Convergence of a mountain pass algorithm with projection

Ch. Troestler

Institut de Mathématique
Université de Mons-Hainaut
Mons, Belgium

Workshop on Theoretical and Computational Nonlinear
Partial Differential Equations

Introduction

X a Hilbert space
$\mathscr{E}: X \rightarrow \mathbb{R}$ a \mathscr{C}^{1} functional with the mountain-pass geometry
Compute MP type critical points for \mathscr{E}

- Choi \& McKenna's
- Zhou's \& al.

Introduction

X a Hilbert space
$\mathscr{E}: X \rightarrow \mathbb{R}$ a \mathscr{C}^{1} functional with the mountain-pass geometry
Compute MP type critical points for \mathscr{E}

- Choi \& McKenna's
- Zhou's \& al.

Ensure invariant solutions u are found, where by invariant it is meant

$$
u \in K
$$

where K is a closed convex cone (pointed at 0).

Outline

(9) Algorithm for invariant solutions
(2) Examples
(3) Open questions

(2) Examples

3 Open questions

Invariant solutions

K a closed convex cone (not necessarily salient).
(1) $K=\left\{u \in H_{0}^{1}(\Omega): u \geqslant 0\right\}$.

Invariant solutions

K a closed convex cone (not necessarily salient).
(1) $K=\left\{u \in H_{0}^{1}(\Omega): u \geqslant 0\right\}$.
(2) $K=\{u: \mathbb{R} \rightarrow \mathbb{R}: u$ is non-decreasing $\}$.

Invariant solutions

K a closed convex cone (not necessarily salient).
(1) $K=\left\{u \in H_{0}^{1}(\Omega): u \geqslant 0\right\}$.
(2) $K=\{u: \mathbb{R} \rightarrow \mathbb{R}: u$ is non-decreasing $\}$.
(3) $K=\left\{u: \forall g \in G, \forall x \in \mathbb{R}^{N}, u(g x)=u(x)\right\}$ where G is a group acting on \mathbb{R}^{N}.

Invariant solutions

K a closed convex cone (not necessarily salient).
(1) $K=\left\{u \in H_{0}^{1}(\Omega): u \geqslant 0\right\}$.
(2) $K=\{u: \mathbb{R} \rightarrow \mathbb{R}: u$ is non-decreasing $\}$.
(3) $K=\left\{u: \forall g \in G, \forall x \in \mathbb{R}^{N}, u(g x)=u(x)\right\}$ where G is a group acting on \mathbb{R}^{N}.

If $P: X \rightarrow K$ is a projector on $K, u \in K=\operatorname{lm} P$ iff

$$
P(u)=u
$$

Invariant solutions

K a closed convex cone (not necessarily salient).
(1) $K=\left\{u \in H_{0}^{1}(\Omega): u \geqslant 0\right\}$.

$$
u \mapsto u^{+}
$$

(2) $K=\{u: \mathbb{R} \rightarrow \mathbb{R}: u$ is non-decreasing $\}$.

$$
u \mapsto \int_{0}\left|u^{\prime}(t)\right| \mathrm{d} t
$$

(3) $K=\left\{u: \forall g \in G, \forall x \in \mathbb{R}^{N}, u(g x)=u(x)\right\}$ where G is a group acting on \mathbb{R}^{N}.

If $P: X \rightarrow K$ is a projector on $K, u \in K=\operatorname{Im} P$ iff

$$
P(u)=u
$$

Existence result

Theorem (Brezis \& Nirenberg, '95)

Let X is a Banach space, $\mathscr{E} \in \mathscr{C}^{1}(X ; \mathbb{R})$, $e \in X$ and $r>0$ be s.t. $\|e\|>r$ and

$$
b:=\inf _{\|u\|=r} \mathscr{E}(u)>\mathscr{E}(0) \geqslant \mathscr{E}(e)
$$

Let $P: X \rightarrow X$ be a continuous mapping s.t.

$$
\forall u \in X, \mathscr{E}(P u) \leqslant \mathscr{E}(u), \quad P(0)=0 \text { and } P(e)=e
$$

Then there exists a sequence $\left(u_{n}\right) \subset X$ s.t.

$$
\mathscr{E}\left(u_{n}\right) \rightarrow d, \quad \nabla \mathscr{E}\left(u_{n}\right) \rightarrow 0, \quad \operatorname{dist}\left(u_{n}, P(X)\right) \rightarrow 0
$$

where

$$
\begin{aligned}
d & :=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} \mathscr{E}(\gamma(t)) \\
\Gamma & :=\{\gamma \in \mathscr{C}([0,1] ; X): \gamma(0)=0, \gamma(1)=e\}
\end{aligned}
$$

Projector

Definition

The metric projector on $K, P_{K}: X \rightarrow K$, is defined by: for all $u \in X, P_{K}(u)$ denotes the unique element of K satisfying

$$
\left\|P_{K}(u)-u\right\|=\min _{v \in K}\|v-u\|
$$

P_{K} is positively homegeneous and continuous.

K-peak selection

Definition

A function $\varphi: K \backslash\{0\} \rightarrow K \backslash\{0\}$ is said to be a K-peak selection for \mathscr{E} iff, for every $u \in K \backslash\{0\}$,

- $\varphi(u)$ is a local maximum point of \mathscr{E} restricted to the half-line $\{t u: t \in] 0,+\infty[\}$;
- $\forall \lambda>0, \varphi(\lambda u)=\varphi(u)$.

Aim

Find $u \in \operatorname{Im} \varphi \subset K$ s.t.

Algorithm (1/2)

MPAP algorithm

Choose $u_{0} \in \operatorname{Im} \varphi$,
If $\nabla \mathscr{E}\left(u_{n}\right)=0$, then
Stop: u_{n} is a critical point
else

$$
u_{n+1}:=\varphi \circ P_{K}\left(u_{n}-s_{n} \frac{\nabla \mathscr{E}\left(u_{n}\right)}{\left\|\nabla \mathscr{E}\left(u_{n}\right)\right\|}\right), \quad \text { with } s_{n} \in S\left(u_{n}\right)
$$

where $S\left(u_{n}\right)$ is the set of acceptable stepsizes at u_{n}.

Algorithm (2/2)

Definition (Stepsize)

Let $u_{0} \in \operatorname{Im} \varphi$ and

$$
\begin{aligned}
S_{\downarrow}\left(u_{0}\right):=\{s>0: & P_{K}\left(u_{s}\right) \neq 0 \text { and } \\
& \left.\mathscr{E}\left(\varphi \circ P_{K}\left(u_{s}\right)\right)-\mathscr{E}\left(u_{0}\right)<-\frac{s}{2}\left\|\nabla \mathscr{E}\left(u_{0}\right)\right\|\right\}
\end{aligned}
$$

where u_{s} is a shorthand for

$$
u_{s}:=u_{0}-s \frac{\nabla \mathscr{E}\left(u_{0}\right)}{\left\|\nabla \mathscr{E}\left(u_{0}\right)\right\|}
$$

The stepsize set $S\left(u_{0}\right)$ at u_{0} is $\left.S_{\downarrow}\left(u_{0}\right) \cap\right] \frac{1}{2} \sup S_{\downarrow}\left(u_{0}\right),+\infty[$.
\mathscr{E} bounded from below on $\operatorname{Im} \varphi \Rightarrow \sup S_{\downarrow}\left(u_{0}\right)<+\infty$

Geometry of \mathscr{E}

$\mathscr{E}: X \rightarrow \mathbb{R}$ has the appropriate "geometry" if
$\left(\mathrm{E}_{1}\right) \forall u \in X, \mathscr{E}\left(P_{K}(u)\right) \leqslant \mathscr{E}(u)$;

Geometry of \mathscr{E}

$\mathscr{E}: X \rightarrow \mathbb{R}$ has the appropriate "geometry" if
$\left(\mathrm{E}_{1}\right) \forall u \in X, \mathscr{E}\left(P_{K}(u)\right) \leqslant \mathscr{E}(u)$;
$\left(E_{2}\right)$ there exists a continuous K-peak selection $\varphi: K \backslash\{0\} \rightarrow K \backslash\{0\}$ for \mathscr{E};

Geometry of \mathscr{E}

$\mathscr{E}: X \rightarrow \mathbb{R}$ has the appropriate "geometry" if
$\left(\mathrm{E}_{1}\right) \forall u \in X, \mathscr{E}\left(P_{K}(u)\right) \leqslant \mathscr{E}(u)$;
$\left(E_{2}\right)$ there exists a continuous K-peak selection $\varphi: K \backslash\{0\} \rightarrow K \backslash\{0\}$ for \mathscr{E};
($\left.\mathrm{E}_{3}\right) 0 \notin \overline{\operatorname{lm} \varphi}$;

Geometry of \mathscr{E}

$\mathscr{E}: X \rightarrow \mathbb{R}$ has the appropriate "geometry" if
$\left(\mathrm{E}_{1}\right) \forall u \in X, \mathscr{E}\left(P_{K}(u)\right) \leqslant \mathscr{E}(u)$;
$\left(\mathrm{E}_{2}\right)$ there exists a continuous K-peak selection $\varphi: K \backslash\{0\} \rightarrow K \backslash\{0\}$ for \mathscr{E};
($\left.\mathrm{E}_{3}\right) 0 \notin \overline{\operatorname{lm} \varphi}$;
$\left(\mathrm{E}_{4}\right) \inf \{\mathscr{E}(u): u \in \operatorname{lm} \varphi\}>-\infty ;$

Geometry of \mathscr{E}

$\mathscr{E}: X \rightarrow \mathbb{R}$ has the appropriate "geometry" if
$\left(\mathrm{E}_{1}\right) \forall u \in X, \mathscr{E}\left(P_{K}(u)\right) \leqslant \mathscr{E}(u)$;
$\left(\mathrm{E}_{2}\right)$ there exists a continuous K-peak selection $\varphi: K \backslash\{0\} \rightarrow K \backslash\{0\}$ for \mathscr{E};
($\left.\mathrm{E}_{3}\right) 0 \notin \overline{\operatorname{lm} \varphi}$;
(E $\left.\mathrm{E}_{4}\right) \inf \{\mathscr{E}(u): u \in \operatorname{lm} \varphi\}>-\infty$;
(E5) \mathscr{E} satisfies the Palais-Smale condition
i.e., any sequence $\left(u_{n}\right) \subset X$ such that $\left(\mathscr{E}\left(u_{n}\right)\right)$ converges and $\nabla \mathscr{E}\left(u_{n}\right) \rightarrow 0$ possesses a convergent subsequence.

Does it work?

Theorem (Convergence of the MPAP)

Assume $\left(E_{1}\right)-\left(E_{5}\right)$ hold. For any $u_{0} \in \operatorname{Im} \varphi$, the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ generated by the MPAP possesses a subsequence converging to a critical point of \mathscr{E} in K. Moreover, the limit of any convergent subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a critical point of \mathscr{E} in K.

If the critical point is a strict \min on $\operatorname{Im} \varphi,\left(u_{n}\right)$ converges.

Computational deformation lemma

Lemma (Computational deformation lemma)

Assume $\left(E_{1}\right)$ and that there exists a K-peak selection φ which is continuous at some $u_{0} \in \operatorname{Im} \varphi$. If $\nabla \mathscr{E}\left(u_{0}\right) \neq 0$ then there exists some $s_{0}>0$ such that, for any $\left.s \in\right] 0, s_{0}[$,

$$
\mathscr{E}\left(\varphi \circ P_{K}\left(u_{s}\right)\right)-\mathscr{E}\left(u_{0}\right)<-\frac{1}{2} s\left\|\nabla \mathscr{E}\left(u_{0}\right)\right\|
$$

where $u_{s}=u_{0}-s \frac{\nabla \mathscr{E}\left(u_{0}\right)}{\left\|\nabla \mathscr{E}\left(u_{0}\right)\right\|}$.

Proof of the computational deformation lemma

Proof of the computational deformation lemma

Proof of the computational deformation lemma

Local uniformity

The important consequence of the choice of the stepsize is the following.

Lemma

Let φ be a continuous K-peak selection such that P_{K} decreases \mathscr{E}. If $u_{0} \in \operatorname{Im} \varphi$ is such that $\nabla \mathscr{E}\left(u_{0}\right) \neq 0$, then there exists an open neighborhood V of u_{0} and a positive s_{0} such that

$$
S(u) \subset\left[s_{0},+\infty[\quad \text { for all } u \in V \cap \operatorname{lm} \varphi\right.
$$

Proof of convergence of the MPAP (1/8)

Choose $u_{0} \in \operatorname{Im} \varphi$,
If $\nabla \mathscr{E}\left(u_{n}\right)=0$, then
Stop: u_{n} is a critical point
else

$$
u_{n+1}:=\varphi \circ P_{K}\left(u_{n}-s_{n} \frac{\nabla \mathscr{E}\left(u_{n}\right)}{\left\|\nabla \mathscr{E}\left(u_{n}\right)\right\|}\right), \quad \text { with } s_{n} \in S\left(u_{n}\right)
$$

We want to show that $\left(u_{n}\right) \subset \operatorname{Im} \varphi$ converges up to a subsequence.

Proof of convergence of the MPAP (2/8)

Choose $u_{0} \in \operatorname{Im} \varphi$,
If $\nabla \mathscr{E}\left(u_{n}\right)=0$, then
Stop: u_{n} is a critical point
else

$$
u_{n+1}:=\varphi \circ P_{K}\left(u_{n}-s_{n} \frac{\nabla \mathscr{E}\left(u_{n}\right)}{\left\|\nabla \mathscr{E}\left(u_{n}\right)\right\|}\right), \quad \text { with } s_{n} \in S\left(u_{n}\right)
$$

We want to show that $\left(u_{n}\right) \subset \operatorname{Im} \varphi$ converges up to a subsequence.

- If there exists a subsequence $\left(u_{n_{k}}\right)$ s.t. $\nabla \mathscr{E}\left(u_{n_{k}}\right) \rightarrow 0$, we conclude by (PS).
- Otherwise, there exists $\delta>0, \forall n,\left\|\nabla \mathscr{E}\left(u_{n}\right)\right\| \geqslant \delta$.

Proof of convergence of the MPAP $(3 / 8)$

The computational deformation lemma implies

$$
\mathscr{E}\left(u_{n+1}\right)-\mathscr{E}\left(u_{n}\right) \leqslant-\frac{1}{2} s_{n}\left\|\nabla \mathscr{E}\left(u_{n}\right)\right\| \leqslant-\frac{1}{2} s_{n} \delta
$$

Proof of convergence of the MPAP (4/8)

The computational deformation lemma implies

$$
\mathscr{E}\left(u_{n+1}\right)-\mathscr{E}\left(u_{n}\right) \leqslant-\frac{1}{2} s_{n}\left\|\nabla \mathscr{E}\left(u_{n}\right)\right\| \leqslant-\frac{1}{2} s_{n} \delta
$$

Adding up,

$$
-\infty<\lim _{n \rightarrow \infty} \mathscr{E}\left(u_{n}\right)-\mathscr{E}\left(u_{0}\right)=\sum_{n=0}^{\infty}\left(\mathscr{E}\left(u_{n+1}\right)-\mathscr{E}\left(u_{n}\right)\right) \leqslant-\frac{\delta}{2} \sum_{n=0}^{\infty} s_{n}
$$

Thus

$$
\sum_{n=0}^{\infty} s_{n}<+\infty
$$

Proof of convergence of the MPAP (5/8)

The computational deformation lemma implies

$$
\mathscr{E}\left(u_{n+1}\right)-\mathscr{E}\left(u_{n}\right) \leqslant-\frac{1}{2} s_{n}\left\|\nabla \mathscr{E}\left(u_{n}\right)\right\| \leqslant-\frac{1}{2} s_{n} \delta
$$

Adding up,

$$
-\infty<\lim _{n \rightarrow \infty} \mathscr{E}\left(u_{n}\right)-\mathscr{E}\left(u_{0}\right)=\sum_{n=0}^{\infty}\left(\mathscr{E}\left(u_{n+1}\right)-\mathscr{E}\left(u_{n}\right)\right) \leqslant-\frac{\delta}{2} \sum_{n=0}^{\infty} s_{n}
$$

Thus

$$
\sum_{n=0}^{\infty} s_{n}<+\infty
$$

which implies that (u_{n}) converges to a $u^{*} \in \operatorname{Im} \varphi$ s.t. $\left\|\nabla \mathscr{E}\left(u^{*}\right)\right\| \geqslant \delta$. By the local uniformity of the stepsize around u^{*}, $s_{n} \geqslant s^{*}>0$ for n large contradicting $\sum_{n=0}^{\infty} s_{n}<+\infty$.

Proof of convergence of the MPAP (6/8)

$$
\sum_{n=0}^{\infty} s_{n}<+\infty \Rightarrow\left(u_{n}\right) \text { converges }
$$

Let

$$
v_{n}:=\frac{u_{n}}{\left\|u_{n}\right\|} \quad\left(\text { thus } u_{n}=\varphi\left(v_{n}\right)\right), \quad g_{n}:=-\frac{\nabla \mathscr{E}\left(u_{n}\right)}{\left\|\nabla \mathscr{E}\left(u_{n}\right)\right\|}
$$

It suffices to show that $\left(v_{n}\right)$ converges.

Proof of convergence of the MPAP (7/8)

$$
\sum_{n=0}^{\infty} s_{n}<+\infty \Rightarrow\left(u_{n}\right) \text { converges }
$$

Let

$$
v_{n}:=\frac{u_{n}}{\left\|u_{n}\right\|} \quad\left(\text { thus } u_{n}=\varphi\left(v_{n}\right)\right), \quad g_{n}:=-\frac{\nabla \mathscr{E}\left(u_{n}\right)}{\left\|\nabla \mathscr{E}\left(u_{n}\right)\right\|}
$$

It suffices to show that $\left(v_{n}\right)$ converges.

$$
\underbrace{\left\|P_{K}\left(u_{n}+s_{n} g_{n}\right)-u_{n}\right\| \leqslant 2 s_{n}}_{P_{K} \text { is the metric projector }}
$$

Proof of convergence of the MPAP (8/8)

$$
\sum_{n=0}^{\infty} s_{n}<+\infty \Rightarrow\left(u_{n}\right) \text { converges }
$$

Let

$$
\left.v_{n}:=\frac{u_{n}}{\left\|u_{n}\right\|} \quad \text { (thus } u_{n}=\varphi\left(v_{n}\right)\right), \quad g_{n}:=-\frac{\nabla \mathscr{E}\left(u_{n}\right)}{\left\|\nabla \mathscr{E}\left(u_{n}\right)\right\|}
$$

It suffices to show that $\left(v_{n}\right)$ converges.

$$
\begin{aligned}
& \left\|v_{n+1}-v_{n}\right\| \underset{\uparrow}{\leqslant} \beta^{-1}\left\|P_{K}\left(u_{n}+s_{n} g_{n}\right)-u_{n}\right\| \leqslant 2 s_{n} \beta^{-1} \\
& \quad\left\|\frac{u}{\|u\|}-\frac{v}{\|v\|}\right\| \leqslant \beta^{-1}\|u-v\| \quad \text { if }\|u\|,\|v\| \geqslant \beta
\end{aligned}
$$

So $\left(v_{n}\right)$ is a Cauchy sequence.

Algorithm for invariant solutions

（2）Examples

（3）Open questions
$\mathbf{U M H}$
1 空

Non-decreasing solutions: setting

Equation coming from solitary waves on lattices:

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=V^{\prime}(u(t+1)-u(t))-V^{\prime}(u(t)-u(t-1)), \quad t \in \mathbb{R} \\
u(0)=0 \\
u \text { non-decreasing }
\end{array}\right.
$$

This is equivalent to $\nabla \mathscr{E}(u)=0$ with

$$
\mathscr{E}: X \rightarrow \mathbb{R}: u \mapsto \frac{1}{2} \int_{\mathbb{R}}\left|u^{\prime}(t)\right|^{2} \mathrm{~d} t-\int_{\mathbb{R}} V(u(t+1)-u(t)) \mathrm{d} t
$$

where

$$
X:=\left\{u \in H_{\mathrm{loc}}^{1}(\mathbb{R}): u^{\prime} \in L^{2}(\mathbb{R}) \text { and } u(0)=0\right\}
$$

and

$$
u \in K:=\{u \in X: u \text { is non-decreasing }\}
$$

Non-decreasing solutions: assumptions

$\left(V_{1}\right) \quad V \in \mathscr{C}^{1}(\mathbb{R} ; \mathbb{R}), V(0)=0$,

$$
V^{\prime}(u)=0(|u|) \quad \text { as } u \rightarrow 0
$$

$\left(V_{2}\right)$ There exists $\alpha>2$ such that

$$
\forall u \geqslant 0, \quad 0 \leqslant \alpha V(u) \leqslant V^{\prime}(u) u
$$

and there exists $u>0$ such that $V(u)>0$.
$\left(V_{3}\right) V^{\prime}(u) / u$ is increasing w.r.t. $\left.u \in\right] 0,+\infty[$.

Non-decreasing solutions: projector on K

The metric projector $P_{K}: X \rightarrow X: u \mapsto P_{K}(u)$ on $K=\{u \in X: u$ is non-decreasing $\}$ can be written

$$
P_{K}(u)(t)=\int_{0}^{t}\left(u^{\prime}\right)^{+} \quad \text { where } v^{+}:=\max \{v, 0\}
$$

Non-decreasing solutions: projector on K

The metric projector $P_{K}: X \rightarrow X: u \mapsto P_{K}(u)$ on $K=\{u \in X: u$ is non-decreasing $\}$ can be written

$$
P_{K}(u)(t)=\int_{0}^{t}\left(u^{\prime}\right)^{+} \quad \text { where } v^{+}:=\max \{v, 0\}
$$

It can be shown that \mathscr{E} has the appropriate geometry and therefore the algorithm converges up to a subsequence and up to translations (where $\tau_{a} u(t)=u(t-a)-u(-a)$).

Finite elements

$$
X_{r, p}:=\left\{\sum_{i=-r p}^{r p} u_{i} \psi_{i}: u_{0}=0\right\} \subset X
$$

where the basis $\left(\psi_{i}\right)$ is as follows:

Apply the algorithm to

$$
\mathscr{E} \upharpoonright X_{r, p}: X_{r ; p} \rightarrow \mathbb{R}
$$

Computing the projector

Given $\mathbf{u}=\sum_{i=-r p}^{r p} u_{i} \psi_{i}$, its projection on the cone
$P_{K}(\mathbf{u})=\sum_{i=-r p}^{r p} v_{i} \psi_{i}$ is computed (exactly) by

$$
\begin{aligned}
& v_{0}=0 \\
& \text { for } i=1, \ldots, r p
\end{aligned}
$$

$$
\text { let } d=u_{i}-u_{i-1} \text { in }
$$

$$
v_{i}=\left(\text { if } d>0 \text { then } v_{i-1}+d \text { else } v_{i-1}\right)
$$

$$
\text { for } i=-1, \ldots,-r p
$$

let $d=u_{i+1}-u_{i}$ in
$v_{i}=\left(\right.$ if $d>0$ then $v_{i+1}+d$ else $\left.v_{i+1}\right)$

Non-decreasing solutions: numerical results

Non-decreasing solutions: numerical results

Non-decreasing solutions: numerical results

Without P_{K}

Non-negative solutions: setting

Solutions of

$$
\begin{cases}-\Delta u(x)=f(x, u(x)), & \text { for } x \in \Omega \subset \mathbb{R}^{N} \\ u=0 & \text { on } \partial \Omega \\ u \geqslant 0 & \text { on } \Omega\end{cases}
$$

are critical points of the functional

$$
\mathscr{E}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} \mathrm{~d} x-\int_{\Omega} F(x, u(x)) \mathrm{d} x
$$

where $F(x, u):=\int_{0}^{u} f(x, v) \mathrm{d} v$, that belong to the cone

$$
K:=\left\{u \in H_{0}^{1}(\Omega): u \geqslant 0 \text { on } \Omega\right\}
$$

Non-negative solutions: assumptions

(P1) For almost every $x \in \Omega, f(x, \xi)$ is continuous in ξ;
(P2) there exists two positives constants a_{1}, a_{2} such that

$$
|f(x, \xi)| \leqslant a_{1}+a_{2}|\xi|^{s-1}
$$

with $s \in\left[1, \frac{2 N}{N-2}[\right.$ if $N>2$ and $s \in[1,+\infty[$ otherwise;
(P3) $f(x, \xi)=o(|\xi|)$ uniformly in x for $\xi \rightarrow 0$;
(P4) there exists two constants $\mu>2$ and $r \geqslant 0$ such that

$$
\forall|\xi| \geqslant r, \quad 0<\mu F(x, \xi) \leqslant f(x, \xi) \xi
$$

with $F(x, \xi)=\int_{0}^{\xi} f(x, t) \mathrm{d} t$;
(P5) finally, we will suppose that $\forall x \in] a, b[, f(x, \xi) / \xi$ is increasing and

$$
\lim _{\xi \rightarrow \infty} \frac{f(x, \xi)}{\xi}=+\infty
$$

Non-negative solutions: metric projector on K

$$
\left.\begin{array}{l}
\left\|P_{K} u\right\| \leqslant\|u\| \\
P_{K} u \geqslant \max \{u, 0\}
\end{array}\right\} \Rightarrow \mathscr{E}_{\text {modif }}\left(P_{K} u\right) \leqslant \mathscr{E}_{\text {modif }}(u)
$$

Non-negative solutions: metric projector on K

$$
\left.\begin{array}{l}
\left\|P_{K} u\right\| \leqslant\|u\| \\
P_{K} u \geqslant \max \{u, 0\}
\end{array}\right\} \Rightarrow \mathscr{E}_{\text {modif }}\left(P_{K} u\right) \leqslant \mathscr{E}_{\text {modif }}(u)
$$

Characterisation of $P_{K}(u)$:

$$
\begin{aligned}
& \forall v \geqslant 0, \quad\left(u-P_{K} u \mid v-P_{K} u\right) \leqslant 0 \\
&\left(u-P_{K} u \mid-P_{K} u\right) \leqslant 0 \\
&\left\|P_{K} u\right\|^{2} \leqslant\left(u \mid P_{K} u\right) \leqslant\|u\|\left\|P_{K} u\right\| \\
&\left(u-P_{K} u \mid v\right) \leqslant 0 \\
& \forall v \geqslant 0, \int_{\Omega}-\Delta\left(u-P_{K} u\right) v \leqslant 0 \\
&-\Delta\left(u-P_{K} u\right) \leqslant 0 \\
& u-P_{K} u \leqslant 0
\end{aligned}
$$

Non-negative solutions: metric projector on K

$$
\left.\begin{array}{l}
\left\|P_{K} u\right\| \leqslant\|u\| \\
P_{K} u \geqslant \max \{u, 0\}
\end{array}\right\} \Rightarrow \mathscr{E}_{\text {modif }}\left(P_{K} u\right) \leqslant \mathscr{E}_{\text {modif }}(u)
$$

Characterisation of $P_{K}(u)$:

$$
\begin{aligned}
& \forall v \geqslant 0, \quad\left(u-P_{K} u \mid v-P_{K} u\right) \leqslant 0 \\
& v=0 \Rightarrow\left(u-P_{K} u \mid-P_{K} u\right) \leqslant 0 \\
&\left\|P_{K} u\right\|^{2} \leqslant\left(u \mid P_{K} u\right) \leqslant\|u\|\left\|P_{K} u\right\| \\
&\left(u-P_{K} u \mid v\right) \leqslant 0 \\
& \forall v \geqslant 0, \int_{\Omega}-\Delta\left(u-P_{K} u\right) v \leqslant 0 \\
&-\Delta\left(u-P_{K} u\right) \leqslant 0 \\
& u-P_{K} u \leqslant 0
\end{aligned}
$$

Non-negative solutions: metric projector on K

$$
\left.\begin{array}{l}
\left\|P_{K} u\right\| \leqslant\|u\| \\
P_{K} u \geqslant \max \{u, 0\}
\end{array}\right\} \Rightarrow \mathscr{E}_{\text {modif }}\left(P_{K} u\right) \leqslant \mathscr{E}_{\text {modif }}(u)
$$

Characterisation of $P_{K}(u)$:

$$
\begin{array}{ll}
\forall v \geqslant 0, \quad\left(u-P_{K} u \mid v-P_{K} u\right) \leqslant 0 \\
& \left(u-P_{K} u \mid-P_{K} u\right) \leqslant 0 \\
& \left\|P_{K} u\right\|^{2} \leqslant\left(u \mid P_{K} u\right) \leqslant\|u\|\left\|P_{K} u\right\| \\
\forall v \geqslant 0, \quad & \left(u-P_{K} u \mid v\right) \leqslant 0 \\
\forall v \geqslant 0, & \int_{\Omega}-\Delta\left(u-P_{K} u\right) v \leqslant 0 \\
& -\Delta\left(u-P_{K} u\right) \leqslant 0 \\
& u-P_{K} u \leqslant 0
\end{array}
$$

Non-negative solutions: projector in 1D

Theorem

The metric projector on K for the norm $\|u\|:=\left(\int_{] a, b[}\left|u^{\prime}\right|^{2}\right)^{1 / 2}$ is given by:

$$
P_{K}(u)=u-\operatorname{conv} u
$$

conv u is the convex hull hull of $u \in H_{0}^{1}(] a, b[)$ defined by $\operatorname{conv} u(x):=\sup \{\ell(x): \ell$ is affine and $\forall y \in] a, b[, \ell(y) \leqslant u(y)\}$

Non-negative solutions: algorithm for P_{K}

Let $\mathbf{u}:=\left(u_{i}\right)_{i=0}^{N}$ be the discretization of u given by finite elements (with $u_{0}=0=u_{N}$). One can compute $P_{K} \mathbf{u}$ with the following algorithm:

```
Let \(\left(c_{i}\right)_{i=0}^{N}\) be the list \(\left(u_{i}\right)_{i=0}^{N}\)
for \(i=1, \ldots, N\)
if slope \(\left(c_{i-1}, c_{i}\right) \leqslant \operatorname{slope}\left(c_{i}, c_{i+1}\right)\) then
```

Keep the node c_{i}

else

Remove c_{i} from the list
The nodes c_{i} kept give the shape of convu

Non-negative solutions: algorithm for P_{K}

Let $\mathbf{u}:=\left(u_{i}\right)_{i=0}^{N}$ be the discretization of u given by finite elements (with $u_{0}=0=u_{N}$). One can compute $P_{K} \mathbf{u}$ with the following algorithm:

```
Let \(\left(c_{i}\right)_{i=0}^{N}\) be the list \(\left(u_{i}\right)_{i=0}^{N}\)
for \(i=1, \ldots, N\)
if slope \(\left(c_{i-1}, c_{i}\right) \leqslant \operatorname{slope}\left(c_{i}, c_{i+1}\right)\) then
```

Keep the node c_{i}

else

Remove c_{i} from the list
The nodes c_{i} kept give the shape of convu

Non-negative solutions: algorithm for P_{K}

Let $\mathbf{u}:=\left(u_{i}\right)_{i=0}^{N}$ be the discretization of u given by finite elements (with $u_{0}=0=u_{N}$). One can compute $P_{K} \mathbf{u}$ with the following algorithm:

```
Let \(\left(c_{i}\right)_{i=0}^{N}\) be the list \(\left(u_{i}\right)_{i=0}^{N}\)
for \(i=1, \ldots, N\)
if \(\operatorname{slope}\left(c_{i-1}, c_{i}\right) \leqslant \operatorname{slope}\left(c_{i}, c_{i+1}\right)\) then
```

Keep the node c_{i}

else

Remove c_{i} from the list
The nodes c_{i} kept give the shape of convu

Non-negative solutions: algorithm for P_{K}

Let $\mathbf{u}:=\left(u_{i}\right)_{i=0}^{N}$ be the discretization of u given by finite elements (with $u_{0}=0=u_{N}$). One can compute $P_{K} \mathbf{u}$ with the following algorithm:

```
Let \(\left(c_{i}\right)_{i=0}^{N}\) be the list \(\left(u_{i}\right)_{i=0}^{N}\)
for \(i=1, \ldots, N\)
if slope \(\left(c_{i-1}, c_{i}\right) \leqslant \operatorname{slope}\left(c_{i}, c_{i+1}\right)\) then
```

Keep the node c_{i}
else
Remove c_{i} from the list
The nodes c_{i} kept give the shape of convu

Non-negative solutions: algorithm for P_{K}

Let $\mathbf{u}:=\left(u_{i}\right)_{i=0}^{N}$ be the discretization of u given by finite elements (with $u_{0}=0=u_{N}$). One can compute $P_{K} \mathbf{u}$ with the following algorithm:

```
Let \(\left(c_{i}\right)_{i=0}^{N}\) be the list \(\left(u_{i}\right)_{i=0}^{N}\)
for \(i=1, \ldots, N\)
if \(\operatorname{slope}\left(c_{i-1}, c_{i}\right) \leqslant \operatorname{slope}\left(c_{i}, c_{i+1}\right)\) then
```

Keep the node c_{i}
else
Remove c_{i} from the list
The nodes c_{i} kept give the shape of convu

Non-negative solutions: algorithm for P_{K}

Let $\mathbf{u}:=\left(u_{i}\right)_{i=0}^{N}$ be the discretization of u given by finite elements (with $u_{0}=0=u_{N}$). One can compute $P_{K} \mathbf{u}$ with the following algorithm:

```
Let \(\left(c_{i}\right)_{i=0}^{N}\) be the list \(\left(u_{i}\right)_{i=0}^{N}\)
for \(i=1, \ldots, N\)
if slope \(\left(c_{i-1}, c_{i}\right) \leqslant \operatorname{slope}\left(c_{i}, c_{i+1}\right)\) then
```

Keep the node c_{i}
else
Remove c_{i} from the list
The nodes c_{i} kept give the shape of convu

Non-negative solutions: algorithm for P_{K}

Let $\mathbf{u}:=\left(u_{i}\right)_{i=0}^{N}$ be the discretization of u given by finite elements (with $u_{0}=0=u_{N}$). One can compute $P_{K} \mathbf{u}$ with the following algorithm:

```
Let \(\left(c_{i}\right)_{i=0}^{N}\) be the list \(\left(u_{i}\right)_{i=0}^{N}\)
for \(i=1, \ldots, N\)
if \(\operatorname{slope}\left(c_{i-1}, c_{i}\right) \leqslant \operatorname{slope}\left(c_{i}, c_{i+1}\right)\) then
```

Keep the node c_{i}
else
Remove c_{i} from the list
The nodes c_{i} kept give the shape of convu

Non-negative solutions: algorithm for P_{K}

Let $\mathbf{u}:=\left(u_{i}\right)_{i=0}^{N}$ be the discretization of u given by finite elements (with $u_{0}=0=u_{N}$). One can compute $P_{K} \mathbf{u}$ with the following algorithm:

```
Let \(\left(c_{i}\right)_{i=0}^{N}\) be the list \(\left(u_{i}\right)_{i=0}^{N}\)
for \(i=1, \ldots, N\)
if slope \(\left(c_{i-1}, c_{i}\right) \leqslant \operatorname{slope}\left(c_{i}, c_{i+1}\right)\) then
```

Keep the node c_{i}
else
Remove c_{i} from the list
The nodes c_{i} kept give the shape of convu

Non-negative solutions: algorithm for P_{K}

Let $\mathbf{u}:=\left(u_{i}\right)_{i=0}^{N}$ be the discretization of u given by finite elements (with $u_{0}=0=u_{N}$). One can compute $P_{K} \mathbf{u}$ with the following algorithm:

```
Let \(\left(c_{i}\right)_{i=0}^{N}\) be the list \(\left(u_{i}\right)_{i=0}^{N}\)
for \(i=1, \ldots, N\)
if \(\operatorname{slope}\left(c_{i-1}, c_{i}\right) \leqslant \operatorname{slope}\left(c_{i}, c_{i+1}\right)\) then
```

Keep the node c_{i}

else

Remove c_{i} from the list
The nodes c_{i} kept give the shape of convu

The cost of computing convu (hence $P_{K} \mathbf{u}$) is $\mathrm{O}(N)$, thus comparable to the one for \mathbf{u}^{+}.

Algorithm for invariant solutions

（2）Examples

（3）Open questions

Open questions \& future work (1/2)

- Can we prove the convergence of the MPAP with the projector $u \mapsto u^{+}:=\max \{u, 0\}$ instead of P_{K} ?
Problem: $\left\|(u+s d)^{+}-u^{+}\right\| \neq \mathrm{O}(s)$.

Open questions \& future work (2/2)

- Can we prove the convergence of a nodal algorithm? Problem: the natural projector is

$$
u \mapsto \varphi\left(u^{+}\right)-\varphi\left(u^{-}\right)
$$

where $u^{-}:=(-u)^{+}$.

Open questions \& future work (2/2)

- Can we prove the convergence of a nodal algorithm? Problem: the natural projector is

$$
u \mapsto \varphi\left(u^{+}\right)-\varphi\left(u^{-}\right)
$$

where $u^{-}:=(-u)^{+}$.

- Can we reformulate the problems for invariant \& nodal cases in order to use the ideas of Barutello \& Terracini?

Thank you

