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Abstract

We describe the dynamics of two-dimensional relativistic and Carrollian fluids. These are mapped holo-
graphically to three-dimensional locally anti-de Sitter and locally Minkowski spacetimes, respectively. To 
this end, we use Eddington–Finkelstein coordinates, and grant general curved two-dimensional geometries 
as hosts for hydrodynamics. This requires to handle the conformal anomaly, and the expressions obtained 
for the reconstructed bulk metrics incorporate non-conformal-fluid data. We also analyze the freedom of 
choosing arbitrarily the hydrodynamic frame for the description of relativistic fluids, and propose an in-
variant entropy current compatible with classical and extended irreversible thermodynamics. This local 
freedom breaks down in the dual gravitational picture, and fluid/gravity correspondence turns out to be sen-
sitive to dissipation processes: the fluid heat current is a necessary ingredient for reconstructing all Bañados 
asymptotically anti-de Sitter solutions. The same feature emerges for Carrollian fluids, which enjoy a resid-
ual frame invariance, and their Barnich–Troessaert locally Minkowski duals. These statements are proven 
by computing the algebra of surface conserved charges in the fluid-reconstructed bulk three-dimensional 
spacetimes.
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1. Introduction

Fluid/gravity correspondence is a macroscopic spin-off of holography, originally mapping 
relativistic fluid configurations onto Einstein spacetimes, i.e. spacetimes whose Ricci tensor is 
proportional to the metric. These are obtained in the form of a derivative expansion [1–4], in-
spired from the fluid homonymous expansion (see e.g. [5,6]). An alternative reconstruction of 
Einstein spacetimes from boundary data is based on the Fefferman–Graham theorem [7,8], which 
provides an expansion in powers of a radial space-like coordinate in the so-called Fefferman–
Graham gauge.

Compared to the radial Fefferman–Graham expansion, the derivative expansion has several 
distinctive features listed hereafter.

• The boundary data in the Fefferman–Graham expansion are the first and second fundamental 
forms, interpreted as the boundary metric and the boundary fluid energy–momentum tensor. 
For the derivative expansion, the boundary data include also a vector congruence, whose 
derivatives set the order of the expansion. This congruence is interpreted as the boundary 
fluid velocity field.

• The derivative expansion is not built along a spatial but rather a null radial coordinate, whose 
differential form is the dual of the fluid velocity vector. It is implemented in Eddington–
Finkelstein coordinates, and provides radial fall-offs which are slightly less restrictive than 
those of the Bondi gauge [9,10].

• The derivative expansion is well behaved in the Ricci-flat limit (vanishing bulk scalar curva-
ture, i.e. cosmological constant).

The last property has recently allowed to set up a derivative expansion for asymptotically 
flat spacetimes, establishing thereby, at least macroscopically, a holographic correspondence 
among Ricci-flat bulk solutions and boundary Carrollian hydrodynamics [11], which is the ultra-
relativistic (vanishing velocity of light) limit of fluid dynamics. The derivative expansion in 
Eddington–Finkelstein coordinates has been instrumental in reaching this result, because the 
Fefferman–Graham expansion is ill-defined in the limit of vanishing cosmological constant.

The first of the above three features raises another important question, regarding the role 
played by the boundary fluid congruence. In this respect, we remind that the velocity field of 
a relativistic fluid can be chosen freely, altering neither the energy–momentum tensor nor the 
entropy current, but only transforming the various pieces that enter the decomposition of these 
quantities with respect to its longitudinal and transverse directions [12]. This is usually referred 
to as the hydrodynamic-frame invariance.

The fluid congruence appears explicitly in the derivative expansion, as we will discuss in 
the following. Conforming to the above fluid-dynamics logic, one could consider another fluid 
frame. This would leave the boundary metric and energy–momentum tensor unchanged, and 
the corresponding reconstructed bulk metric would be amenable to its former expression by an 
appropriate bulk diffeomorphism. Still, this diffeomorphism might be large, in which case the two 
boundary hydrodynamic frames would lead to definitely distinct dual spacetimes with different 
global properties.

Analyzing the role of the velocity field in the fluid/gravity derivative expansion is not an easy 
task. Generically this derivative expansion is organized in the form of a series, whose order is set 
by the derivatives of the velocity field, and which is designed to comply with Weyl covariance. 
Furthermore, in the original works [1–4], this series was expressed using a specific hydrodynamic 
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frame known as Landau–Lifshitz. In this context it is difficult to investigate the global behavior
under a congruence transformation, since typically only the first few orders in the expansion are 
available. In some more specific classes, it is possible to resum the derivative expansion (see 
[13–17]), which could help circumventing the latter difficulty. In order to resum the expansion, 
one needs to abandon the Landau–Lifshitz frame, and impose integrability conditions relating 
the heat current and stress tensor (i.e. the non-perfect components of the energy–momentum 
tensor) to the boundary geometry. The integrability conditions, however, are not covariant under 
changes of fluid congruence. Hence, the benefit of adopting resummed expressions is tempered 
when coming to the point of hydrodynamic-frame transformations.

Substantial simplifications occur in three bulk dimensions. On the one hand, all expansions, 
Fefferman–Graham or derivative, are naturally truncated to a finite number of terms. On the 
other hand, asymptotically anti-de Sitter spacetimes are locally anti-de Sitter. As a consequence 
the distinction among Einstein solutions is exclusively encoded in their global properties, labeled 
unambiguously by their conserved surface charges, as e.g. in Bañados solutions [18]. Probing the 
fluid/gravity hydrodynamic-frame invariance amounts therefore to analyze the conserved charges 
and their algebra in different fluid frames. This is one of the aims of the present work, and we will 
show that contrary to the naive expectation,1 changing fluid frame can alter the global properties 
of the reconstructed Einstein spacetime.

As already mentioned, the derivative expansion in Eddington–Finkelstein coordinates admits 
a well-defined limit of vanishing cosmological constant. This limit generalizes the customary 
fluid/gravity correspondence to a duality between Ricci-flat spacetimes and Carrollian hydro-
dynamics emerging at null infinity [19]. In some instances, Carrollian fluids possess a residual 
frame invariance involving a kinematical parameter reminiscent of the relativistic velocity field. 
The latter enters the flat derivative expansion, and it is legitimate to ask the same questions about 
the role of frame invariance as for anti-de Sitter spacetimes. Again, answering is possible in 
three dimensions, where the derivative expansion admits a finite number of terms, and all Ricci-
flat spaces are locally Minkowskian. These are globally distinguishable by conserved surface 
charges, as e.g. for the family obtained in [20] with appropriate fall-off conditions that will be 
referred to as Barnich–Troessaert solutions.

In order to undertake the above analysis we will set up the fluid/gravity derivative expansions 
in three dimensions.2 In other words, we will obtain expressions providing the bulk dual (Einstein 
or Ricci-flat) of an arbitrary fluid, hosted by any two-dimensional geometry. Such expressions 
were not available in full generality for the relativistic fluids, and were unknown for Carrollian 
(i.e. ultra-relativistic) fluids.

In the relativistic case, we exhibit a universal resummation formula, which turns out to be a 
BMS-like (Bondi–Metzner–Sachs, [9,10]) alternative to the existing Fefferman–Graham expres-
sion [20,21]. The prime virtue of our practice is to accommodate the conformal anomaly arising 
from the curvature of the boundary, which has been ignored in earlier fluid/gravity literature [2,3]
and has a detectable counterpart in the Carrollian situation. For the latter, our fluid reconstruction 
of flat spacetimes resembles the general formulas given in BMS gauge in [20].

1 The question of global versus local properties of bulk solutions in relation with the dual boundary fluid was mentioned 
in the Appendix B of Ref. [3]. This discussion is not conclusive though, in particular because of the absence of any 
charge computation, which would have allowed to make concrete statements about the landscape of locally anti-de Sitter 
spacetimes and their dual fluids.

2 Expansion is an abuse of terminology in three dimensions because there, it is naturally truncated. We will often make 
it, and use the word resummation for simple sums.
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After having settled the derivative expansions, we express the asymptotic charges3 of the re-
constructed spacetimes in terms of the fluid data and we prove that the choice of frame may affect 
the global properties of the solutions. Indeed, we show that the holographic reconstruction of all 
Bañados and Barnich–Troessaert solutions requires the boundary fluid (relativistic or Carrollian) 
have a non-vanishing heat current. In this instance, the charge algebra is either Virasoro or BMS 
with the expected central charges. Setting the heat current to zero, the solutions carry surface 
charges obeying algebras of the same type, where the central charges can be trivially reabsorbed 
though.

In Sec. 2 we review two-dimensional relativistic conformal fluid dynamics, and expand its 
Carrollian limit, insisting on the hydrodynamic-frame invariance. Section 3 is devoted to the 
general method of holographic reconstruction of asymptotically AdS and flat spacetimes. This 
method is applied in Sec. 4 for flat two-dimensional boundary metrics, without loosing generality, 
and followed by the computation of charges, which enables us to reach a clear image of the 
solutions under investigation.

Before moving to the main part of the paper, we should add that Sec. 2.1 includes a part 
dedicated to the entropy current of relativistic two-dimensional conformal fluids. Contrary to the 
energy–momentum tensor the entropy current has no general microscopic definition for systems 
that are only at local thermodynamic equilibrium. It is usually constructed phenomenologically, 
in a given hydrodynamic frame, order by order in the velocity and temperature derivative ex-
pansion, and subject to several physical conditions. We propose here an entropy current, which 
fulfills all known criteria, has a closed form that can be expanded in a non-trivial infinite series, 
and is explicitly hydrodynamic-frame invariant. This last feature is the backbone of fluid frame 
invariance.

2. Two-dimensional fluids

2.1. Relativistic fluids

2.1.1. General properties
We consider a two-dimensional geometry M equipped with a metric ds2 = gμνdxμdxν . The 

dynamics of a relativistic fluid is captured by the energy–momentum tensor T = Tμνdxμdxν , 
which is symmetric (Tμν = Tνμ) and generally obeys:

∇μTμν = fν, (2.1)

where fν is an external force density. Together with the equation of state (local thermodynamic 
equilibrium is assumed), this set of equations provides the hydrodynamic equations of motion. 
Normalizing the velocity congruence u as ‖u‖2 = −k2 (k plays the role of velocity of light), we 
can in general decompose the energy–momentum tensor as

Tμν = (ε+ p)uμuν
k2 + pgμν + τμν + uμqν

k2 + uνqμ
k2 (2.2)

with p the local pressure and ε the local energy density:

ε = 1

k2 Tμνu
μuν. (2.3)

3 Useful references for the analysis of asymptotic charges are e.g. [22,23]. Our surface-charge computations have been 
performed with the package [24], built using the conventions of the papers just quoted.
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The symmetric viscous stress tensor τμν and the heat current qμ are purely transverse:

uμτμν = 0, uμqμ = 0, qν = −εuν − uμTμν. (2.4)

In two dimensions, the transverse direction with respect to u is entirely supported by the 
Hodge-dual ∗u4:

∗uρ = uσησρ. (2.5)

This dual congruence is space-like and normalized as ‖ ∗ u‖2 = k2. Therefore

q = χ ∗ u with χ = − 1

k2 ∗ uμTμνuν, (2.6)

the local heat density, appearing here as the magnetic dual of the energy density. Similarly, the 
viscous stress tensor has a unique component encoded in the viscous stress scalar τ 5:

τμν = τhμν with hμν = 1

k2 ∗ uμ ∗ uν (2.7)

the projector onto the space transverse to the velocity field. The trace reads: T μμ = p− ε+ τ .
The pressure p and the viscous stress scalar τ appear in the fully transverse component of 

the energy–momentum tensor. Their sum is therefore the total stress. If the system is free and at 
global equilibrium, τ vanishes and the stress is given by the thermodynamic pressure p alone. 
Hence, the viscous stress scalar τ is usually expressed as an expansion in temperature and ve-
locity gradients, and this distinguishes it from p. The same holds for the heat current q. The 
coefficients of these expansions characterize the transport phenomena occurring in the fluid.

The shear and the vorticity vanish identically in two spacetime dimensions. The only non-
vanishing first-derivative tensors of the velocity are the acceleration and the expansion

aμ = uν∇νuμ, 	= ∇μuμ, (2.8)

and one defines similarly the expansion of the dual congruence as6

	∗ = ∇μ ∗ uμ, (2.9)

which enables us expressing the acceleration:

aμ =	∗ ∗ uμ. (2.10)

In first-order hydrodynamics7

τ(1) = −ζ	, (2.11)

χ(1) = − κ
k2

(∗u(T )+ T	∗) . (2.12)

As usual, ζ is the bulk viscosity and κ is the thermal conductivity – assumed constant in this 
expression.

4 Our conventions are: ησρ = √
gεσρ with ε01 = +1. Hence ημσ ησν = δμν .

5 This component of the energy–momentum tensor is also referred to as the viscous bulk pressure, or the dynamic 
pressure, or else the non-equilibrium pressure.

6 The hodge-dual of a scalar is a two-form and would spell with a suffix star. Instead, 	∗ is just another scalar.
7 For any vector v and a function f , v(f ) stands for vμ∂μf . We remind the following identities: d†df = −�f with 

d†w = ∗d ∗ w = −∇μwμ and df = 1
2 (∗u(f ) ∗ u − u(f )u), ∗df = 1

2 (∗u(f )u − u(f ) ∗ u).

k k
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It is convenient to use the orthonormal Cartan frame {u/k, ∗u/k}. Then the metric reads:

ds2 = 1

k2

(
−u2 + ∗u2

)
, (2.13)

while the energy–momentum tensor takes the form:

T = 1

2k2

(
(ε+ χ) (u + ∗u)2 + (ε− χ) (u − ∗u)2

)
+ 1

k2 (p− ε+ τ) ∗ u2. (2.14)

In holographic systems, the boundary enjoys remarkable conformal properties as it defines a 
conformal class, rather than a specific metric. Under Weyl transformations

ds2 → ds2

B2 , (2.15)

the velocity form components uμ are traded for uμ/B, the energy and heat densities have weight 
2, and the local-equilibrium equation of state is conformal

ε = p, (2.16)

which is accompanied by Stefan’s law (σ is the Stefan–Boltzmann constant):

ε = σT 2. (2.17)

Hence, the trace of the energy–momentum tensor is τ . In the absence of anomalies it vanishes 
and Tμν is invariant under (2.15). If τ is non-vanishing, the fluid is not conformal and τ is an 
anomalous weight-2 quantity.

Covariantization with respect to rescalings requires to introduce a Weyl connection one-form 
[26,27], see also Appendix D of [28]8:

A = 1

k2 (a −	u)= 1

k2

(
	∗ ∗ u −	u

)
, (2.18)

which transforms as A → A − d lnB. Ordinary covariant derivatives ∇ are thus traded for the 
Weyl covariant combination D = ∇ + wA, w being the conformal weight of the tensor under 
consideration. We provide for concreteness the Weyl covariant derivative of a form vμ and of a 
scalar function �, both of weight w:

Dνvμ = ∇νvμ + (w+ 1)Aνvμ +Aμvν − gμνAρvρ,
Dν�= ∂ν�+wAν�.

(2.19)

The Weyl covariant derivative is metric-compatible with effective torsion:

Dρgμν = 0, (2.20)(
DμDν − DνDμ

)
�=w�Fμν, (2.21)

where

Fμν = ∂μAν − ∂νAμ (2.22)

is the Weyl-invariant field strength. Its dual

8 The explicit form of A is obtained by demanding Dμuμ = 0 and uλDλuμ = 0.
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F = ∗dA = ημν∂μAν = 1

k2

(∗u(	)− u(	∗)
)

(2.23)

is a weight-2 scalar.
Commuting the Weyl-covariant derivatives acting on vectors, one defines the Weyl covariant 

Riemann tensor(
DμDν − DνDμ

)
V ρ = Rρ

σμνV
σ +wFμνV ρ (2.24)

(V ρ are weight-w) and the usual subsequent quantities. In two spacetime dimensions, the covari-
ant Ricci tensor (weight-0) and the scalar (weight-2) curvatures read:

Rμν =Rμν + gμν∇λAλ − Fμν, (2.25)

R =R + 2∇μAμ. (2.26)

It turns out that Rμν + gμν∇λAλ vanishes identically. Hence

R = 0 ⇔R = 2d†A and Rμν = −Fμν. (2.27)

The ordinary scalar curvature has a weight-2 anomalous transformation

R→ B2 (R + 2� lnB) (2.28)

(the box operator is here referring to the metric before the Weyl transformation).

2.1.2. Hydrodynamic equations and the hydrodynamic-frame covariance
Using the above tools as well as the identity

∇μTμν = DμTμν −AνT μμ, (2.29)

(based on Eqs. (2.19) and Leibniz rule, for a weight-0, rank-2 symmetric tensor), the general 
fluid equations (2.1) with ε = p, projected on the light-cone directions u ± ∗u read9:{

(uμ + ∗uμ)Dμ (ε+ χ)+ (uμ − ∗uμ)fμ = −	τ −	∗τ − ∗u(τ ),

(uμ − ∗uμ)Dμ (ε− χ)+ (uμ + ∗uμ)fμ = −	τ +	∗τ + ∗u(τ ).
(2.30)

Equivalently, these equations are expressed as⎧⎪⎪⎨
⎪⎪⎩

d
(√
ε+ χ + τ/2(u + ∗u)

) + 1

2
√
ε+ χ + τ/2

(u − ∗u)∧ ∗ (
f − 1

2 dτ
) = 0 ,

d
(√
ε− χ + τ/2(u − ∗u)

) − 1

2
√
ε− χ + τ/2

(u + ∗u)∧ ∗ (
f − 1

2 dτ
) = 0 .

(2.31)

Changing hydrodynamic frame, i.e. the fluid velocity field, amounts to perform an arbitrary 
local Lorentz transformation on the Cartan mobile frame(

u′
∗u′

)
=

(
coshψ(x) sinhψ(x)
sinhψ(x) coshψ(x)

)(
u
∗u

)
, (2.32)

or for the null directions u′ ± ∗u′ = (u ± ∗u) e±ψ . This affects the Weyl connection and Weyl 
curvature scalar as follows

9 Notice that any congruence with w = −1 in two dimensions obeys Dμuν = ∇μuν + 1
k2 uμaν −	hμν = 0 due to 

the absence of shear and vorticity, and similarly Dμ ∗ uν = 0.
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A′ = A − ∗dψ (2.33)

F ′ = F + �ψ. (2.34)

The transformation (2.32) keeps the energy–momentum tensor invariant provided the energy 
density and the heat density transform appropriately. Imposing that in the new frame (2.16) holds, 
i.e. ε′ = p′, we conclude that(

ε′
χ ′

)
=

(
cosh 2ψ(x) − sinh 2ψ(x)

− sinh 2ψ(x) cosh 2ψ(x)

)(
ε

χ

)
+ τ sinhψ(x)

(
sinhψ(x)

− coshψ(x)

)
, (2.35)

while, due to the invariance of the trace,

τ ′ = τ. (2.36)

Equivalently one can use 

√(
ε′ ± χ ′ + τ ′

2

)
=

√(
ε± χ + τ

2

)
e∓ψ .

The energy–momentum tensor can be diagonalized with a specific local Lorentz transforma-
tion. By definition, the corresponding hydrodynamic frame is the Landau–Lifshitz frame, where 
the heat current χLL is vanishing. We find

T = εLL

k2 u2
LL + εLL + τ

k2 ∗ u2
LL (2.37)

since τLL = τ and χLL = 0. The latter condition allows to find the local boost towards the 
Landau–Lifshitz frame

e4ψLL = ε+ χ + τ/2

ε− χ + τ/2
. (2.38)

With this, the eigenvalues are easily computed. One finds the Landau–Lifshitz energy density

εLL =
√(
ε+ χ + τ

2

)(
ε− χ + τ

2

)
− τ

2
. (2.39)

It exhibits an upper bound for χ2, χ2
max = (ε+ τ/2)2, which translates causality and unitarity 

properties of the underlying microscopic field theory. The eigenvalue10 εLL is supported by the 
time-like eigenvector

uLL = 1

2

((
ε+ χ + τ/2

ε− χ + τ/2

)1/4

(u + ∗u)+
(
ε− χ + τ/2

ε+ χ + τ/2

)1/4

(u − ∗u)

)
, (2.40)

whereas

ε∗LL = εLL + τ =
√(
ε+ χ + τ

2

)(
ε− χ + τ

2

)
+ τ

2
(2.41)

is the eigenvalue along the space-like eigenvector ∗uLL. Using the above expressions in the 
Landau–Lifshitz frame, the fluid equations (2.31) are recast as follows{

2
√
εLLd† (√

εLLuLL
) − uLL · f −	LLτ = 0 ,

2
√
ε∗LLd† (√

ε∗LL ∗ uLL
) + ∗uLL · f +	∗

LLτ = 0 .
(2.42)

10 We make the reasonable assumption that the fluid energy density is positive. This is generically true, although some 
exceptions exist. One of those is global AdS3, indeed realized with a negative-energy dual fluid, whereas the conventional 
zero-energy fluid reconstructs one Poincaré patch of AdS3.
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A non-anomalous conformal fluid in two dimensions is defined through the relations (2.16), 
(2.17) and

τ = 0. (2.43)

Under these assumptions, the last term of (2.14) drops, whereas following the fluid equations 
(2.31) at zero external force (f = fμdxμ = 0), the forms 

√
ε± χ(u ± ∗u) are closed, and can be 

used to define a privileged light-cone coordinate system, adapted to the fluid configuration. In 
this specific case, the on-shell Weyl scalar curvature reads

F = −1

2
� ln

√
ε+ χ
ε− χ . (2.44)

For conformal fluids, the hydrodynamic-frame transformation (2.32) acts on the energy and heat 
densities as a spin-two electric–magnetic boost, the energy being electric and the heat magnetic.

2.1.3. The entropy current
We would like to close this overview on two-dimensional conformal fluids with the entropy 

current. The entropy appears in Gibbs–Duhem equation

T s = p+ ε, (2.45)

and is easily computed for conformal fluids in terms of the energy density, using Eq. (2.16) and 
Stefan’s law (2.17):

s = 2
√
σε. (2.46)

The entropy current is an involved concept because, among other reasons, no microscopic 
definition is available for out-of-global-equilibrium systems. In arbitrary dimension, there is no 
generic and closed expression in terms of the dissipative tensors for this current, which is gener-
ally constructed order by order as a derivative expansion (see [29]). Whether this expansion can 
be hydrodynamic-frame invariant, and at the same time compatible with the underlying already 
quoted microscopic laws (unitarity and causality) as well as with the second law of thermody-
namics is not known in full generality, although this is in principle part of the rationale behind 
frame invariance.

In two dimensions, the ingredients for building a hydrodynamic-frame-invariant entropy cur-
rent are the time-like invariant vector uLL (given in (2.40)) and its space-like dual ∗uLL, plus the 
invariant scalars εLL and ε∗LL (or any combination, see (2.39) and (2.41)). The entropy current 
should have non-negative divergence, vanishing for a free (i.e. at zero external force) perfect 
fluid. In the case at hand, a perfect fluid is necessarily conformal since it must have vanishing τ .

A good candidate for a hydrodynamic-frame-invariant entropy current is

S0 = sLLuLL = 2
√
σεLLuLL, (2.47)

which can be expressed in any frame using Eqs. (2.39) and (2.40). This is usually adopted as 
the entropy current of a perfect fluid, and in that case it is divergence-free when external forces 
vanish. Here, it obeys (see (2.42))

∇ · S0 = −
√
σ
(	LLτ + uLL · f)= − 1

(	LLτ + uLL · f) , (2.48)

εLL TLL



10 A. Campoleoni et al. / Nuclear Physics B 946 (2019) 114692
which can be recast in terms of arbitrary-frame data using the already quoted (2.39), (2.40) and 
the divergence of the latter. Expanding this result up to first order for χ, τ � ε, we find for a free 
fluid

∇ · S0(1) = − 1

T
	τ = ζ

T
	2 , (2.49)

where we have used in the last equality the first-order derivative expansion of τ , given in (2.11). 
For this to be positive one finds the usual requirement ζ > 0. From this perspective, the current 
S0 seems fine.

The expansion of S0 up to second order in χ, τ � ε,

S0 = 2
√
σεu+χ

√
σ

ε
∗u− χ

2

4ε

√
σ

ε
u− τχ

2ε

√
σ

ε
∗u+· · · = su+ q

T
− χ2

4εT
u− τ

2εT
q+· · · ,

(2.50)

is in agreement with the usual expectations dictated by extended irreversible thermodynamics
(completing the first-order classical irreversible thermodynamics) [29]. These can be summa-
rized as follows, the order referring to the dissipative expansion:

1. free perfect limit: S|χ=τ=0 = S(0) = su = 2
√
σεu;

2. stability ∂S·u
∂τ

∣∣∣
χ=τ=0

= 0;

3. first-order (CIT) correction: S(1) = q
T

;

4. second-order (EIT) corrections: S(2) might contain τ
2

εT
u, χ

2

εT
u and τ

εT
q;

5. second law: ∇ · S � 0.

Other invariant terms may be considered in the definition of S as long as the above requirements 
are satisfied. In the absence of a concrete proposal for selecting other terms, we will not pursue 
the argument any further. Related discussions can be found in [30–33].11

2.1.4. Light-cone versus Randers–Papapetrou frames
Light-cone frame Every two-dimensional metric is amenable by diffeomorphisms to a con-
formally flat form. This suggests to use12:

ds2 = e−2ωdx+dx− (2.51)

(with usual time and space coordinates defined as x± = x± kt), where ω is an arbitrary function 
of x+ and x−.

Any normalized congruence has the following form:

u = u+dx+ + u−dx− ⇔ ∗u = −u+dx+ + u−dx−, (2.52)

where u±, functions of x+ and x−, are related by the normalization condition

11 It should be quoted that S as defined in (2.47) does not coincide with the entropy current proposed in Ref. [33]. 
Hydrodynamic-frame invariance and CIT/EIT arguments were not part of the agenda in this work, based essentially on 
the second law of thermodynamics.
12 With this choice, g+− = 1/2 e−2ω , η+− = 1/2 e−2ω , η+− = −2e2ω , η ++ = 1, η −− = −1. Notice also that 
∗ 
(
dx+ ∧ dx−

) = η+− = −2e2ω .
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u+u− = −k
2

4
e−2ω. (2.53)

We can parameterize the velocity field as

u+ = −k
2

e−ω√ξ, u− = k
2

e−ω 1√
ξ
, (2.54)

where ξ = ξ(x+, x−) is defined as the ratio

ξ = −u+
u−
. (2.55)

The choice ξ = 1 corresponds to a comoving fluid because in this case u = −k2e−ωdt .
For the congruence at hand

	±	∗ = ±2ke2ω∂±e−(
ω±ln

√
ξ
)
. (2.56)

We can also determine the Weyl connection and field strength:

A = −dω+ ∗d ln
√
ξ and F = −� ln

√
ξ = −2e2ω∂+∂− ln ξ, (2.57)

whereas the ordinary (non Weyl-covariant) scalar curvature reads (see (2.27))

R = 2�ω= 8e2ω∂+∂−ω. (2.58)

In the present light-cone frame {dx+, dx−}, a general energy–momentum tensor with ε = p
has components

T++ = ξ
2

(
ε− χ + τ

2

)
e−2ω, T−− = 1

2ξ

(
ε+ χ + τ

2

)
e−2ω,

T+− = T−+ = τ
4

e−2ω.

(2.59)

For a conformal fluid Eqs. (2.43) lead to T+− = T−+ = 0 and

(ε+ χ)(ε− χ)= 4e4ωT++T−−,
ε+ χ
ε− χ = T−−

T++
ξ2. (2.60)

In the latter case, and in the absence of external forces, the forms (2.31) are closed, which in 
light-cone coordinates implies that (ε− χ)e−2ωξ is locally a function of x+, and (ε+ χ) e−2ω

ξ
a 

function of x−. Observe that in the Landau–Lifshitz frame (χLL = 0)

ξ2
LL = T++

T−−
, ε2

LL = 4e4ωT++T−−. (2.61)

In this frame, on-shell, F vanishes. Moving from a given hydrodynamic frame to another by a 
local Lorentz boost, amounts to perform the following transformation on the function ξ

ξ(x+, x−)→ ξ ′(x+, x−)= e−2ψ(x+,x−)ξ(x+, x−). (2.62)
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Randers–Papapetrou frame The light-cone frame is not well suited for the Carrollian limit, 
which is the ultra-relativistic limit reached at vanishing k, and emerging at the null-infinity con-
formal boundary of a flat spacetime (subject of next section). As discussed in [19], Carrollian 
fluid dynamics is elegantly reached in the Randers–Papapetrou frame, where

ds2 = −k2 (�dt − bxdx)2 + adx2 (2.63)

with all three functions of the coordinates t and x.
A generic velocity vector field u reads:

u = γ (
∂t + vx∂x

)
. (2.64)

It is convenient to parametrize the velocity vx (see [19]) as13

vx = k2�βx

1 + k2βββ ·bbb ⇔ βx = vx

k2�
(

1 − vxbx
�

) (2.65)

with Lorentz factor

γ = 1 + k2βββ ·bbb
�

√
1 − k2βββ2

. (2.66)

The velocity form and its Hodge-dual read:

u = − k2√
1 − k2βββ2

(�dt − (bx + βx)dx) , ∗u = k√a�γ (
dx − vxdt

)
, (2.67)

while the corresponding vector is

∗u = k√
a
√

1 − k2βββ2

(
bx + βx
�

∂t + ∂x
)
. (2.68)

We can determine the form of the heat current q, which must be proportional to ∗u, in terms 
of a single component qx . We find

χ = qx

k
√
a�γ

= q
x
√
a
√

1 − k2βββ2

k
. (2.69)

Similarly, for the viscous stress tensor

τ = τxx

a�2γ 2 = τxxa
(

1 − k2βββ2
)
. (2.70)

Performing a local Lorentz boost (2.32) on the hydrodynamic frame does not affect the ge-
ometric objects �, bx or a, and is thus entirely captured by the transformation of the vector βββ. 
Parameterizing the boost in terms of a Carrollian vector BBB = Bx∂x as

coshψ = �= 1√
1 − k2BBB2

, sinhψ = �k√aBx = k
√
aBx√

1 − k2BBB2
, (2.71)

13 With these definitions, βx transforms as the component of a genuine Carrollian vector βββ = βx∂x , when considering 
the flat limit of the bulk spacetime. Notice that βx + bx = −�ux

ku0
. We define as usual bx = axxbx , βx = axxβx , vx =

axxv
x with axx = 1/axx = a, bbb2 = bxbx , βββ2 =βββ ·βββ = βxβx and bbb ·βββ = bxβx .
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we get:

βββ ′ = βββ +BBB
1 + k2βββ ·BBB , (2.72)

as expected from the velocity rule composition in special relativity. Using (2.35), we also obtain

ε′ = 1

1 − k2BBB2

((
1 + k2BBB2

)
ε− k√aBx2χ + k2BBB2τ

)
, (2.73)

χ ′ = 1

1 − k2BBB2

((
1 + k2BBB2

)
χ − k√aBx(2ε+ τ)

)
, (2.74)

accompanying (2.36). Together with (2.69) and (2.70), we finally reach:

q ′
x√
a

=
((

1 + k2BBB2
)
χ − k√aBx(2ε+ τ)

)
k

(
1 + k2 (βββ ·BBB + (βββ +BBB) · bbb))(

1 − k2βββ2
)1/2 (

1 − k2BBB2
)3/2

, (2.75)

τ ′
xx

a
= τ

(
1 + k2 (βββ ·BBB + (βββ +BBB) ·bbb))2(

1 − k2βββ2
) (

1 − k2BBB2
) . (2.76)

2.2. Carrollian fluids

2.2.1. The Carrollian geometry
The Carrollian geometry R × S is obtained as the vanishing-k limit of the two-dimensional 

pseudo-Riemannian geometry M equipped with metric (2.63). In this limit, the line S inherits 
a metric14

d�2 = adx2, (2.77)

and t ∈ R is the Carrollian time. Much like a Galilean space is observed from a spatial frame 
moving with respect to a local inertial frame with velocity w, a Carrollian frame is described by 
a form bbb = bx(t, x) dx. The latter is not a velocity because in Carrollian spacetimes motion is 
forbidden. It is rather an inverse velocity, describing a “temporal frame” and plays a dual role. 
A scalar �(t, x) also remains in the k→ 0 limit (as in the Galilean case, see [19] – this reference 
will be useful along the present section).

We define the Carrollian diffeomorphisms as

t ′ = t ′(t, x) and x′ = x′(x). (2.78)

The ordinary exterior derivative of a scalar function does not transform as a form. To overcome 
this issue, it is desirable to introduce a Carrollian derivative as

∂̂x = ∂x + bx
�
∂t , (2.79)

transforming as a form. With this derivative we can proceed and define a Carrollian covariant 
derivative ∇̂x , based on Levi–Civita–Carroll connection

γ̂ xxx = ∂̂x ln
√
a. (2.80)

14 This metric lowers all x indices.
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As we will see in 3.2, in the framework of flat holography, the spatial surface S emerges 
as the null infinity I + of the Ricci-flat geometry. The geometry of I + is equipped with a 
conformal class of metrics rather than with a metric. From a representative of this class, we 
must be able to explore others by Weyl transformations, and this amounts to study conformal 
Carrollian geometry as opposed to plain Carrollian geometry (see [34]).

The action of Weyl transformations on the elements of the Carrollian geometry on a surface 
S is inherited from (2.15)

a→ a

B2 , bx → bx

B , �→ �

B , βx → βx

B , (2.81)

where B = B(t, x) is an arbitrary function. However, the Levi–Civita–Carroll covariant deriva-
tives are not covariant under (2.81). Following [19], they must be replaced with Weyl–Carroll 
covariant spatial and time metric-compatible derivatives built on the Carrollian acceleration ϕx
and the Carrollian expansion θ ,

ϕx = 1

�
(∂tbx + ∂x�)= ∂t bx

�
+ ∂̂x ln�, (2.82)

θ = 1

�
∂t ln

√
a, (2.83)

which transform as connections:

ϕx → ϕx − ∂̂x lnB, θ → Bθ − 1

�
∂tB. (2.84)

In particular, these can be combined in15

αx = ϕx − θbx, (2.85)

transforming under Weyl rescaling as

αx → αx − ∂x lnB. (2.86)

The spatial Weyl–Carrol derivative is

D̂x�= ∂̂x�+wϕx�, (2.87)

for a weight-w scalar function �, and

D̂xV
x = ∇̂xV x + (w− 1)ϕxV

x, (2.88)

for a vector with weight-w component V x . It does not alter the conformal weight, and is gener-
alized to any tensor by Leibniz rule.

Similarly we define the temporal Weyl–Carroll derivative by its action on a weight-w func-
tion �

1

�
D̂t�= 1

�
∂t�+wθ�, (2.89)

which is a scalar of weight w+ 1 under (2.81). Accordingly, the action of the Weyl–Carroll time 
derivative on a weight-w vector is

15 Contrary to ϕx , αx is not a Carrollian one-form, i.e. it does not transform covariantly under Carrollian diffeomor-
phisms (2.78).
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1

�
D̂tV

x = 1

�
∂tV

x +wθV x. (2.90)

This is the component of a genuine Carrollian vector of weight w+ 1, and Leibniz rule allows 
to generalize this action to any tensor.

The Weyl–Carroll connections have curvature. Here, the only non-vanishing piece is the cur-
vature one-form resulting from the commutation of D̂x and 1

�
D̂t , which has weight 1:

Rx = 1

�
(∂tαx − ∂x(θ�))= 1

�
∂tϕx − θϕx − ∂̂xθ. (2.91)

2.2.2. Carrollian fluid observables
A relativistic fluid satisfying Eq. (2.1) will obey Carrollian dynamics in the ultra-relativistic 

limit, reached at vanishing k. The original relativistic fluid is not at rest, but has a velocity 
parametrized with βββ = βxdx (see (2.65)), which remains in the Carrollian limit as the kine-
matical “inverse-velocity” variable. We will keep calling it abusively “velocity”. This variable 
transforms as a Carrollian vector and allows to define further kinematical objects.

• We introduce the acceleration γγγ = γxdx

γx = 1

�
∂tβx. (2.92)

This is not Weyl-covariant, as opposed to

δx = 1

�
D̂t βx = γx − θβx =

√
a

�
∂t
βx√
a
, (2.93)

which has weight 0.
• The suracceleration is the weight-1 conformal Carrollian one-form

Ax = 1

�
D̂t

1

�
D̂t βx = 1

�
∂t

(
1

�
∂tβx − θβx

)
. (2.94)

It can be combined with the curvature (2.91), which has equal weight,

sx = Ax + Rx = 1

�
∂t

(
1

�
∂tβx − θβx

)
+ 1

�
∂tϕx − θϕx − ∂̂xθ. (2.95)

This appears as a conformal Carrollian total (i.e. kinematical plus geometric) suracceleration, 
and enables us to define a weight-2 conformal Carrollian scalar:

s = sx√
a
. (2.96)

The latter originates from the Weyl curvature F of the pseudo-Riemannian ascendant mani-
fold M :

s = − lim
k→0

kF. (2.97)

Notice that the ordinary scalar curvature of M given in (2.27) is not Weyl-covariant (see 
(2.28)) and can be expressed in terms of Carrollian non-Weyl-covariant scalars of R × S :

R = 2

k2

(
θ2 + 1

�
∂tθ

)
− 2

(
∇̂x + ϕx

)
ϕx. (2.98)
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Besides the inverse velocity, acceleration and suracceleration, other physical data describe a 
Carrollian fluid.

• The energy density ε and the pressure p, related here through ε = p. The Carrollian en-
ergy and pressure are the zero-k limits of the corresponding relativistic quantities, and have 
weight 2. It is implicit that they are finite, and in order to avoid inflation of symbols, we have 
kept the same notation.

• The heat current πππ = πx(t, x)dx of conformal weight 1, inherited from the relativistic heat 
current (see (2.2)) as follows16:

qx = k2πx + O
(
k4

)
. (2.99)

This translates the expected (see (2.69)) small-k behavior of χ :

χ = χπk + O
(
k3

)
, (2.100)

leading to

πx = χπ√
a
. (2.101)

• The weight-0 viscous stress tensors ���=�xxdx2 and ���=�xxdx2, obtained from the rela-
tivistic viscous stress tensor τ

k2 ∗ u ∗ u as

τxx = −�
xx

k2 −�xx + O
(
k2

)
. (2.102)

For this to hold, following (2.70), we expect

τ = τ�
k2 + τ� + O

(
k2

)
, (2.103)

and find (in the Carrollian geometry, indices are lowered with axx = a):

�xx = −τ�, �xx = −τ� −βββ2τ�. (2.104)

As we will see later, this is in agreement with the form of τ for the relativistic systems at 
hand (see Eqs. (2.98) and (3.2)).

• Finally, we assume that the components of the external force density behave as follows, 
providing further Carrollian power and tension:{

k
�
f0 = f

k2 + e+ O
(
k2

)
,

f x = hx

k2 + gx + O
(
k2

)
.

(2.105)

16 In arbitrary dimensions one generally admits qx = Qx + k2πx + O
(
k4

)
(see [19]), which amounts assuming 

χ = χQ
k

+ χπk + O
(
k3

)
. This is actually more natural because vanishing χQ is not a hydrodynamic-frame-invariant 

feature in the presence of friction. Keeping χQ = 0, however, is not viable holographically in two boundary dimensions 
because it would create a 1/k2 divergence inside the derivative expansion. Since the Carrollian limit destroys anyway 
the hydrodynamic-frame invariance, our choice is consistent from every respect. Ultimately these behaviors should be 
justified within a microscopic quantum/statistical approach, missing at present.
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2.2.3. Hydrodynamic equations
The hydrodynamic equations for a Carrollian fluid are obtained as the zero-k limit of the 

relativistic equations (see [19]):

−
(

1

�
∂t + 2θ

)(
ε−βββ2�xx

)
+

(
∇̂x + 2ϕx

)(
βx�

x
x

) + θ
(
�xx −βββ2�xx

)
= e,

(2.106)

θ�xx = f,
(2.107)(

∇̂x + ϕx
)(
ε−�xx

) + ϕx
(
ε−βββ2�xx

)
+

(
1

�
∂t + θ

)(
πx + βx

(
2ε−�xx

)) = gx,
(2.108)

−
(
∇̂x + ϕx

)
�xx −

(
1

�
∂t + θ

)(
βx�

x
x

) = hx.
(2.109)

Generically, the above equations are not invariant under Carrollian local boosts, acting as

β ′
x = βx +Bx (2.110)

(vanishing-k limit of (2.72)). This should not come as a surprise. Such an invariance is exclusive 
to the relativistic case for obvious physical reasons, and is also known to be absent from Galilean 
fluid equations, which are not invariant under local Galilean boosts. Nevertheless, as we will see 
in Sec. 4, in specific situations a residual invariance persists.

3. Three-dimensional bulk reconstruction

3.1. Anti-de Sitter

Three-dimensional Einstein spacetimes are peculiar because the usual derivative expansion 
terminates at finite order. This happens also for the Fefferman–Graham expansion (see e.g. [21]). 
The reason is that most geometric and fluid tensors vanish (like the shear or the vorticity), reduc-
ing the number of available terms compatible with conformal invariance. Indeed, following the 
original fluid/gravity works [1–4], the ansatz for the bulk Einstein metric is a power expansion 
in 1/r such that boundary Weyl transformations (2.15) are compensated by r → B(t, x)r . The 
boundary metric has weight −2, the forms u and ∗u (velocity and dual fluid velocity) weight −1, 
whereas the energy and heat densities of the fluid have weight 2. The Weyl connection A has 
(anomalous) weight zero, as the form dr . With these data we obtain:

ds2
Einstein = 2

u

k2 (dr + rA)+ r2ds2 + 8πG

k4 u (εu + χ ∗ u) , (3.1)

where A is displayed in (2.18), ε and χ being the energy and heat densities of the fluid (as 
opposed to higher dimension, the heat current appears explicitly in the ansatz). These enter the 
fluid energy–momentum tensor (2.14) together with τ , which carries the anomaly:

τ = R = 1 (
	2 −	∗2 + u(	)− ∗u(	∗)

)
(3.2)
8πG 4πGk2
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(we keep the conformal state equation ε = p). For a flat boundary this trace is absent, but Weyl 
transformations bring it back.

The precise coefficients of the eligible terms in the ansatz are determined by the radial-
evolution subset of Einstein’s equations, and this is already taken care of in expression (3.1), 
utterly locking the r-dependence. The remaining Einstein’s equations further constrain the 
boundary data, i.e. the metric and the fluid. Summarizing, the metric (3.1) provides an exact
Einstein, asymptotically AdS spacetime, with R = 6� = −6k2, under the necessary and suffi-
cient condition that the non-conformal fluid energy–momentum tensor (2.14) obeys

∇μ (
Tμν +Dμν

) = 0, (3.3)

where Dμν is a symmetric and traceless tensor which reads:

Dμνdx
μdxν = 1

8πGk4

((
u(	)+ ∗u(	∗)− k

2

2
R

)(
u2 + ∗u2

)
− 4 ∗ u(	)u ∗ u

)
. (3.4)

On the one hand, the holographic energy–momentum tensor is the sum Tμν +Dμν , and this can 
be shown following the Balasubramanian–Kraus method [35].17 On the other hand, the holo-
graphic fluid is subject to an external force with density

fν = −∇μDμν. (3.5)

Its longitudinal and transverse components are{
uμfμ = − 1

4πG

(∗u(F )+ 2	∗F + 1
2	R

)
,

∗uμfμ = 1
8πG (∗u(R)+	∗R) .

(3.6)

Combining (2.30), (3.2) and (3.6) we find the following equations:{
(uμ + ∗uμ)Dμ (ε+ χ)= 1

4πG ∗ uμDμF,
(uμ − ∗uμ)Dμ (ε− χ)= 1

4πG ∗ uμDμF. (3.7)

Notice that eventually these equations are Weyl-covariant (weight-3) despite the conformal 
anomaly.

An important remark is in order regarding the holographic fluid. Rather than Tμν , we could 
have adopted Tμν +Dμν as its energy–momentum tensor. The latter would have been decom-
posed as in (2.2), with ε̃ = p̃ and χ̃ though (τ̃ = τ since Dμν has vanishing trace):

ε̃ = ε+ 1

8πGk2

(
u(	)+ ∗u(	∗)

) − R

16πG
, (3.8)

χ̃ = χ − 1

4πGk2 ∗ u(	). (3.9)

We did not make this choice for two reasons: (i) in the formula (3.1) we used ε and χ rather 
than ε̃ and χ̃ for reconstructing the bulk; (ii) ε and χ/k are finite in the limit of vanishing k, 
whereas ε̃ and χ̃/k are not. This last fact is not an obstruction, but it would require to reconsider 
the Carrollian hydrodynamic equations developed in Ref. [19] and applied here.

17 For this computation we used the conventions of [36].
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Expression (3.1) is the most general locally AdS spacetime in Eddington–Finkelstein coor-
dinates. The corresponding gauge includes but does not always coincide with BMS.18 From 
that perspective, this result is new although it may not contain any new solutions compared e.g.
to Bañados’ [18], all captured either in BMS or in Fefferman–Graham gauge (see [20]). The 
bonus is the hydrodynamical interpretation. Here the corresponding fluid is defined on a gen-
erally curved boundary and has an arbitrary velocity field. This should be contrasted with the 
treatment of three-dimensional fluid/gravity correspondence worked out in Refs. [2,3], where 
the host geometry was flat, avoiding the issue of conformal anomaly. Furthermore the fluid was 
assumed perfect by hydrodynamic-frame choice, which permits a subclass of Bañados solutions 
only, as we will see in Sec. 4 by computing the conserved charges.

For practical purposes, we can work in light-cone coordinates, introduced in Eq. (2.51). Using 
the expression (2.54) for the congruence u, and solving the fluid equations (3.7), we obtain the 
fluid densities ε and χ in terms of two arbitrary chiral functions �±(x±):

ε = e2ω

4πG

(
�+
ξ

+ ξ�− − 3 (∂+ξ)2

4ξ3 + ∂
2+ξ

2ξ2 + (∂−ξ)
2

4ξ
− ∂

2−ξ
2

)
, (3.10)

χ = e2ω

4πG

(
−�+
ξ

+ ξ�− + 3 (∂+ξ)2

4ξ3 − ∂
2+ξ

2ξ2 + (∂−ξ)
2

4ξ
− ∂

2−ξ
2

+ ∂+ξ∂−ξ
ξ2 − ∂+∂−ξ

ξ

)
.

(3.11)

Gathering these data together with (2.57) inside (3.1) provides, in the gauge at hand, the general 
class of locally AdS three-dimensional spacetime with curved conformal boundary. The confor-
mal factor exp 2ω can be apparently reabsorbed by setting r to r expω, thus bringing (3.1) to its 
flat-boundary form.19 One should nevertheless be careful when making claims based on coor-
dinate redefinitions, even in seemingly safe situations, because they can potentially alter global 
properties. Indeed, as discussed in Ref. [37], ω is expected to bring different asymptotics and new 
charges, and the corresponding solutions might generalize Bañados’ family. In our subsequent 
analysis of Sec. 4.1, we will set ω = 0. As we will shortly see, the arbitrary function ξ(x+, x−)
is also insidious regarding the charges, and focusing on it will be sufficient for the scope of this 
work.

We could proceed and display similar expressions in the Randers–Papapetrou boundary frame, 
describing the general locally anti-de Sitter spacetimes in terms of the three geometric data 
�(t, x), bx(t, x) and axx = a(t, x), and whatever integration functions would appear in the pro-
cess of solving the hydrodynamic equations (3.7). Usually, this resolution cannot be conducted 
explicitly as it happens in light-cone coordinates, and we end up with an implicit description 
of the bulk metric. We should quote here that a specific example of curved boundary20 was in-
vestigated in Ref. [38], outside of the fluid/gravity framework, and the output agrees with our 

18 There is no definition of Eddington–Finkelstein gauge. Within the three-dimensional derivative expansion, one can 
nevertheless refer to it as a gauge because the r-dependence is fixed. This does not exhaust all freedom, but allows 
comparison with BMS. Actually, fluid/gravity approach is not meant to lock completely the coordinates for describing 
the most general solution in terms of a minimal set of functions. .
19 This should be contrasted with the more intricate situation regarding this conformal factor inside the analogous 
formula in Fefferman–Graham gauge, Eq. (2.21) of Ref. [20].
20 In that case � = exp 2β , bx = 0, a = 1 and, in our language, the fluid velocity would have been u = −k2e2βdt , i.e.
comoving.
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general results. We should also stress, following the discussion of footnote 18, that the Randers–
Papapetrou boundary frame produces in (3.1) order-r dtdx components absent in the BMS gauge.

3.2. Ricci-flat

Our starting point is the finite derivative expansion of an asymptotically AdS3 spacetime, 
Eq. (3.1). The fundamental question is whether the latter admits a smooth zero-k limit.

We have implicitly assumed that the Randers–Papapetrou data of the two-dimensional pseudo-
Riemannian conformal boundary I associated with the original Einstein spacetime, a, b and �, 
remain unaltered at vanishing k, providing therefore directly the Carrollian data for the new 
spatial one-dimensional boundary S emerging at I +. Following again the detailed analysis 
performed in [19], we can match the various two-dimensional Riemannian quantities with the 
corresponding one-dimensional Carrollian ones:

u = −k2 (�dt − (bx + βx)dx)+ O
(
k4

)
, ∗u = k√adx + O

(
k3

)
(3.12)

and

	 = θ + O
(
k2

)
,

a = k2 (ϕx + γx)dx + O
(
k4

)
,

A = θ�dt + (αx + δx)dx + O
(
k2

)
,

(3.13)

where the left-hand-side quantities are Riemannian, and the right-hand-side ones Carrollian (see 
(2.82), (2.83), (2.85), (2.92), (2.93)).

The closed form (3.1) is smooth at zero k. In this limit the metric reads:

ds2
flat = −2 (�dt −bbb−βββ) (dr + r (ϕϕϕ +γγγ + θ (�dt − bbb−βββ)))

+ r2d�2 + 8πG(�dt −bbb−βββ) (ε (�dt − bbb−βββ)−πππ) . (3.14)

Here d�2, �, bbb= bxdx, ϕϕϕ = ϕxdx and θ are the Carrollian geometric objects introduced earlier. 
The bulk Ricci-flat spacetime is now dual to a Carrollian fluid with kinematics captured in βββ =
βxdx and γγγ = γxdx, energy density ε (zero-k limit of the corresponding relativistic function), 
and heat current πππ = πxdx (obtained in Eqs. (2.99), (2.100) and (2.101)).

For the fluid under consideration, there is also a pair of Carrollian stress tensors originating 
from the anomaly (3.2). Using expressions (2.98) and (2.103), we can determine τ� and τ�, and 
Eqs. (2.104) provide in turn the Carrollian stress:

�xx = − 1

4πG

(
θ2 + ∂t θ

�

)
, �xx = 1

4πG

((
∇̂x + ϕx

)
ϕx −βββ2

(
θ2 + ∂t θ

�

))
. (3.15)

This is the advertised Carrollian emanation of the relativistic conformal anomaly.
Expression (3.14) will grant by construction an exact Ricci-flat spacetime provided the con-

ditions under which (3.1) was Einstein are fulfilled in the zero-k limit. These are the set of 
Carrollian hydrodynamic equations (2.106), (2.107), (2.108) and (2.109), with Carrollian power 
and force densities e, f , gx , hx obtained using their definition (2.105) and the expressions of fμ
displayed in (3.6) (we use for this computation the expression of the scalar curvature (2.98), and 



A. Campoleoni et al. / Nuclear Physics B 946 (2019) 114692 21
sx as given in (2.95)). Equations (2.107) and (2.109) are automatically satisfied, whereas (2.106)
and (2.108) lead to21⎧⎪⎨

⎪⎩
1

�
D̂t ε+ 1

4πG

(
2sx
�

D̂t βx + βx
�

D̂t sx + D̂xsx

)
= 0,

D̂xε− βx
�

D̂t ε+ 1

�
D̂t (πx + 2εβx)= 0.

(3.16)

The unknown functions, which bear the fluid configuration, are ε(t, x), πx(t, x) and βx(t, x). 
These cannot be all determined by the two equations at hand. Hence, there is some redundancy, 
originating from the relativistic fluid frame invariance – responsible e.g. for the arbitrariness of 
ξ(x+, x−) in the description of AdS spacetimes using the light-cone boundary frame. More will 
be said about this in Sec. 4.2.

Equations (3.16) are Carroll–Weyl covariant. The Ricci-flat line element (3.14) inherits Weyl 
invariance from its relativistic ancestor. The set of transformations (2.81), (2.84) and (2.86), sup-
plemented with ε→ B2ε and πx → Bπx , can indeed be absorbed by setting r → Br , resulting 
thus in the invariance of (3.14). In the relativistic case this invariance was due to the AdS con-
formal boundary. In the case at hand, this is rooted to the location of the one-dimensional spatial 
boundary S at null infinity I +.

We would like to close this chapter with a specific but general enough situation to encompass 
all Barnich–Troessaert Ricci-flat three-dimensional spacetimes. The Carrollian geometric data 
are bx = 0, � = 1 and a = exp 2�(t, x), and the kinematic variable of the Carrollian dual fluid 
βx is left free. Hence (3.14) reads:

ds2
flat = −2 (dt − βxdx) (dr + r (∂t�dt + (∂t − ∂t�)βxdx))

+ r2e2�dx2 + 8πG(dt − βxdx) (εdt − (πx + εβx)dx) , (3.17)

where ε(t, x) and πx(t, x) obey Eqs. (3.16) in the form⎧⎨
⎩(∂t + 2∂t�) ε+ 1

4πG
(2sx (∂t + ∂t�)βx + βx (∂t + 3∂t�) sx + (∂x + ∂x�) sx)= 0,

∂xε+ (∂t + ∂t�)πx + 2ε∂tβx + βx∂t ε = 0.

(3.18)

Here, sx takes the simple form

sx = ∂2
t βx − ∂t (βx∂t�)− ∂t ∂x�. (3.19)

For vanishing βx , the results (3.17) and (3.18) coincide precisely with those obtained in [20] by 
demanding Ricci-flatness in the BMS gauge. Here, they are reached from purely Carrollian-fluid 
considerations, and for generic βx(t, x), the metric (3.17) lays outside the BMS gauge.

4. Two-dimensional flat boundary and conserved charges

We will now restrict the previous analysis to Ricci-flat and Weyl-flat boundaries, both in AdS 
and Ricci-flat spacetimes. This enables us to compute the conserved charges following [22–24], 
and analyze the role of the velocity and the heat current of the boundary fluid.

21 We remind that Weyl–Carroll covariant derivatives are defined in Eqs. (2.87), (2.88), (2.89) and (2.90). Here ε, βx , 
πx and sx have weights 2, 1, 1 and 3. For example D̂xsx = ∇̂xsx + 2ϕxsx = 1√ ∂̂x (

√
asx) + 2ϕxsx .
a
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4.1. Charges in AdS spacetimes

The flatness requirements are equivalent to setting R = 0 and F = 0. In the light-cone frame 
(2.51), this amounts to (see (2.57) and (2.58))

ω= 0 and ξ(x+, x−)= −ξ
−(x−)
ξ+(x+)

, (4.1)

where the minus sign is conventional.
Using the general solutions (3.10) and (3.11) in the bulk expression (3.1), and trading the 

chiral functions �± for L± defined as (the prime stands for the derivative with respect to the 
unique argument of the function)

�± = 1(
ξ±)2

(
L± − (ξ

±′)2 − 2ξ±ξ±′′

4

)
, (4.2)

we obtain the following metric:

ds2
Einstein = −1

k

⎛
⎝

√
−ξ

−
ξ+ dx+ −

√
−ξ

+
ξ− dx−

⎞
⎠dr

+
(
L+
k2 − r

2k

√
−ξ+ξ−ξ+′

)(
dx+

ξ+

)2

+
(
L−
k2 − r

2k

√
−ξ+ξ−ξ−′

)(
dx−

ξ−

)2

+
(
r2 + r

2k

1√−ξ+ξ−
(
ξ+′ + ξ−′) + L+ +L−

k2ξ+ξ−

)
dx+dx−. (4.3)

This metric depends on four arbitrary functions: ξ+(x+) and ξ−(x−) carrying information about 
the holographic fluid velocity (see (2.54)), and L+(x+), L−(x−), which together with ξ+(x+)
and ξ−(x−) shape the energy–momentum tensor – here traceless due to the boundary flatness. 
Indeed we have

ε = − 1

4πG

L+ +L−
ξ+ξ− , χ = 1

4πG

L+ −L−
ξ+ξ− , (4.4)

and in turn

T±± = L±
4πG(ξ±)2

. (4.5)

In three dimensions, any Einstein spacetime is locally anti-de Sitter. Hence, there exists al-
ways a coordinate transformation that can be used to bring it into a canonical AdS3 form (say, 
in Poincaré coordinates). This is a large gauge transformation whenever the original Einstein 
spacetime has non-trivial conserved charges. The determination of the latter is therefore crucial 
for a faithful identification of the solution under consideration. It allows to evaluate the precise 
role played by the above arbitrary functions.

The charge computation requires a complete family of asymptotic Killing vectors. Those are 
determined according to the gauge, i.e. to the fall-off behavior at large-r . The family (4.3) does 
not fit BMS gauge, unless ξ± are constant. This is equivalent to saying that the fluid has a uniform 
velocity, and can therefore be set at rest by an innocuous global Lorentz boost tuning ξ+ = 1 and 
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ξ− = −1.22 We will first focus on this case, where the asymptotic Killing vectors are known, 
and move next to the other extreme, demanding the fluid be perfect, i.e. in Landau–Lifshitz 
hydrodynamic frame. In the latter instance we will have to determine this family of vectors 
beforehand, as the gauge will no longer be BMS. Investigating the general situation captured 
by (4.3) is not relevant for our argument, which is meant to show that fluid/gravity holographic 
reconstruction is hydrodynamic-frame dependent.

As we will see, the charges computed following [22–24], and displayed in Eqs. (4.16) and 
(4.29), coincide in both cases with the modes of the energy–momentum tensor (4.5). However, 
they obey a different algebra due to the distinct asymptotic behavior of the associated metric 
families.

Dissipative static fluid As anticipated, this class of solutions is reached by demanding ξ± =
±1, while keeping L± arbitrary. We obtain

ds2
Einstein = −1

k

(
dx+ − dx−)

dr + r2dx+dx− + 1

k2

(
L+dx+ −L−dx−) (

dx+ − dx−)
,

(4.6)

which is the canonical expression of Bañados solutions in BMS gauge. Following (4.4), the 
boundary fluid energy and heat densities are ε= 1/4πG (L+ +L−) and χ = −1/4πG (L+ −L−). 
Therefore the heat current is not vanishing, and in the present hydrodynamic frame the fluid is at 
rest and dissipative.

The class of metrics (4.6) are form-invariant under

ζ = ζ r∂r + ζ+∂+ + ζ−∂− (4.7)

with

ζ r = − r
2

(
Y+′ + Y−′) + 1

2k

(
Y+′′ − Y−′′) − 1

2k2r
(L+ −L−)

(
Y+′ − Y−′) , (4.8)

ζ± = Y± − 1

2kr

(
Y+′ − Y−′) , (4.9)

for arbitrary chiral functions Y+(x+) and Y−(x−). These vector fields generate diffeomor-
phisms, which alter the functions appearing in (4.6) according to

−Lζ gMN = δζ gMN = ∂gMN
∂L+

δζL+ + ∂gMN
∂L−

δζL− (4.10)

with

δζL± = −Y±L′± − 2L±Y±′ + 1

2
Y±′′′

. (4.11)

The last term in this expression is responsible for the emergence of a central charge in the surface-
charge algebra. These vectors obey an algebra for the modified Lie bracket (see e.g. [20]):

ζ3 = [ζ1, ζ2]M = [ζ1, ζ2] − δζ2ζ1 + δζ1ζ2 (4.12)

22 Observe that one may reabsorb ξ+ and ξ− by redefining dx± → ±ξ±dx± and r → r/
√−ξ+ξ− inside (4.3). This 

does not prove, however, that ξ± play no role, and this is why we treat them separately.
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with23 ζa = ζ (
Y+
a , Y

−
a

)
and

Y±
3 = Y±

1 Y
±′
2 − Y±

2 Y
±′
1 . (4.13)

The surface charges are computed for an arbitrary metric g of the type (4.6) with global AdS3
as reference background. The latter has metric ḡ with L+ = L− = −1/4 i.e. ε = −1/8πG and 
χ = 0. The final integral is performed over the compact spatial boundary coordinate x ∈ [0, 2π ]:

QY [g − ḡ, ḡ] = 1

8πkG

2π∫
0

dx

(
Y+

(
L+ + 1

4

)
− Y−

(
L− + 1

4

))
. (4.14)

These charges are in agreement with the quoted literature,24 and their algebra is determined as 
usual:{

QY1 ,QY2

} = δζ1QY2 = −δζ2QY1 . (4.15)

Introducing the modes

L±
m = 1

8πkG

2π∫
0

dx eimx±
(
L± + 1

4

)
(4.16)

the algebra reads:

i
{
L±
m,L

±
n

} = (m− n)L±
m+n + c

12
m

(
m2 − 1

)
δm+n,0 ,

{
L±
m,L

∓
n

} = 0. (4.17)

This double realization of Virasoro algebra with Brown–Henneaux central charge c= 3/2kG was 
expected for Bañados solutions (4.6).

Perfect fluid with arbitrary velocity In Landau–Lifshitz frame the heat current vanishes 
(χ = 0) and the boundary conformal fluid is perfect. Equation (4.4) requires for this

L+ = L− = M
2
, (4.18)

with M constant, while it gives for energy density ε= −M/4πGξ+ξ−. As for the general case, the 
reconstructed bulk family of metrics

ds2
Einstein = −1

k

⎛
⎝

√
−ξ

−
ξ+ dx+ −

√
−ξ

+
ξ− dx−

⎞
⎠dr

+
(
M

2k2 − r

2k

√
−ξ+ξ−ξ+′

)(
dx+

ξ+

)2

+
(
M

2k2 − r

2k

√
−ξ+ξ−ξ−′

)(
dx−

ξ−

)2

+
(
r2 + r

2k

1√−ξ+ξ−
(
ξ+′ + ξ−′) + M

k2ξ+ξ−

)
dx+dx− (4.19)

23 Here δζ2ζ1 stands for the variation produced on ζ1 by ζ2, and this is not vanishing because ζ1 depends explicitly on 

L±: δζ2ζ1 =
(
∂ζN1
∂L+ δζ2L+ + ∂ζN1

∂L− δζ2L−
)
∂N .

24 Some relative-sign differences are due to different conventions used for the light-cone coordinates, here defined as 
x± = x ± kt .
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is not in BMS gauge, unless ξ± are constant. Again this latter subset is entirely captured by ξ± =
±1, and the resulting solution is BTZ together with all non-spinning zero-modes of Bañados 
family [39–41]:

ds2
Einstein = −1

k

(
dx+ − dx−)

dr + r2dx+dx− + M

2k2

(
dx+ − dx−)2

. (4.20)

The asymptotic structure rising in (4.19) is now respected by the following family of asymp-
totic Killing vectors

η= ηr∂r + η+∂+ + η−∂−, (4.21)

expressed in terms of two arbitrary chiral functions ε±(x±)

ηr = − r
2

(
ε+′ + ε−′) , η± = ε±. (4.22)

These vectors, slightly different from those found for the dissipative boundary fluids (4.7), (4.8), 
(4.9), appear as the result of an exhaustive analysis of (4.19). They do not support subleading 
terms, and since they do not depend on the functions ξ±, they form an algebra for the Lie bracket:

[η1, η2] = η3 (4.23)

with ηa = η (
ε+a , ε−a

)
and

ε±3 = ε±1 ε±′
2 − ε±2 ε±′

1 . (4.24)

They induce the exact transformation

−LηgMN = δηgMN = ∂gMN
∂ξ+ δηξ

+ + ∂gMN
∂ξ+′ δηξ

+′ + ∂gMN
∂ξ− δηξ

− + ∂gMN
∂ξ−′ δηξ

−′ (4.25)

with

δηξ
± = ξ±ε±′ − ε±ξ±′. (4.26)

Following the customary pattern, we can determine the conserved charges, with global AdS3
as reference background, now reached with ξ± = ±1 and M = −1/2 (again ε = −1/8πG and 
χ = 0):

Qε [g− ḡ, ḡ] = 1

16πkG

2π∫
0

dx

(
ε+

(
1

ξ+2 − 1

)
− ε−

(
1

ξ−2 − 1

))
, (4.27)

as well as their algebra:{
Qε1,Qε2

} = δη1Qε2 = −δη2Qε1 . (4.28)

Defining now

Z±
m = 1

16πkG

2π∫
0

dx eimx±
(

1

ξ±2 − 1

)
(4.29)

we find

i
{
Z±
m,Z

±
n

} = (m− n)Z±
m+n + m

δm+n,0 ,
{
Z±
m,Z

∓
n

} = 0. (4.30)

4kG
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The central extension of this algebra is trivial. Indeed, it can be reabsorbed in the following 
redefinition of the modes Z±

m

Z̃±
m =Z±

m + 1

8kG
δm,0. (4.31)

Therefore, (4.30) becomes

i
{
Z̃±
m, Z̃

±
n

}
= (m− n)Z̃±

m+n,
{
Z̃±
m, Z̃

∓
n

}
= 0. (4.32)

The algebra at hand (4.32) is de Witt rather than Virasoro,25 and this outcome demonstrates the 
already advertised result: the family of locally anti-de Sitter spacetimes obtained holographi-
cally from two-dimensional fluids in the Landau–Lifshitz frame overlap only partially the space 
of Bañados solutions. This overlap encompasses the non-spinning BTZ and excess or defects 
geometries provided in (4.20).

4.2. Charges in Ricci-flat spacetimes

The absence of anomaly in the Carrollian framework is equivalent to setting �xx =�xx = 0
(see (3.15)), whereas the Weyl–Carroll flatness requires s = 0 (see (2.96)). This amounts to 
taking � = a = 1 and bx = 0,26 and with those data s = 0 reads

∂2
t βx = 0. (4.33)

In the Carrollian spacetime at hand, the fluid equations of motion (3.16) are{
∂t ε = 0,

∂xε+ ∂t (πx + 2εβx)= 0.
(4.34)

Equations (4.33) and (4.34) can be integrated in terms of four arbitrary functions of x: ε(x), 
 (x), λ(x) and μ(x). We find

βx(t, x)= λ(x)

2ε(x)
− t

2
∂x lnμ(x), (4.35)

πx(t, x)= −2ε(x)βx(t, x)+ (x)− t∂xε(x) (4.36)

(this parameterization of βx will be appreciated later). The Ricci-flat (even locally flat) holo-
graphically reconstructed spacetime from these Carrollian fluid data is obtained from the general 
expression (3.14):

ds2
flat = − 2 (dt − βxdx) (dr + r∂tβxdx)+ r2dx2

+ 8πG
(
ε(dt − βxdx)2 − πxdx(dt − βxdx)

)
,

(4.37)

where βx and πx are meant to be as in (4.35) and (4.36).
On the one hand, the arbitrary functions ε(x) and  (x) are reminiscent of the functions 

L±(x±) (or ε(t, x) and χ(t, x)) present in the AdS solutions. A vanishing-k limit was indeed 
used in Ref. [25] to obtain ε(x) and  (x) from L±(x±). On the other hand, λ(x) and μ(x)

25 The absence of central charges occurs also in [37] for the same reason, i.e. a modification of the asymptotic behavior.
26 Actually the absence of anomaly requires rather � = �(t), a = a(x) and bx = bx(x), which can be reabsorbed 
trivially with Carrollian diffeomorphisms.
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remind ξ±(x±), and are indeed a manifestation of a residual hydrodynamic frame invariance, 
which survives the Carrollian limit. Considering indeed the Carrollian hydrodynamic-frame 
transformations (2.110)

β ′
x = βx +Bx, (4.38)

in the present framework (�xx =�xx = 0), and using Eqs. (2.73), (2.74), (2.75), (2.76), (2.99), 
(2.100), (2.101), we obtain the transformations:

ε′ = ε, π ′
x = πx − 2εBx, (4.39)

which leave the Carrollian fluid equations (4.34) invariant. The new velocity field β ′
x is compat-

ible with the Weyl–Carroll flatness (4.33) provided the transformation function Bx is linear in 
time, hence parameterized in terms of two arbitrary functions of x. This is how λ(x) and μ(x)
emerge.

Observe also that the residual Carrollian hydrodynamic frame invariance enables us to define 
here a Carrollian Landau–Lifshitz hydrodynamic frame. Indeed, combining (4.35) and (4.36) we 
obtain

πx(t, x)= −λ(x)+ (x)+ tε(x)∂x ln
μ(x)

ε(x)
. (4.40)

Adjusting the velocity field βx such that

 (x)= λ(x) and
ε(x)

μ(x)
= ε0 (4.41)

with ε0 a constant, makes the Carrollian fluid perfect: πx = 0.
In complete analogy with the AdS analysis, we will first compute the charges for vanishing 

velocity βx = 0 (which is given by λ(x) = 0 and μ(x) = 1) in terms of ε(x) and  (x), and 
next perform the similar computation for perfect fluids with velocity βx parameterized with two 
arbitrary functions λ(x) and μ(x). Here empty Minkowski bulk is realized with μ = 1, λ = 0, 
 = 0 and ε0 = −1/8πG.

As for the AdS instance discussed in Sec. 4.1, the class (4.37) is not in the BMS gauge, un-
less βx is constant, which can then be reabsorbed by a global Carrollian boost (constant Bx).27

We will first discuss this situation, where the asymptotic Killings are the canonical generators 
of bms3. Outside the BMS, we will determine the asymptotic isometry for metrics reconstructed 
from perfect fluids, and proceed with the surface charges and their algebra. Our conclusion is here 
that asymptotically flat fluid/gravity correspondence is sensitive to the residual hydrodynamic-
frame invariance.

Dissipative static fluid The metric (4.37) for vanishing βx takes the simple form (again the 
prime signals a derivative)

ds2
flat = −2dtdr + r2dx2 + 8πG

(
εdt − (

 − tε′)dx
)

dt, (4.42)

compatible with BMS gauge with asymptotic Killing vectors

27 The functions λ(x) and μ(x) entering (4.37) via (4.35) and (4.36) can be reabsorbed in any case by performing the 
coordinate transformation dx→ dx√

μ(x)
, dt → 1√

μ(x)
(dt + βxdx) and r→ r

√
μ(x). This leads to the same form as the 

one reached by setting μ = 1 and λ = 0, i.e. (4.42).
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ζ = ζ r∂r + ζ t ∂t + ζ x∂x, (4.43)

where

ζ r = −rY ′ +H ′′ + tY ′′′ + 4πG

r

(
 − tε′) (

H ′ + tY ′′) , (4.44)

ζ t =H + tY ′, (4.45)

ζ x = Y − 1

r

(
H ′ + tY ′′) . (4.46)

Here H and Y are functions of x only. Vectors (4.44), (4.45), (4.46) are the vanishing-k limit of 
(4.7), (4.8), (4.9), reached by trading light-cone frame as x± = x ± kt , and setting Y±(x±) =
Y(x) ± k (

H(x)+ tY ′(x)
)
.

This family of vectors produces the following variation on the metric fields:

−Lζ gMN = δζ gMN = ∂gMN
∂ε

δζ ε+ ∂gMN
∂ε′

δζ ε
′ + ∂gMN

∂ 
δζ , (4.47)

with

δζ ε = −2εY ′ − Yε′ + Y ′′′

4πG
, (4.48)

δζ = − H
′′′

4πG
+ 1

H

(
εH 2

)′ − 1

Y

(
 Y 2

)′
. (4.49)

Their algebra closes for the same modified Lie bracket (4.12) with ζa = ζ (Ha,Ya) and

Y3 = Y1Y
′
2 − Y2Y

′
1 H3 = Y1H

′
2 +H1Y

′
2 − Y2H

′
1 −H2Y

′
1. (4.50)

We can compute the charges of g in (4.42), using Minkowski as reference background ḡ. They 
read:

QH,Y [g− ḡ, ḡ] = 1

2

2π∫
0

dx

[
H

(
ε+ 1

8πG

)
− Y 

]
. (4.51)

With a basis of functions exp imx for H and Y , we find the standard collection of charges

Pm = 1

2

2π∫
0

dx eimx
(
ε+ 1

8πG

)
, Jm = −1

2

2π∫
0

dx eimx , (4.52)

which coincide with the computation performed e.g. in [25]. Using{
QH1,Y1 ,QH2,Y2

} = δζ1QH2,Y2 = −δζ2QH1,Y1 , (4.53)

we obtain the following surface-charge algebra:

i {Jm,Pn} = (m− n)Pm+n + c

12
m

(
m2 − 1

)
δm+n,0 , i {Jm,Jn} = (m− n)Jm+n ,

{Pm,Pn} = 0 (4.54)

with c= 3/G. This is the bms3 algebra, and this analysis demonstrates that a non-perfect Carrol-
lian fluid, even with βx = 0, is sufficient for generating holographically all Barnich–Troessaert 
flat three-dimensional spacetimes. This goes along with the analogue conclusion reached in AdS 
for Bañados spacetimes.



A. Campoleoni et al. / Nuclear Physics B 946 (2019) 114692 29
Perfect fluid with velocity Consider now the resummed metric (4.37) assuming (4.41). We 
obtain

ds2
flat = −2 (dt − βxdx)

(
dr − rμ

′

2μ
dx

)
+ r2dx2 + 8πGε0μ(dt − βxdx)2 (4.55)

with βx given by

βx = 1

2μ

(
λ

ε0
− tμ′

)
. (4.56)

Unless βx is constant, the metrics (4.55) are not in BMS gauge. The BMS subset is entirely 
captured by μ = 1, λ = 0 with resulting solutions plain Minkowski (ε0 = −1/8πG) and the non-
spinning zero-modes of Barnich–Troessaert family:

ds2
flat = −2dtdr + r2dx2 + 8πGε0dt2. (4.57)

The asymptotic isometries of (4.55) are now generated by28

η= ηr∂r + ηt∂t + ηx∂x, (4.58)

expressed in terms of two arbitrary functions h(x) and ρ(x)

ηr = −rρ′, ηt = h+ tρ′, ηx = ρ. (4.59)

The algebra of asymptotic Killing vectors closes for the ordinary Lie bracket

[η1, η2] = η3 (4.60)

with ηa = η (ha,ρa) and

ρ3 = ρ1ρ
′
2 − ρ2ρ

′
1, h3 = ρ1h

′
2 + h1ρ

′
2 − ρ2h

′
1 − h2ρ

′
1. (4.61)

It respects the form of the metric

−LηgMN = δηgMN = ∂gMN
∂μ

δημ+ ∂gMN
∂μ′ δημ

′ + ∂gMN
∂λ

δηλ (4.62)

with

δηλ= −2λρ′ − ρλ′ + ε0
(
2μh′ + hμ′) , (4.63)

δημ= −2μρ′ − ρμ′. (4.64)

The charges of g in (4.55) are computed as usual with Minkowski as reference background ḡ. 
They read:

Qh,ρ[g− ḡ, ḡ] = 1

2

2π∫
0

dx

[
h

(
ε0μ+ 1

8πG

)
− ρλ

]
. (4.65)

With a basis of unimodular exponentials for h and ρ, we find now

Mm = 1

2

2π∫
0

dx eimx
(
ε0μ+ 1

8πG

)
, Im = −1

2

2π∫
0

dx eimxλ, (4.66)

28 Again the fields (4.58), (4.59) are alternatively obtained by an appropriate zero-k limit of (4.21) and (4.22).
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and {
Qh1,ρ1 ,Qh2,ρ2

} = δη1Qh2,ρ2 = −δη2Qh1,ρ1 (4.67)

provide the surface-charge algebra:

i {Im,Mn} = (m− n)Mm+n − m

4G
δm+n,0 , i {Im, In} = (m− n)Im+n , {Mm,Mn} = 0.

(4.68)

As for the anti-de Sitter case, the central extension of this algebra is trivial. By translating the 
modes

M̃m =Mm − 1

8G
δm,0, (4.69)

we obtain

i
{
Im, M̃n

}
= (m− n)M̃m+n, i {Im, In} = (m− n)Im+n ,

{
M̃m, M̃n

}
= 0. (4.70)

This algebra, which could have been obtained from (4.32) in the zero-k limit, has no central 
charge. Therefore, our computation shows unquestionably that holographic locally flat space-
times based on perfect Carrollian fluids – fluids in Carrollian Landau–Lifshitz frame – cover only 
in some measure the family on Barnich–Troessaert solutions. Among those one finds (4.57).

5. Conclusion

We can now summarize our achievements. The motivations of the present work have been 
twofold: (i) reconstruct asymptotically anti-de Sitter and flat three-dimensional spacetimes using 
fluid/gravity holographic correspondence in a unified framework; (ii) investigate the emergence 
of hydrodynamic-frame invariance and its potential holographic breakdown.

Solutions to three-dimensional vacuum Einstein’s equations have been searched systemati-
cally since the seminal work of BTZ, and their asymptotic symmetries as well as the correspond-
ing conserved charges are thoroughly understood. In parallel, many aspects of their boundary 
properties in the anti-de Sitter case were discussed before the advent of the holographic corre-
spondence, and lately for the flat case in relation with the BMS asymptotic symmetries. However, 
setting up a precise correspondence between a general two-dimensional relativistic fluid defined 
on an arbitrary background and a three-dimensional anti-de Sitter spacetime was only super-
ficially analyzed, whereas the possible relationship among flat spacetimes and Carrollian fluid 
dynamics had never been considered. This has been the core of our inquiry.

Because relativistic fluid dynamics in two spacetime dimensions is rather simple, it allows to 
perform an exhaustive and exact study of the equations of motion, and of their form invariance 
under hydrodynamic-frame transformations – local Lorentz boosts. We have assumed for com-
modity a conformal equation of state, keeping the fluid non-conformal though (i.e. with non-zero 
viscous bulk pressure). Hence, the relativistic fluid is described by an arbitrary velocity field, the 
energy and heat densities, and the viscous pressure, all transforming appropriately under local 
Lorentz boosts so as to keep the energy–momentum tensor invariant. The extreme situation corre-
sponds to the Landau–Lifshitz frame, where the heat current vanishes and the energy–momentum 
tensor is diagonal.

Three-dimensional Einstein spacetime reconstruction is then achieved with the derivative ex-
pansion, following the usual pattern of higher dimensions. Here it is not an expansion but a finite 
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sum, involving all boundary data. Holographic fluids have an anomalous viscous pressure pro-
portional to the curvature of the host geometry. Owing to this fact, the holographic fluid does 
not move freely, but is subject to a force, entirely determined by its kinematical configuration 
and by the geometry. Using light-cone coordinates and conformally flat boundary makes it easy 
to obtain the general fluid configuration, and a general and closed expression for locally anti-de 
Sitter spacetimes, in a gauge which is less stringent than BMS.

With this general result, it is possible to address the question of whether a boundary fluid con-
figuration observed from different hydrodynamic frames gives rise to distinct bulk geometries. 
This is discussed in the simpler (but sufficient for the argument) case of flat boundaries with 
vanishing Weyl curvature, for which the fluid is conformal (no trace). The reconstructed bulk 
geometries are then described in terms of two pairs of chiral functions, ξ± and L±. The former 
parameterize the velocity of the fluid, while the latter its energy and heat densities. With these 
data two extreme configurations emerge: (i) a fluid at rest with heat current; (ii) a fluid with ar-
bitrary velocity and vanishing heat current (hence perfect since the viscous pressure is also zero) 
i.e. in the Landau–Lifshitz frame. For both cases one determines the bulk asymptotic Killing vec-
tors together with the algebra of conserved surface charges. In the first instance, the left and right 
Virasoro algebras appear with their canonical central charges. In the second, the central charges 
can be reabsorbed by a redefinition of the elementary modes, demonstrating thereby that the 
bulk-metric derivative expansion is sensitive to the boundary-fluid hydrodynamic frame. In par-
ticular, the Landau–Lifshitz frame fails to reproduce faithfully all Bañados’ solutions, contrary 
to the common expectation.

The above pattern has been resumed for the Ricci-flat spacetimes. The conformal boundary is 
now at null infinity, and is endowed with a Carrollian 1 + 1-dimensional structure. Boundary dy-
namics is carried by a Carrollian fluid, obeying a set of hydrodynamic equations for energy and 
heat densities, two viscous stress scalars as well as a kinematic variable referred to as “inverse-
velocity”. Generically, these equations do not exhibit any sort of hydrodynamic-frame invariance.

The reconstruction of three-dimensional Ricci-flat spacetimes is achieved by considering the 
vanishing-k limit of the anti-de Sitter derivative expansion, which is finite. Information is sup-
plied in this Ricci-flat derivative expansion by the Carrollian fluid defined at null infinity. In 
particular, the original conformal anomaly is carefully identified as a source of Carrollian stress.

As for Einstein spacetimes, we do not consider the most general situation, but impose equiva-
lent restrictions: absence of anomaly and zero Weyl–Carroll curvature. The derivative-expansion 
gauge is slightly less restrained than BMS, and a residual hydrodynamic-frame-like invariance 
emerges, which allows to treat the same Carrollian dynamics from two equivalent perspectives: 
(i) a Carrollian fluid with vanishing inverse velocity and non-zero heat current; (ii) a Carrollian 
fluid with inverse velocity and vanishing heat current (i.e. a sort of Carrollian Landau–Lifshitz 
frame). Although equivalent from the Carrollian-fluid perspective, these two patterns lead to 
Ricci-flat spacetimes with different surface charge algebras. The former family fits in BMS gauge 
and reproduces all Barnich–Troessaert spacetimes with the appropriate charges. The algebra is 
bms3 with central charge. The set of Ricci-flat metrics obtained with a Carrollian perfect fluids 
exhibit an algebra whose central charge can be ultimately reabsorbed.

The above is the bottom line of our work. Our findings raise several questions that we briefly 
sort in the following as possible physical applications, in three dimensions or beyond, and on 
either side of the fluid/gravity holographic correspondence.

At the first place, it is legitimate to ask where the origin of the hydrodynamic-frame in-
variance breaking stands. We have implicitly or explicitly stated in our presentation that the 
responsible agent was fluid/gravity duality. This view is supported by the explicit expressions of 
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surface charges (Eqs. (4.16), (4.29), (4.52) and (4.66)), which appear as modes of the energy–
momentum tensor for the relativistic fluid (or its Carrollian descendants), irrespective of the 
chosen velocity field. The breaking then occurs in the structure of the algebra, which is sen-
sitive to the bulk-metric asymptotic behavior, itself depending on the boundary-fluid velocity 
congruence. This reasoning is not a proof, and does not exclude that relativistic fluids might be, 
in their own right, globally sensitive to the locally arbitrary velocity field.29 Furthermore, our 
discussion has been confined to three bulk dimensions, where the observed breaking is neces-
sarily global, as opposed to local (in three dimensions asymptotically AdS or flat translates into 
locally AdS and Minkowskian). Nothing excludes a priori that in higher dimension, other ob-
structions of purely local nature emerge against the free choice of a relativistic congruence. The 
possible breakdown of the Landau–Lifshitz-frame paradigm has been quoted indeed for three-
dimensional fluids in [42], in relation with the entropy current. No general concrete results are 
available at present though, and these questions remain relevant both for fluid dynamics and for 
the subject of fluid/gravity correspondence.

The second important issue concerns the systematic analysis of asymptotic Killing vectors and 
conserved charges for the fall-offs suggested by the derivative expansion. This question is valid 
in both anti-de Sitter (Eq. (3.1), or the further restricted versions presented in Sec. 3.1) and flat 
spacetime (Eq. (3.14) and other realizations in Sec. 3.2). In this respect, one should remind that 
the investigation of fall-off conditions generalizing Brown–Henneaux’s was carried in Refs. [37,
43–45]. Finding solutions to Einstein’s equations obeying these more general asymptotic behav-
iors, i.e. standing beyond Bañados or Barnich–Troessaert, persists, and is worth pursuing in our 
framework (see the comment after Eq. (3.11) and Ref. [46]). In parallel, the Ricci-flat case calls 
for a deeper Hamiltonian understanding of the charges within the appropriate intrinsic Carrollian 
setup recently developed in [47].

This latter comment opens Pandora’s box for Carrollian physics, i.e. physics in the ultra-
relativistic regime, which is generally unexplored in a systematic fashion. Our study of Sec. 2.2, 
and Eqs. (2.106)–(2.109) in particular, exhibit the dynamics of two-dimensional ultra-relativistic 
fluids. It is remarkable that these physical systems are dual to Ricci-flat spacetimes. Equation 
(3.1) is instrumental in setting this duality: it starts from the ordinary relativistic regime and 
reaches the Carrollian limit, from the gravitational side, as a Ricci-flat limit. This formalism is 
expected to have genuine physical applications in many-body one-dimensional systems – and 
beyond one space dimension, as discussed in [11].

Last and aside from the interplay between gravity and fluids, a purely hydrodynamic issue 
was also discussed, which remains puzzling: the entropy current. No microscopic definition or 
closed expression exist and this object is usually constructed order-by-order in the derivative 
expansion, physically restricted to comply with fundamental laws. In relativistic systems, this 
current is expected to be hydrodynamic-frame invariant, by essence of this invariance. Hence, 
any obstruction to the existence of such a frame-invariant current might dispute or hamper the 
freedom of choosing at wish the fluid velocity field. In two dimensions, we have the possibility 
to implement frame invariance exactly and we proposed a closed expression, which however 
is not unique and deserves further investigation. One should understand whether and why this 
is the proper choice, and possibly wonder if it provides a helpful guideline for handling the 
entropy current in systems of dimension higher than two. Ultimately, in the spirit of considering 
its Carrollian limit, one should try to give a meaning to entropy in ultra-relativistic systems.

29 Changing hydrodynamic frame is a gauge transformation. As such, it can affect global properties.
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