

On the Possibility to Use Energy Harvesting on Beta Radiation in Nuclear Environments

IEEE LASCAS 2021 Session 21B: Power and Energy Circuits and Systems

Ir. Alexandre QUENON (alexandre.quenon@umons.ac.be)

February 25, 2021

Sensors used to monitor nuclear environments should be autonomous

- Monitoring requires sensors
- Sensors require maintenance
- Radioprotection oversees
 nuclear operations: As Low As
 Reasonably Achievable
- The best solution is to make the sensors autonomous

We investigated the feasibility to harvest ionizing radiation to power sensors

Arrays of photodiodes can be used to harvest energy from β radiation

- Experimenting beta rays harvesting
- Explaining the physics behind harvesting
- Enabling the measurements of beta currents

PIN photodiodes are good candidates as possible harvesters for ionizing radiation

- Currently used for gamma detection, also by amateurs
- Advantages
 - Available on the market
 - Low-cost
 - Wide depletion zone

For energy harvesting considerations, no external bias voltage should be applied

- At start-up (t₀), there is no energy to power the sensor
- If an external bias is required, two solutions can be investigated
 - Using a battery, but this would require maintenance (ALARA)
 - "Building" the bias voltage at t₀, possibly by harvesting another energy source, hence a long start-up time.
- Therefore, PIN photodiode without external bias have been investigated

β-rays hitting a non-biased BPW34 photodiode generate a measurable current

- Increase in current
 - BPW 34 : + 12. 084 pA DC
 - + 0.802 pA AC
 - Red LED : + 0.085 pA DC
 + 0.036 pA AC
- The β -ray source is a ${}^{90}Sr$
 - Energy up to 2.238 MeV
 - Around 1500 count/s

- Experimenting beta rays harvesting
- Explaining the physics behind harvesting
- Enabling the measurements of beta currents

Beta rays going through matter interact by transferring their energy

In a semiconductor, excitation and ionization result in the creation of electron-hole pairs

The creation of charge carriers is described by the continuity equation

$$\frac{\partial n}{\partial t} = \frac{1}{e} \nabla \cdot \overrightarrow{J_e} + \frac{\mathbf{G}_e}{\mathbf{G}_e} - U_e$$

- This generally results in undesired effects
 - Accumulation (Total Ionizing Dose)
 - Transients (Single-Event Effects)

The main challenge is collecting the electric charges before recombination

- Two solutions can be used to complete the challenge
 - Apply a high bias voltage (like for detection) but this has been ruled out
 - Use a diode with a large depletion region and a high intrinsic electric field
- The second solution explains why PIN photodiodes are suitable as beta radiation harvesters

- Experimenting beta rays harvesting
- Explaining the physics behind harvesting
- Enabling the measurements of beta currents

A sufficiently sensitive measurement device is required, together with proper shielding

- Measurement's considerations
 - Device sensitivity
 - Noise reduction
- Radioprotection (safety)
 - Remote control
 - Lead wall

The beta radiation current must be "extracted" from any other phenomenon that can occur

- PIN photodiode are photosensitive devices
 - The photoelectric effect (visible light) must be prevented
 - The device under test must be kept in the dark
- Influence from electrical grid (50 Hz in Europe)
 - Protection is guaranteed by shielding (triaxial cable, Faraday cage)
 - Digital filtering is used to remove the remaining noise

Three facts to remember from this presentation

- Sensors can be powered by harvesting energy from β-rays
- This is possible as β⁻ radiation interact with semiconductor devices, creating electron-hole pairs that can be collected
- PIN photodiodes have a wide depletion zone and high intrinsic electric field, hence the harvesting without external bias

There is now a new type of energy that can be harvested to power autonomous sensors

- Harvesting ionizing radiation is particularly useful for nuclear applications
- It is feasible by using low-cost components available in the market
- It opens a new area of applied research

On the Possibility to Use Energy Harvesting on Beta Radiation in Nuclear Environments

IEEE LASCAS 2021 Session 21B: Power and Energy Circuits and Systems

Ir. Alexandre QUENON (alexandre.quenon@umons.ac.be)

February 25, 2021

Sources for images and pictures

- Slide 2
 - Unknown author, "Nuclear emergency", <u>https://kenanmalik.com/2015/07/30/the-irrational-fear-of-radiation/</u>.
- Slide 3
 - [Left] Wikimedia Commons contributors, "Alpha, beta, gamma, neutron radiation", <u>https://commons.wikimedia.org/w/index.php?title=File:Alfa_beta_gamma_neutron_radiation.svg&oldid=4424944</u> <u>73</u>.
 - [Top-right] ScanTech Technical Consulting, "Scanning Electron Micrograph showing before and after effects of ESD", <u>http://www.scantech7.com/esd-electrostatic-discharge-testing-sensitive-equipment-electronics/</u>.
 - [Bottom-right] Hassan M., "Electricity Power Bank", <u>https://pixabay.com/illustrations/electricity-power-power-bank-2314633/</u>.
- Slide 6
 - Wikimedia Commons contributors, "PIN Photodiode", https://commons.wikimedia.org/w/index.php?title=File:Pin-Photodiode.png&oldid=427369290.