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& : X =R a %" functional with the mountain-pass geometry
Compute MP type critical points for &
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Introduction
Introduction

X a Hilbert space
& : X =R a %" functional with the mountain-pass geometry
Compute MP type critical points for &

@ Choi & McKenna'’s

@ Zhou’s & al.

Ensure invariant solutions v are found, where by invariant it is
meant
ueK

where K is a closed convex cone (pointed at 0).

UMH
A
/ =



Introduction

Outline

0 Algorithm for invariant solutions

Q Examples

e Open questions

UMH
A
/ =



Algorithm for invariant solutions

0 Algorithm for invariant solutions

UMH
A
/ =



Algorithm for invariant solutions
Invariant solutions

K a closed convex cone (not necessarily salient).
Q@ K={ueH)(Q):uz>0}.
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Algorithm for invariant solutions
Invariant solutions

K a closed convex cone (not necessarily salient).
Q@ K={ueH)(Q):uz>0}.

u—ut

@ K={u:R—R:uisnon-decreasing}.

U /(;|u’(t)\dt

Q@ K={u:Vge G, VxRN, u(gx)=u(x)} where Gis a
group acting on RV,

If P: X — K is a projector on K, u € K =Im P iff

P(U) =u UMH
/o



Algorithm for invariant solutions
[ ]

Existence result

Theorem (Brezis & Nirenberg, '95)

Let X is a Banach space, & € €' (X;R),ec X andr>0 bes.t.
llell > r and
b:= | iwf &(u) > &(0) > &(e)
uj=r

Let P: X — X be a continuous mapping s.t.

Yue X, &(Pu)< &(u), P(0)=0andP(e)=e
Then there exists a sequence (up) C X s.t.

&(up) —d, V&(un) — 0, dist(un,P(X))—0
where

d:=inf max & Y t
ilferte[O,)1(] ( ( ))
UMH
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Projector

Definition
The metric projector on K, Py : X — K, is defined by: for all
u € X, Px(u) denotes the unique element of K satisfying

|Pk(u) — ul| = minflv — u]|
vek

Py is positively homegeneous and continuous.

Pk
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K-peak selection

A function ¢ : K\ {0} — K\ {0} is said to be a K-peak selection
for & iff, for every u € K\ {0},

@ o¢(u) is a local maximum point of & restricted to the
half-line {tu: t €]0,+eo[};
@ YA >0, ¢(Au) = o(u).

=

0 UMH
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Finduelmo C K s.t.

&(u)=miné&
Imo
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Algorithm (1/2)

MPAP algorithm

(Choose up € Imo,
If V&(up) =0, then

Stop: u,, is a critical point

else

) with s, € S(up)

o V& (un)
Ut = Po R "(“”‘s”uvg(un)u

where S(up) is the set of acceptable stepsizes at uj.
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Algorithm (2/2)

Definition (Stepsize)
Let up € Im¢ and
S, (up) := {s >0: Pg(us) #0and

S
& (9o Pi(us)) = & (to) < — [ VE (w0 }
where us is a shorthand for

V& (uo)
Ve (o)l

The stepsize set S(up) at Up is S;(Up) N]%sup Sy (Up),+eol.

Us == Up —

& bounded from below on Im¢ = sup S (up) < +oo
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Geometry of &

& : X — R has the appropriate “geometry” if
(E1) Vue X, &(Pk(u)) < &(u);
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o:K\{0} — K\{0} for &;

(Es) 0¢Ime;

UMH
A
/ =



Algorithm for invariant solutions
]

Geometry of &
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]

Geometry of &

& : X — R has the appropriate “geometry” if

(E1) Yue X, &(Pk(u)) < &(u);

(E2) there exists a continuous K-peak selection
o:K\{0} — K\{0} for &;

(Es) 0¢Ime;

(Eq) inf{&(u):uecime} > —co;

(Es) & satisfies the Palais-Smale condition

i.e., any sequence (up) C X such that (& (up)) converges
and V& (up) — 0 possesses a convergent subsequence.
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Algorithm for invariant solutions
Does it work?

Theorem (Convergence of the MPAP)

Assume (E;)—(Es) hold. For any uy € Im ¢, the sequence
(un)nen generated by the MPAP possesses a subsequence
converging to a critical point of & in K. Moreover, the limit of
any convergent subsequence of (un)nen is a critical point of &
inK.

If the critical point is a strict min on Im ¢, (u,) converges.
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Computational deformation lemma

Lemma (Computational deformation lemma)

Assume (E;) and that there exists a K-peak selection ¢ which
is continuous at some uy € Im . If V&(up) # 0 then there exists
some sy > 0 such that, for any s €10, g,

& (@0 Px(Us)) — &(uo) < 58] VE (o)l

V& (uUp)
STve (o)

where us = ug —
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(o] lo}

Proof of the computational deformation lemma

U Up+ Sg
Py g—— V& (Uo)
IVE (o)l
¢
Oe Imo
&(@Pk(Up+59)) = & (tPx(Up+5sg))  witht~1fors~0
= & (Pk(tup + tsg))
< &(tup + tsg)
< &(Up) — 38| V& (W)
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Proof of the computational deformation lemma
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Proof of the computational deformation lemma
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Local uniformity

The important consequence of the choice of the stepsize is the
following.

Let ¢ be a continuous K -peak selection such that Pk
decreases &. If uy € Im ¢ is such that V& (uy) # 0, then there
exists an open neighborhood V of uy and a positive sy such that

S(u) C [sg, o[ forallue Vnime.
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@00

Proof of convergence of the MPAP (1/8)

Choose 1y € Im o,
If V&(u,) =0, then

Stop: v, is a critical point

else
V& (u .
Upiq:i=@o PK(un - Sy vaE H;H) with s, € S(uy)
We want to show that (u,) C Im¢ converges up to a
subsequence.
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@00

Proof of convergence of the MPAP (2/8)

Choose 1y € Im o,
If V&(u,) =0, then

Stop: v, is a critical point

else
V& (u .
Upiq:i=@o PK(un - Sy vaE H;H) with s, € S(uy)
We want to show that (u,) C Im¢ converges up to a
subsequence.

@ If there exists a subsequence (up, ) s.t. V& (un, ) — 0, we
conclude by (PS).

@ Otherwise, there exists § > 0, Vn, |V&(un)|| = 6. ;";'"
=1



Algorithm for invariant solutions
(o] T}

Proof of convergence of the MPAP (3/8)

The computational deformation lemma implies
& (Un1) — E(Un) < —38n|VE (Un)|| < —F5nd
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(o] T}

Proof of convergence of the MPAP (4/8)

The computational deformation lemma implies
& (Un1) — E(Un) < —38n|VE (Un)|| < —F5nd

Adding up,
. hd 6 oo
—oo < lim &(up) — & (tg) = Y. (&(Uns1) — E(Un)) < -5 Y s
N—oo = =
Thus .
Z Sp < oo
n=0
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Proof of convergence of the MPAP (5/8)

The computational deformation lemma implies
& (Un1) — E(Un) < —38n|VE (Un)|| < —F5nd

Adding up,
. < 8 ¢
oo < im & (un) — (o) = ¥ (£ (Unst) = (Un)) <=5 X s
N—o0 n=0 n=0
Thus -
Y sn <Aoo
n=0

which implies that (up) converges to a u* € Ime s.t.
V& (u*)|| = 8. By the local uniformity of the stepsize around u*,

sp = 8" > 0 for nlarge contradicting }.,_ Sn < +oe.
UMH
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Proof of convergence of the MPAP (6/8)

Y sn <+ = (up) converges
n=0

Let
[[unl]
It suffices to show that (v,) converges.

Vn: (thus up = @(vp)), On = — | V& (un)

V& (un)l
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Proof of convergence of the MPAP (7/8)

Y sn <+ = (up) converges
n=0

Let
[[unl]
It suffices to show that (v,) converges.

_ V&(un)
IVE (un)

Vn: (thus up = @(vy)), gn =

|| Pk (Un + Sngn) — unl| < 2sp

Pk is the metric projector

UMH
A
/ =



Algorithm for invariant solutions
[e]e] ]

Proof of convergence of the MPAP (8/8)

Y sn <+ = (up) converges
n=0

Let
[[unl]
It suffices to show that (v,) converges.

_ V&(un)
IVE (un)

Vn: (thus up = @(vy)), gn =

Va1 — Vall < B~ Pk(Un+SngGn) — Un| < 25,87

<B Mlu=vll i flulllvI=B

HL_L
flull vl

So (vp) is a Cauchy sequence. o

I
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Non-decreasing solutions: setting

Equation coming from solitary waves on lattices:
u'(t)y= V' (u(t+1)—u(t)) — V'(u(t)—u(t—1)), teR
u(0)=0
u non-decreasing
This is equivalent to V&' (u) = 0 with
E:X—=R:ur %/R\u’(t)\zdt—/R V(u(t+1)—u(t))dt
where
X = {u € H,(R): U € L*(R) and u(0) =0}
and

ue K:={ue X:uisnon-decreasing}
UMH
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Non-decreasing solutions: assumptions

(V) Ve@'(R;R), V(0)=0,
V'(u)=o(|u]) asu— 0.
(Vo) There exists a > 2 such that
Vvu>0, 0<aV(u)<V(uu
and there exists u > 0 such that V(u) > 0.
(V) V'(u)/uis increasing w.r.t. u € ]0, +oo[.
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Non-decreasing solutions: projector on K

The metric projector Pk : X — X : u+— Px(u) on
K ={u e X: uis non-decreasing} can be written

P(u)(t) = /Ot(u’)Jr where v := max{v,0}.

UMH
A
/ =



Examples
[e]e] lelele]le]e]

Non-decreasing solutions: projector on K

The metric projector Pk : X — X : u+— Px(u) on
K ={u e X: uis non-decreasing} can be written

t
Py (u)(t) = / ()t where v :=max{v,0}.
0
It can be shown that & has the appropriate geometry and
therefore the algorithm converges up to a subsequence and up
to translations (where tau(t) = u(t— a) — u(—a)).
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Finite elements

P
X, p = { Y ui: o _o} c X
i=—rp

where the basis (y;) is as follows:

V-rp Vp  y 4 Yo yq
10 1
PP
Apply the algorithm to

grxr.,p . Xr;p — R
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Computing the projector

P
Givenu = Z ujy;, its projection on the cone
o
Px(u)= Y vy;is computed (exactly) by
i=—rp

Vo= 0
fori=1,....rp

letd=u;—u;_4in

vi=(if d >0then v,_{+delse v 1)
fori=-1,...,—rp

letd=vuj 1—uin

vi = (if d > 0 then v;, | +d else v 1)
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Non-decreasing solutions: numerical results

20
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Non-decreasing solutions: numerical results
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Non-decreasing solutions: numerical results

Without Pk
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Non-negative solutions: setting

Solutions of
—Au(x) = f(x,u(x)), forxecQcRN
u=0 on dQ
u=0 on Q

are critical points of the functional
1
& HI(Q) SR U é/ |Vu(x)|2dx—/ F(x, u(x))dx
Q Q

where F(x,u) := [y f(x,v)dv, that belong to the cone
K:={ucH)(Q):u>00nQ}
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Non-negative solutions: assumptions

(P1) For almost every x € Q, f(x,§&) is continuous in &;
(P2) there exists two positives constants a;, a» such that

(X&) < a1 + @ &[>
with s € [1, 225 [ if N > 2 and s € [1, +oo[ otherwise;
(P3) f(x,&) =o0(]&]) uniformly in x for & — 0;
(P4) there exists two constants 4 > 2 and r > 0 such that
Vig[=r, 0<uF(x,8)<f(x.8)8
with F(x,&) = J& f(x,t)dt;
(P5) finally, we will suppose that Vx € |a,b|, f(x,&)/& is

increasing and
fx.8) _ ., @

Eoeo & /;,.
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Non-negative solutions: metric projector on K

I1Pkull < [lull

= Enodil(PkU) < Enoair(U
Pxu>max{u,0} } modif(Pku) modif (U)
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Non-negative solutions: metric projector on K

I1Pkull < luf

(P < Enoni
Peu >max{u,0} }#'“O“( KU) < G (u)

Characterisation of Px(u):
Vv >0, (u—Pkulv—Pku)<O0
(u—Pgu|—Pxu) <0
1Pk ul? < (ulPxu) < [|ull[|Prul
(u—Pkulv) <0
Vv >0, /Q—A(u— Pxu)v <0
—A(u—Pku)<0

UMH
u—Pxu<0 /b
oy
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Non-negative solutions: metric projector on K

[Pkull < [lull
Erodit(PkU) < &roi
PKu>max{u,0} = mod\f( KU) modn‘(u)
Characterisation of Px(u):
Vv >0, (u—Pgulv—Pku)<O0
v=0= (u—Pxu|—Pxu)<O0
1Pk ul® < (ulPru) < ||ull || Prul
(u—Pkulv) <0
Vv >0, /—A(U—PKU)V<O
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Non-negative solutions: metric projector on K

I1Pkull < luf

Eoai(Prl) < Eoui
Pyu >max{u,0} }é moaif(Prel) < inoaii(U)

Characterisation of Px(u):
Vv >0, (u—Pkulv—Pku)<O0
(u—Pgu|—Pxu) <0
1Pk ul® < (ulPru) < ||ull || Prul
Vv >0, (u—Pkulv)<O
Vv >0, /Q—A(U—PKU)V<O
—A(u—Pku)<0
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Non-negative solutions: projector in 1D

The metric projector on K for the norm ||ul| := (f,5|U/'[?)"/? is
given by:
Px(u)=u—convu

convu is the convex hull hull of u € Hl(]a, b[) defined by
conv u(x) :=sup{{(x) : £ is affine and Vy € ]a,b[, {(y) < u(y)}
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Non-negative solutions: algorithm for Pk

Let u := (u;), be the discretization of u given by finite
elements (with up = 0 = up). One can compute Pxu with the
following algorithm:
Let (¢/)Y, be the list (u)Y,
fori=1,....N
if slope(ci_1,c¢;) < slope(c;,ci.1) then
Keep the node ¢;
else
Remove ¢; from the list
The nodes c; kept give the shape of convu

Co
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Let u := (u;), be the discretization of u given by finite
elements (with up = 0 = up). One can compute Pxu with the
following algorithm:
Let (¢/)Y, be the list (u)Y,
fori=1,....N
if slope(ci_1,c¢;) < slope(c;,ci.1) then
Keep the node ¢;
else
Remove ¢; from the list
The nodes c; kept give the shape of convu

Cq
Co

UMH
A
/ =



Examples
Q000e

Non-negative solutions: algorithm for Pk

Let u := (u;), be the discretization of u given by finite
elements (with up = 0 = up). One can compute Pxu with the
following algorithm:
Let (¢/)Y, be the list (u)Y,
fori=1,....N
if slope(ci_1,c¢;) < slope(c;,ci.1) then
Keep the node ¢;
else
Remove ¢; from the list
The nodes c; kept give the shape of convu

Co

C2 UMH



Examples
Q000e

Non-negative solutions: algorithm for Pk

Let u := (u;), be the discretization of u given by finite
elements (with up = 0 = up). One can compute Pxu with the
following algorithm:
Let (¢/)Y, be the list (u)Y,
fori=1,....N
if slope(ci_1,c¢;) < slope(c;,ci.1) then
Keep the node ¢;
else
Remove ¢; from the list
The nodes c; kept give the shape of convu

C3
Co
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Non-negative solutions: algorithm for Pk

Let u := (u;), be the discretization of u given by finite
elements (with up = 0 = up). One can compute Pxu with the
following algorithm:
Let (¢/)Y, be the list (u)Y,
fori=1,....N
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Non-negative solutions: algorithm for Pk

Let u := (u;), be the discretization of u given by finite
elements (with up = 0 = up). One can compute Pxu with the
following algorithm:
Let (¢/)Y, be the list (u)Y,
fori=1,....N
if slope(ci_1,c¢;) < slope(c;,ci.1) then
Keep the node ¢;
else
Remove ¢; from the list
The nodes c; kept give the shape of convu

Co cy The cost of cor_nputing convu
(hence Pxu) is O(N), thus

C comparable to the one foru™. wumn

Cy /;r
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Open questions

Open questions & future work (1/2)

@ Can we prove the convergence of the MPAP with the
projector u +— u™ := max{u,0} instead of Px?
Problem: ||(u+sd)t —uT| # O(s).

u e H}(]0,1])

d € H{(10,1])
A small deformation P(u+d)—u
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Open questions

Open questions & future work (2/2)

@ Can we prove the convergence of a nodal algorithm?
Problem: the natural projector is

u—o(ut)—e(u)
where u™ = (—u)*.
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Open questions

Open questions & future work (2/2)

@ Can we prove the convergence of a nodal algorithm?
Problem: the natural projector is
u= @(u)—o(u)
where u™ = (—u)*.
@ Can we reformulate the problems for invariant & nodal
cases in order to use the ideas of Barutello & Terracini?
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