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Anisotropic media
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TM or p-polarization
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dAg = 10 nm
dTiO2 = 20 nm

λ = 500 nm - elliptic

Example with Ag and TiO2
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Example with Ag and TiO2

f = 1/3
dAg = 10 nm
dTiO2 = 20 nm
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λ = 500 nm - elliptic λ = 700 nm - hyperbolic
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Example with Ag and TiO2
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Limits of EMT
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Limits of EMT
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Origin of hyperbolic properties: plasmonic
 Nonlocality



Limits of effective medium theory
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Standard effective medium approach (EMT) not valid in many case
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D = 27 nm

D = 9 nm Limited inside
Brillouin zone:
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Limits of effective medium theory
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Fano resonances
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Fano resonances
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Slowly varying background Narrow resonances

Asymmetric Fano resonances

=

S. Fan and J.D. 
Joannopoulos, Phys. Rev. 
B, vol. 65, 235112. (2002)
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High-k propagating waves 

High-k waves can propagates inside HMM  Possibility to overcome diffraction limit

Application: hyperlens

Liu, Z. et al., Science, vol. 315, 1686. (2007)
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B. D. F. Casse et al., Appl. Phys. Lett., vol. 96, 023114 (2010)



Extremely high PDOS

Galfsky, T. et al., Optica, vol. 2, 62-65. (2015)
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Z. Jacob et al, Applied Physics B, vol. 100, 215. (2010)

Nonresonant phenomena  Broadband extremely high PDOS
Spontaneous emission engineering possible



Negative refraction
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Negative refraction
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Y. Liu et al, Optics Express, vol. 16, 15439. (2008)

A. Orlov et al, Physical Review B, vol. 84, 
045424 (2011)
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Reflection and transmission in slanted cavities
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Right and left: simple multilayer HMM

Centre: « asymmetric hyperbolic metamaterial » (tilted optical axis)
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Reflection and transmission in slanted cavities



Exact solution (without losses in metal)
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- Periodic isofrequency curve 
for the propagative mode

- Close isofrequency curve 
for the evanescent mode
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Exact solution (without losses in metal)



Transverse momentum conservation (ky = 0)

Always a propagative and evanescent mode excited !
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Always a propagative and evanescent mode excited !

Transverse momentum conservation



Toujours un mode propagatif ET un mode évanescent excités

 Interference at the output

?
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Transverse momentum conservation

Always a propagative and evanescent mode excited !



Fano resonances (Θ = 45°)

Evanescent background
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Fano resonances (Θ = 45°)

Background évanescent

Evanescent background

Fabry-Pérot
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Evanescent background

Fabry-Pérot

Exact reflection
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Fano resonances (Θ = 45°)
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Spectrum for B = 5 nm
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Spectrum for B = 35 nm



Reflection map (without loss)

Phase matching

F. Vaianella and B. Maes, Physical Review B, vol. 94, pp 125442. (2016)
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Lossy metal : condition for Fano resonances

 Propagating mode should have large real part and small imaginary part of 
refractive effective index

 Evanescent mode should have imaginary part not to high (background would disappear)
And not to low (background not efficient)
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Lossy metal : conditions for Fano resonances

 Propagating mode should have large real part and small imaginary part of 
refractive effective index

 Evanescent mode should have imaginary part not to high (background would disappear)
and not to low (background not efficient)



Scattering with losses for Θ = 65°
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Fano resonances still present but more or less damped



Introduction of gain in the dielectric : Im(𝑛𝑇𝑖𝑂2) = −0,07
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Comparison lossless – gain/loss structures

lossless loss/gain

Introduction of gain allows 100% transmittance-reflectance Fano resonances
Actually difficult to introduce gain in TiO2
Would be easier to work with semiconductors in infrared regime



 Hyperbolic metamaterials are periodic plasmonic structures 
with positive component of dielectric tensor in one 
direction and negative in another

 Fano resonances in ultra compact cavities for great control 
of the reflection and transmission of light

Effective medium approximation inaccurate for this work. 
Predicts the excitation of one single mode, no Fano
resonances possible

 Other topics: Heat transfer, active HMM, tunable HMM 
with graphene, homogenization theory, …
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Conclusions
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