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Abstract

In this paper, we study the spontaneous scalarization of an extended, self-gravitating system which is
static, cylindrically symmetric and possesses electromagnetic fields. We demonstrate that a real massive
scalar field condenses on this Melvin magnetic universe solution when introducing a non-minimal coupling
between the scalar field and (a) the magnetic field and (b) the curvature of the space-time, respectively.
We find that in both cases, the solutions exist on a finite interval of the coupling constant and that
solutions with a number of nodes k in the scalar field exist. For case (a) we observe that the intervals of
existence are mutually exclusive for different k.

1 Introduction

Multi-Messenger observations of compact objects allow to test General Relativity (GR) and its extensions to
high precision now and in the future. As such, re-newed interest in testing No-hair and/or uniqueness theo-
rems for black holes has appeared. While work in the 1990s has mainly been devoted to the construction of
“hairy” black holes in the context of General Relativity suplemented with non-linear matter fields appearing
in particle physics models, recent activity has focused on the extention of the gravity part of the model, e.g.
by adding a non-minimal interaction between higher order curvature terms and extra gravitational fields see
e.g. [1, 2] for reviews.

In numerous of these extended gravity models new black hole solutions with non-trivial fields on the
horizon that vanish asymptotically have been shown to exist. In fact, these new black hole solutions appear
for specific intervals of the non-minimal coupling. Outside of this interval, the black hole solutions are
equivalent to the standard black hole solutions that fulfill the No-hair theorems, i.e. are equivalent to either
the Schwarschild, Reissner-Nordström or Kerr (-Newman) solution. In these extended models black holes
are hence said to “scalarize spontaneously” [3, 4, 5] in the case of non-minimal coupling to a scalar field or
“vectorize spontaneously” [6, 7, 8, 9] in the case of non-minimal coupling to abelian gauge fields.

However, the idea of spontaneous scalarisation is not specific to black holes, but has been shown to appear
also for other compact objects such as boson stars [10, 11, 12] and neutron stars [13]. It can also appear
in extended system, such as low density stars [14] and even the whole universe itself [15].

In this paper, we want to show that spontaneous scalarization exists also for the Melvin solu-
tion, an extended self-gravitating system that describes an electromagnetic field kept together
by its own gravity [16] and that was shown to be stable in the context of GR [17]. Charged black holes
embedded in such a magnetic universe have been study recently [18] and it has been shown that they can
carry minimally coupled, complex and ungauged scalar hair.
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The electromagnetic field of the “pure“ Melvin solution points into the direction of the symmetry axis
and the solution is essentially characterized by the absolute value of this field on the symmetry axis. As such
it is a cylindrically symmetric gravitating system (for a review see e.g. [19]). The most studied cylindrically
symmetric extended self-gravitating system is surely the cosmic string, a topological defects that might
have formed in the primordial universe [20]. However, magnetic fields in elongated regions were observed
astrophysically in so-called radio relics. Radio relics are diffuse radio sources in galaxy clusters. These sources
are not associated to any cluster galaxy [21] and have been categorized into three groups: radio gischt, radio
phoenix and active galactic nucleus (AGN) relics [22]. The radio gischt are mostly found in the outskirts of
galaxies and are elongated arc-like radio sources with sizes of up to 2 Mpc. Observations give support to the
hypothesis that they trace shock fronts in which particles are accelerated via the diffuse shock accleration
mechanism and possess ordered magnetic fields with strength of a few micro-Gauss (see e.g.
[23]). As such they present probably the largest magnetic structures in the universe. One
interesting case of gischt-like sources are so-called “double-relics“. In this case two relics are diametrically
located on both sides of the cluster center, see e.g. [25] and references therein. Due to the improvement in
instrument sensitivity the number of detections of radio relics has grown dramatically in the last decade.
Large cosmological simulations that include radio emissions from shocks suggest that these structures should
form frequently, see e.g. [24, 25] and references therein. Certainly, the Melvin magnetic universe can
only be an idealized model for extended, but finite magnetic field structures, but we believe
that it can give qualitative ideas about the phenomenon which is easily trackable because of
the fact that both the space-time as well as the magnetic field are given analytically. A full
simulation of radio relics (including the gravitational field) is certainly a formidable task and
beyond the aim of this paper.

Motivated by the existence of elongated and ordered magnetic fields in the universe, we study the Einstein-
Maxwell model and add a massive, real scalar that is non-minimally coupled to the system. In order to
understand the effects of the non-minimal coupling we study two different scenarios separately: (a) the
non-minimal coupling to the electromagnetic field and (b) the non-minimal coupling to the Gauss-Bonnet
curvature term. These two coupling options have been used extensively in the recent construction of black
holes with scalar hair.

Our paper is organized as follows: in Section 2, we give the model and Ansatz and also discuss the small
scalar field limit. In Section 3 we present our results for the case of scalar-magnetic field coupling, while
Section 4 is concerned with the scalar-gravity case. We conclude in Section 5.

2 The model and Ansatz

In this paper, we study a scalar-tensor gravity model with the following action (we use metric signature
(+−−−)):

S =

∫
d4x
√−g

[ R
16πG

+ φ2 (αFµνF
µν + γG) +

1

2
∂µφ∂

µφ− m2

2
φ2 − 1

4
FµνF

µν

]
, (2.1)

where R is the Ricci scalar, G the Gauss-Bonnet term, Fµν = ∂µAν − ∂νAµ the field strength tensor of a
U(1) gauge field Aµ and φ a real-valued scalar field with mass m that is coupled to the Maxwell invariant
FµνF

µν as well as the Gauss-Bonnet term G given by

G = (RµνρσRµνρσ − 4RµνRµν +R2) (2.2)

via the couplings α and γ, respectively. The equations of motion then read

�φ+
(
2αFµνF

µν + 2γG −m2
)
φ = 0 , (2.3)

and
∂µ
(√−g(1− 4αφ2)Fµν

)
= 0 , Gµν = −8πG

(
T (A)
µν + T (φ)

µν

)
, (2.4)
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where the energy-momentum tensor components of the gauge field and scalar field read, respectively:

T (A)
µν =

(
1

4
− αφ2

)(
FµσF

σ
ν −

1

4
gµνFαβF

αβ

)
, (2.5)

T (φ)
µν = ∂µφ∂νφ− gµν

(
1

2
∂σφ∂

σφ+
m2

2
φ2
)
− γ (gµσgνλ + gνσgµλ) ησαγδηιλκρRγδκρDαDι(φ

2) . (2.6)

In this paper, we would like to discuss the scalarization of self-gravitating solutions of the Einstein-
Maxwell equations. We assume staticity and cylindrical symmetry and hence choose the following Ansatz
for the metric, gauge and scalar field :

ds2 = N2dt2 −H2dρ2 − L2dϕ2 −K2dz2 , Aµdxµ = A(ρ)dϕ , φ = φ(ρ) (2.7)

where the metric functions N , H, J , K depend only on ρ. In the following, we will now fix the gauge by
imposing H(ρ) = 1, which implies K(ρ) ≡ N(ρ). Inserting the Ansatz into the equations of motion (2.3),
(2.4) we note that the Maxwell equation can be integrated separately, leading to :

A′ = B0
L

(1− 4αφ2)N2
, (2.8)

where B0 is an integration constant. The magnetic field of the solution, which points in the direction of the
z-axis, is then given by :

B = −A
′

L
= − B0

(1− 4αφ2)N2
. (2.9)

The remaining equations read :

N ′′

N
+

(N ′)2

2N2
=

κ

4
(−εs + εv − U) + 4κγF1 , (2.10)

L′′

L
+
L′N ′

LN
− (N ′)2

2N2
=

κ

4
(−εs − 3εv − U)− 4κγF2 , (2.11)

φ′′ +

(
L′

L
+

2N ′

N

)
φ′ = φ

(
m2 − 4α

(A′)2

L2
− 16γ

L′′N ′2 + 2L′N ′N ′′

LN2

)
, (2.12)

where we have used the following abbreviations

κ = 16πG , εs =
(φ′)2

2
, εv =

(A′)2

2L2
(1− 4αφ2) , U =

m2

2
φ2 , (2.13)

as well as

F1 =
N ′2

N2
(φφ′′ + φ′2) +

2N ′N ′′

N2
φφ′ ,

F2 =
(
φφ′′ + φ′2

)(N ′2
N2
− 2

L′N ′

LN

)
+ φφ′

(
2N ′N ′′

N2
− 2

L′N ′′

LN
− 2

L′′N ′

LN

)
(2.14)

and the prime denotes derivative with respect to ρ. Moreover, we have a constraint, which reads

N ′2

2N2
+
N ′L′

NL
=
κ

4
(εs + εv − U) + κγF3 , F3 = 12γκφφ′

(
L′N ′2

LN2

)
. (2.15)

The system has to be solved for ρ ∈ [0,∞[ with the following boundary conditions which guarantee the
regularity at origin and the localization of the solution :

N(0) = 1 , N ′(0) = 0 , L(0) = 0 , L′(0) = 1 , φ′(0) = 0 , φ(ρ→∞) = 0 . (2.16)
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Note that κ and m can be set to unity by appropriate rescalings of the fields and of the radial variable,
respectively. The equations have to be solved numerically, see Appendix B for a short summary
of the numerical procedure, and we have found it convenient to add an additional boundary
condition on the scalar field, namely setting φ(0) equal to a non-vanishing value. As the
equations and boundary conditions make clear, this overdetermines the problem and in turn
fixes one of the coupling constants in the model uniquely. We will comment more on this in
the following discussion.

In the vacuum case, i.e. for φ ≡ 0, B0 = 0, the equations of motion have well known solutions first given
in [26]. For the boost-symmetric case, these are :

• N ∼ 1, L ∼ βr: this is a locally flat space-time which globally possesses a deficit angle ∆ = 2π(1− β).
The metric describes e.g. the (asymptotic) space-time of a cosmic string (see e.g. [20] and references
therein).

• N ∼ r2/3, L ∼ r−1/3: this space-time obviously does not fulfill the regularity conditions (see (2.16))
on the axis, however, is important in the following in the description of the space-time away from the
sources of the gravitational field.

2.1 Small and vanishing scalar field

In the case of vanishing scalar field, i.e. for the case φ ≡ 0, a combination of the equations (2.10), (2.11)
and (2.15) shows that the metric functions have to fulfill N ′ ∝ L. This clearly excludes the string-type
solution far away from the magnetic field, while the vacuum solution with L ∼ ρ−1/3, N ∼ ρ2/3 fulfills this
requirement. In fact, the solution can be given in closed form and is often referred to as the magnetic Melvin
universe [16]. In order to discuss the scalar field in this background, it is convenient to adopt Weyl-type
coordinates with dρ = Ndr. The solution then reads :

ds2 = N2
(
dt2 − dr2 − dϕ2

)
− r2

N2
dϕ2 , Frϕ =

B0r

N2
, N =

(
1 +

1

4
B2

0r
2

)
. (2.17)

The relation between ρ and r is

ρ = r +
1

12
B2

0r
3 , resp. , r =

(
6ρ

B2
0

(1 +
√

Σ)

)1/3

+

(
6ρ

B2
0

(1−
√

Σ)

)1/3

, Σ = 1 +
1

27B2
0ρ

2
. (2.18)

In the following, we will use the coordinate r to study the scalar field equation in the background of this
solution. The scalar field equation (see (2.3)) then reads

1

r
∂r (r∂rφ)+(2αFµνF

µν+2γG−m2)N2φ = 0 , G =
(3B4

0r
4 − 24B2

0r
2 + 16)B4

0

4N8
, FµνF

µν =
2B2

0

N4
. (2.19)

The general solution to this equation can only be found numerically , but we can understand the behaviour
of the solutions when looking at the asymptotic behaviour of the scalar field. We will discuss the two cases
γ = 0 and α = 0 separately now.

1. γ = 0
For r � 1, we can approximate N±2 ≈ 1±B2

0r
2/2 and the equation (2.19) becomes

1

r
∂r (r∂rφ)−A0φ−A2r

2φ = 0 , A0 = m2 − 4αB2
0 , A2 =

m2B2
0

2
+ 2αB4

0 . (2.20)

Introducing z =
√A2r

2 and defining φ = exp(−z/2)χ, we obtain

zχ̈+ (1− z)χ̇+Aχ = 0 , A = −
( A0

4
√A2

+
1

2

)
, (2.21)
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where the dot denotes the derivative with respect to z. This is the confluent hypergeometric equation
that has as suitable solutions the Laguerre polynomials χ(z) ∼ LA. Hence for small r the equation
(2.20) has the solution

φ(r � 1) = φ0 exp

(
−
√A2

2
r2
)
LA
(√
A2r

2
)
. (2.22)

For A ∈ N the LA possess a number of nodes. This suggests that we should also be able to construct
scalar field solutions that possess a number k of nodes, a conclusion that we have confirmed by an
explicit numerical construction, see below. In fact, using these arguments, we can give a rough approx-
imation of the critical value of α to obtain solutions. From the requirement that A = k, k = 0, 1, 2, ...,
we find that

α &
m2

4B2
0

for k = 0, 1, 2, 3, .... (2.23)

For r � 1 we introduce y = r3 and the equation (2.19) becomes a modified Bessel equation of the form

y2
d2φ

dy2
+ y

dφ

dy
− m2B4

0

144
y2φ = 0 (2.24)

such that the asymptotic decay of the solution is

φ(r � 1) ∼ K0

(
mB2

0

12
r3
)
∼ r−3/2 exp(−r3) . (2.25)

This analysis also clearly demonstrates why it is necessary to have a mass term for the scalar field.
For m = 0, as is well known, the scalar field would behave like φ(r) ∼ ln(r) asymptotically and would
hence not be localized.

2. α = 0
In this case equation (2.19) becomes :

1

r
∂r (r∂rφ)− C0φ− C2r2φ = 0 , C0 = m2 − 8γB4

0 , C2 =
m2B2

0

2
+ 24γB6

0 . (2.26)

With similar substitutions as above, we find

φ(r � 1) = φ0 exp

(
−
√C2

2
r2
)
LC
(√
C2r2

)
, C = −

( C0
4
√C2

+
1

2

)
. (2.27)

Again, the analysis suggests that radially excited solutions should be present and we can give a rough
approximation of the critical value of γ to obtain solutions. From the requirement that C = k,
k = 0, 1, 2, ..., we find that

γ &
m2

8B4
0

for k = 0, 1, 2, 3, .... (2.28)

For r � 1 the behaviour is exactly as in the γ = 0 because it is the mass term that determines the
asymptotic regime in both cases.

3 Scalar-magnetic field coupling

Here, we would like to discuss the case γ = 0, i.e. we consider only the non-minimal coupling between the
gauge field and the scalar field. As stated above, we can choose appropriate scalings to set κ = m ≡ 1
without loosing generality. The parameters to be varied in the following are then the non-minimal coupling
constant α and the absolute value of the magnetic field strength B0. As discussed above for small scalar
fields, we expect solutions with scalar field nodes to be present in our system. We, indeed, have confirmed
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this numerically. In Fig. 1, we compare the analytical expression (2.22) (denoted φ̄ and given in solid) with
the numerical solutions of the full set of equations for B0 = 1 and φ(0) = 0.01 (dashed) for the solution with
no nodes (k = 0) and that with one node (k = 1). As expected, the approximation is not perfect, but gives
a good idea of the qualitative behaviour of the functions. We also find that the approximation gives a good
order of magnitude approximation of the location of the zeros of the scalar field function. We give some
values for the location of the nodes of the k = 2 solution, i.e. the solution with two nodes, in comparison to
the location of the zeros of the second Laguerre polynomial L2 in Table 3.

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

0 2 4 6 8 10

ρ

φ
φ̄

Figure 1: We compare the profiles of the analytical approximation φ̄ (see (2.22)) (solid) for the scalar field
with the full numerical solution φ (dashed) for k = 0 (black) and k = 1 (red) nodes for B0 = 1.0 and
φ(0) = 0.01. These choices correspond to α = 0.55 for k = 0 and α = 1.40 in the case k = 1, respectively.
Note that we have used ρ ≈ r for this plot, which is a good approximation for small values of the radial
coordinate.

As such the k = 0 and k = 1 in Fig.2, respectively, refers to the solution that has no nodes in the scalar
field (k = 0) and that which has one node (k = 1). Moreover, (2.12) suggests that a tachyonic instability

appears in the system only for α > 0. From (2.23), we know that α & m2

4B0
. The curve α = m2

4B0
= 1

4B0

(remember m ≡ 1) is given in Fig. 2 (blue, dotted-dashed) together with the numerically determined values
of α0 (solid) and αcr (dashed) which determine the interval in α for which non-trivial scalar field solutions
exist for a given value of B0. Here, the value of αcr is given by the observation that there exists a value of
α = 1/(4φ(0)2) for which the magnetic field on the axis of symmetry (see (2.9)) diverges. Solutions exist for
α > αcr. That this is closely tight to the fact that α needs to be sufficiently large to generate a tachyonic
instability can be seen by noting that the curve α = 1/(4φ(0)2) is a good approximation to the αcr-curve for
k = 0 and small α.

Increasing α too strongly, the scalar field can no longer be non-trivial in the space-time and becomes
identically zero due to the backreaction of the space-time. This value of α is denoted by α0. Note that had
we only studied the scalar field in the background of the Melvin universe, the two limiting values would be
equal α0 = αcr. However, here, the backreaction of the scalar field on the space-time leads to the observation
that non-trivial scalar field solutions exist in a given interval of α (for a given B0) rather than for a sole
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B0 α ρ
(1)
0 ρ

(2)
0 ρ̄

(1)
0 ρ̄

(2)
0

0.05 124.2 4.1 11.5 2.6 15.5
0.07 69.5 3.8 9.6 2.1 13.2
0.2 13.7 2.3 5.5 1.2 7.5
0.4 5.8 1.5 3.8 0.8 5.5
0.5 4.6 1.3 3.3 0.6 4.8

Table 1: We give the location of the zeros of the scalar field solution with k = 2 notes, ρ
(1)
0 and ρ

(2)
0 , for

some values of B0 and α and compare them with the zeros of the corresponding Laguerre polynomial L2,

ρ̄
(1)
0 and ρ̄

(2)
0 , respectively.

value of α. We observe that the interval in α increases with increasing magnetic field strength B0. For
B0 → 0, our numerical results indicate that the interval shrinks to zero and both αcr as well as α0 tend to
infinity. This makes sense since the vanishing B0 limit corresponds to Minkowski space-time (in cylindrical
coordinates) and this space-time cannot be scalarized.

0.1

1

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k = 0

k = 1

B0

αcr

α0

1/(4B2
0)

4000

0.01

0.1

1

10

100

1000

0 0.5 1 1.5

k = 1

k = 0

B0

γcr
γ0

1/(8B4
0)

Figure 2: Left: We show the values of α0 (solid) and αcr (dashed) between which the scalarized solutions
with k = 0 (black) and k = 1 (red) nodes, respectively, exist in dependence on the magnetic field parameter
B0 for γ = 0. We also give 1/(4B2

0) (dotted-dashed, blue) which is a rough approximation of the critical
value of α (see text for details). Right: We show the values of γ0 (solid) and γcr (dashed) between which
the scalarized solutions with k = 0 (black) and k = 1 (red) nodes, respectively, exist in dependence on
the magnetic field parameter B0 for α = 0. We also give 1/(8B4

0) (dotted-dashed, blue) which is a rough
approximation of the critical value of α (see text for details).

Comparing the scalar field solutions with a different number of nodes k, we observe that for a given B0,
we have to choose α larger to find k = 1 solutions than k = 0 solutions. Interestingly, the ranges of α for
which k = 0 and k = 1 solutions exist, respectively, do not overlap in the range of values of B0 that we have
studied here. To state it differently : fixing B0 and α within the range of values given in Fig. 2 we will either
obtain a scalar field solution with no nodes or one with one node, but not both at the same time. Hence, the
solutions with nodes cannot really be interpreted as the radially excited solution of the fundamental ones,
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as is often done in other non-linear, self-gravitating systems.
Naturally, the question arises whether we are simply not able to find the fundamental k = 0

solutions for the range of parameters for which the k = 1 solutions exist. Due to the numerical
procedure that we have employed, we are certain that this is not the case. We have fixed the
value of the scalar field at the origin, φ(0), which is not an independent boundary condition.
The choice of this value hence fixes the value of one of the couplings in the model uniquely
and we have chosen the value of α to be computed by our numerical procedure. As such, we
have followed the evolution of the branch of solutions with no nodes and that with one node
and determined the values of α at given B0 for which these solutions exist.

4 Scalar-curvature coupling

Here, we will set α = 0, i.e. we consider only the non-minimal coupling between the Gauss-Bonnet term
and the scalar field. In this case, the equations of motion (2.3)-(2.12) have to be diagonalized with respect
to the second derivatives, see the Appendix A for details.

We observe that non-trivial scalar field solutions exist only for sufficiently large values of the non-minimal
coupling γ, i.e. for γ > γ0. The dependence of this value on B0 is shown in Fig. 2 (solid lines) for scalar
field solutions with no nodes (k = 0, black) and one node (k = 0, black), respectively. Again, we observe
that have to choose the non-minimal coupling large in order to obtain solutions with k = 1 as compared
to the k = 0 case. Interestingly, in this case, the analytical expression for γ0 given by 1/(8B4

0) is not as
good as in the scalar-magnetic field coupling case. This is likely related to the fact that the space-time
background approximation is not a good approximation in this case as the scalar field is non-minimally
coupled to the curvature. When increasing the coupling γ, the scalar field increases in absolute value, which
leads to increased backreaction of the scalar field on the space-time. In fact, we observe that there exists
a maximal value of φ(0), or equivalently a maximal value of γ = γcr beyond which no scalarized solutions
exist anymore. This is true for both the k = 0 and the k = 1 case. The values of γcr in dependence of B0

are shown in Fig. 2 (dashed lines). Note that for the scalar-curvature case the critical value of the coupling
is always larger than the value where the scalar field vanishes identically, while for the scalar-magnetic field
coupling, this is exactly opposite. This is related to the fact that the scalar field directly sources these fields
and hence leads to an increased repulsive effect for the magnetic fields and an increased attractive effect in
the case of the curvature fields. This also demonstrates that the two couplings are qualitatively different in
nature. Another difference to the scalar-magnetic field coupling is that the domain of existence of scalarized
solutions for γ ∈ [γ0 : γcr] is now not mutually exclusive for different node solutions. The range of γ for
k = 0 overlaps partially with the range of γ for k = 1, as Fig. 2 clearly demonstrates, and in this overlapping
region the k = 1 solutions can be interpreted as the radially excited version of the k = 0 solution.

Finally, we would like to discuss why the solutions chease to exist at γ = γcr. A solution close to the
limiting solution is shown in Fig. 3 for k = 0 and k = 1, respectively. Clearly, the scalar field becomes zero
outside of a sharply defined radius ρcr such that at ρ = ρcr the scalar field function is non-differentiable. For
ρ > ρcr the solution corresponds to the Melvin magnetic universe, while it possesses a non-trivial, scalarized
interior.

We observe that the Ricci scalar R increases strongly on the symmetry axis of the solution when ap-
proaching γcr. This is demonstrated for the k = 0 solution with B0 = 1 in Fig.4, where we give R for γ = 10
(close to γ0), an intermediate γ = 100 as well as for γ = 510 (close to γcr). The subfigure of Fig.4 shows
the strong increase of R at ρ = 0. The figure further shows that the Ricci scalar becomes discontinuous at
ρ = ρcr indicating that the limiting space-times possesses singularities.

5 Conclusions

In this paper, we have demonstrated that the process of spontaneous scalarization is not specific to compact
objects such as black holes, neutron stars or boson stars, but also exists for extended self-gravitating solutions.
We have used the Melvin magnetic universe solution that describes magnetic fields orientated into the
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Figure 3: We show the profiles of the scalar field function φ/φ0 and the metric functions N and L for a value
of γ close γcr for B0 = 1 and k = 0 (left) and k = 1 (right), respectively.
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Figure 4: We show the Ricci scalar R of the scalarized Melvin solution for k = 0, B0 = 1 and for different
values of γ including γ = 510 close to γcr

direction of the symmetry axis and possesses a cylindrically symmetric, static space-time. In the small
scalar field limit, we find that the linear Klein-Gordon equation of a massive, real scalar field leads to
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solutions described by the Laguerre polynomials close to the axis of symmetry and by Bessel functions
asymptotically, respectively. These results suggest that a discrete family of scalar field solutions exists in the
model. We have demonstrated this by explicit numerical construction of the solutions including backreaction
of the space-time and the magnetic field, respectively. The solutions are characterized by two parameters:
the magnetic field parameter B0 and the value of the scalar field on the symmetry axis, which is linked to
the value of the non-minimal coupling. The scalarized solutions, which are non-trivial deformations of the
underlying Melvin magentic universe solution, exist only in specific intervals of the non-minimal couplings.
Since these intervals for different node numbers are in some cases mutually exclusive, the question arises
whether the higher node solutions can be interpreted as radial excitations of the fundamental solutions with
no nodes, as is often done in self-gravitating systems.

It would be interesting to understand whether such scalarization processes of extended magnetic fields
could be observed in the universe and if not, if observations could provide limits on the coupling parameters or
even exclude extended gravity models with non-minimal coupling terms. An interesting future investigation
could be another very specific cylindrically symmetric system that possesses magnetic fields: the cosmic
string. While the outside of a cosmic string is characterized by a massive gauge field and a massive scalar
field (spontaneously broken phase), the inside of the string core remains in the symmetric, i.e. false vacuum
of the model in which the gauge symmetry is unbroken. It is surely of interest to understand whether cosmic
strings that are hypothetical relics of the primordial universe could be scalarized spontaneously and, if so,
how this would change the properties of these objects.

In order to get an estimate of the fields and the strength of the couplings that we have
used here, note that in dimensionful notation the Lagrangian density (without scalar field)

should read L = c4

16πGR − 1
4µ0

FµνF
µν , where µ0 denotes the vacuum permeability and c is the

speed of light in vacuum. Using MKS units, this tells us that the “natural unit” in which the
magnetic field strength is measured is roughly 10−18 Tesla, i.e. 10−14 Gauss. In our paper,
we have extensively studied values of B0 that are on the order of unity, but we have also
checked that the phenomenon of spontaneous scalarization persists when increasing the order
of magnetitude of B0. Since we believe that the Melvin solution can only act as a toy model for
radio relics, our study has been qualitative rather than quantitative, but we are quite certain
that spontaneous scalarization of extended magnetic fields with magnetic field strength much
higher and on the order of that appearing in radio relics (a few micro-Gauss) is feasible.

Acknowledgments R.C. thanks CAPES for financial support under grant No. 88887.371717/2019-00.
B. H. would like to thank FAPESP for financial support under grant No. 2019/01511-5 as well as the DFG
Research Training Group 1620 Models of Gravity for financial support.

10



References

[1] C. A. R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod.
Phys. D 24 (2015), 1542014.

[2] T. P. Sotiriou, Black Holes and Scalar Fields, Class. Quant. Grav. 32 (2015), 214002.

[3] D. D. Doneva and S. S. Yazadjiev, New Gauss-Bonnet black holes with curvature induced scalarization
in the extended scalar-tensor theories, Phys. Rev. Lett. 120 (2018), 131103.

[4] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou and E. Berti, Spontaneous scalarization of black
holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett. 120 (2018), 131104.

[5] G. Antoniou, A. Bakopoulos and P. Kanti, Evasion of No-Hair Theorems and Novel Black-Hole Solutions
in Gauss-Bonnet Theories Phys. Rev. Lett. 120 (2018), 131102.
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Appendix A: Diagonalized equations of motion

The diagonalized equations of motion (2.3)-(2.12) read

N ′′ =
F1

H , L′′ =
F2

H , φ′′ =
F3

H (5.29)

with

H = 8κN3
[
64
(
(LN ′ − 4L′N)N ′ − κLN2φ′2

)
γ2κN ′2φ2 + 1536γ3κ2L′N ′4φ3φ′ + 16γκLN3N ′φφ′ − LN4

]
F1 =

[
128

[(
(2Nφ′ −N ′φ)m2φ2 + (2Nφ′ − 5N ′φ)φ′2

)
L+ (m2φ2 − φ′2)L′Nφ

]
γ2κ2N ′3φ

+
(
(m2φ2 + φ′2)κN2 + 4N ′2

)
LN2 − 8

(
4
[(

(Nφ′ −N ′φ)φ′ +m2Nφ2
)
L− L′Nφφ′

]
N ′

+ (m2φ2 + φ′2)κLN2φφ′
)
γκNN ′

]
κN4

+
[
(8γκN ′φφ′ −N)LN3 − 128(LN ′ + L′N)γ2κN ′3φ2

]
B2

0

F2 = (8(4(((Nφ′ − 2N ′φ)φ′ +m2Nφ2)L2N ′ + 2L′2N2φφ′ − 2((Nφ′ −N ′φ)φ′ +m2Nφ2)L′N)N ′

− (2LN ′ − L′N)(m2φ2 + φ′2)κLN2φφ′)γκ+ 256(((Nφ′ +N ′φ)m2φ2 + (Nφ′ −N ′φ)φ′2)L

− (m2φ2 + 2φ′2)L′Nφ)γ2κ2L′N ′2φ− (4(LN ′ − 2L′N)N ′ − (m2φ2 + φ′2)κLN2)LN)κN4

+ (256(LN ′ + L′N)γ2κL′N ′2φ2 + 3L2N3 − 8(2LN ′ + L′N)γκLN2φφ′)B2
0

F3 = −8
[
(16((2((2Nφ′ −N ′φ)m2φ− 5N ′φ′2)L− (m2φ2 + 5φ′2)L′N)κNφ

− 4((4Nφ′ + 3N ′φ)L′ − LN ′φ′)N ′)γ2κN ′2φφ′ + ((m2Nφ− 2N ′φ′)L− L′Nφ′)N3 + 1536γ3κ2L′N ′4φ2φ′3

− 2((((8Nφ′ −N ′φ)m2φ− 17N ′φ′2)L− 2(m2φ2 + 5φ′2)L′N)κN2 + 4(LN ′ − 4L′N)N ′2)γN ′φ)κN3

+ 2((3LN ′ − 2L′N)N − 8(2LN ′ − L′N)γκN ′φφ′)B2
0γN

′φ
]
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Appendix B: numerical procedure

We have used the collocation solver COLSYS [27] for our numerical calculations. The key numerical proce-
dure used is that of the Newton method that relies on the linearization of the problem at given points on
the interval r ∈ [0 : rmax] with rmax sufficiently large to capture the asymptotic behaviour of the solutions
correctly. Boundary conditions that relate to the requirements of the physical problem are employed at
r = 0 and r = rmax and the subsequent solution is interpolated using a spline collocation at Gaussian points.
COLSYS possesses a mesh adaptation, i.e. the linearized problem is solved on a sequence of meshes with N
points such that 0 = r1 < r2... < rN+1 = rmax until a given accuracy is reached. We typically specify the
error tolerance to be between 10−2 and 10−4 with the final solutions, however, having much better absolute
error on the order of 10−6 to 10−8.
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