1, which
corresponds to the minimum in fig. 9, and the peak identifies the tree-level values σ7 = 15,
τ7 = 75.

5 Quantum stability: bubbles and flux tunneling
In this section we carry on the analysis of instabilities of the AdS×S flux compactifications
that we have introduced in Section 3, presenting the results of [23]. Specifically, we ad-
dress in detail their non-perturbative instabilities, which manifest themselves as (charged)
vacuum bubbles at the semi-classical level, and we compute the corresponding decay rates.
We find that this tunneling process reduces the flux number n, thus driving the vacua toward
stronger couplings and higher curvatures, albeit at a rate that is exponentially suppressed
in n. We also recast these effects in terms of branes48, drawing upon the analogy with the
supersymmetric case where BPS brane stacks generate supersymmetric near-horizon AdS
throats. While NS5-branes in the heterotic model appear more difficult to deal with in this
respect, in the orientifold models D1-brane stacks provide a natural canditate for a micro-

48For a recent investigation along these lines in the context of the (massive) type IIA superstring, see [134].
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Figure 11: a different view. Comparison between the lowest eigenvalue m2 L2 and the BF
bound, which is −9 in this case, as functions of ` and σ7, for τ7 = 75. There are regions of
stability for values of σ3 below 12, which correspond to relatively large values for the ratio
R2

L2 and to negative values of V0.

scopic description of these flux vacua and of their instabilities. Indeed, non-supersymmetric
analogues of AdS5× S5 vacua in type 0 strings, where tachyon condensation breaks con-
formal invariance of the dual gauge theory, were described in terms of D3-branes in [90].
In the non-tachyonic type 0′B orientifold model this rôle is played by the dilaton potential,
which generates a running of the gauge coupling [87–89]. As a result, the near-horizon
geometry is modified, and one recovers AdS5× S5 only in the limit49 of infinitely many
D3-branes, when the supersymmetry-breaking dilaton potential ought to become negligible.
In contrast, D1-branes and NS5-branes should underlie the AdS3× S7 and AdS7× S3 so-
lutions found in [32]50. This might appear somewhat surprising, since Dp-brane stacks in
type II superstrings do not exhibit near-horizon geometries of this type for p 6= 3, instead

49It is worth noting that this large-N limit is not uniform, since factors of 1
N are accompanied by factors that

diverge in the near-horizon limit. In principle, a resummation of 1
N corrections could cure this problem.

50One could expect that solutions with different internal spaces, discussed in Section 3, arise from near-
horizon throats of brane stacks placed on conical singularities [147].
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dressing them with singular warp factors. Correspondingly, the dual gauge theory is non-
conformal [148]. While the emergence of a conformal dual involving D1-branes and NS5-
branes in non-supersymmetric cases would be an enticing scenario, it is first necessary to
establish whether brane descriptions of the AdS×S solutions hold ground in these models.
In this section we provide some evidence to this effect, and in Section 6 we address this issue
in more detail. In particular, matching the gravitational decay rates that we shall compute in
Section 5.2.2 to the results of the respective brane instanton computations, in Section 5.2.4
we find consistency conditions that single out fundamental branes as the localized sources
that mediate flux tunneling in the settings at stake.

We begin in Section 5.1 with brief overview of flux tunneling. Then, in Section 5.2
we study it in the context of the AdS×S solutions that we have described in Section 3,
and we present the computation of the resulting semi-classical decay rate within their low-
energy description. In Section 5.2.3 we introduce the microscopic picture, studying probe
D1-branes and NS5-branes in the AdS throat, which we develop in Section 5.2.4 deriving
consistency conditions from decay rates. We conclude in Section 5.2.5 presenting explicit
expressions for the decay rates in the orientifold models and in the heterotic model.

5.1 Flux tunneling
Introducing charged localized sources of codimension one (“membranes”) in gravitational
systems with Abelian gauge (form) fields, a novel decay mechanism arises for meta-stable
flux vacua [149, 150], whereby charged membranes nucleate in space-time, sourcing vacuum
bubbles that expand carrying away flux. In the semi-classical limit, the resulting process can
be analyzed via instanton computations [151–153], albeit the resulting (Euclidean) equations
of motion are modified by the contribution due to membranes51 [154], which arises from
actions of the form

Smembrane =−
∫
W

dp+1x
√
− j∗gτp +µp

∫
W

Bp+1 (5.1)

for (p + 2)-dimensional space-times supported by flux configurations of a (p + 1)-form
field Bp+1, where j describes the embedding of the world-volume W in space-time and, in
general, the tension τp can depend on the bulk scalar fields, if any. Typically one expects
that maximally symmetric instanton configurations dominate the decay rate associated to
processes of this type, and in practical terms one is thus faced with a shooting problem
where, in addition to the initial conditions of the (Euclidean) fields, one is to determine the
nucleation radius of the bubble52.

5.1.1 Small steps and giant leaps: the thin-wall approximation

Since flux numbers are typically quantized, even simple toy models result in rather rich
landscapes of geometries supported by fluxes [156], and it has been argued [99, 155, 157]

51We shall not discuss the Gibbons-Hawking-York boundary term, which is to be included at any rate to
consistently formulate the variational problem.

52For a detailed exposition of the resulting (distributional) differential equations, see [155].
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that flux tunneling in multi-flux landscapes is dominated by “giant leaps”, where a sizable
fraction of the initial flux is discharged, while in single-flux landscape “small steps” domi-
nate, and thus the thin-wall approximation is expected to capture the correct leading-order
physics. Therefore, we shall focus on the latter case, since the AdS×S solutions discussed
in Section 3 are supported by a single flux parameter n, and we shall consider thin-wall bub-
bles with charge δn� n. Within this approximation, one can neglect the back-reaction of
the membrane and the resulting space-time geometry is obtained gluing the initial and final
states along the bubble wall, which expands at the speed of light.

5.1.2 Bubbles of nothing

In addition to flux tunneling, bubbles of nothing [158] provide often controlled decay chan-
nels in which semi-classical computations are expected to be reliable, and whose existence in
the absence of supersymmetry appears quite generic [159–162]. Although one expects that
extreme “giant leaps”, which discharge almost all of the initial flux, lie outside of the semi-
classical regime, it is conceivable that the limit in which all of the initial flux is discharged
corresponds to a bubble of nothing. Indeed, some evidence to this effect was presented
in [163], and, at least in the case of AdS landscapes, holographic arguments also provide
some hints in this direction [164].

5.2 Bubbles and branes in AdS compactifications
Let us now move on to study flux tunneling in the AdS×S solutions that we have described
in Section 3. These solutions feature perturbative instabilities carrying internal angular mo-
menta [22, 140], but we shall not concern ourselves with their effects, imposing unbroken
spherical symmetry at the outset. Alternatively, as we have mentioned, one could replace the
internal sphere with an Einstein manifold, if any, whose Laplacian spectrum does not con-
tain unstable modes, or with an orbifold that projects them out. This can be simply achieved
with an antipodal Z2 projection in the heterotic model, albeit a microscopic interpretation in
terms of fundamental branes appears more subtle in this case, while an analogous operation
in the orientifold models appears more elusive [22]. However, as we shall see in the fol-
lowing, even in the absence of classical instabilities the AdS×S solutions would be at best
meta-stable, since they undergo flux tunneling.

5.2.1 Vacuum energy within dimensional reduction

In order to appreciate this, it is instructive to perform a dimensional reduction over the sphere
following [154], retaining the dependence on a dynamical radion field ψ in a similar vein to
our analysis of dS instabilities in Section 3. The ansatz

ds2 = e−
2q
p ψ(x) d̃s

2
p+2(x)+ e2ψ(x)R2

0 dΩ
2
q , (5.2)

where R0 is an arbitrary reference radius, is warped in order to select the (p+2)-dimensional

Einstein frame, described by d̃s
2
p+2. Indeed, placing the dilaton and the form field on shell
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results in the dimensionally reduced action

Sp+2 =
1

2κ2
p+2

∫
dp+2x

√
−g̃
(

R̃−2Λ̃

)
, (5.3)

where the (p+2)-dimensional Newton’s constant is

1
κ2

p+2
=

ΩqRq
0

κ2
D

, (5.4)

while the “physical” cosmological constant Λ = − p(p+1)
2L2 , associated to the frame used in

the preceding section, is related to Λ̃ according to

Λ̃ = Λe−
2q
p ψ , (5.5)

which is a constant when the radion is on-shell, and

eψ =
R
R0

∝ n
γ

(q−1)γ−α . (5.6)

Let us remark that the dimensionally reduced action of eq. (5.3) does not necessarily cap-
ture a sensible low-energy regime, since in the present settings there is no scale separation
between space-time and the internal sphere. Moreover, as we have discussed in Section 4,
in general one cannot neglect the instabilities arising from fluctuations with non-vanishing
angular momentum. On the other hand, the resulting vacuum energy (density)

Ẽ0 =
2Λ̃

2κ2
p+2

=−
p(p+1)ΩqRq

0

2κ2
D L2

(
R
R0

)− 2q
p

∝−n
− 2(D−2)

p(q−1−α
γ )

(5.7)

is actually sufficient to dictate whether n increases or decreases upon flux tunneling. In
particular, the two signs present in eq. (5.7) and the requirement that flux tunneling decreases
the vacuum energy imply that this process drives the (false) vacua to lower values of n,
eventually reaching outside of the perturbative regime where the semi-classical analysis is
expected to be reliable.

5.2.2 Decay rates: gravitational computation

Let us now compute the decay rate associated to flux tunneling in the semi-classical regime.
To this end, standard instanton methods [151–153] provide most needed tools, but in the
present case one is confined to the thin-wall approximation, which entails a flux variation53

53On the other hand, as we have mentioned, the extreme case δn = n would correspond to the production of
a bubble of nothing [158].
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δn� n, and the tension τ of the resulting bubble, which cannot be computed within the
formalism, rests on the tension of the corresponding membrane and on its back-reaction54.
However, the probe limit, in which the membrane does not affect the radion potential due
to changing n, identifies the tension of the bubble with that of the membrane, and it can be
systematically improved upon [99] adding corrections to this equality.

In order to proceed, we work within the dimensionally reduced theory in AdSp+2, using
coordinates such that the relevant instanton is described by the Euclidean metric

ds2
E = dξ

2 +ρ
2(ξ )dΩ

2
p+1 , (5.8)

so that the Euclidean on-shell (bulk) action takes the form

SE = 2Ωp+1

∫
dξ ρ(ξ )p+1

(
Ẽ0−

p(p+1)
2κ2

p+2 ρ(ξ )2

)
, (5.9)

with the vacuum energy Ẽ0, along with the associated curvature radius L̃, defined piece-wise
by its values inside and outside of the bubble. Then, the energy constraint

(ρ ′)2 = 1−
2κ2

p+2

p(p+1)
Ẽ0 ρ

2 = 1+
ρ2

L̃2
, (5.10)

which stems from the Euclidean equations of motion, allows one to change variables in
eq. (5.9), obtaining

SE =−
2p(p+1)Ωp+1

2κ2
p+2

∫
dρ ρ

p−1

√
1+

ρ2

L̃2
. (5.11)

This expression defines the (volume term of the) exponent B ≡ Sinst− Svac in the semi-
classical formula for the decay rate (per unit volume),

Γ

Vol
∼ (det)× e−B , B = Barea +Bvol , (5.12)

in the standard fashion [151, 152]. The thin-wall bubble is a (p+1)-sphere of radius ρ̃ , over
which the action has to be extremized, and therefore the area term of the exponent B reads

Barea ∼ τ̃ Ωp+1 ρ̃
p+1 , (5.13)

where the tension τ̃ = τ e−(p+1) q
p ψ is measured in the (p+2)-dimensional Einstein frame.

On the other hand, in the thin-wall approximation the volume term becomes

Bvol =
2p(p+1)Ωp+1

2κ2
p+2

∫
ρ̃

0
dρ ρ

p−1

[√
1+

ρ2

L̃2
vac
−
√

1+
ρ2

L̃2
inst

]
∼−ε Ṽol(ρ̃) ,

(5.14)

54It is common to identify the tension of the bubble with the ADM tension of a brane soliton solution [154].
In our case this presents some challenges, as we shall discuss in Section 6.
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where the energy spacing

ε ∼ dẼ0

dn
δn ∝ n

− 2(D−2)
p(q−1−α

γ )
−1

δn (5.15)

and the volume Ṽol(ρ̃) enclosed by the bubble is computed in the (p + 2)-dimensional
Einstein frame,

Ṽol(ρ̃) = L̃p+2
Ωp+1 V

(
ρ̃

L̃

)
,

V (x)≡ xp+2

p+2 2F1

(
1
2
,

p+2
2

;
p+4

2
;−x2

)
,

x≡ ρ̃

L̃
.

(5.16)

All in all, the thin-wall exponent55

B∼ τ Ωp+1 Lp+1 (xp+1− (p+1)β V (x)
)
, β ≡ ε L̃

(p+1)τ̃
(5.17)

attains a local maximum at x = 1√
β 2−1

for β > 1. On the other hand, for β ≤ 1 the exponent

is unbounded, since B→ ∞ as x→ ∞, and thus the decay rate is completely suppressed.
Hence, it is crucial to study the large-flux scaling of β , which plays a rôle akin to an ex-
tremality parameter for the bubble. In particular, if β scales with a negative power of n
nucleation is suppressed, whereas if it scales with a positive power of n the extremized ex-
ponent B approaches zero, thus invalidating the semi-classical computation. Therefore, the
only scenario in which nucleation is both allowed and semi-classical at large n is when β > 1
and is flux-independent. Physically, the bubble is super-extremal and has an n-independent
charge-to-tension ratio. Since

β = v0
Ωq δn
2κ2

Dτ
g
−α

2
s , (5.18)

where the flux-independent constant

v0 ≡

√
2(D−2)γ

(p+1)((q−1)γ−α)
, (5.19)

this implies the scaling56

τ = T g
−α

2
s , (5.20)

where T is flux-independent and α denotes the coupling between the dilaton and the form
field in the notation introduced in Section 3. In Section 5.2.4 we shall verify that this is
precisely the scaling expected from Dp-branes and NS5-branes.

55Notice that eq. (5.17) takes the form of an effective action for a (p+1)-brane in AdS electrically coupled
to Hp+2. This observation is the basis for the microscopic picture that we shall present shortly.

56Notice that in the gravitational picture the charge of the membrane does not appear. Indeed, its contribution
arises from the volume term of eq. (5.14) in the thin-wall approximation.
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5.2.3 Bubbles as branes

Let us now proceed to describe a microscopic picture, studying probe branes in the AdS×S
geometry and matching the semi-classical decay rate of eq. 5.17 to a (Euclidean) world-
volume action. While a more complete description to this effect would involve non-Abelian
world-volume actions coupled to the complicated dynamics driven by the dilaton potential,
one can start from the simpler setting of brane instantons and probe branes moving in the
AdS×S geometry. This allows one to retain computational control in the large-n limit, while
partially capturing the unstable dynamics at play. When framed in this fashion, instabilities
suggest that the non-supersymmetric models at stake are typically driven to time-dependent
configurations57, in the spirit of the considerations of [22].

We begin our analysis considering the dynamics of a p-brane moving in the AdSp+2×Sq

geometry of eq. (3.34). In order to make contact with D-branes in the orientifold models
and NS5-branes in the heterotic model, let us consider a generic string-frame world-volume
action of the form

Sp =−Tp

∫
dp+1

ζ
√
− j∗gS e−σφ +µp

∫
Bp+1 , (5.21)

specified by an embedding j of the brane in space-time, which translates into the D-dimensional
and (p+2)-dimensional Einstein-frame expressions

Sp =−Tp

∫
dp+1

ζ
√
− j∗ge

(
2(p+1)

D−2 −σ

)
φ
+µp

∫
Bp+1

=−Tp

∫
dp+1

ζ
√
− j∗g̃ e

(
2(p+1)

D−2 −σ

)
φ−(p+1) q

p ψ
+µp

∫
Bp+1 .

(5.22)

Since the dilaton is constant in the AdS×S backgrounds that we consider, from eq. (5.22)
one can read off the effective tension

τp = Tp g
2(p+1)

D−2 −σ

s . (5.23)

While in this action Tp and µp are independent of the background, for the sake of generality
we shall not assume that in non-supersymmetric models Tp = µp, albeit this equality is
supported by the results of [50].

5.2.4 Microscopic branes from semi-classical consistency

In this section we reproduce the decay rate that we have obtained in Section 5.2.2 with a
brane instanton computation58. Since flux tunneling preserves the symmetry of the internal
manifold, the Euclidean branes are uniformly distributed over it, and are spherical in the

57Indeed, as we have discussed in Section 2, cosmological solutions of non-supersymmetric models display
interesting features [22, 46, 62–64]. Similar considerations on flux compactifications can be found in [165].

58For more details, we refer the reader to [149, 150, 166, 167].
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Wick-rotated AdS geometry. The Euclidean p-brane action of eq. (5.22), written in the D-
dimensional Einstein frame, then reads

SE
p = τp Area−µp cVol

= τp Ωp+1 Lp+1 (xp+1− (p+1)βp V (x)
)
,

(5.24)

where v0 is defined in eq. (5.19), and

βp ≡ v0
µp

Tp
g

σ− 2(p+1)
D−2 −

α

2
s . (5.25)

This result matches in form the thin-wall expression in eq. (5.17), up to the identifications
of the tensions τ , τp and the parameters β , βp. As we have argued in Section 5.2.2, the
former is expected to be justified in the thin-wall approximation. Furthermore, according to
the considerations that have led us to eq. (5.20), it is again reasonable to assume that βp does
not scale with the flux, which fixes the exponent σ to

σ =
2(p+1)

D−2
+

α

2
. (5.26)

This is the value that we shall use in the following. Notice that for Dp-branes in ten dimen-
sions, where α = 3−p

2 , this choice gives the correct result σ = 1, in particular for D1-branes
in the orientifold models. Similarly, for NS5-branes in ten dimensions, eq. (5.26) also gives
the correct result σ = 2. This pattern persists even for the more “exotic” branes of [168–
172], and it would be interesting to explore this direction further. Notice that in terms of the
string-frame value αS, eq. (5.26) takes the simple form

σ = 1+
αS

2
. (5.27)

Moreover, from eqs. (5.23) and (5.26) one finds that

τp = Tp g
−α

2
s (5.28)

scales with the flux with the same power as τ , as can be seen from eq. (5.20). Since the flux
dependence of the decay rates computed extremizing eqs. (5.17) and (5.24) is determined by
the respective tensions τ and τp, they also scale with the same power of n. Together with
eq. (5.27), this provides evidence to the effect that, in the present setting, vacuum bubbles
can be identified with fundamental branes, namely Dp-branes in the orientifold models and
NS5-branes in the heterotic model.

Requiring furthermore that the decay rates computed extremizing eqs. (5.17) and (5.24)
coincide, one is led to β = βp, which implies

µp =
Ωq δn
2κ2

D
= δ

(
1

2κ2
D

∫
Sq

f ?Hp+2

)
, (5.29)

where δ denotes the variation across the bubble wall, as expected for electrically coupled
objects.
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5.2.5 Decay rates: extremization

Extremizing the Euclidean action of eq. (5.24) over the nucleation radius, one obtains the
final result for the semi-classical tunneling exponent

SE
p = Tp Lp+1 g

−α

2
s Ωp+1 Bp

(
v0

µp

Tp

)
∝ n

(p+1)γ+α

(q−1)γ−α ,

(5.30)

where we have introduced

Bp(β )≡
1

(β 2−1)
p+1

2

− p+1
2

β

∫ 1
β2−1

0

u
p
2

√
1+u

du . (5.31)

This expression includes a complicated flux-independent pre-factor, but it always scales
with a positive power of n, consistently with the semi-classical limit. For the sake of com-
pleteness, let us provide the explicit result for non-supersymmetric string models, where the
microscopic picture goes beyond the world-volume actions of eq. (5.21). Notice that we
do not assume that µp = Tp in the non-supersymmetric setting, for the sake of generality.
However, as we have already remarked in eq. (5.17), the tunneling process is allowed also in
this case. This occurs because v0 > 1, and thus also β > 1, in the supersymmetry-breaking
backgrounds that we consider, since using eq. (5.19) one finds

(v0)orientifold =

√
3
2

(5.32)

for the orientifold models, while

(v0)heterotic =

√
5
3

(5.33)

for the heterotic model. For D1-branes in the orientifold models, eq. (5.30) yields

SE
1 =

T1 L2
√

gs
Ω2 B1

(√
3
2

µ1

T1

)

=
π

9
√

2
B1

(√
3
2

µ1

T1

)
T1
√

T
√

n ,

(5.34)

and SE
1 ≈ 0.1T1

√
T
√

n if µ1 = T1. For the heterotic model, using eq. (5.30) the Euclidean
action of NS5-branes evaluates to

SE
5 =

T5 L6
√

gs
Ω6 B5

(√
5
3

µ5

T5

)

=
9216π3

125
B5

(√
5
3

µ5

T5

)
T5 T n4 ,

(5.35)
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and SE
5 ≈ 565.5T5 T n4 if µ5 = T5. In the presence of large fluxes the tunneling instability is

thus far milder in the heterotic model.
To conclude, the results in this section provide evidence to the effect that the non-

supersymmetric AdS flux compactifications that we have described in Section 3 are non-
perturbatively unstable, and the flux tunneling process that they undergo can be described in
terms of (stacks of) fundamental branes, namely D1-branes for the AdS3×S7 solutions of
the orientifold models, and NS5-branes for the AdS7×S3 solutions of the heterotic model.
In the following section we shall expand upon this picture, studying the Lorentzian evolution
of the branes after a tunneling event occurs and relating the resulting dynamics to interac-
tions between branes and to the weak gravity conjecture [21]. In addition, we shall recover
the relevant AdS×S solutions as near-horizon geometries of the full the gravitational back-
reaction of the branes, thus further supporting the idea that these solutions are built up from
stacks of parallel fundamental branes.

6 Brane dynamics: probes and back-reaction
In this section we elaborate in detail on the microscopic picture of non-perturbative instabil-
ities of the AdS×S solutions that we have introduced in the preceding section. The results
that we have described hitherto suggest that the AdS×S geometries at stake can be built
up from stacks of parallel fundamental branes, an enticing picture that could, at least in
principle, shed light on the high-energy regime of the settings at hand. In particular, our
proposal can potentially open a computational window beyond the semi-classical regime,
perhaps providing also a simpler realization of AdS3/CFT2 duality59. Moreover, in princi-
ple one could investigate these non-perturbative instabilities recasting them as holographic
RG flows in a putative dual gauge theory [164]. In order to further ground this proposal,
in Section 6.1 we study the Lorentzian evolution of the expanding branes after a nucleation
event takes place, identifying the relevant dynamics and comparing it to the supersymmetric
case, and the resulting interaction potentials imply a version of the weak gravity conjecture
for extended objects [17]. Furthermore, we briefly comment on a recent proposal [38–40]
which rests on the observation that branes nucleating amidst AdS → AdS transitions host dS
geometries on their world-volume, referring the reader to [24, 25] for more details. Then, in
Section 6.2 we investigate the gravitational back-reaction of stacks of parallel branes within
the low-energy effective theory described in Section 3, deriving a reduced dynamical system
that captures the relevant dynamics and recovering an attractive near-horizon AdS×S throat.
In order to provide a more intuitive understanding of this result, we compare the asymptotic
behavior of the fields to the corresponding ones for D3-branes in the type IIB superstring and
for the four-dimensional Reissner-Nordström black hole. The latter represents a particularly
instructive model, where one can identify the physical origin of singular perturbations. How-
ever, away from the stack the resulting space-time exhibits a space-like singularity at a finite
transverse geodesic distance [23], as in60 [31], which hints at the idea that, in the presence

59The alternative case of AdS7 could be studied, in principle, via M5-brane stacks.
60Indeed, our results suggest that the solutions of [31], which are not fluxed, correspond to 8-branes.
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of dilaton tadpoles, any breaking of ten-dimensional Poincaré invariance is accompanied by
a finite-distance “pinch-off” singularity determined by the residual symmetry. Physically,
this corresponds to the fact that branes are not isolated objects in these settings, since in the
case of the orientifold models non-supersymmetric projections bring along additional (anti-
)D-branes that interact with them. In the heterotic model, this rôle is played at leading order
by the one-loop vacuum energy. Finally, in Section 6.2.7 and Section 6.3 we extend our con-
siderations to the case of non-extremal branes, focusing on the uncharged of D8-branes in
the orientifold models in order to compare probe-brane computations with the corresponding
string amplitudes.

6.1 The aftermath of tunneling
After a nucleation event takes place, the dynamics is encoded in the Lorentzian evolution
of the bubble. Its counterpart in the microscopic brane picture is the separation of pairs of
branes and anti-branes, which should then lead to brane-flux annihilation61, with negatively
charged branes absorbed by the stack and positively charged ones expelled out of the AdS×S
near-horizon throat. The resulting picture is shown in fig. 12. In order to explore this per-
spective, we now study probe (anti-)branes moving in the AdS×S geometry. To this end,
it is convenient to work in Poincaré coordinates, where the D-dimensional Einstein-frame
metric reads

ds2 =
L2

z2

(
dz2 +dx2

1,p
)
+R2 dΩ

2
q , dx2

1,p ≡ ηµν dxµdxν , (6.1)

embedding the world-volume of the brane according to the parametrization

j : xµ = ζ
µ , z = Z(ζ ) , θ

i = Θ
i(ζ ) . (6.2)

Furthermore, when the brane is placed at a specific point in the internal sphere62, Θi(ζ )= θ i
0,

the Wess-Zumino term gives the volume enclosed by the brane in AdS. As a result, the action
that we have introduced in the preceding section evaluates to

Sp =−τp

∫
dp+1

ζ

(
L
Z

)p+1[√
1+ηµν ∂µZ ∂νZ− cL

p+1
µp

τp

]
(6.3)

in the notation of Section 3, so that rigid, static branes are subject to the potential

61For a discussion of this type of phenomenon in Calabi-Yau compactifications, see [12].
62One can verify that this ansatz is consistent with the equations of motion for linearized perturbations.
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Vprobe(Z) = τp

(
L
Z

)p+1
[

1− cLg
α

2
s

p+1
µp

Tp

]

= τp

(
L
Z

)p+1[
1− v0

µp

Tp

]
.

(6.4)

The potential in eq. (6.4) indicates how rigid probe branes are affected by the AdS×S ge-

ometry, depending on the value of v0. In particular, if v0
|µp|
Tp

> 1 positively charged branes
are driven toward small Z and thus exit the throat, while negatively charged ones are driven
in the opposite direction.

Small deformations δZ of the brane around the rigid configuration at constant Z satisfy
the linearized equations of motion

−∂µ∂
µ

δZ ∼ p+1
Z

(
1− v0

µp

Tp

)
− (p+1)(p+2)

Z2

(
1− v0

µp

Tp

)
δZ , (6.5)

where the constant first term on the right-hand side originates from the potential of eq. (6.4)
and affects rigid displacements, which behave as

δZ
Z
∼ p+1

2

(
1− v0

µp

Tp

)( t
Z

)2
(6.6)

for small times t
Z � 1. On the other hand, for non-zero modes δZ ∝ eik0·x−iω0t one finds the

approximate dispersion relation

ω
2
0 = k2

0 +
(p+1)(p+2)

Z2

(
1− v0

µp

Tp

)
, (6.7)

which holds in the same limit, so that Z remains approximately constant. In terms of the
proper, red-shifted frequency ωz =

√
gtt ω0 and wave-vector kz =

√
gtt k0 for deformations

of Z in AdS, eq. (6.7) becomes

ω
2
z = k2

z +
(p+1)(p+2)

L2

(
1− v0

µp

Tp

)
. (6.8)

The dispersion relation of eq. (6.8) displays a potential long-wavelength instability toward
deformations of positively charged branes, which can drive them to grow in time, depending
on the values of v0 and the charge-to-tension ratio µp

Tp
. Comparing with eqs. (6.4) and (6.6),

one can see that this instability toward “corrugation” is present if and only if the branes are
also repelled by the stack.

To conclude our analysis of probe-brane dynamics in the AdS×S throat, let us also con-
sider small deformations δΘ in the internal sphere. They evolve according to the linearized
equations of motion

−∂µ∂
µ

δΘ = 0 , (6.9)

so that these modes are stable at the linearized level.
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Figure 12: a schematic depiction of the interaction between a heavy stack of N� 1 branes
and δN << N light branes in the probe regime. The heavy stack sources the background
geometry in which the probe branes move.

6.1.1 Weak gravity from supersymmetry breaking

In the ten-dimensional orientifold models, in which the corresponding branes are D1-branes,

v0 =
√

3
2 , so that even extremal D1-branes with63 µp = Tp are crucially repelled by the stack,

and are driven to exit the throat toward Z → 0. On the other hand D1-branes, which have
negative µp, are always driven toward Z→+∞, leading to annihilation with the stack. This
dynamics is the counterpart of flux tunneling in the probe-brane framework, and eq. (5.19)
suggests that while the supersymmetry-breaking dilaton potential allows for AdS vacua of
this type, it is also the ingredient that allows BPS branes to be repelled. Physically, D1-branes
are mutually BPS, but they interact with the D9-branes that fill space-time. This resonates
with the fact that, as we have argued in Section 5.2.2, the large-n limit ought to suppress insta-
bilities, since in this regime the interaction with D9-branes is expected to be negligible [87,
88]. Furthermore, the dispersion relation of eq. (6.8) highlights an additional instability to-
ward long-wavelength deformations of the branes, of the order of the AdS curvature radius.

Similarly, in the heterotic model v0 =
√

5
3 , so that negatively charged NS5-branes are also

attracted by the stack, while positively charged ones are repelled and unstable toward suffi-
ciently long-wavelength deformations, and the corresponding physical interpretation would

63As we have anticipated, verifying the charge-tension equality in the non-supersymmetric case presents
some challenges. We shall elaborate upon this issue in Section 6.2.4.
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involve interactions mediated by the quantum-corrected vacuum energy.
Moreover, the appearance of v0 > 1 in front of the charge-to-tension ratio µp

Tp
is sug-

gestive of a dressed extremality parameter, which can be thought of, e.g., as an effective
enhancement of the charge-to-tension ratio due to both dimensional reduction and supersym-
metry breaking. This behavior, depicted in fig. 13, resonates with considerations stemming
from the weak gravity conjecture [21], since the presence of branes which are (effectively)
lighter than their charge would usually imply a decay channel for extremal or near-extremal
objects. While non-perturbative instabilities of non-supersymmetric AdS due to brane nu-
cleation have been thoroughly discussed in the literature [17, 166, 167], we stress that in
the present case this phenomenon arises from fundamental branes interacting in the absence
of supersymmetry. Therefore, one may attempt to reproduce this result via a string ampli-
tude computation, at least for D1-branes in the orientifold models, but since the relevant
annulus amplitude vanishes [50] the leading contribution would involve “pants” amplitudes
and is considerably more complicated64. On the other hand, in the non-extremal case one
has access to both a probe-brane setting, which involves the gravitational back-reaction of
D8-branes, and to a string amplitude computation, and we shall pursue this direction65 in
Section 6.2.7.

Figure 13: a schematic depiction of the interaction between extremal branes mediated by
supersymmetry breaking. Its low-energy manifestation reflects the renormalization of the
effective charge-to-tension ratio of eqs. (5.19), (5.32) and (5.33).

To conclude, let us comment on how brane nucleation in AdS provides an intriguing
construction of dS configurations. According to the proposal of [38–40], a thin-wall bub-

64The systematics of computations of this type in the bosonic case were developed in [173].
65Related results in Scherk-Schwartz compactifications have been obtained in [174, 175].
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ble nucleating between two AdSp+2 space-times hosts a dSp+1 geometry on its wall66, as
schematically depicted in fig. 14.

The settings that we have described in this section provide a top-down string embedding
of this scenario, embodied by D1-branes in the orientifold models and NS5-branes in the
heterotic model. The resulting cosmologies appear under parametric control [24, 25], and
they feature small cosmological constants relative to the brane-world Planck scale.

As a final comment, let us remark that the nucleation of bubbles of nothing [158] offers
another enticing possibility to construct dS configurations [159]. While, to our knowledge,
realizations of this type of scenario in string theory have been investigated breaking su-
persymmetry in lower-dimensional settings [181]67, recent results indicate that within the
relevant context the nucleation of bubbles of nothing is quite generic [160].

Figure 14: a bubble which interpolates between two AdSp+2 space-times, hosting a dSp+1
geometry on its world-volume. Open strings with a single endpoint attached to the bubble
wall give rise to massive particles on the world-volume [24, 25, 39].

66For some earlier works along these lines, see [176–180].
67Some lower-dimensional toy models offer flux landscapes where more explicit results can be ob-

tained [155, 163, 182].
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6.2 Gravitational back-reaction
In this section we study the background geometry sourced by a stack of branes in the class
of low-energy effective theories that we have described in Section 3. The dilaton potential
brings along considerable challenges in this respect, both conceptual and technical. To begin
with, there is no maximally symmetric vacuum that could act as a background, and thus in
the presence of branes there is no asymptotic infinity of this type68. We find, instead, that
the geometry away from the branes “pinches off” at a finite geodesic distance, and exhibits
a curvature singularity where φ →+∞. This resonates with the findings of [31], and indeed
we do reconstruct the solutions therein in the case p = 8. These results suggest that, due to
their interactions with the dilaton potential, branes cannot be described as isolated objects in
these models, reflecting the probe-brane analysis of Section 6.1. Consequently, identifying
a sensible background string coupling or sensible asymptotic charges, such as the brane
tension, appears considerably more difficult with respect to the supersymmetric case.

Despite these challenges, one can gain some insight studying the asymptotic geometry
near the branes, where an AdS×S throat develops, and near the outer singularity, where
the geometry pinches off. In Section 6.2.2 we shall argue that the AdS×S solutions dis-
cussed in Section 3 can arise as near-horizon “cores” of the full geometry, investigating an
attractor-like behavior of radial perturbations which is characteristic of extremal objects and
arises after a partial fine-tuning, reminiscent of the BPS conditions on asymptotic charges
in supersymmetric cases. This feature is reflected by the presence of free parameters in the
asymptotic geometry away from the branes, which we construct in Section 6.2.4.

6.2.1 Reduced dynamical system: extremal case

Let us begin imposing SO(1, p)×SO(q) symmetry, so that the metric is characterized by two
dynamical functions v(r) ,b(r) of a transverse radial coordinate r. Specifically, without loss
of generality we shall consider the ansatz

ds2 = e
2

p+1 v− 2q
p b dx2

1,p + e2v− 2q
p b dr2 + e2b R2

0 dΩ
2
q ,

φ = φ(r) ,

Hp+2 =
n

f (φ)(R0 eb)q Volp+2 , Volp+2 = e2v− q
p (p+2)b dp+1x ∧ dr ,

(6.10)

where R0 is an arbitrary reference radius and the form field automatically solves its field
equations. This gauge choice simplifies the equations of motion, which can be recast in
terms of a constrained Toda-like system [89, 90, 183]. Indeed, substituting the ansatz of
eq. (6.10) in the field equations and taking suitable linear combinations, the resulting system
can be derived by the “reduced” action

68Even if one were to envision a pathological Minkowski solution with “φ = −∞” as a degenerate back-
ground (for instance, by introducing a cut-off), no asymptotically flat solution with φ → −∞ can be found.
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Sred =
∫

dr
[

4
D−2

(
φ
′)2− p

p+1
(
v′
)2

+
q(D−2)

p

(
b′
)2−U

]
, (6.11)

where the potential is given by

U =−T eγφ+2v− 2q
p b− n2

2R2q
0

e−αφ+2v− 2q(p+1)
p b +

q(q−1)
R2

0
e2v− 2(D−2)

p b , (6.12)

and the equations of motion are supplemented by the zero-energy constraint

4
D−2

(
φ
′)2− p

p+1
(
v′
)2

+
q(D−2)

p

(
b′
)2

+U = 0 . (6.13)

6.2.2 AdS×S throat as a near-horizon geometry

Let us now apply the results in the preceding section to recast the AdS×S solutions dis-
cussed in Section 3 as a near-horizon limit of the geometry described by eqs. (6.11) and (6.13).
To begin with, one can verify that the AdS×S solution now takes the form69

φ = φ0 , ev =
L

p+1

(
R
R0

) q
p 1
−r

, eb =
R
R0

, (6.14)

where we have chosen negative values r < 0. This choice places the core at r → −∞, with
the horizon infinitely far away, while the outer singularity lies either at some finite r = r0 or
emerges as70 r → +∞. The metric of eq. (6.10) can then be recast as AdS×S in Poincaré
coordinates rescaling x by a constant and substituting

r 7→ − zp+1

p+1
. (6.15)

In supersymmetric cases, infinitely long AdS throats behave as attractors going toward the
horizon from infinity, under the condition on asymptotic parameters that specifies extremal-
ity. Therefore we proceed by analogy, studying linearized radial perturbations δφ ,δv ,δb
around eq. (6.14) and comparing them to cases where the full geometry is known. To this
end, notice that the potential of eq. (6.12) is factorized,

U(φ ,v,b)≡ e2vÛ(φ ,b) , (6.16)

so that perturbations δv of v do not mix with perturbations δφ ,δb of φ and b at the linearized
level. In addition, since the background values of φ and b are constant in r, the constraint
obtained linearizing eq. (6.13) involves only v, and reads

2p
p+1

v′ δv′ = ∂vU
∣∣∣∣
AdS×S

δv = 2U
∣∣∣∣
AdS×S

δv =
2p

(p+1)r2 δv , (6.17)

69Up to the sign of r and rescalings of R0, this realization of AdS×S with given L and R is unique.
70In either case we shall find that the geodesic distance is finite.
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so that
δv∼ const.× (−r)−1 . (6.18)

Thus, the constraint of eq. (6.18) retains only one mode ∼ (−r)λ0 with respect to the lin-
earized equation of motion for δv, with exponent λ0 =−1.

On the other hand, φ and b perturbations can be studied using the canonically normalized
fields

χ ≡

(√
8

D−2
δφ ,

√
2q(D−2)

p
δb

)
, (6.19)

in terms of which one finds
χ
′′ ∼− 1

r2 H0 χ , (6.20)

where the Hessian

Hab ≡
∂ 2U

∂ χa∂ χb

∣∣∣∣
AdS×S

≡ 1
r2 (H0)ab , (H0)ab = O

(
r0) . (6.21)

The substitution t = log(−r) then results in the autonomous system(
d2

dt2 −
d
dt

)
χ =−H0 χ , (6.22)

so that the modes scale as χ ∝ (−r)λi , where the λi are the eigenvalues of the block matrix(
1 −H0
1 0

)
. (6.23)

In turn, these are given by

λ
(±)
1 ,2 =

1±
√

1−4h1 ,2

2
,

h1 ,2 ≡
tr(H0)±

√
tr(H0)−4det(H0)

2
,

(6.24)

where the trace and determinant of H0 are given by

tr(H0) =−
α
(
γ (α + γ)(D−2)2−16

)
+16γ (p+1)(q−1)

8(p+1)((q−1)γ−α)
,

det(H0) =
α γ (D−2)2 ((p+1)γ +α)

4(p+1)2 ((q−1)γ−α)
.

(6.25)

In the case of the orientifold models, one obtains the eigenvalues

1±
√

13
2

,
1±
√

5
2

, (6.26)
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while in the heterotic model one obtains the eigenvalues

±2

√
2
3
, 1±2

√
2
3
. (6.27)

All in all, in both cases one finds three negative eigenvalues and two positive ones, signaling
the presence of three attractive directions as r → −∞. The remaining unstable modes should
physically correspond to deformations that break extremality, resulting in a truncation of the
AdS×S throat and in the emergence of an event horizon at a finite distance, and it should
be possible to remove them with a suitable tuning of the boundary conditions at the outer
singularity. In the following section we shall argue for this interpretation of unstable modes
in the throat.

6.2.3 Comparison with known solutions

In order to highlight the physical origin of the unstable modes, let us consider the Reissner-
Nordström black hole in four dimensions, whose metric in isotropic coordinates takes the
form

ds2
RN =− g(ρ)2

f (ρ)2 dt2 + f (ρ)2 (dρ
2 +ρ

2 dΩ
2
2
)
, (6.28)

where

f (ρ)≡ 1+
m
ρ
+

m2

4ρ2 −
e2

4ρ2 ,

g(ρ)≡ 1− m2

4ρ2 +
e2

4ρ2 .

(6.29)

The extremal solution, for which m = e, develops an infinitely long AdS2×S2 throat in the
near-horizon limit ρ → 0, and radial perturbations of the type

ds2
pert =−

4ρ2

m2 e2δa(ρ) dt2 +
m2

4ρ2 e2δb(ρ) (dρ
2 +ρ

2 dΩ
2
2
)

(6.30)

solve the linearized equations of motion with power-law modes ∼ ρλRN , with eigenvalues

λRN =−2 , 1 , 0 . (6.31)

The zero-mode reflects invariance under shifts of δa, while the unstable mode reflects a
breaking of extremality. Indeed, writing m≡ e(1+ ε) the ρ

m � 1 ,ε � 1 asymptotics of the
red-shift gtt take the schematic form

(gtt)RN

(gtt)AdS2×S2
∼ regular+ ε

(
− 1

ρ2 +
3

mρ
+ regular

)
+o(ε) , (6.32)

so that for ε = 0 only a regular series in positive powers of ρ remains. Geometrically,
near extremality an approximate AdS×S throat exists for some finite length, after which
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Figure 15: a plot of the ratio of the Reissner-Nordström red-shift factor to the one of the
corresponding AdS2×S2, for various values of the extremality parameter ε ≡ m

e −1. Only
values outside of the event horizon are depicted. As extremality is approached, the hori-
zon recedes to infinity and the geometry develops an approximate AdS×S throat, marked
by (gtt)RN ≈ (gtt)AdS2×S2 , whose length in units of logρ grows asymptotically linearly in
− logε .

it is truncated by a singularity corresponding to the event horizon. As ε decreases, this
horizon recedes and the throat lengthens, with the length in logρ growing as − logε . This is
highlighted numerically in the plot of fig. 15.

A similar analysis for BPS D3-branes in type IIB supergravity [184] yields the eigen-
values −8 ,−4 , 4 , 0 ,0, suggesting again that breaking extremality generates unstable direc-
tions, and that a fine-tuning at infinity removes them leaving only the attractive ones. Notice
that the zero-modes correspond to constant rescalings of xµ , which is pure gauge, and to
shifts of the asymptotic value of the dilaton.

6.2.4 The pinch-off singularity

Let us now proceed to address the asymptotic geometry away from the core. Since the
dynamical system at hand is not integrable in general71, we lack a complete solution of the
equations of motion stemming from eq. (6.11), and therefore we shall assume that the dilaton
potential overwhelms the other terms of eq. (6.12) for large (positive) r, to then verify it a

71In the supersymmetric case the contribution arising from the dilaton tadpole is absent, and the resulting
system is integrable. Moreover, for p = 8 ,q = 0 the system is also integrable, since only the dilaton tadpole
contributes.
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posteriori. In this fashion, one can identify the asymptotic equations of motion

φ
′′ ∼ γ(D−2)

8
T eγφ+2v− 2q

p b ,

v′′ ∼− p+1
p

T eγφ+2v− 2q
p b ,

b′′ ∼− 1
D−2

T eγφ+2v− 2q
p b ,

(6.33)

whose solutions

φ ∼ γ(D−2)
8

y+φ1r+φ0 ,

v∼− p+1
p

y+ v1r+ v0 ,

b∼− 1
D−2

y+b1r+b0

(6.34)

are parametrized by the constants φ1,0 ,v1,0 ,b1,0 and a function y(r) which is not asymptoti-
cally linear (without loss of generality, up to shifts in φ1, v1, b1). Rescaling x and redefining
R0 in eq. (6.10) one can set e.g. b0 = v0 = 0. The equations of motion and the constraint
then reduce to

y′′ ∼ T̂ eΩy+Lr ,
1
2

Ω
(
y′
)2

+Ly′ ∼ T̂ eΩy+Lr−M , (6.35)

where72

T̂ ≡ T eγφ0+2v0− 2q
p b0 , Ω≡ D−2

8
γ

2− 2(D−1)
D−2

,

L≡ γ φ1 +2v1−
2q
p

b1 , M ≡ 4
D−2

φ
2
1 −

p
p+1

v2
1 +

q(D−2)
p

b2
1 .

(6.36)

The two additional exponentials in eq. (6.12), associated to flux and internal curvature con-
tributions, are both asymptotically ∼ exp(Ωn,c y+Ln,c r), with corresponding constant co-
efficients Ωn,c and Ln,c. Thus, if y grows super-linearly the differences Ω−Ωn,c determine
whether the dilaton potential dominates the asymptotics. On the other hand, if y is sub-linear
the dominant balance is controlled by the differences L− Ln,c. In the ensuing discussion
we shall consider the former case73, since it is consistent with earlier results [31], and, in
order to study the system in eq. (6.35), it is convenient to distinguish the two cases Ω = 0
and Ω 6= 0. Moreover, we have convinced ourselves that the tadpole-dominated system of
eq. (6.33) is actually integrable, and its solutions behave indeed in this fashion. As a final

72Notice that Ω= D−2
8

(
γ2− γ2

c
)
, where the critical value γc defined in [22] marks the onset of the “climbing”

phenomenon described in [84–86, 185] use different notations.
73The sub-linear case is controlled by the parameters φ1 ,v1 ,b1, which can be tuned as long as the constraint

is satisfied. In particular, the differences L−Ln,c do not contain v1.
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remark, us observe that, on account of eq. (6.34), the warp exponents of the longitudinal
sector dx2

p+1 and the sphere sector R0 dΩ2
q are asymptotically equal,

2
p+1

v− 2q
p

b∼ 2b . (6.37)

This is to be expected, since if one takes a solution with q = 0 and replaces

dx2
p+1 → dx2

p′+1 +R2
0 dΩ

2
p−p′ (6.38)

for some p′ < p and large R0, and then makes use of the freedom to rescale R0 shifting b by
a constant (which does not affect the leading asymptotics), one obtains another asymptotic
solution with lower p′ < p, whose warp factors are both equal to the one of the original
solution.

6.2.5 Pinch-off in the orientifold models

In the orientifold models Ω = 0, since the exponent γ = γc attains its “critical” value [22] in
the sense of [85]. The system in eq. (6.35) then yields

y∼ T̂
L2 eLr , M = 0 , L > 0 ,

y∼ T̂
2

r2 , M = T̂ , L = 0 .

(6.39)

These conditions are compatible, since the quadratic form M has signature (+,−,+) and
thus the equation M = T̂ > 0 defines a one-sheeted hyperboloid that intersects any plane,
including {L = 0}. The same is also true for the cone {M = 0}.

In both solutions the singularity arises at finite geodesic distance

Rc ≡
∫

∞

dr ev− q
p b < ∞ , (6.40)

since at large r the warp factor

v− q
p

b∼−D−1
D−2

y . (6.41)

In the limiting case L = 0, where the solution is quadratic in r, due to the discussion in
the preceding section this asymptotic behavior is consistent, up to the replacement of dx2

9
with dx2

2 + R2
0 dΩ2

7, with the full solution found in [31], whose singular structure is also
reconstructed in our analysis for p = 8, q = 0, L = 0. The existence of a closed-form solution
in this case rests on the integrability of the corresponding Toda-like system, since neither the
flux nor the internal curvature are present.
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6.2.6 Pinch-off in the heterotic model

In the heterotic model Ω = 4, and therefore one can define

Y ≡ y+
L
Ω

r , (6.42)

removing the Lr terms from the equations. One is then left with the first-order equation

1
2

Y ′2− T̂
Ω

eΩY = E , (6.43)

which implies the second-order equation of motion, where the “energy”

E ≡ M
2Ω
− L2

2Ω3 .
(6.44)

The solutions of eq. (6.43) depend on the sign of E, and one can verify that, if r → +∞, Y
grows at most linearly. On the other hand, super-linear solutions develop a singularity at a
finite radius r = r0, and they all take the form

Y ∼− 2
Ω

log(r0− r) , (6.45)

which is actually the exact solution of eq. (6.43) for E = 0. The geodesic distance to the
singularity

Rc ≡
∫ r0

dr ev− q
p b < ∞ (6.46)

is again finite, since from eqs. (6.41) and (6.45)

v− q
p

b∼ 2
Ω

D−1
D−2

log(r0− r) =
9

16
log(r0− r) . (6.47)

In terms of the geodesic radial coordinate ρc < Rc, the asymptotics74 are

φ ∼− 4
5

log(Rc−ρc) , ds2 ∼ (Rc−ρc)
2

25
(
dx2

6 +R2
0 dΩ

2
3
)
+dρ

2 . (6.48)

While these results are at most qualitative in this asymptotic region, since curvature correc-
tions and string loop corrections are expected to be relevant, they again hint at a physical
picture whereby space-time pinches off at finite distance in the presence of (exponential)
dilaton potentals, while branes dictate the symmetries of the geometry, as depicted in fig. 16.
In this context, the nine-dimensional Dudas-Mourad solutions correspond to (necessarily un-
charged) 8-branes75. This picture highlights the difficulties encountered in defining tension

74More precisely, the asymptotics for the metric in eq. (6.48) refer to the exponents in the warp factors,
which are related to v and b. Subleading terms could lead to additional prefactors in the metric.

75In particular, on account of the analysis that we described in the preceding section, it is reasonable to
expect that in the orientifold models the Dudas-Mourad solution corresponds to D8-branes.
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and flux as asymptotic charges, but analogous quantities might appear as parameters in the
sub-leading portion of the solution, of which there are indeed two. They ought to be matched
with the AdS×S core, and we shall elaborate on this issue in Section 6.2.7. For the time
being, let us recall that the results of [50], based on string perturbation theory, suggest that
at least the D1-branes that we consider are extremal, albeit the presence of dilaton tadpoles
makes this lesson less clear.

As a final comment, let us add that cosmological counterparts, if any, of these solu-
tions, whose behavior appears milder, can be expected to play a rôle when the dynamics of
pinch-off singularities are taken into account, and they could be connected to the hints of
spontaneous compactification discussed in Section 4. Indeed, as already stressed in [22],
the general lesson is that non-supersymmetric settings are dynamically driven toward time-
dependent configurations, and this additional potential instability might be mitigated to an
arbitrarily large extent studying the dynamics deep inside the AdS throat, the deeper the
more any effect of an asymptotic collapse is red-shifted.

φ → ∞

∫ √
grrdr

AdSp+2×Sq

φ = φ0

Sq

Figure 16: a schematic depiction of the expected structure of the complete geometry sourced
by the branes, displaying only geodesic radial distance and the Sq radius. The geometry
interpolates between the AdS×S throat and the pinch-off singularity (dashed circle).

6.2.7 Black branes: back-reaction

Let us conclude our discussion on back-reactions extending the machinery that we have
developed in Section 6.2.1 to the case of non-extremal branes. Including a “blackening”
factor entails the presence of an additional dynamical function, and thus after gauge-fixing
radial diffeomorphisms one is left with four dynamical functions (including the dilaton).
Specifically, in order to arrive at a generalization of the Toda-like system of eqs. (6.11)
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and (6.13), the correct ansatz takes the form

ds2
D = e2(A(r)+pC(r)+qB(r)) dr2− e2A(r) dt2 + e2C(r) dx2

p + e2B(r)R2
0 dΩ

2
q ,

φ = φ(r) ,

Hp+2 =
n

f (φ)(R0 eB)q Volp+2 , Volp+2 = e2A+2pC+qB dr ∧ dt ∧dpx .
(6.49)

Then, one can verify that, after removing the mixing terms via the substitution

A = (1−q)a− p
q

c , B = a+b− p
q

c , C = c , (6.50)

the resulting reduced equations of motion stem from the Toda-like action

Sred =
∫

dr
[

4
D−2

(
φ
′)2

+q(q−1)
(
a′2−b′2

)
+

p(D−2)
q

(
c′
)2−U

]
(6.51)

where the effective potential now reads

U =−T eγφ+2a+2qb− 2p
q c− n2

2R2q
0

e−αφ−2(q−1)a+ 2p(q−1)
q c +

q(q−1)
R2

0
e2(q−1)b , (6.52)

and the equations of motion are to be supplemented by the zero-energy constraint

4
D−2

(
φ
′)2

+q(q−1)
(
a′
)2− q(q−1)

(
b′
)2

+
p(D−2)

q

(
c′
)2

+U = 0 . (6.53)

Changing variables in eq. 6.49 in order to match the ansatz of eq. 6.10, and substituting the
resulting expressions in eqs. (6.51) and (6.53), one recovers the Toda-like system that de-
scribes extremal branes. Hence, the generalized system that we have derived can in principle
describe the back-reaction of non-extremal branes, which ought to exhibit Rindler geome-
tries in the near-horizon limit. On the other hand, one can verify that the tadpole-dominated
asymptotic system reproduces the behavior of eq. (6.34), thus suggesting that the pinch-off
singularities described in the preceding sections are generic and do not depend on the grav-
itational imprint of the sources that are present in space-time, rather only on the residual
symmetry left unbroken.

6.3 Black branes: dynamics
Let us now extend the considerations of Section 6.1 to the non-extremal case, studying po-
tentials between non-extremal brane stacks and between stacks of different types and dimen-
sions. While probe-brane computations are rather simple to perform using the back-reacted
geometries that we described in the preceding section, they pertain to regimes in which the
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number of p-branes Np in one stack is much larger than the number of q-branes Nq in the
other stack. However, with respect to the extremal case, the leading contribution to the string
amplitude for brane scattering corresponds to the annulus, which is non-vanishing and does
not entail the complications due to orientifold projections, anti-branes and Riemann surfaces
of higher Euler characteristic. This setting therefore offers the opportunity to compare probe
computations with string amplitude computations. Specifically, we shall consider the un-
charged 8-branes in the orientifold models, since their back-reacted geometry is described
by the static Dudas-Mourad solution76 [31] that we have described in Section 3. Further-
more, the other globally known back-reacted geometry in this setting pertains to extremal
D1-branes, and 8-branes are the only probes (of different dimension) whose potential can
be reliably computed in this case, since they can wrap the internal S7 in the near-horizon
AdS3×S7 throat. On the other hand, while probe computations in the heterotic model can
be performed with no further difficulties, their stringy interpretation appears more subtle,
since it would involve NS5-branes or non-supersymmetric dualities. Nevertheless, probe-
brane calculations in this setting yield attractive potentials for 8-branes and fundamental
strings, as in the orientifold models, while NS5-branes are repelled. In addition, in some
cases the potential scales with a positive power of gs. Otherwise, the instability appears to be
still under control, since probes would reach the strong-coupling regions in a parametrically
large time for gs� 1.

6.3.1 Brane probes in the Dudas-Mourad geometry

Let us consider a stack of Np probe Dp-branes, with p≤ 8, embedded in the Dudas-Mourad
geometry parallel to the 8-branes77, at a position y in the notation of Section 3. We work
in units where αO = 1 for clarity. This setting appears to be under control as long as the
(string-frame) geodesic coordinate

r ≡ 1
√

gs

∫ y

0

du

u
1
3

e−
3
8 u2

(6.54)

is far away from its endpoints r = 0, r = Rc. Such an overlap regime exists provided that
gs ≡ eΦ0 � 1, and thus both curvature corrections and string loop corrections are expected
to be under control.

Writing the string-frame metric as

ds2
10 = e2A(y) dx2

1,8 + e2B(y) dy2 (6.55)

the DBI action evaluates to

Sp =−Np Tp

∫
dp+1xe(p+1)A(y)−Φ(y) ≡−Np Tp

∫
dp+1xVp8 , (6.56)

76The generalization to non-extremal p-branes of different dimensions would entail solving non-integrable
systems, whose correct boundary conditions are not well-understood hitherto. Moreover, a reliable probe-brane
regime would exclude the pinch-off asymptotic region, thereby requiring numerical computations.

77While the number N8 of 8-branes does not appear explicitly in the solution, there is a single free parameter
gs ≡ eΦ0 , which one could expect to be determined by N8 analogously to the extremal case, with gs � 1 for
N8� 1.
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where the probe potential per unit tension

Vp8 = gs
p−3

4 y
2
9 (p−2) e

p−5
8 y2 (6.57)

displays a non-trivial dependence on p, and is depicted in figs. 17 and 18. Similarly, probe
NS5-branes are subject to the potential V58 = sech2 y√

gs
. In particular, if the potential drives

probes toward y → ∞ it is repulsive, since the corresponding pinch-off singularity derived in
the preceding sections agrees with the Dudas-Mourad geometry in this regime. All in all, for
p < 3 probes are repelled by the 8-branes, while for p > 4 they are attracted to the 8-branes.
The cases p = 3 , 4 feature unstable equilibria78 which appear to be within the controlled
regime, but the large-separation behavior, to be compared to a string amplitude computation,
appears repulsive. As we have anticipated, the analogous computation for branes probing
the back-reacted geometry sourced by other non-extremal branes appears considerably more
challenging. This is due to the fact that even if the reduced dynamical system derived in
the preceding sections were solved numerically in a reliable regime, the asymptotic bound-
ary conditions corresponding to uncharged branes are not yet understood. While this is the
case also for extremal branes, one can make progress observing that in the probe regime the
scale of the dimensions transverse to the extremal stack should be large enough to ensure
that the near-horizon limit is reliable. The exponential term in eq. (6.57) is actually univer-
sal, since repeating the above probe-brane computation for the generic pinch-off singularity
of eq. (6.39) in the orientifold models79 yields the same result, with the potential at large
separation repulsive for p < 5 and attractive for p > 5, while the case p = 5 requires sub-
leading, presumably power-like, terms in the metric. However, we do not expect these cases
to provide reliable insights, since the pinch-off singularity lies beyond the controlled regime.

In order to verify that this construction is at least parametrically under control, one ought
to verify that the probe-brane stack remains in the controlled region for parametrically large
times. To this end, let us consider the reduced dynamical system that describes motion along
y, with the initial conditions y(0) = y0 , ẏ(0) = 0. The corresponding Lagrangian reads

Lred =−Tp NpVp8

√
1− e2(B−A) ẏ2 , (6.58)

and, since the corresponding Hamiltonian

Hred =
Tp NpVp8√

1− e2(B−A) ẏ2
= Tp NpVp8(y0) (6.59)

78Notice that, in the absence of fluxes, brane polarization [12, 186] would not suffice to stabilize these
equilibria.

79As we have discussed in Section 6.2.7, the leading-order behavior of the pinch-off singularity is expected
to be applicable to the non-extremal case, since it is dominated by the dilaton potential.
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Figure 17: probe potentials for gs = 1 and p ≤ 8. For p < 3 the probe stack is repelled by
the 8-branes, while for p > 4 it is attracted to the 8-branes. A string amplitude computation
yields a qualitatively similar behavior, despite the string-scale breaking of supersymmetry.

is conserved, solving the equation of motion by quadrature gives

t =
∫ y

y0

eB(u)−A(u)√
1−
(

Vp8(u)
Vp8(y0)

)2
du = g

− 3
4

s

∫ y

y0

e−
u2
2

u
5
9

√
1−
(

u
y0

) 4
9 (p−2)

e
p−5

4 (u2−y2
0)

, (6.60)

which is indeed parametrically large in string units.
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Figure 18: probe potentials for gs = 1 and p ≤ 8, plotted as functions of the geodesic coor-
dinate along the compact direction.

6.3.2 String amplitude computation

Let us now compare the probe-brane result of eq. (6.57) with a string amplitude computation.
As we have anticipated, in the non-extremal case the relevant amplitude for the leading-order
interaction between stacks of Np Dp-branes and Nq Dq-branes80, with p < q for definiteness,
is provided by the annulus amplitude, whose transverse-channel integrand in the present

80The ensuing string amplitude computation is expected to be reliable as long as Np and Nq are O(1),
complementary to the probe regimes Np� Nq and Np� Nq.
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cases takes the form [50]

Np Nq Ãpq ∝ Np Nq
(
V8−q+p Oq−p−O8−q+pVq−p

)
, (6.61)

where the characters are evaluated at q = e−2π` and we have omitted the overall unimpor-
tant positive normalization, which encodes the tensions and depends on whether both stacks
consist of non-extremal branes or one stack consists of extremal branes. In suitable units for
the transverse separation r bewtween the two stacks, the potential Vpq takes the form

Vpq ∝−Np Nq

∫
∞

0

d`

`
9−q

2

Ãpq

η8−q+p

(
2η

ϑ2

) q−p
2

e−
r2
` . (6.62)

For large r, the integral is dominated by the large ` region, where the integrand asymptotes
to q−

1
3 Ãpq, with

Ãpq ∝ V8−q+p Oq−p−O8−q+pVq−p ∼ 2(4−q+ p)q
1
3 , (6.63)

so that the overall sign of the potential is the sign of q− p−4. Thus, for large r and q < 7
one finds

Vpq ∝ (q− p−4)
Np Nq

r7−q , (6.64)

which is repulsive for p < q−4 and attractive for p > q−4. While the integral of eq. (6.62)
diverges for q ≥ 7, a distributional computation for q = 7 , 8 yields a finite force stemming
from potentials that behave as (p−3) log(r) and (p−4)r respectively. Therefore, the only
case that can be compared with a reliable probe-brane computation is q= 8, where the poten-
tial behaves as (p−4)r and is thus repulsive for p < 4 and attractive for p > 4, consistently
with the results in the preceding section.

6.3.3 Probe 8-branes in AdS×S throats

To conclude, let us thus consider N8 8-branes embedded in the near-horizon AdS3×S7 ge-
ometries sourced by N1� N8 extremal D1-branes in the orientifold models and, for the sake
of completeness, by N5 � N8 NS5-branes in the heterotic model. Other than the interac-
tion potential bewteen two extremal stacks, which we have computed in Section 6.1, this is
the only case where a probe-brane potential can be reliably computed, since the 8-branes
can wrap the internal spheres without collapsing in a vanishing cycle, leaving only one di-
mension across which to separate from the stack. Moreover, this is the only case where
computations can be performed in the opposite regime N1 , N5� N8, as we have described
in Section 6.3.1. Since the 8-branes are uncharged, the respective potentials V81 ,V85 arise
from the DBI contribution only, and one finds

V81 = N8 T8 R7
(

L
Z

)2

, V85 = N8 T8 R3
(

L
Z

)6

, (6.65)
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where we have omitted the a priori unknown (and unimportant) scaling with gs. These
potentials are thus attractive, which may appear in contradiction with the results in the pre-
ceding sections, where both D1-branes and NS5-branes are repelled by the 8-branes. How-
ever, let us observe that, since the 8-branes wrap the internal spheres, in the large-separation
regime they ought to behave as uncharged 1-branes and 5-branes respectively, consistently
with an attractive interaction. Furthermore, when expressed in terms of the geodesic coordi-
nate r = L log

(Z
L

)
, the potentials of eq. (6.65) decay exponentially in r.

All in all, the results in this section further support the idea that brane dynamics plays
a crucial rôle in elucidating the fate of string models with broken supersymmetry. When-
ever available, microscopic information such as the scaling of the tensions of fundamental
branes and the string amplitude computation of eq. (6.62) appear to be consistent with the
low-energy effective theory introduced in Section 3. The resulting picture builds an intu-
itive understanding of the high-energy behavior of the settings at stake, and points to some
avenues to more quantitative results in this respect. In particular, the interpretation of the
AdS3× S7 solution introduced in Section 3 as the near-horizon limit of the back-reacted
geometry sourced by D1-branes, which subsequently nucleate and are repelled by each
other, suggests that an holographic approach could expose some intriguing lessons [25, 164].
Notwithstanding the important issue of corroborating our proposals quantitatively, based on
our considerations one can build an intuitive physical picture, whereby charged branes are
gradually expelled from the original stack until only a single brane remains. A world-sheet
analysis of such an end-point to flux tunneling would presumably involve an analysis along
the lines of [187], albeit in the absence of supersymmetry its feasibility remains opaque.

7 Conclusions
We can now summarize the main points that we have discussed in this review, collecting our
considerations and results.

To begin with, in Section 2 we have presented a brief overview of three ten-dimensional
string models with broken supersymmetry and their construction in terms of vacuum ampli-
tudes. These comprise two orientifold models, the USp(32) model of [26] and the U(32)
model of [27, 28], and the SO(16)× SO(16) heterotic model of [29, 30], and their pertur-
bative spectra feature no tachyons. On the other hand, the perturbative expansion of these
models around flat space-time involves gravitational tadpoles, whose back-reaction appears
dramatic and is, at present, not completely under control.

In Section 3 we have described a family of effective theories which describes their low-
energy physics. In particular, their actions contain exponential potentials for the dilaton,
whose presence tends to drive the dynamics toward runaway. In order to counteract this
behavior, the resulting classical solutions that have been found entail warped space-time ge-
ometries [23, 31] or compactifications supported by fluxes [32]. We have described in detail
the Dudas-Mourad solutions of [31], which comprise nine-dimensional static solutions and
ten-dimensional cosmological solutions, and general Freund-Rubin flux compactifications,
which include the AdS×S solutions found in [32] and their generalizations studied in [23].
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Whenever dS solutions of this type are allowed, they always contain instabilities in the
dilaton-radion sector, but in the string models that we have introduced in Section 2 they do
not arise. In order to assess whether more general settings could give rise to dS solutions, we
have considered warped flux compactifications, deriving an expression for the space-time
cosmological constant which underlies an extended no-go result that we have connected to
recent conjectures about dS solutions and the swampland [19, 36].

In Section 4 we have studied in detail the classical stability of the solutions discussed
in Section 3, deriving the linearized equations of motion for field perturbations. In par-
ticular, in the case of the Dudas-Mourad solutions we have recast the resulting equations as
Schrödinger-like problems, whose Hamiltonians can be decomposed in terms of creation and
annihilation operators. These solutions are stable at the classical level, with the exception
of an intriguing logarithmic growth of the homogeneous tensor mode in the cosmological
case [22], which we are tempted to interpret as a tendency of space-time toward sponta-
neous compactification. However, let us remark that from the perspective of the underlying
string models these solutions entail sizeable curvature corrections or string loop corrections,
thus potentially compromising some of these lessons. this issue does not appear to affect
the AdS×S solutions, which for large fluxes are expected to be under control globally, but
their Kaluza-Klein spectra contain unstable modes in the (space-time) scalar sector [22]
for a finite number of internal angular momenta. One can then attempt to remove them with
suitable freely acting projections on the internal spheres, or choosing a different internal
manifold altogether, and for the heterotic model one can achieve this with an antipodal Z2
projection on the internal S3.

In Section 5 we have focused on some non-perturbative instabilities of the AdS compact-
ifications discussed in Section 3, which undergo flux tunneling [23] gradually discharging
space-time. This process is exponentially unlikely for large fluxes, and it entails the nucle-
ation of charged bubbles which then expand, reaching the (conformal) boundary in a finite
time. Motivated by the qualitative properties of these bubbles, we have developed a picture
involving fundamental branes, matching bulk gravitational computations to brane instanton
computations of decay rates and deriving consistency conditions. In particular, we have
found that the (oppositely charged pairs of) branes that mediate flux tunneling ought to be
D1-branes in the orientifold models and NS5-branes in the heterotic model, but our re-
sults apply also to “exotic” branes [168–172] whose tensions scales according to different
powers of the string coupling.

In Section 6 we have kept developing the brane picture presented in Section 5, studying
the Lorentzian evolution undergone by branes after nucleation. In the non-supersymmetric
models described in Section 2, rigid fundamental branes are subject to a non-trivial potential
which encodes an enhanced charge-to-tension ratio that is greater than its bare counter-
part, thus verifying the weak gravity conjecture in these settings. In addition to their
expansion, positively charged branes are driven toward long-wavelength world-volume de-
formations, while negatively charged branes are not affected by instabilities of this type. In
addition, we have briefly commented on dS brane-world constructions, applying the pro-
posal recently revisited in [24, 38–40] to the non-supersymmetric string models discussed in
Section 2. Taking into account back-reactions ought to lead to the Einstein equations on the
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world-volume [39, 40] at low energies, and thus the complete effective field theory would
involve gravity coupled to (non-)Abelian gauge fields and matter. Moreover, models of this
type appear to accommodate massive particles of arbitrarily small, if unlikely, masses via
open strings stretching between expanding branes [24]. We would like to further explore
these enticing constructions. Moreover, in order to further develop the connection between
the AdS×S solutions discussed in Section 3 and the corresponding branes, we have investi-
gated in detail the full back-reacted geometries sources by the latter, which feature AdS×S
as attractive near-horizon throats and strongly coupled regions where, classically, space-
time “pinches off” at a finite transverse geodesic distance. This result generalizes the
analogous behavior of the static solutions of [31], which is indeed reproduces for 8-branes
and appears to depend only on the residual symmetry left unbroken by the branes. Therefore,
the forces exerted on nucleated brane stacks afford an interpretation as the force between two
stacks in the probe-brane regime in which one contains significantly more branes than the
other. Finally, we turned to the non-extremal case, deriving a system of dynamical equa-
tions for the back-reaction of non-extremal branes and studying their dynamics in some
probe-brane regimes, namely Dp-branes probing the static Dudas-Mourad geometry in the
orientifold models and, in a complementary regime, 8-branes probing the AdS3×S7 throat
sourced by D1-branes. We have compared the resulting interaction potentials to a string
amplitude computation, finding qualitative agreement whenever both results are reliable.

Outlook.— The results that we have discussed in this review suggest a tantalizing, if still
elusive, picture of the rich dynamics that underpins supersymmetry breaking in string the-
ory. Even on a fundamental level, the back-reaction of the gravitational degrees of freedom
intrinsic to string theory appears dramatic to such an extent that bona fide vacua seem either
completely absent or necessarily strongly coupled. As a result, all the effective static space-
times that we have investigated show a tendency to end in a singularity at a finite distance,
and their existence appear to rest on the presence of localized sources that act as a symmetry-
breaking compass. Hence, the oft-fruitful paradigm of studying a system via its effect on
probe sources has proven all the more necessary in this context, and in particular, as we have
described, it holds some potentially intriguing lessons to be unveiled: from a theoretical per-
spective, the rich dynamics of non-supersymmetric branes hints at a deeper connection with
the microscopic interactions of open strings, and thus with holography, that could lead to
further quantitative progress on the ultimate fate of non-supersymmetric string “vacua”. On
the other hand, from a phenomenological perspective, the very same dynamics appears to
be able to accommodate naturally interesting cosmological models with a number of desired
features. Indeed, the simplest configurations lead to higher-dimensional cosmologies, modi-
fied power spectra and point to a tendency toward spontaneous compactification, while more
elaborate constructions lead to lower-dimensional dS brane-world scenarios. In addition, the
extremely stringent constraints of T-duality in cosmological backgrounds [188–193] point
to another intriguing approach, which spurred its own novel line of research [194–207]. All
in all, it seems clear that, among the long-standing issues with supersymmetry breaking,
instabilities often arise from an attempt to force naturally dynamical systems into static con-
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figurations, while the most coveted phenomenology reflects the accelerated expansion of our
universe. Therefore, embracing instabilities as a starting point in this respect could help to
shed some light on these matters, which are of primary interest for applications to funda-
mental physics, but also of intrinsic value for a deeper understanding of string theory on a
foundational level.

A Tensor spherical harmonics: a primer
In this appendix we review some results that were needed for our stability analysis in Sec-
tion 4, starting from an ambient Euclidean space. In Section A.1 we build scalar spherical
harmonics, and in Section A.2 we extend our considerations to tensors of higher rank. The
results agree with the constructions presented in [208, 209]81.

A.1 Scalar spherical harmonics
Let Y 1, . . .Y n+1 be Cartesian coordinates of Rn+1, so that the unit sphere Sn is described by
the constraint

δIJ Y I Y J = r2 (A.1)

on the radial coordinate r, solved by spherical coordinates yi according to

Y I = rŶ I(y) . (A.2)

The scalar spherical harmonics on Sn can be conveniently constructed starting from har-
monic polynomials of degree ` in the ambient Euclidean space Rn+1. A harmonic polyno-
mial of degree ` takes the form

H`
(n)(Y ) = αI1...I` Y I1 . . .Y I` , (A.3)

and is therefore determined by a completely symmetric and trace-less tensor αI1...I` of rank
`, as can be clearly seen applying to it the Euclidean Laplacian

∇
2
n+1 =

n+1

∑
I=1

∂ 2

∂Y 2
I
. (A.4)

The scalar spherical harmonics Y I1...I`
(n) are then defined restricting the H`

(n)(Y ) to the unit
sphere Sn, or equivalently as

H`
(n)(Ŷ (y)) = r`αI1...I` Y

I1...I`
(n) (y) . (A.5)

As a result, the Euclidean metric can be recast as

ds2
n+1 = dr2 + r2 dΩ

2
n , (A.6)

81For a more recent analysis in the case of the five-sphere, see [210].
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and the scalar Laplacian decomposes according to

0 = ∇
2
n+1H`

(n)(Y ) =
1
rn

∂

∂ r

(
rn

∂H`
(n)(Y )

∂ r

)
+

1
r2 ∇

2
Sn H`

(n)(Y ) , (A.7)

where
∂H`

(n)(Y )

∂ r
=

`

r
H`
(n)(Y )

(A.8)

for the homogeneous polynomials H`
(n)(Y ). All in all

∇
2
Sn Y I1...I`

(n) =−`(`+n−1)Y I1...I`
(n) , (A.9)

and the degeneracy of the scalar spherical harmonics for any given ` is the number of inde-
pendent components of a corresponding completely symmetric and trace-less tensor, namely

(n+2`−1)(n+ `−2)!
`!(n−1)!

. (A.10)

A.2 Spherical harmonics of higher rank
In discussing more general tensor harmonics, it is convenient to notice that, in the coordinate
system of eq. (A.6), the non-vanishing Christoffel symbols Γ̃K

IJ for the ambient Euclidean
space read

Γ̃
r
i j =−r gi j , Γ̃

i
jr =

1
r

δ
j

i , Γ̃
k
i j = Γ

k
i j , (A.11)

where the labels i, j,k refer, as above, to the n-sphere, whose Christoffel symbols are denoted
by Γk

i j.
The construction extends nicely to tensor spherical harmonics, which can be defined

starting from generalized harmonic polynomials, with one proviso. The relation in eq. (A.2)
and its differentials imply that the actual spherical components of tensors carry additional
factors of r, one for each covariant tensor index, with respect to those naı̈vely inherited from
the Cartesian coordinates of the Euclidean ambient space, as we shall now see in detail. To
begin with, vector spherical harmonics arise from one-forms in ambient space, built from
harmonic polynomials of the type

H`
(n)J(Y ) = αI1...I` ,J Y I1 . . .Y I` , (A.12)

where the coefficients αI1...I` ,J are completely symmetric and trace-less in any pair of the
first ` indices. They are also subject to the condition

Y J H`
(n)J(Y ) = 0 , (A.13)
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since the radial component, which does not pertain to the sphere Sn, ought to vanish. This
implies that the complete symmetrization of the coefficients vanishes identically,

α(I1...I` ,J) = 0 , (A.14)

and on account of the symmetry in the first ` indices. As a result, H`
n ,J(Y ) is thus transverse

in the ambient space,
∂

JH`
(n)J(Y ) = 0 . (A.15)

Moreover, any Euclidean vector V such that VI Y I = 0 couples with differentials according
to the general rule inherited from eq. (A.2),

VI dY I =VI r dŶ I , (A.16)

so that the actual sphere components, which are associated to dŶ I , include an additional
power of r, and the vector spherical harmonics Y I1...I` ,J

(n) i are thus obtained from

r`+1 Y I1...I` ,J
(n) i αI1...I` ,J dyi = r H`

(n)J(Y )dŶ J . (A.17)

Therefore,

∇r∇r

(
r H`

(n)J(Y )
)
=

(
∂

∂ r
− 1

r

)2(
r H`

(n)J(Y )
)
=

`(`−1)
r

H`
(n)J(Y ) , (A.18)

while the remaining contributions to the Laplacian give

1
r2 ∇

2
Sn

(
r H`

(n)J(Y )
)
+

n(`+1)−n−1
r

(
r H`

(n)J(Y )
)
, (A.19)

taking into account the Christoffel symbols in eq. (A.11). Since the total Euclidean Lapla-
cian vanishes by construction, adding eqs. (A.18) and (A.19) finally results in

∇
2
Sn Y I1...I` ,J

(n) i =−(`(`+n−1)−1)Y I1...I` ,J
(n) i , (A.20)

with `≥ 1.
In a similar fashion, the spherical harmonics Y

I1...I` ,J1...Jp
(n) i1...ip

, corresponding to generic
higher-rank transverse tensors which are also trace-less in any pair of symmetric I-indices,
can be described starting from harmonic polynomials of the type H`

(n)J1...Jp
(Y ), and sat-

isfy

∇
2
Sn Y

I1...I` ,J1...Jp
(n) i1...ip

=−(`(`+n−1)− p)Y I1...I` ,J1...Jp
(n) i1...ip

, (A.21)
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with `≥ p.
In Young tableaux language, the scalar harmonics correspond to trace-less single-row

diagrams of the type

I1 I2 . . . Il
, (A.22)

while the independent vectors associated to vector harmonics correspond to two-row trace-
less hooked diagrams of the type

I1 I2 . . . Il

J
, (A.23)

as we have explained. Similarly, the independent tensor perturbations of the metric in the
internal space correspond to trace-less diagrams of the type

I1 I2 . . . Il

J1 J2

, (A.24)

while the independent perturbations associated to a (p+1)-form gauge field in the internal
space correspond, in general, to multi-row diagrams of the type

I1 I2 . . . Il

J1

...

Jp+1

. (A.25)

The degeneracies of these representations can be related to the corresponding Young tableaux,
as in [211]. The structure of the various types of harmonics, which are genuinely different
for large enough values of n, reflects nicely the generic absence of mixings between different
classes of perturbations.
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[118] C. Córdova, G. B. De Luca, and A. Tomasiello, “New de Sitter Solutions in Ten
Dimensions and Orientifold Singularities”, (2019), arXiv:1911.04498 [hep-th].

[119] D. Andriot, P. Marconnet, and T. Wrase, “New de Sitter solutions of 10d type IIB
supergravity”, JHEP 08, 076 (2020), arXiv:2005.12930 [hep-th].

[120] D. Andriot, P. Marconnet, and T. Wrase, “Intricacies of classical de Sitter string back-
grounds”, (2020), arXiv:2006.01848 [hep-th].

[121] I. Bena, G. B. De Luca, M. Graña, and G. Lo Monaco, “Oh, wait, O8 de Sitter may
be unstable!”, JHEP 03, 168 (2021), arXiv:2010.05936 [hep-th].

[122] D. Andriot, “Tachyonic de Sitter solutions of 10d type II supergravities”, (2021),
arXiv:2101.06251 [hep-th].

[123] G. B. De Luca, E. Silverstein, and G. Torroba, “Hyperbolic compactification of M-
theory and de Sitter quantum gravity”, (2021), arXiv:2104.13380 [hep-th].

[124] M. Montero, T. Van Riet, and G. Venken, “A dS obstruction and its phenomenological
consequences”, JHEP 05, 114 (2020), arXiv:2001.11023 [hep-th].

[125] S. K. Garg and C. Krishnan, “Bounds on Slow Roll and the de Sitter Swampland”,
JHEP 11, 075 (2019), arXiv:1807.05193 [hep-th].

[126] J. March-Russell and R. Petrossian-Byrne, “QCD, Flavor, and the de Sitter Swamp-
land”, (2020), arXiv:2006.01144 [hep-th].

[127] A. Bedroya and C. Vafa, “Trans-Planckian Censorship and the Swampland”, (2019),
arXiv:1909.11063 [hep-th].

[128] A. Bedroya, R. Brandenberger, M. Loverde, and C. Vafa, “Trans-Planckian Censor-
ship and Inflationary Cosmology”, Phys. Rev. D 101, 103502 (2020), arXiv:1909.
11106 [hep-th].

[129] D. Andriot, N. Cribiori, and D. Erkinger, “The web of swampland conjectures and
the TCC bound”, JHEP 07, 162 (2020), arXiv:2004.00030 [hep-th].

[130] S. Lanza, F. Marchesano, L. Martucci, and I. Valenzuela, “Swampland Conjectures
for Strings and Membranes”, (2020), arXiv:2006.15154 [hep-th].

[131] S. Lanza, F. Marchesano, L. Martucci, and I. Valenzuela, “The EFT stringy viewpoint
on large distances”, (2021), arXiv:2104.05726 [hep-th].

101

https://doi.org/10.1016/j.physletb.2019.04.030
https://arxiv.org/abs/1902.08209
https://doi.org/10.1002/prop.201900026
https://doi.org/10.1002/prop.201900026
https://arxiv.org/abs/1902.10093
https://doi.org/10.1103/PhysRevD.102.026014
https://arxiv.org/abs/1909.08630
https://doi.org/10.1103/PhysRevD.103.086010
https://doi.org/10.1103/PhysRevD.103.086010
https://arxiv.org/abs/1909.10993
https://arxiv.org/abs/1911.04498
https://doi.org/10.1007/JHEP08(2020)076
https://arxiv.org/abs/2005.12930
https://arxiv.org/abs/2006.01848
https://doi.org/10.1007/JHEP03(2021)168
https://arxiv.org/abs/2010.05936
https://arxiv.org/abs/2101.06251
https://arxiv.org/abs/2104.13380
https://doi.org/10.1007/JHEP05(2020)114
https://arxiv.org/abs/2001.11023
https://doi.org/10.1007/JHEP11(2019)075
https://arxiv.org/abs/1807.05193
https://arxiv.org/abs/2006.01144
https://arxiv.org/abs/1909.11063
https://doi.org/10.1103/PhysRevD.101.103502
https://arxiv.org/abs/1909.11106
https://arxiv.org/abs/1909.11106
https://doi.org/10.1007/JHEP07(2020)162
https://arxiv.org/abs/2004.00030
https://arxiv.org/abs/2006.15154
https://arxiv.org/abs/2104.05726


[132] S. M. Carroll, M. C. Johnson, and L. Randall, “Dynamical compactification from de
Sitter space”, JHEP 11, 094 (2009), arXiv:0904.3115 [hep-th].

[133] F. Apruzzi, M. Fazzi, D. Rosa, and A. Tomasiello, “All AdS 7 solutions of type II
supergravity”, JHEP 04, 064 (2014), arXiv:1309.2949 [hep-th].

[134] F. Apruzzi, G. Bruno De Luca, A. Gnecchi, G. Lo Monaco, and A. Tomasiello, “On
AdS7 stability”, (2019), arXiv:1912.13491 [hep-th].

[135] S.-W. Kim, J. Nishimura, and A. Tsuchiya, “Expanding (3+1)-dimensional universe
from a Lorentzian matrix model for superstring theory in (9+1)-dimensions”, Phys.
Rev. Lett. 108, 011601 (2012), arXiv:1108.1540 [hep-th].

[136] K. N. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura, and S. K. Papadoudis,
“Complex Langevin analysis of the spontaneous symmetry breaking in dimension-
ally reduced super Yang-Mills models”, JHEP 02, 151 (2018), arXiv:1712.07562
[hep-lat].

[137] N. Ishibashi, H. Kawai, Y. Kitazawa, and A. Tsuchiya, “A Large N reduced model as
superstring”, Nucl. Phys. B 498, 467–491 (1997), arXiv:hep-th/9612115.

[138] P. Breitenlohner and D. Z. Freedman, “Stability in Gauged Extended Supergravity”,
Annals Phys. 144, 249 (1982).

[139] H. Lu and K.-N. Shao, “Solutions of Free Higher Spins in AdS”, Phys. Lett. B 706,
106–109 (2011), arXiv:1110.1138 [hep-th].

[140] S. S. Gubser and I. Mitra, “Some interesting violations of the Breitenlohner-Freedman
bound”, JHEP 07, 044 (2002), arXiv:hep-th/0108239.

[141] O. DeWolfe, D. Z. Freedman, S. S. Gubser, G. T. Horowitz, and I. Mitra, “Stability of
AdS(p) x M(q) compactifications without supersymmetry”, Phys. Rev. D 65, 064033
(2002), arXiv:hep-th/0105047.

[142] Y. P. Hong and I. Mitra, “Investigating the stability of a nonsupersymmetric land-
scape”, Phys. Rev. D 72, 126003 (2005), arXiv:hep-th/0508238.

[143] H. J. Kim, L. J. Romans, and P. van Nieuwenhuizen, “The Mass Spectrum of Chiral
N=2 D=10 Supergravity on S**5”, Phys. Rev. D 32, 389 (1985).

[144] E. Malek and H. Samtleben, “Kaluza-Klein Spectrometry for Supergravity”, Phys.
Rev. Lett. 124, 101601 (2020), arXiv:1911.12640 [hep-th].
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[200] C. A. Núñez and F. E. Rost, “New non-perturbative de Sitter vacua in α ′-complete
cosmology”, (2020), arXiv:2011.10091 [hep-th].

[201] H. Bernardo and G. Franzmann, “α ′-Cosmology: solutions and stability analysis”,
JHEP 05, 073 (2020), arXiv:2002.09856 [hep-th].

[202] I. Basile and A. Platania, “Cosmological α ′-corrections from the functional renor-
malization group”, JHEP 21, 045 (2020), arXiv:2101.02226 [hep-th].

[203] I. Basile and A. Platania, “String Tension between de Sitter vacua and Curvature
Corrections”, (2021), arXiv:2103.06276 [hep-th].

[204] R. Bonezzi, T. Codina, and O. Hohm, “Beta functions for the duality-invariant sigma
model”, (2021), arXiv:2103.15931 [hep-th].

[205] H. Bernardo, P. R. Chouha, and G. Franzmann, “Kalb-Ramond backgrounds in α ′-
complete cosmology”, (2021), arXiv:2104.15131 [hep-th].

[206] J. Quintin, H. Bernardo, and G. Franzmann, “Cosmology at the top of the α ′ tower”,
(2021), arXiv:2105.01083 [hep-th].

[207] T. Codina, O. Hohm, and D. Marques, “General String Cosmologies at Order α ′ 3”,
(2021), arXiv:2107.00053 [hep-th].

[208] M. A. Rubin and C. R. Ordonez, “EIGENVALUES AND DEGENERACIES FOR
n-DIMENSIONAL TENSOR SPHERICAL HARMONICS”, (1983).

[209] M. A. Rubin and C. R. Ordonez, “Symmetric Tensor Eigen Spectrum of the Laplacian
on n Spheres”, J. Math. Phys. 26, 65 (1985).

[210] P. van Nieuwenhuizen, “The compactification of IIB supergravity on S5 revisted”, in
Strings, gauge fields, and the geometry behind: The legacy of Maximilian Kreuzer,
edited by A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, and E. Scheidegger (June
2012), pp. 133–157, arXiv:1206.2667 [hep-th].

[211] Z. Ma, Group theory for physicists (World Scientific, 2007).

106

https://arxiv.org/abs/2012.13312
https://arxiv.org/abs/2011.10091
https://doi.org/10.1007/JHEP05(2020)073
https://arxiv.org/abs/2002.09856
https://doi.org/10.1007/JHEP06(2021)045
https://arxiv.org/abs/2101.02226
https://arxiv.org/abs/2103.06276
https://arxiv.org/abs/2103.15931
https://arxiv.org/abs/2104.15131
https://arxiv.org/abs/2105.01083
https://arxiv.org/abs/2107.00053
https://doi.org/10.1063/1.526749
https://doi.org/10.1142/9789814412551\_0005
https://arxiv.org/abs/1206.2667

	1 Introduction
	2 String models with broken supersymmetry
	2.1 Vacuum amplitudes
	2.1.1 Modular invariant closed-string models

	2.2 Orientifold models
	2.2.1 The Sugimoto model: brane supersymmetry breaking
	2.2.2 The type 0'B string

	2.3 Heterotic strings
	2.3.1 The non-supersymmetric heterotic model


	3 Non-supersymmetric vacuum solutions
	3.1 The low-energy description
	3.2 Solutions without flux
	3.2.1 Static Dudas-Mourad solutions
	3.2.2 Cosmological Dudas-Mourad solutions

	3.3 Flux compactifications
	3.3.1 Freund-Rubin solutions
	3.3.2 In the orientifold models: AdS3 x M7 solutions
	3.3.3 In the heterotic model: AdS7 x M3 solutions

	3.4 de Sitter cosmology: no-gos and brane-worlds
	3.4.1 No-go for de Sitter compactifications: first hints
	3.4.2 Warped flux compactifications: no-go results
	3.4.3 Relations to swampland conjectures


	4 Classical stability: perturbative analysis
	4.1 Stability of static Dudas-Mourad solutions
	4.1.1 Tensor and vector perturbations
	4.1.2 Scalar perturbations

	4.2 Stability of cosmological Dudas-Mourad solutions
	4.2.1 Tensor perturbations: an intriguing instability
	4.2.2 Scalar perturbations

	4.3 Stability of AdS flux compactifications
	4.3.1 Tensor and vector perturbations in AdS
	4.3.2 Tensor perturbations
	4.3.3 Vector perturbations
	4.3.4 Scalar perturbations in AdS
	4.3.5 Scalar perturbations in the orientifold models
	4.3.6 Scalar perturbations in the heterotic model
	4.3.7 Removing the unstable modes


	5 Quantum stability: bubbles and flux tunneling
	5.1 Flux tunneling
	5.1.1 Small steps and giant leaps: the thin-wall approximation
	5.1.2 Bubbles of nothing

	5.2 Bubbles and branes in AdS compactifications
	5.2.1 Vacuum energy within dimensional reduction
	5.2.2 Decay rates: gravitational computation
	5.2.3 Bubbles as branes
	5.2.4 Microscopic branes from semi-classical consistency
	5.2.5 Decay rates: extremization


	6 Brane dynamics: probes and back-reaction
	6.1 The aftermath of tunneling
	6.1.1 Weak gravity from supersymmetry breaking

	6.2 Gravitational back-reaction
	6.2.1 Reduced dynamical system: extremal case
	6.2.2 AdS x S throat as a near-horizon geometry
	6.2.3 Comparison with known solutions
	6.2.4 The pinch-off singularity
	6.2.5 Pinch-off in the orientifold models
	6.2.6 Pinch-off in the heterotic model
	6.2.7 Black branes: back-reaction

	6.3 Black branes: dynamics
	6.3.1 Brane probes in the Dudas-Mourad geometry
	6.3.2 String amplitude computation
	6.3.3 Probe 8-branes in AdS x S throats


	7 Conclusions
	A Tensor spherical harmonics: a primer
	A.1 Scalar spherical harmonics
	A.2 Spherical harmonics of higher rank


