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Abstract

Recently, the culture of sharing medical data has emerged impressively, reducing significantly the barrier to

the development of medical research accordingly. As open-access large datasets result from this significant

initiative, data mining techniques can be considered for the development of interpretable expert systems to

help in diagnosis. However, the collaborative effort of information gathering yields heterogeneous databases

because of technical and geographical factors. Indeed, on the one hand, the harmonization of protocols

for data collection is still missing. On the other hand, cultural and social factors impact locally both the

epidemiology and etiology of a given disease. Ignoring these factors could weaken the credibility of studies

based on multi-site data. Thereby, our work tackles the development of computer-aided diagnosis systems

relying on heterogeneous data. For such a purpose, we propose a multi-level approach (inspired by multi-level

statistical modeling) based on decision trees (in the sense of machine learning). This framework is applied on

the public ADHD-200 collection for the study of Attention Deficit Hyperactivity Disorder (ADHD).
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1. Introduction

During the last decade, the sharing of large-scale medical data appears to be a growing trend encouraged

by the scientific community. Several medical databases were launched publicly to address different health

concerns (Esfandiari et al., 2014; Di Martino et al., 2014; Ihle et al., 2012; Kerr et al., 2012; Milham et al.,

2012; Church, 2005; Hunter et al., 2005; Mueller et al., 2005). Some initiatives aim not only at sharing

databases, but also software tools to manage information at best (Milham, 2012). Such a culture of data

sharing is valuable to the research sphere (Ross, 2016; Mennes et al., 2013; Ross & Krumholz, 2013; Piwowar

et al., 2008). Indeed, access to data is henceforth facilitated, especially to researchers not having the medical

information on hand usually. Among others, specialists of computer science and mathematics can contribute

their expertise at the technological level notably. The interaction of medicine with other disciplines is made

possible therefore. Moreover, with the sharing of large-scale data, a same issue is approached in different

ways worldwide, so research is enriched and accelerated. At last, a common framework of open-access data

encourages local and international research centers to make their own databases available online. This virtuous

circle multiplies the mass of available information, and the quality of studies is improved accordingly.

In particular, opening such access to data allows to focus on the explanation of some diseases/troubles

through the detection of physiological foundations and/or typical symptoms. The advent of data mining

allows to meet these needs, and to develop expert systems for the purpose of aid in diagnosis (Esfandiari

et al., 2014; Parvathi & Rautaray, 2014). Such a decision support system should preferably be interpretable,

i.e. able to show how a diagnosis is acquired (Lavrač, 1999), and readable, through assessment criteria making

sense (Wagholikar et al., 2012)

The efforts deployed to gather data collaboratively are undeniably outstanding, nevertheless, they yield

databases whose use is challenging. Indeed, the harmonization of data collection protocols is still missing (Mil-

ham et al., 2012). Across sites, data acquisition differs in terms of equipment calibration, experimental

conditions, and sampling methodologies (Abraham et al., 2017). There exist also variations in the strategies

that are used to process medical images (Abraham et al., 2017). Besides, the influence of cultural and social

factors on both the epidemiology and etiology of diseases is established since the past century (Trostle, 2005;

Link & Phelan, 1995; Landy, 1977). These factors of disparities are added to the natural heterogeneity of

medical data, caused by the different natures of information available on a patient (interviews, phenotype,

scans) and their interpretation by physicians (Wasan et al., 2006; Cios & Moore, 2002). Hence, multi-site

medical data remain in reality a patchwork of subsets that cannot be merged into a single dataset without

any adaptation. As inconsistency may arise from the use of heterogeneous medical data, studies generally

focus on subsets withdrawn from these large databases (Abraham et al., 2017). The collective attempts to

share large open-access data are therefore partially rewarded: admittedly, the access to medical data is easier,

but the open-access databases remain not fully exploited.

In our study, we attempt to tackle the development of interpretable and readable diagnosis support

models able to cope with a medical multi-site database. We propose an application to the ADHD-200

2



collection (Milham et al., 2012), an example of stable and recent release of multi-site medical database

launched for the study of Attention Deficit Hyperactivity Disorder (ADHD). The main contributions of our

work are exposed below.

• After the study of Abraham et al. (2017), we propose another way to deal with the issue of heterogeneous

multi-site medical databases. The work of Abraham et al. (2017) proposed two cross-validation strategies

that enable to acquire models less sensitive to the heterogeneity of multi-site medical databases. In

our work, instead of questioning the validation phase to address this issue, we propose a rethinking

of the learning process to develop models able to help in diagnosing a disease/trouble, under a novel

hierarchical spirit.

• In previous works, to predict a diagnosis, hierarchical systems were set up to practice classification in

two steps: (1) to dissociate healthy and pathological cases and (2) to detect the type of pathology. The

methodologies lied on the development of either two classifiers per dataset (site) or two classifiers across

the whole database. The novelty of our proposal is related to the hybrid nature of our hierarchical

classifier where intra-site and inter-site variabilities play both a role at different levels to deliver a final

robust diagnosis. To the best of our knowledge, such a procedure is innovative and allows to take into

consideration geographical parameters in contrast to the work of Abraham et al. 2017. We will name

our proposition as a multi-level approach since it is inspired by the theory of multi-level analysis.

• The work presents new results as concerns the ADHD-200 collection. In particular, we do not consider

domain-specific features to solve the classification task, but rather features having demonstrated success

in other domains. The results show that these meaningful features provide interesting interpretations

for helping in diagnosing ADHD.

In section 2, we will expose our case study, before developing the materials and methods of this work in

section 3. The results of our study will be presented and discussed in section 4. Finally, we will conclude this

paper in section 5.

2. A case study: Attention Deficit Hyperactivity Disorder

Approximately five to seven percent of children and teenagers are likely to be confronted one day with

Attention Deficit Hyperactivity Disorder (ADHD)1. Also affecting adults, this mental trouble is characterized

by inattention, and/or hyperactive-impulsive attitudes. Generally, people with ADHD have to deal with a

reduced self-control impairing notably their ability to express serenely their feelings, to the detriment of their

social and professional daily life.

1http://adhd-institute.com/burden-of-adhd/epidemiology/
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Table 1: Summary of the ADHD-200 training data

Site Age Gender TD ADHD Total

F M

PU 8-17 52 142 116 78 194

KKI 8-13 37 46 61 22 83

NI 11-22 17 31 23 25 48

NYU 7-18 77 145 99 123 222

OHSU 7-12 36 43 42 37 79

Pitt.U 10-20 43 46 89 0 89

WU 7-22 28 33 61 0 61

Total 290 486 491 285 776

Today, the subject’s environment (mainly parents and teachers) constitutes almost the only source of

information that practitioners have to make a diagnosis, unmistakably subjective. Research is still ongoing to

better understand the physiological bases of the trouble.

In 2011, researchers from various fields of expertise were challenged to propose an objective assessment

of ADHD in the context of the ADHD-200 contest (Milham et al., 2012). As a working basis, a multi-site

medical database, called the ADHD-200 collection, was released online2. The database includes clinical

(phenotypic) and neuroimaging data (resting-state functional and structural magnetic resonance images)

on altogether 947 patients. Typically Developing (TD) and ADHD affected patients are included in the

database. ADHD cases are expressed in three types: Inattentive (ADHD-I), Hyperactive-Impulsive (ADHD-

HI) and a Combination of both types (ADHD-C). Eight sites contributed to the collection of data: Peking

University (PU), Kennedy Krieger Institute (KKI), NeuroImage (NI), New-York University (NYU), Oregon

Health & Sciences University (OHSU), University of Pittsburgh (Pitt.U), Washington University in St.

Louis (WU) and Brown University3. Tables 1 and 2 present the subjects’ distribution according to multiple

criteria as regards both training and test sets (see also Milham et al. 2012). Let us note that the ADHD-HI

type (Hyperactive-Impulsive) was not predicted as the associated population is very low in the training set.

The ADHD-200 collection can be qualified as a heterogeneous medical dataset as it includes instances of

various geographical origins whereas social factors influence the local prevalence of ADHD (Russell et al.,

2014); the subsets were not collected according to a common protocol (Bellec et al., 2017); the gender

representativeness as well as the healthy and pathological cases proportions can significantly vary according

to sites.

Actually, the inter-site variability of the ADHD-200 collection has been largely raised as a complex aspect

to deal with (Bellec et al., 2017). To manage it, two main strategies were envisaged by previous works:

- learn a single model on the whole data collection D, ignoring local specificities of the underlying datasets

2The dataset is available at http://fcon_1000.projects.nitrc.org/indi/adhd200/.
3Brown University data were discarded in this work as the results of diagnosis are not supplied for this site.
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Table 2: Summary of the ADHD-200 test set

Site Age Gender TD ADHD Total

F M

PU 8-15 19 32 27 24 51

KKI 8-12 1 10 8 3 11

NI 13-26 13 12 14 11 25

NYU 7-17 13 28 12 29 41

OHSU 7-12 17 17 28 6 34

Pitt.U 14-17 2 7 5 4 9

WU - - - - - -

Total 65 106 94 77 171

D1,. . . , Dk, and identifying the latter potentially by a nominal variable, so hoping that the learning

process will be sensitive to this information, e.g. in Deshpande et al. 2015; Brown et al. 2012; Dai et al.

2012; Eloyan et al. 2012; Sidhu et al. 2012;

- learn a model on each one of the datasets D1,. . . , Dk, so ignoring possible global characteristics of the

whole collection D, e.g. in Colby et al. 2012.

In our sense, the first approach simplifies drastically the modeling of discrepancies. The second approach

intercepts better the specificity of each group but does not allow any cross of information on a more global

level.

From neuroimaging data, typical information such as correlation measures between brain regions of interest,

graph theory metrics, morphometric features are computed and used for learning (Deshpande et al., 2015; Guo

et al., 2014; Eloyan et al., 2012; Colby et al., 2012; Dai et al., 2012; Fair et al., 2012; Sidhu et al., 2012; Smith

et al., 2011; Rubinov & Sporns, 2010; Telesford et al., 2010; Bullmore & Sporns, 2009; Marrelec et al., 2006).

As a large number of features is raised accordingly, successful tools such as Principal Component Analysis

(PCA), Support Vector Machine with Recursive Features Elimination (SVM-RFE, see Guyon et al. 2002), as

well as other variants of SVM (Aytug, 2015) are considered for dimensionality reduction. Even if some of

these features could be easily interpreted, they are either introduced in a process of dimensionality reduction

that could lead to loose the real sense of the information, or drown in a large mass of data, from which they

hardly override. Furthermore, the classifiers that are considered in this context do not contribute to increase

the interpretability of the features. Indeed, countless studies have privileged Support Vector Machine (SVM)

as a predictor of ADHD (Riaz et al., 2016; Strigo et al., 2013; Chang et al., 2012; Colby et al., 2012; Dai et al.,

2012; Fair et al., 2012; Sidhu et al., 2012; Wee et al., 2012; Mueller et al., 2011; Anuradha et al., 2010). In

Deshpande et al. 2015, accuracies accounting for 90% in ADHD and healthy subjects dissociation, and nearly

95% between ADHD subtypes could be reached thanks to Artificial Neural Networks (ANN). Such classifiers

achieve high prediction accuracies, but they lack of interpretability and readability (Wagholikar et al., 2012).

Indeed, such models, through equations (SVM) and networks of weighted sums (ANN), can be assimilated to
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black boxes, i.e. the relation between the model inputs (patient’s features) and output (patient’s diagnosis) is

difficult to establish clearly.

3. Materials and methods

The medical context involves special requirements (Cios & Moore, 2002; Moore & Hutchins, 1980).

Therefore, we propose a multi-level approach that is consistent with the medical way of thinking and which

addresses simultaneously the issue of heterogeneous multi-site medical data. We will justify and develop

this approach in section 3.1. Afterwards, we will advocate the use of decision trees as white-box models in

section 3.2. We will expose how to tune and validate such models in an appropriate way in section 3.3. Finally,

we will present the data of our case study in section 3.4, and expose the modalities of results reporting in

section 3.5.

3.1. Multi-level approach

Numerous disorders exist in several types. Although basically suffering from the same disorder, patients

may exhibit different types of this disorder. That is the case, for example, for allergies where patients suffering

from a common hypersensitivity to environmental factors can express it in different forms such as asthma,

rhinitis, conjunctivitis (Tanno et al., 2014). In the same way, psychological disorders are often characterized

by a spectrum of conditions such that these conditions appear as different ways in which a same trouble is

expressed (Maser & Akiskal, 2002). For example, as previously stated, ADHD exist in three types: inattentive

and/or hyperactive-impulsive.

In each case, the diagnosis question could be solved in a hierarchical way:

1. first, in checking the absence or presence of the disorder;

2. then, in detecting the disorder type in case of a positive diagnosis.

Such a hierarchical structure is interesting as it allows to consider different assessment criteria in two steps.

Indeed, a medical dataset can contain voluminous information on a subject (Cios & Moore, 2002), though

the information is not necessarily required in its integrity to solve each of the problems consisting of either

detecting the disorder or defining the disorder type. Thus, to simplify the learning process, a feature extraction

process can help to raise the most interesting information at each step of the diagnosis. From a medical point

of view, this hierarchical structure could potentially lead to technical simplifications, e.g. if expensive and

sophisticated information (as scans) are required on the second stage of a diagnosis only.

Obviously, this cascade configuration appears as justified; besides, it has been considered in previous

works, e.g. in Colby et al. (2012). However, we propose to adapt this approach in the case of multi-site data.

Indeed, the latter involve geographical and technical variations that we could hardly ignore. As mentioned

beforehand, geographically distinct sites may be associated to variations in the epidemiology and etiology

of a trouble. Moreover, the interpretation of medical data may be different according to physicians, such a

6



difference being perhaps strengthened by this same factor of localization. Besides, technical disparities include

variations impacting data acquisition and processing strategies.

Let us suppose a multi-site database D1,. . . , Dk, each Di representing a site subset. Let us assume,

first, that there are no technical heterogeneities, i.e. data were collected according to a same core protocol.

It is consistent to group subsets that would have been collected in sites belonging to a same cultural and

social entity. In proceeding so, we obtain datasets called E1,. . . , Ej , each Ei representing an entity subset

with j ≤ k. Using these data grouped by entity, we propose a multi-level approach to solve the hierarchical

classification problem exposed in the preceding paragraphs.

• In a first level, a classifier should be trained to detect a potential anomaly in a patient. This classifier is

developed by homogeneous entity, i.e. based on a training set Ei related to a same cultural and social

identity i.

• In a second level, a classifier should be trained to predict a disorder type. At this stage, if a model

is developed by entity, there could be a few number of available instances because the corresponding

training set consists of pathological instances only, i.e. EDisorder
i = Ei \ EHealthy

i . That is why, it is

better to use the union of sets ∪ji=1E
Disorder
i .

This approach is inspired by the multi-level analysis theory that has addressed different issues in varying

methods (Segenreich et al., 2015; Lecron et al., 2012; Timmerman, 2006). For example, Jansen et al. (2005)

introduced the Multi-level Simultaneous Component Analysis (MSCA). The main idea of such a method

consists of relying on PCA by decomposing information of instances into two contributions. The first

one concerns the evolution of every individual’s properties in time and is, consequently, expressed in a

within-individual space. The second component is expressed in a common space to all instances, called

between-individual space and allows to raise a global tendency. We transpose this principle in our work, not

in the context of an analysis, but to develop a classification scheme. In a first level, we develop a model

per entity to detect a potential trouble. Then, in a second level, to detect the trouble type, we cross all the

instances regardless of the entity to which they belong. In proceeding so, we make the hypothesis that the

classification of a disorder type should be non cultural or social dependent. This may be a realistic hypothesis

as, at this level, the question to solve is to detect how a trouble is expressed.

The problem of technical heterogeneities is solved on a case-by-case basis. For example, if signals were

collected in the same experimental conditions, but were amplified with different gains, then the problem is

solved in applying a gain factor to one of both signals groups to make the comparison possible. It must be

emphasized that the full elimination of variations may sometimes be impossible, notably because some of these

variations could be ignored by the user of the medical database. That is why it is preferable to cross-validate

the classifiers trained on such data. Indeed, cross-validation techniques randomly withdraw instances from

the training set as validation sets (see section 3.3), which allows to integrate the robustness to variations as

part of the assessment (Abraham et al., 2017).
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3.2. Decision trees as interpretable models

As mentioned in introduction of this paper, an aid in diagnosis system should be able to provide physicians

with explanations on how a decision is taken (Stoean & Stoean, 2013; Wagholikar et al., 2012; Lavrač, 1999).

Different models, such as trees and rules, can fit within this requirement, as they are so called white-box

models. In our work, we focused on decision trees.

A decision tree encode a reasoning under the intuitive shape of trees, which makes it a suitable candidate

in our goal of developing practical models, i.e. interpretable and readable. Furthermore, in a medical context,

a decision tree can be used in situations of extreme emergence, as the time for decision inference is low.

Moreover, a decision tree does not require any computerization, as it may be simply read (Lavrač, 1999).

Underlying on a recursive and greedy algorithm (Bishop, 2007; Quinlan, 1993, 1986), the learning of a

decision tree process unfolds in accordance with the logic of dividing and conquering. The model is developed

in dividing gradually all training instances contained in the root node, to establish the most coherent possible

groupings based on common or at least, comparable characteristics. So the learning process is run on a set of

training features which is not necessarily needed in its entirety; only the most substantive features are selected

to develop a decision tree. The model enhances directly a subset of interesting features for diagnosis, which is

not the case of other categories of classifiers.

3.3. Validation procedures

Given a training set, decision trees learning may be adjusted by two parameters: the minimal number

of training instances required by leaf m and the confidence level c about pruning (Quinlan, 1993). The

parameter m constitutes a stop criterion of the learning process; it also tunes the granularity of the model.

Thus, increasing m (by default set at 2) may provide more overarching models and makes them less sensitive

to noise. As for parameter c, it is associated to a post-pruning process; it is lead to achieve a fair compromise

between the length of decision trees and their predictive error rates.

In our work, we maintained the default value of c (25%). As regards the parameter m, it has been adjusted

by a 10-fold cross-validation technique (10-fold CV). We admitted this parameter varied between 5 and

20, the latter representing approximately 10% of the size of the considered training datasets; the classifier

whose parameter m is associated with the highest cross-validation prediction rate was held as relevant (see

Algorithm 1).

The classifiers were then assessed by a holdout validation procedure, with respect to the test sets provided

by the ADHD-200 collection. We reported performance indicators (Witten & Frank, 2005; Klösgen & Zytkow,

2002) that are well suited to the medical context of this work (Cios & Moore, 2002); they are defined hereafter.

Let us note TP (respectively TN), the number of true positives (resp. negatives), that is, the number of

patients rightly predicted by the model as pathological (resp. healthy) and FP (resp. FN), the number

of false positives (resp. negatives), that is, the number of patients wrongly predicted as pathological (resp.

healthy).
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• Accuracy corresponds to the rate of successful predictions:

A =
TP + TN

TP + FP + TN + FN
=

TP + TN

Number of instances

• Specificity corresponds to the ability to detect healthy patients, i.e. the true negative rate:

tn =
TN

TN + FP
=

TN

Number of healthy individuals

• Sensitivity corresponds to the ability to detect pathological patients, i.e. the true positive rate:

tp =
TP

TP + FN
=

TP

Number of pathological individuals

Algorithm 1 Training a classifier

1: procedure trainClassifier(validationMethod)
2: for m← 5, 20 do
3: classifier← executeTraining(m, validationMethod)
4: if classifier.accuracy > bestAccuracy then
5: bestAccuracy← classifier.accuracy
6: bestModel← classifier
7: end if
8: end for
9: return bestModel

10: end procedure

3.4. Data

3.4.1. Learning features

From the ADHD-200 collection features, age, gender, handedness and intellectual quotient were used for

training as phenotypic data. In the paper, they are denoted as AGE, GEN, HAND, IQ respectively. We use

the notation PHEN to designate the set of four clinical data, i.e. PHEN = {AGE, GEN, HAND, IQ}.

As for brain images, we focused exclusively on resting-state functional Magnetic Resonances Images (fMRI)

rather than structural ones since recent studies showed functional brain activity involvement as significant in

neurological phenomena (Abraham et al., 2017; Sidhu et al., 2012; Purdon et al., 2011). Brain images were

preprocessed under the initiative of the Neuro Bureau according to the called The Athena pipeline (The Neuro

Bureau, 2011). Such a major work lead to the extraction of BOLD (Blood Oxygenation Level Dependent)

signals, measuring the functional brain activity. The associated signals reflect variations in oxyhemoglobin

and deoxyhemoglobin concentrations in blood caused by the neuronal activity (Aguirre et al., 1998; Logothetis

& Wandell, 2004). Timecourse values of the signals are extracted for each cerebral Region of Interest (ROI).

Brains are parceled according to a standard: Automated Anatomical Labeling (AAL) atlas was considered in

this work (116 ROIs), which involves a set of 116 time series available for each subject (Tzourio-Mazoyer

et al., 2002). For the sake of simplicity, the cerebral zones are numbered from 1 to 116. The Atlas matches
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these numbers with the names of the cerebral zones. Two successive numbers (odd and even, as, for example,

3 and 4) indicate regions having the same spatial location within the left and right hemispheres of the brain.

From fMRI signals, we computed statistical features on the one hand, and frequency features by applying

a Discrete Fourier Transform on the second hand. These features are successfully used in several domains, e.g.

in music signals classification and speech recognition (Lambrou et al., 1998; Le et al., 2011; Tzanetakis &

Cook, 2002) (see Table 3). When these features are computed with regard to a precise brain region, they

are indexed by a number, representing the code of the cerebral zone to which the attribute refers, i.e. V15

indicates the signal variance of the cerebral zone 15, V15,27,40 represents a set of three values concerning the

signal variance of zones 15, 27, 40.

Table 3: Features computed on fMRI signals

Feature Key Meaning Interpretation

Variance V Energy of fMRI signal Always positive.
The higher the variance is, the more energetic
the signal is.

Skewness S Symmetry of fMRI
intensity distribution

If positive (negative) skewness, fMRI distri-
bution concentrated on the left (right) of the
mean signal value.

Kurtosis K Aspect of fMRI intensity
distribution

If kurtosis superior (inferior) to three, fMRI
intensity distribution more (less) shaped
than a Gaussian one.

Frequency F Frequency associated to
the line of maximal
amplitude of DFT
spectrum.

The higher this frequency is,
the more dynamic the fMRI signal is.

Centroid C Center of mass of DFT
spectrum.

Gives an idea on the global dynamism of the
fMRI signal.

Thus, a set of 116 features by modality (variance, skewness, kurtosis, frequency, spectral centroid) was

computed, which means that, for each patient, biomarkers accounted for 580 features altogether, in addition

to the four clinical attributes (age, gender, handedness and IQ). A feature extraction was clearly required to

avoid the curse of dimensionality (Witten & Frank, 2005). This was achieved thanks to a correlation-based

feature subset selection (Hall, 1999), an efficient heuristic used to detect a combination of attributes that

weakly correlates (to avoid overlapping data) but are highly correlated with the prediction variable.

3.4.2. Selected datasets

As mentioned in section 3.1, in multi-site datasets, it is consistent to group subsets that would have been

collected in sites belonging to a same cultural and social entity. However, in the case of the ADHD-200

collection, a preliminary socio-cultural analysis showed us that each site has to be treated as its own entity.
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The multi-level approach presented in section 3.1 was applied on some datasets of the ADHD-200 collection.

Let us note that the datasets of the University of Pittsburgh (Pitt.U) and of Washington University in St.

Louis (WU) include only Typically Developing (TD) subjects (see Table 1). They were thus discarded from

our study. The NeuroImage (NI) dataset was also discarded because IQ values are missing.

For the detection of a possible trouble (first level), we illustrated our approach with Peking University (PU)

and New-York University (NYU) datasets which are associated to geographically opposed socio-cultural

factors. For the identification of the trouble type (second level), we crossed the information of both sites in

addition to those of Kennedy Krieger Institute (KKI) and Oregon Health & Sciences University (OHSU)

to enrich the resulting training dataset. Some instances were discarded because of missing values regarding

phenotypic data and/or brain images. Tables 4 and 5 present the number of instances that were used in this

study on levels I and II respectively. As mentioned before, we computed 584 features for each dataset.

Table 4: Summary of the dataset used in level I

Sites Set Total TD ADHD

NYU
Training 210 93 117

Test 41 12 29

PU
Training 193 116 77

Test 51 27 24

Table 5: Summary of the dataset used in level II

Sites Set Total Inattentive

(ADHD-I)

Combined

(ADHD-C)

PU/KKI/NYU/OHSU
Training 245 137 108

Test 60 38 22

Before learning on the second level, it was necessary to consider how to conciliate sources of heterogeneity

impairing data that were to cross in this level. In particular, we realized on one hand that discrepancies

affected variance evolving in different ranges of values according to sites since measured signals were probably

amplified with different factors. To inhibit this effect, the measures of variances were reported to the average

variances measured by site and by cerebral zone. On the other hand, frequencies associated with the maximal

amplitude of the Fourier spectra were reported to the maximal frequency of these spectra to homogenize data

whose sampling times differ. Finally, it shall be noted that New-York site measured handedness according to

the Edinburgh method in continuous values comprised between -1 and 1 (Oldfield, 1971), while other sites

provided labels (0 - left-hander, 1 - right-hander, 2 - ambidextrous). Thus, on the second level, New-York

handedness values were adjusted in nominal variables in accordance with Edinburgh scale.
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Brain features Phenotypic 
features

Reduced set 
of brain 
features

Reduced set 
of phenotypic 

features

Feature
selection

Feature
selection

Training set 4

Training set 3

Training set 2 Training set 1

Figure 1: Training sets used to develop classification models

3.5. Results reporting

In the following section, we present the results and the discussion regarding our multi-level approach,

based on selected datasets from the ADHD-200 collection. For each site of level I and for level II, our work

was based on four variants of training sets, as shown by Figure 1. A first model was learned on phenotypic

features exclusively (Training set 1). Then, we learned a model constituted of reduced phenotypic and brain

features (Training set 2). As there are only four phenotypic features, we also trained models on training

sets constituted by these phenotypic features and the reduced set of brain features (Training set 3). Finally,

we considered a training set including only reduced brain features (Training set 4). Training sets 1 and 4

were considered to check if either phenotypic or brain features may alone provide a reliable classifier and a

diagnosis accordingly.

The content of these training sets are explicitly given in section 4. Besides, the prediction rates we report

are related to the holdout validation. The tables present also the value of parameter m (selected by 10-fold

CV).

4. Results & Discussion

In this section, we aim to enhance the relevance of the multi-level approach as a classification scheme

implemented to deal with multi-site medical datasets and to address the problem of aid in diagnosis of troubles

existing in different types. As previously stated, this approach is evaluated in the context of Attention

Deficit Hyperactivity Disorder. The results of the learning process are exposed in sections 4.1 and 4.2. For

the development of decision trees, we considered the implementation of algorithm C4.5 proposed by Weka

software4. Note that the numbers given in the nodes of the illustrated decision trees extracted from this

4Available at http://www.cs.waikato.ac.nz/ml/weka/.
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Gender

TD (75/25)

Female

ADHD (135/43)

Male

Figure 2: New-York phenotype-based diagnosis

Gender

IQ

ADHD (9/3)

≤ 99

TD (43/1)

> 99

Female

IQ

ADHD (81/26)

≤ 116

TD (60/15)

> 116

Male

Figure 3: Peking phenotype-based diagnosis

software (Figures 2-7) relate respectively to the total number of training cases covered by the associated

branching nt and the number of instances wrongly classified et. This is noted as nt/et. Finally, a synthesis of

the accuracies on both levels of classification is provided in section 4.3.

4.1. ADHD - TD dissociation

In the ADHD - TD dissociation, the learning process was first exclusively exercised out of the only clinical

dataset (PHEN) to measure its impact on prediction rates. The results of the learning process exerted on the

phenotypic New-York and Peking sets are exposed in Tables 6 and 7 respectively. Figures 2 and 3 present the

corresponding decision trees. While observing the results, we can already notice differences in the expression of

clinical factors. In both cases, the diagnosis is surely gender-based, but the intellectual quotient is particularly

significant in Peking site. In this latter case, a high prediction rate was acquired by the exclusive use of the

phenotype in comparison to New-York site.

We prepared the other training sets (as exposed in section 3.5), following the results of the feature

extraction exposed by Table 8. As expected, among the phenotypic features, the gender was raised as relevant,

in addition to IQ as regards Peking site.

On New-York site, the feature selection process practiced on the neurological attributes returned signal

variances of cerebral zones labeled 15, 27, 32, 40, 70, 87, 88 as the most meaningful features. From this result,

we considered three variants of training sets. The associated prediction rates with regards to the test set are

exposed by Table 6.

Table 6: Prediction rates with regard to New-York test set

Modality m A (%) tn (%) tp (%)

PHEN 17 58.5 33.3 69.0

GEN - V15,27,32,40,70,87,88 6 61.0 75.0 55.2

PHEN - V15,27,32,40,70,87,88 9 68.3 75.0 65.5

V15,27,32,40,70,87,88 15 51.2 83.3 37.9
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Table 7: Prediction rates with regard to Peking test set

Modality m A (%) tn (%) tp (%)

PHEN 9 82.4 85.2 79.2

GEN, IQ - V32,37, K38, F16,62 6 78.4 92.6 62.5

PHEN - V32,37, K38, F16,62

* Original 12 76.5 81.5 70.8
* Adjusted - 82.4 81.5 83.3

V32,37, K38, F16,62 13 51.0 88.8 8.3

Table 8: Results of the feature extraction process

New-York Peking

Phenotypic attributes GEN GEN, IQ

Brain attributes V15,27,32,40,70,87,88 V32,37, K38, F16,62

• [GEN - V15,27,32,40,70,87,88] is the set of features strictly suggested by the feature selection process. The

resulting classifier (see Figure 4) makes a first dissociation based on gender, before developing a further

discussion about the variance of fMRI signals issued by some cerebral regions.

• [PHEN - V15,27,32,40,70,87,88] includes notably all phenotypic attributes. The learning process gives raise

to a model which differs from the previous one on the last subdivisions mainly (see Figure 5).

• [V15,27,32,40,70,87,88] includes only variance features. The associated model presents poor performances

on both training and test sets, matching practically with the luck of belonging to one of both groups

(ADHD and TD).

The same process was applied as regards Peking site. The feature selection process applied to neurological

factors reveals that significant attributes are V32,37, K38, F16,62. From this result, three training sets were

constituted as previously and the performances of the associated models are reported in Table 7. The decision

tree acquired by modality [PHEN - V32,37, K38, F16,62] presents a low granularity but the corresponding m

parameter value leads to make discussion about IQ for girls impossible. That is why, as a final proposition, we

manually adjusted the decision tree, in re-establishing the subdivision based on IQ (see Figure 6). We shall

note an under-representation of girls in the Peking collection, as well as an imbalance of ADHD and TD cases

proportions within the same population. Indeed, the training set includes 52 girls and among them, only seven

are affected by ADHD. In this actual state, it was practically impossible to emphasize further parameters in

the goal of diagnosing girls, if it were not of focusing examination on IQ, based on a threshold of 99.

It is actually interesting to notice that subdivisions towards variance are operated on values which do not

have an intrinsic meaning. Indeed, these values depend on measurement conditions. However, as variance is a

measure of energy of fMRI signals, the subdivisions are based on how vigorous is the neuronal activity on a

given region of interest. The role of gender seems crucial as it can lead to opposite interpretations for a same
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Gender

V88

TD (37/4)

≤ 0.010

V88

ADHD (10)

≤ 0.012

V32

TD (9)

≤ 0.009

V15

ADHD (13 / 2)

≤ 0.063

TD (6)

> 0.063

> 0.009

> 0.012

> 0.010

Female

V15

V40

TD (43/15)

≤ 0.012

ADHD (21/4)

> 0.012

≤ 0.017

ADHD (71/11)

> 0.017

Male

Figure 4: Model learned on the New-York set [GEN - V15,27,32,40,70,87,88]

Gender

V88

TD (37/4)

≤ 0.010

V88

ADHD (10)

≤ 0.012

Age

IQ

TD (9/3)

≤ 103

ADHD (9/1)

> 103

≤ 11.8

TD (10)

> 11.8

> 0.012

> 0.010

Female

V15

V40

IQ

Handedness

TD (12/3)

≤ 0.75

ADHD (10/1)

> 0.75

≤ 109

TD (21/3)

> 109

≤ 0.012

ADHD (21/4)

> 0.012

≤ 0.017

ADHD (71/11)

> 0.017

Male

Figure 5: Model learned on the New-York set [PHEN - V15,27,32,40,70,87,88]

Gender

IQ

ADHD (9/3)

≤ 99

TD (43/1)

> 99

Female

IQ

ADHD (81/26)

≤ 116

F62

V37

TD (14/2)

≤ 0.572

ADHD (12/4)

> 0.572

≤ 0.021

TD (34/5)

> 0.021

> 116

Male

Figure 6: Model learned on the Peking set [PHEN - V32,37, K38, F16,62], adjusted for further discussion as regards girls (dotted
line)
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Table 9: Synthesis of prediction rates

New-York (%) Peking (%)

Level I
Accuracy 68.3 82.4
Specificity 75.0 81.5
Sensitivity 65.5 83.3

Level II Effective accuracy on ADHD types 66.0 60.0

Levels I - II Global accuracy 58.0 66.7

cerebral zone, e.g. in Figure 4, as for zone 15. Actually, we can notice that the trees are able to explain how

the diagnosis is stated for every patient, through understandable features.

4.2. ADHD-I - ADHD-C dissociation

We first exercised learning on phenotypic data (PHEN) to notice that IQ has no more importance in

the ADHD-I - ADHD-C dissociation. We noticed also a change in the impact of the gender, no more imposed

at the root of the developed decision trees to make way for age, even if gender keeps a crucial role in the

underlying subdivisions (see Figure 7). The resulting prediction rate on the test set is 70.0% (m = 17,

tn = 76.3%, tp = 59.1%). As for feature selection on the whole set of features, this indicates the relevance of

the following attributes: AGE, V47, F33,46,64,65,66, C12,63. Among trees acquired by variants of combinations of

these attributes, the one learned on [GEN, AGE - V47, F33,46,64,65,66, C12,63] set caught our attention as providing

the highest cross-validation accuracy on the training set (m = 7, A = 66.7%, tn = 65.8%, tp = 68.1%); but

it has a depth of 8 instead of 3 for the previous tree. Finally, we prefer to keep the decision tree based on

phenotypic data since it is more compact and thus more readable without loosing on the accuracy.

Age

Gender

Age

Inattention (17/4)

≤ 8.99

Combined (30/10)

> 8.99

Female

Inattention (125/37)

Male

≤ 12.79

Combined (73/26)

> 12.79

Figure 7: Second level phenotype-based diagnosis

4.3. Synthesis

Let us now aggregate the performances on both levels of classification in New-York and Peking sites (see

Table 9). The models that we finally selected to compute these performances (sections 4.3 and 5) achieve

a fair compromise between the model size and their performance on the training set. Among the subjects

correctly predicted as affected by ADHD, we measured the proportion of subjects for whom the ADHD type

was also well predicted, the latter rate which we called effective accuracy on ADHD types in Table 9.
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5. Conclusion

Our results suggest that the multi-level approach is sufficiently relevant and efficient for the ADHD-200

collection.

On the first level of classification aiming at dissociating ADHD and TD subjects, we acquired interesting

prediction rates in comparison to the recent state of the literature (Riaz et al., 2016) (see Table 10). This

comforts the idea that the decision tree classifier and the chosen features are interesting for prediction.

Table 10: Comparison of performances with regard to New-York and Peking test sets on the binary problem ADHD vs TD

Our results Riaz et al. (2016)

NYU 68.3% 61.0%
PU 82.4% 64.7%

On the other hand, Table 11 presents the prediction rates we acquired in our study against the average

results of the ADHD-200 contest5 and those of Colby et al. (2012) on the global problem (TD vs ADHD-I

vas ADHD-C). The comparison with the results of Colby et al. (2012) is quite interesting, since it advocates

the advantage of a hybrid approach. As a matter of fact, they solved the problem in a hierarchical way and

processed each site separately.

Table 11: Comparison of performances with regard to New-York and Peking test sets on the full problem

Our results ADHD-200 Colby et al. (2012)

NYU 58.0% 35.2% 37.0%
PU 66.7% 51.0%6 57.0%

Actually, our study shows that it is possible to aim at clarity through white boxes such as decision trees

based on interpretable features without damaging the qualities of prediction. Moreover, the multi-level

framework appears as promising for other multi-site data collections. Of course, this multi-step approach is

questionable, notably as regards the underlying hypotheses on which it is build. Furthermore, it needs that

every group contributing to data gathering delivers enough instances to develop a local model on the first

level. Moreover, there should be, in each group, a representation of both ADHD and TD population. This

problem is partly solved when several groups delivering data belong to the same homogeneous entity (in a

cultural and social sense).

Our clinical collaborators welcomed the multi-level approach and the initiative of focusing on interpretable

and readable models. Moreover, they believe promising the results achieved on the detection of ADHD and

its characterization. Actually, through this work, we propose a basis for new perspectives in neuroscience,

notably as regards ADHD. Indeed, the interpretability and readability of both the feature extraction and

4This prediction rate is given on 44% of the Peking set by the ADHD-200 consortium as an estimation of the actual value.
5Available at http://fcon_1000.projects.nitrc.org/indi/adhd200/results.html.
6This prediction rate is given on 44% of the Peking set by the ADHD-200 consortium as an estimation of the actual value.
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learning processes allowed to raise interesting observations. In particular, it should be noted that only a

limited amount of cerebral zones were raised as pertinent among 116 zones altogether. Among the features

considered for learning, the variances of fMRI signals were largely involved in the tree subdivisions with an

interesting interpretation related to the dynamism of the neuronal activity. Furthermore, the different results

acquired per site confirms the influence of cultural and social factors in the diagnosis. The importance of

both gender and intellectual quotient for the Peking subjects in contrast to New-York subjects illustrates

perfectly this point.

As future prospects, a particular attention could be brought on a differentiated accentuation of the true

positive and negative rates. Indeed, an aid in diagnosis model characterized by a high specificity and low

sensitivity is a priori preferable on a model that has an opposite tendency. Indeed, in the latter case, some

patients could be more often diagnosed positively with a trouble. Yet, we may conceive the risks that such a

diagnosis represents if the concerned patient, in reality not affected by the trouble does not need any therapy

or, maybe more viciously, undergoes an inadequate one as affected by another trouble. At last, it can be

worthwhile considering one-class classification techniques to develop models able to leave a third possibility in

the first step of the diagnosis: the patient is not healthy, nor affected by the trouble to which special attention

is paid, but by another unknown trouble. To this end, largest datasets are still to be gathered and shared.
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