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Chiral higher spin gravity is unique in being the smallest higher spin extension of gravity and in having a
simple local action both in flat and (anti-)de Sitter spaces. It must be a closed subsector of any other higher
spin theory in four dimensions, which makes it an important building block and benchmark. Using the flat
space version for simplicity, we perform a thorough study of quantum corrections in chiral theory, which
strengthens our earlier results [E. Skvortsov, T. Tran, and M. Tsulaia, Phys. Rev. Lett. 121, 031601 (2018)].
Even though the interactions are naively nonrenormalizable, we show that there are no UV divergences in
two-, three-, and four-point amplitudes at one loop thanks to the higher spin symmetry. We also give
arguments that the AdS chiral theory should exhibit similar properties. It is shown that chiral theory admits
Yang-Mills gaugings with UðNÞ, SOðNÞ, and USpðNÞ groups, which is reminiscent of the Chan-Paton
symmetry in string theory.
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I. INTRODUCTION AND MAIN RESULTS

We report on the recent progress in addressing the
quantum gravity problem from the higher spin gravity
(HiSGRA) vantage point. The model we consider is chiral
higher spin gravity that exists both in flat [1–3] and anti-de
Sitter space [4,5]. The results of this paper extend consid-
erably the ones of [6] and confirm that chiral theory does
not have UV divergences even though the two-derivative
graviton self-interaction as well as infinitely many vertices
involving higher spin fields are naively nonrenormalizable
when taken one by one. For simplicity we perform the
calculations in the Minkowski chiral theory where
Weinberg and Coleman-Mandula theorems leave no room
for nontrivial S-matrix for HiSGRA. Nevertheless, this is
an important consistency check and we do not expect the
structure of UV divergences be affected by the cosmologi-
cal constant.
The general idea behind HiSGRA is to look for exten-

sions of gravity with massless higher spin fields, s > 2, that
would make the graviton be a part of a much larger
multiplet of gauge fields. The multiplet is usually infinite
and so is the gauge symmetry. It is expected that the

infinite-dimensional higher spin symmetry imposes suffi-
ciently strong constraints on interactions and, in particular,
restricts counterterms. This expectation is justified, for
example, by the fact that higher spin symmetry completely
fixes the holographic S-matrix, i.e., there are unique higher
spin invariant holographic correlation functions [7–10]. In
fact, the correlation functions are directly given by invar-
iants of a higher spin algebra [11–14]. Other quantum tests
of holographic higher spin theories include one-loop
determinants [15–24] and one-loop corrections to the
four-point function via AdS unitarity cuts [25,26].
While the checks of the quantum consistency of

HiSGRA alluded to above are encouraging, they are either
indirect or do not sufficiently probe the structure of
interactions. The only model with propagating massless
higher spin fields where direct computations are possible at
the moment is chiral HiSGRA [3], which is heavily based
on the earlier works by Metsaev [1,2]. Chiral theory is the
smallest extension of gravity with massless higher spin
fields. It exists both in flat and (anti-)de Sitter spaces [4,5],
which makes it a unique model of this kind. Chiral theory
must be a closed subsector in any other higher spin theory
in four dimensions with the same free spectrum, which
makes it an important building block. The specific structure
of interactions allows chiral theory to escape from all no-
go-type results both in flat, see e.g., [27–30], and (anti-)de
Sitter spaces [31–34].
It is interesting that the holographic S-matrix of the

AdS4 chiral theory is nontrivial [5] and is related to
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Chern-Simons matter theories, which should be confronted
with its triviality in flat space. It seems that the interactions
fine-tuned by the higher spin symmetry result in a perfect
annihilation of all terms in physical amplitudes when the
space-time is flat or very close to flat [for example, one
should find the same result for high energy scattering in the
interior of (anti-)de Sitter space]. When the space-time is
curved the higher derivative nature of the interactions
becomes important and there is no perfect cancellation
anymore, which results in a nontrivial holographic
S-matrix. Probing the UV structure of interactions in flat
space is important for the quantum consistency in (anti-)de
Sitter space as well. Had we found any UV divergence in
the Minkowski chiral theory, its (A)dS version would have
suffered from the same problem. Therefore, our preliminary
conclusion is that the AdS chiral theory does not have UV
divergences. In addition, the quantum consistency of chiral
theory is an important test of the more general 4d (holo-
graphic) higher spin theories which have to have it as a
subsector.
One of the crucial ideas behind chiral HiSGRA [1–3,5,6]

was to stick to the light-cone or light-front approach, which
was applied to the higher spin problem for the first time in
[35,36]. It was already in 1983 that some evidence for
existence of higher spin theories was obtained in [35]: “Our
conclusion is that the higher-spin theories are likely to exist,
at least as classical field theories, although theymaynot have
a manifestly covariant form.” Because of Weinberg’s and
Coleman-Mandula’s theorems, the S-matrix approach is not
applicable in flat space. The light-cone approach is the most
general approach to local dynamics, which can be used both
in flat and (anti-)de Sitter spaces. It goes well with under-
standing gauge symmetry as redundancy of description.
Technically, the idea of the light-cone approach is to

construct the generators of the space-time symmetry algebra
directly in terms of local physical degrees of freedom. In
particular, chiral theory results from checking the same
equations, which are a part of the Poincare algebra,

½Ja−; Jc−� ¼ 0; ½Ja−; P−� ¼ 0; ð1:1Þ

as it is done in string theory in the light-cone gauge [37]. One
difference with string theory is that we first look for the
classical realization of the algebra via Poisson brackets.
Then, theHamiltonianH ¼ P− gives a classical actionS that
we invoke to compute quantum corrections. Another differ-
ence is that we do not have any prior knowledge of how the
theory looks and what the spectrum of states is. One can put
in at least one massless higher spin field with certain
minimal self-interaction. The Lorentz algebra implies that
one needs an infinite multiplet comprisingmassless fields of
all spins with very specific interactions in order to fulfil
(1.1), [1–3]. In particular, the graviton must belong to the
multiplet. Chiral theory is the most minimal solution of this
problem in the sense of having the least possible number of

fields, which is still infinite, and the least number of
interactions. One remarkable property of chiral theory is
that the interactions truncate at cubic terms.
Another way to approach the higher spin problem is to

start with string theory—a natural candidate for a consistent
theory of quantum gravity. This theory contains an infinite
number of massive higher spin fields, and these fields are
crucial for making the quantum theory finite. Therefore, in
order to formulate a HiSGRA on flat space, one can try to
find some form of a symmetric phase of string theory, by
taking its high energy (low tension) limit, for example. This
limit [38], being opposite to the low energy (supergravity)
limit, is still not completely understood even in the simplest
case of the bosonic string theory.1 One possible approach,
which eventually leads to nontrivial interactions, is as
follows. As the first step one takes α0 → ∞ in the free
equations [40] (see also [41] for a recent work in this
direction and [42–47] for other works on the high energy
limit of string theory), thus obtaining a consistent gauge
invariant formulation of massless fields. As the second step
one promotes the original linear gauge symmetries and field
equations to nonlinear ones [48–50] and this way one can
reproduce nontrivial cubic interaction vertices obtained
using other methods [51–55]. However, the most difficult
problemswhen considering interactingmassless higher spin
fields arise at the level of quartic interactions. These
problems manifest themselves either in a form of nonlocal
terms in quartic vertices and four-point functions or by a
failure of various consistency checks for the symmetries of
four-point scattering amplitudes [29,30,49,50,56]. To sum-
marize, a consistent HiSGRA is still to be obtained this way.
Both string theory and chiral HiSGRA require infinitely

many higher spin fields (massive or massless) for consis-
tency. Another stringy feature of chiral HiSGRA is that one
can extend it to a class of theories where all fields are
charged with respect to spin-one fields in a way that is
reminiscent of the Chan-Paton approach. The SOðNÞ-case
was studied already in [2], see also [57] for an earlier
important result within a different approach. Here we
extend it to UðNÞ and USpðNÞ. For SOðNÞ and
USpðNÞ cases the representations that fields take values
in depend on whether the spin is even or odd, which is
again similar to string theory [57,58]. Our findings indicate
that higher spin fields are essential for quantization of
gravity and replacing massive fields with massless ones
allows us to find nontrivial toy models that are much
smaller and simpler than string theory, which should be
helpful for understanding the quantum gravity problem.
The outline of the paper is as follows. In Sec. II we begin

by presenting the action of chiral theory. In Sec. III we
collect the Feynman rules, which are used in the subsequent
sections to compute quantum corrections. In Sec. IV we

1See, however, [39] for the tensionless limit of strings on
AdS3.
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compute all tree-level amplitudes and show that, in accor-
dance with Weinberg’s theorem, they vanish on-shell,
which is a result of a highly nontrivial cancellation between
all Feynman diagrams due to coupling conspiracy. In
Sec. V we compute the vacuum diagrams. We shown that
the vacuum loop diagrams vanish identically either due to
the coupling conspiracy or due to the fact that the
regularized number of effective degrees of freedom van-
ishes. In Sec. VI we compute the loop diagrams with
external legs and demonstrate that they do not have UV
divergences and are also proportional to the total number of
effective degrees of freedom, hence, can be made to vanish.
We conclude with Sec. VII that contains a summary of our
results and discussion of possible future developments.
A crash course on the light-cone approach as well as some
useful technical details are collected in the Appendixes.
In particular, in Appendix C we study in detail the Chan-
Paton gauging of the theory. In particular, we show that the
closure of the Poincare algebra in the light-cone gauge
admits three types of gauge groups: UðNÞ, SOðNÞ and
USpðNÞ.

II. CLASSICAL CHIRAL HIGHER SPIN GRAVITY

We begin directly with the action of chiral theory. The
action follows from the Hamiltonian H ¼ P− that together
with the other generators obey the Poincare algebra. A short
summary of the light-front approach can be found in
Appendix A.
One important feature of the four-dimensional world is

that a massless spin-s field has two degrees of freedom and
effectively it looks like two scalar fields representing
helicity �s states. Usually, in the covariant formulation
a massless spin-s particle is described by a rank-s tensor
Φa1…asðxÞ. Upon imposing the light-cone gauge and
integrating out auxiliary fields one is left with two helicity
eigen states Φ�sðxÞ. We would like to study possible
interactions between such states. It is convenient to work
with the Fourier transformed fields

Φλ
p ≡ΦλðpÞ∶ λ ¼ �s: ð2:1Þ

Throughout the paper we shall work in momentum space
and four-momentum p is split as2 p ¼ ðβ≡ pþ; p−; p; p̄Þ.
The action of chiral theory reads

S ¼ −
X
λ≥0

Z
ðp2ÞTr½ΦλðpÞ†ΦλðpÞ�

þ
X
λ1;2;3

Z
Cλ1;λ2;λ3Vðp1; λ1; p2; λ2; p3; λ3Þ: ð2:2Þ

Let us now discuss all the ingredients of this action. It
consists of the canonical kinetic term, where we sum over
all spins and specific cubic interactions. The fields are
assumed to take values in some matrix algebra, to be
specified below, and hence we use the trace Tr to form a
singlet. As is well known, given any three helicities there is
a unique cubic vertex or cubic amplitude.3 In the light-cone
gauge such a vertex has the form [1,2]

Vðp1; λ1; p2; λ2; p3; λ3Þ

¼ P̄λ1þλ2þλ3

βλ11 β
λ2
2 β

λ3
3

Tr½Φλ1
p1Φ

λ2
p2Φ

λ3
p3 �δ4ðp1 þ p2 þ p3Þ; ð2:3Þ

where λ1 þ λ2 þ λ3 ≥ 0 and

P̄ ¼ 1

3
½ðβ1 − β2Þp̄3 þ ðβ2 − β3Þp̄1 þ ðβ3 − β1Þp̄2�: ð2:4Þ

The complex conjugate of the above gives the vertices for
λ1 þ λ2 þ λ3 ≤ 0. Note that the only admissible vertex with
λ1 þ λ2 þ λ3 ¼ 0 is the scalar self-interaction. It is straight-
forward to establish a dictionary between the light-cone
approach and the spinor helicity formalism. To this end
[59–64], let us introduce two-component spinors

ji� ¼ 21=4ffiffiffiffi
βi

p
�

q̄i
−βi

�
¼ 21=4

 
q̄iβ

−1=2
i

−β1=2i

!
: ð2:5Þ

The contractions can be expressed as

½ij� ¼
ffiffiffiffiffiffiffiffi
2

βiβj

s
P̄ij; hiji ¼

ffiffiffiffiffiffiffiffi
2

βiβj

s
Pij; ð2:6Þ

where P̄km ¼ p̄kβm − p̄mβk and similarly for jii. Then the
kinematical factor in the cubic vertex (2.3) has the standard
form [65,66]

P̄λ1þλ2þλ3

βλ11 β
λ2
2 β

λ3
3

∼ ½12�λ1þλ2−λ3 ½23�λ2þλ3−λ1 ½13�λ1þλ3−λ2 ; ð2:7Þ

where the momentum conservation has to be used to
replace P̄ with any of P̄12, P̄23, P̄31. The light-cone
approach provides an off-shell extension [64,67,68] of
the on-shell three-point amplitudes. Therefore, the cubic
vertices are the canonical ones, but written in the light-
cone gauge.
The ingredients above are kinematical. The dynamical

input is in the coupling constants Cλ1;λ2;λ3 . For example, the
action of Yang-Mills theory up to the cubic terms would

2Since pþ is present in many expressions the shorthand
notation β for pþ appears to be very handy.

3One important exception is when λ1 þ λ2 þ λ3 ¼ 0. In this
case the only allowed vertex is the scalar cubic self-interaction,
λ1 ¼ λ2 ¼ λ3 ¼ 0.
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require Cþ1;þ1;−1 ¼ C−1;−1;þ1 ¼ igYM and Cλ1;λ2;λ3 ¼ 0

for all other combinations. Similarly, the Einstein-
Hilbert action up to the cubic terms is reproduced by
Cþ2;þ2;−2 ¼ C−2;−2;þ2 ¼ lp, where lp is the Planck length,
and Cλ1;λ2;λ3 ¼ 0 for all other triplets. Chiral theory requires

Cλ1;λ2;λ3 ¼
κðlpÞλ1þλ2þλ3−1

Γðλ1 þ λ2 þ λ3Þ
ð2:8Þ

that is a unique solution of the Poincare algebra relations
provided at least one higher spin field is present together
with a nontrivial self-interaction. The explicit expressions
for the generators of the Poincare algebra can be found in
[1–3,68,69] and Appendix A.
The constant lp can be associated with the Planck length

since the chiral half of the Einstein-Hilbert two-derivative
cubic vertex belongs to the action, Cþ2;þ2;−2 ¼ κlp. The
chiral half of the Goroff-Sagnotti [70] counterterm

Z ffiffiffi
g

p
RμνρσRρσλτRλτ

μν; ð2:9Þ

corresponds to Cþ2;þ2;þ2 ¼ κðlpÞ5=5!. Note that the num-
ber of derivatives in the covariant description corresponds
to the total power of P̄ in the light-cone gauge. In general
we see infinitely many higher derivative interactions
present in the action. Naively, it is not power-counting
renormalizable. Nevertheless, we will show that there are
no UV divergences.
The action does stop at the cubic order and no higher

order corrections are required to make it consistent.
Formally, there is one more dimensionless coupling κ that
does not play any role in the present paper, but is important
for making contact between Chern-Simons matter theories
and AdS4 chiral theory [5]. The specific form (2.8) of the

coupling constants discriminates between helicities: if the
sum of helicities entering the vertex is zero or negative, the
coupling vanishes, while all positive sums are allowed.
Therefore, the theory is chiral and violates parity. It is close
in spirit to self-dual Yang-Mills theory, which in the light-
cone gauge also looks like half of the Yang-Mills’s cubic
action with higher order terms erased [71].
The last optional ingredient is that fields Φλ

p can be
extended to carry color degrees of freedom to which we
shall refer as Chan-Paton factors, the terminology borrowed
from the string theory. In practice, this means that each Φλ

takes values in the algebra of matrices:

ΦλðpÞ≡Φλ
aðpÞTa;λ ≡ ðΦλ

pÞAB: ð2:10Þ

The reason why we call them Chan-Paton factors, see also
[57] for the first occurrence in the higher spin context (with
technical details left to Appendix C), is that, similarly to
what happens in open string theory [58], only three options
for gauge groups are allowed: (i) UðNÞ gauging: fields are
(anti-)Hermitian matrices; (ii) SOðNÞ gauging, studied in
[2]: even spins are symmetric matrices, while odd spins are
antisymmetric matrices; (iii) USpðNÞ gauging, where the
symmetry is the opposite as compared to the SOðNÞ case.
The most minimal chiral theories can be obtained as
particular cases: Uð1Þ gauging leads to a theory with all
integer spins in the spectrum, each in one copy. SOð1Þ
gauging leads to even spins only, each in one copy. In what
follows we work with the UðNÞ case by default.

III. FEYNMAN RULES

Using the results of the previous section and of
Appendix C, we can write down the Feynman rules for
chiral theories with Chan-Paton factors. The propagator is
found to be

ð3:1Þ

where Ξgauge is the part that comes from the double line
notation. For UðNÞ gauging, which is the easiest case, we
find that4

EΞUðNÞ ¼ ð−ÞλiδCBδAD: ð3:2Þ

And, for SOðNÞ=USpðNÞ gauging, one finds

ΞSOðNÞ ¼
δACδBD þ ð−ÞλiδBCδAD

2
; ð3:3Þ

ΞUSpðNÞ ¼
CACCBD þ ð−Þλiþ1CBCCAD

2
: ð3:4Þ

Computations for SOðNÞ=USpðNÞ-valued fields are a bit
more subtle compared to the UðNÞ case. Lastly, the vertex
for all cases can be presented in the ’t Hooft double line
notation as

4Note that the somewhat strange sign factor is due to
the fact that odd spins correspond to anti-Hermitian matrices,
while even spins to Hermitian ones. Therefore, the kinetic
term, which has Tr½Φ†Φ�, is always Hermitian and positive
definite.
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ð3:5Þ

where the Tr is the trace over implicit UðNÞ,
SOðNÞ=USpðNÞ indices.

IV. TREE AMPLITUDES

In this section we compute all tree-level amplitudes in
chiral theory. We will show that all of them vanish on shell,
which is a result of a highly nontrivial cancellation among
all Feynman diagrams. The triviality of the S-matrix,
S ¼ 1, follows from the Weinberg low energy theorem.
The proof proceeds by induction. First, we explicitly

compute four-, five,- and six-point amplitudes with one off-
shell leg. These amplitudes turn out to have a very compact
form which suggests a general result for the n-point
amplitude. Following the Berends-Giele method [72], the
n-point amplitude can be obtained by taking one cubic
vertex and attaching two of its legs to various (n − k)- and
k-point amplitudes for all possible k. This trick allows us to
avoid explicit summation over all Feynman graphs. In order
to carry out this procedure it is necessary to know all lower

order amplitudes with one off-shell leg. The result of the
recursion gives us an (nþ 1)-point amplitude with one leg
being again off shell.
Finally, we find that all amplitudes are proportional to p2

of the off-shell leg and therefore vanish on shell. To
simplify the calculations even further we work with the
chiral theory extended by UðNÞ Chan-Paton factors since
one has to compute color-ordered subamplitudes only.

A. Four-point amplitude

On-shell three-point amplitudes for massless spinning
fields vanish due to kinematical reasons, see e.g., [65]. The
scalar cubic self-coupling is absent due to the higher spin
symmetry. Therefore, the simplest amplitude that may not
be zero is the four-point one. Below we demonstrate the
calculations for the case of the UðNÞ Chan-Paton sym-
metry. The cases of SOðNÞ and USpðNÞ gauge groups can
be treated in a similar way. An n-point amplitude can be
represented as

Anðp1; λ1;…; pn; λnÞ ¼
X
Sn=Zn

Tr½Tσð1Þ…TσðnÞ�Ânðpσ1 ; λσ1 ;…; pσn ; λσnÞ; ð4:1Þ

which is a sum over ðn − 1Þ! permutations and σ1;…; σn denotes various permutations of 1;…; n. The elementary blocks,
subamplitudes Ân, should be computed using the color-ordered Feynman rules. In the case of four-point function the
subamplitude consists of two graphs:

The sum of these diagrams gives, see also [3,6],

A4ð1234Þ ¼
δðPipiÞ

ΓðΛ4 − 1ÞQ4
i¼1 β

λi
i

�
P̄12P̄34ðP̄12 þ P̄34ÞΛ4−2

ðp1 þ p2Þ2
þ P̄23P̄41ðP̄23 þ P̄41ÞΛ4−2

ðp2 þ p3Þ2
�

ð4:2Þ

where Λ4 ¼ λ1 þ � � � þ λ4. In what follows we drop an
overall momentum-conserving δ function.
It is important to notice that the sum over intermediate

helicities is bounded both from above and from below due

to the specific form of the coupling constants (2.8). This is
no longer so if we add up the chiral and antichiral vertices
together with the idea to look for the more general higher
spin theory.
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Next we use various kinematic identities from (B5) to
(B9) for P̄ that are collected in Appendix B. Let us assume
that the first momenta is off shell, p21 ≠ 0. Then,

A4ð1234Þ ¼
αΛ4−2
4

ΓðΛ4 − 1ÞQ4
i¼1 β

λi−1
i

β3p21
4β1P23P34

; ð4:3Þ

where α4 ¼ P̄12 þ P̄34 ¼ P̄23 þ P̄41 is cyclic invariant. It is
obvious that the total amplitude vanishes when all momenta
are on shell.

B. Five-point amplitude

In the case of five-point amplitude we have five
diagrams, which are cyclic permutations of a single comb
diagram:

ð4:4Þ

However, according to our general discussion we can
equivalently represent the five-point amplitude as a sum
of three diagrams

Let us keep again the four-momentum of the first particle of -shell. Using the results of the previous subsection for the four-
point amplitude as well as the form of the cubic vertex, we have for the first diagram

AI
5ð12345Þ ¼

1

ΓðΛ5 − 2ÞQ5
i¼1 β

λi
i

P̄51P̄34P̄23ðP̄51 þ P̄23 þ P̄24 þ P̄34ÞΛ5−3

s23s34

¼ 1

4ΓðΛ5 − 2ÞQ5
i¼1 β

λi
i

P̄51ðP̄51 þ P̄23 þ P̄24 þ P̄34ÞΛ5−3β2β
2
3β4

P23P34

; ð4:5Þ

where Λ5 ¼ λ1 þ � � � þ λ5 and sij ¼ ðpi þ pjÞ2. We also have used (B8) to obtain the second line in (4.5). With the help of
the cubic vertex one obtains for the second diagram

AII
5 ð12345Þ ¼

1

ΓðΛ5 − 2ÞQ5
i¼1 β

λi
i

P̄45P̄23ðP̄41 þ P̄51ÞðP̄45 þ P̄23 þ P̄41 þ P̄51ÞΛ5−3

s23s45

¼ 1

4ΓðΛ5 − 2ÞQ5
i¼1 β

λi
i

ðP̄41 þ P̄51ÞðP̄45 þ P̄23 þ P̄41 þ P̄51ÞΛ5−3β2β3β4β5
P23P45

: ð4:6Þ

Finally the third diagram can be obtained from the first one through the cyclic permutation of the indices

AIII
5 ð12345Þ ¼ 1

ΓðΛ5 − 2ÞQ5
i¼1 β

λi
i

P̄12P̄45P̄34ðP̄12 þ P̄34 þ P̄35 þ P̄45ÞΛ5−3

s34s45

¼ 1

4ΓðΛ5 − 2ÞQ5
i¼1 β

λi
i

P̄12ðP̄12 þ P̄34 þ P̄35 þ P̄45ÞΛ5−3β3β
2
4β5

P34P45

: ð4:7Þ

Let us notice that factors that are raised to power ðΛ5 − 3Þ are all equal to α5 ¼ P̄12 þ P̄13 þ P̄23 þ P̄45. Adding the
contributions from three subamplitudes we get

A5ð12345Þ ¼ C5ðP̄51P45β2β3 þ ðP̄41 þ P̄51ÞP34β2β5 þ P̄12P23β4β5Þ; ð4:8Þ

where

C5 ¼
αΛ5−3
5

4ΓðΛ5 − 2ÞP23P34P45β1β2β5
Q

5
i¼1 β

λi−1
i

: ð4:9Þ
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Now we shall perform a step which will be used for all higher point tree-level amplitudes. Namely we shall transform the
last term in (4.8) using Eq. (B6) to get

A5ð12345Þ ¼ C5

�
−
p21
2
β2β3β4β5 − P̄14P43β2β5 − P̄15P53β2β4 þ P̄51P45β2β3 þ ðP̄41 þ P̄51ÞP34β2β5

�
: ð4:10Þ

Now, collecting the terms proportional to P̄51 and P̄41 we see that they vanish by virtue of the Bianchi-like identities (B5).
Therefore we are left only with the first term in (4.10), which is proportional to p21. Therefore, we finally get the five-point
amplitude with one off-shell leg

A5ð12345Þ ¼ −
αΛ−35

8ΓðΛ5 − 2ÞQ5
i¼1 β

λi−1
i

β3β4p21
β1P23P34P45

: ð4:11Þ

Again, it vanishes on shell.

C. Six-point amplitude

In order to prepare for computations of general n-point tree-level amplitudes and demonstrate the pattern let us consider
explicitly the six-point contributions. Again, we keep the four-momentum of the first particle off shell. The total amplitude
is a sum of four subamplitudes:

Using the results of the previous subsection for four- and five-point amplitudes as well as the explicit form of the cubic
vertex, we obtain

AIð123456Þ ¼ −
ðP̄23 þ P̄24 þ P̄34 þ P̄45 þ P̄35 þ P̄25 þ P̄61ÞΛ6−4

8ΓðΛ6 − 3ÞQ6
i¼1 β

λi−1
i

P̄61

P23P34P45

β3β4
β6β1

; ð4:12aÞ

AIIð123456Þ ¼ −
ðP̄56 þ P̄51 þ P̄61 þ P̄23 þ P̄24 þ P̄34ÞΛ6−4

8ΓðΛ6 − 3ÞQ6
i¼1 β

λi−1
i

ðP̄51 þ P̄61Þ
P23P34P56

β3
β1

; ð4:12bÞ

AIIIð123456Þ ¼ −
ðP̄12 þ P̄13 þ P̄23 þ P̄45 þ P̄46 þ P̄56ÞΛ6−4

8ΓðΛ6 − 3ÞQ6
i¼1 β

λi−1
i

ðP̄12 þ P̄13Þ
P23P45P56

β5
β1

; ð4:12cÞ

AIVð123456Þ ¼ −
ðP̄34 þ P̄35 þ P̄45 þ P̄56 þ P̄46 þ P̄36 þ P̄12ÞΛ6−4

8ΓðΛ6 − 3ÞQ6
i¼1 β

λi−1
i

P̄12

P34P45P56

β4β5
β1β2

; ð4:12dÞ

where Λ6 ¼ λ1 þ � � � þ λ6. As in the previous cases, the terms with power Λ6 − 4 all have the same base

α6 ¼ P̄12 þ P̄13 þ P̄14 þ P̄23 þ P̄24 þ P̄34 þ P̄56: ð4:13Þ

Next, let us add the expressions for the subamplitudes together. We get

Að123456Þ ¼ C6ðP̄61P56β2β3β4 þ ðP̄61 þ P̄51ÞP45β2β3β6 þ ðP̄61 þ P̄51 þ P̄41ÞP34β2β5β6 þ P̄12P23β4β5β6Þ;

where

C6 ¼ −
αΛ6−4
6

8ΓðΛ6 − 3ÞQ6
i¼1 β

λi−1
i

1

P23P34P45P56

1

β1β2β6
: ð4:14Þ
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Now, following our general strategy, we transform the last term, which corresponds to the fourth diagram, according to
Eq. (B6) to get

Að123456Þ ¼ C6

�
P̄61P56β2β3β4 þ ðP̄61 þ P̄51ÞP45β2β3β6 þ ðP̄61 þ P̄51 þ P̄41ÞP34β2β5β6 − ðP̄14P43β2β5β6

þ P̄15P53β2β4β6 þ P̄16P63β2β4β5Þ −
1

2
p21β2β3β4β5

�
: ð4:15Þ

Next, we shall proceed as follows. Consider first the terms
proportional to P̄61. The contributions from the first and
second subdiagrams, i.e., from the first two terms in (4.15),
combine to

P̄56β2β3β4 þ P̄45β2β3β6 ¼ P̄46β2β3β5 ð4:16Þ
due to the Bianchi identities. The right-hand side of (4.16)
adds up to the contribution from the third diagram, i.e., with
the third term in (4.15), to give

P̄34β2β5β6 þ P̄46β2β3β5 ¼ P̄36β2β4β5 ð4:17Þ
and the right-hand side of (4.17) cancels the contribution
from the fourth subdiagram. Repeating this procedure for
the terms proportional to P̄51 and P̄41 one can see that they
all cancel out and we are left only with the term propor-
tional to the off-shell momentum p21. Therefore, one finally
gets for the six-point amplitude

Að123456Þ ¼ αΛ6−4
6

16ΓðΛ6 − 3ÞQ6
i¼1 β

λi−1
i

β3β4β5p21
β1P23P34P45P56

;

ð4:18Þ

which vanishes on shell, as expected. Let us note that the
same amplitude can be computed in a slightly alternative
way, which is given in Appendix E.

D. Recursive construction

Given the results of the previous subsections, it is easy to
guess the n-point amplitude with one off-shell leg

Anð1.::nÞ ¼
ð−ÞnαΛn−ðn−2Þ

n β3…βn−1p21
2n−2ΓðΛn − ðn− 3ÞÞQn

i¼1 β
λi−1
i β1P23…Pn−1;n

;

ð4:19Þ

αn ¼
Xn−2
i<j

P̄ij þ P̄n−1;n; ð4:20Þ

where Λn ¼ λ1 þ � � � þ λn. Below we shall prove by
induction that (4.19) is indeed the correct answer. The
n-point amplitude can be represented diagramatically as
follows:
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First, let us prove by induction that the factor αn has the form (4.20) and is common for all diagrams. The overall Γ function
for the n-point amplitude follows directly from our previous calculations and therefore we shall not consider it below. Since
we have already checked the cases of four-, five- and six-point amplitudes we proceed to the induction step.
Consider the first diagram. The corresponding αIn factor is equal to

αIn ¼ P̄n;1 þ ðP̄n−1;m þ P̄23 þ � � � þ P̄2;n−2 þ P̄34 þ � � � þ P̄3;n−2 þ � � � þ P̄n−4;n−2 þ P̄n−3;n−2Þ; ð4:21Þ

where the momentum on the internal line has index m. Now using the momentum conservation

P̄n−1;m ¼ −P̄n−1;2 − � � � − P̄n−1;n−2 ð4:22Þ

we see that (4.21) coincides with (4.20). Next, let us demonstrate that this factor is the same for all subdiagrams. Consider
the second diagram, whose αII factor reads

αIIn ¼ P̄n−1;n þ P̄p;1 þ ðP̄n−2;m þ P̄23 þ ::þ P̄2;n−3 þ P̄34 þ � � � þ P̄3;n−3 þ � � � þ P̄n−5;n−3 þ P̄n−4;n−3Þ: ð4:23Þ

Similarly in the equation above the subscript p corresponds to internal momentum that exits the ðn − 1; nÞ part of the
diagram and the subscriptm corresponds to the internal momentum that enters the ð2;…; n − 2Þ part of the diagram. Using
relation (4.22) as well as

P̄n−2;m ¼ −P̄n−2;2 − � � � − P̄n−2;n−3; P̄p;1 ¼ P̄n;1 þ P̄n−1;1 ð4:24Þ

one can see that the difference αIn − αIIn is indeed zero. The proof that the αn factor is equal to (4.20) for all subdiagrams with
ððn − k; nÞ; 1; ð2; n − k − 1ÞÞ partition of external momenta is completely analogous.
Now let us prove that the n-point amplitude has the required form (4.19). Again we proceed with the induction step. The

sum of the n-point diagrams has the form:

Að1; 2;…; nÞ ¼ C0n

�
P̄n;1

P23…Pn−2;n−1Pn−1;n

β3…βn−2βn−1
βn

þ P̄n;1 þ P̄n−1;1

P23…Pn−2;n−1Pn−1;n
β3…βn−2βn−1

þ P̄n1 þ P̄n−1;1 þ P̄n−2;1

P23…Pn−3;n−2Pn−2;n−1Pn−1;n
β3…βn−3βn−2βn−1 þ � � �

þ P̄n;1 þ � � � P̄n;5

P23…P4;5…Pn−1;n
β3β4β5…βn−1 þ

P̄n;1 þ � � � þ P̄n;4

P23P34…Pn−1;n
β3β4…βn−1 þ

P̄12

P23…Pn−1;n

β3…βn−2βn−1
β2

�
;

ð4:25Þ

where the underlined expression is omitted and

C0n ¼
ð−Þn−1αΛn−ðn−2Þ

n

2n−3ΓðΛn − ðn − 3ÞÞβ1
Q

n
i¼1 β

λi−1
i

: ð4:26Þ

Adding these terms together and extracting the common denominator

1

β2βnP23P34…Pn−1;1
ð4:27Þ

we get

Að1; 2;…; nÞ ¼ CnðP̄n;1Pn−1;nβ2…βn−1βn þ ðP̄n1 þ P̄n−1;1ÞPn−2;n−1β2…βn−2βn−1βn

þ ðP̄n;1 þ P̄n−1;1 þ P̄n−2;1ÞPn−3;n−2β2…βn−3βn−2βn−1βn þ � � �
þ ðP̄n;1 þ P̄n−1;1 þ � � � þ P̄51ÞP45β2β3β4β5…βn

þ ðP̄n;1 þ P̄n−1;1 þ � � � þ P̄41ÞP34β2β3β4…βn þ P̄12P23β2β3…βnÞ; ð4:28Þ
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where

Cn ¼
ð−Þn−1αΛn−ðn−2Þ

n

2n−3ΓðΛn − ðn − 3ÞÞP23…Pn−1;nβ1β2βn
Q

n
i¼1 β

λi−1
i

: ð4:29Þ

Now, as we have done in the cases of five- and six-point functions, we transform the last term in (4.28) as

P̄12P23β4…βn−1βn ¼ −
1

2
p21β2β3…:βn − P̄14P43β2β3β4…βn − � � � − P̄1;n−1Pn−1;3β2β3…βn−1βn − P̄1;nPn;3β2β3…βn:

ð4:30Þ

Further, we collect the terms proportional to P̄n;1 in (4.28). They have the form

Pn−1;nβ2…βn−1βn þ Pn−2;n−1β2…βn−2βn−1βn þ Pn−3;n−2β2…βn−3βn−2βn−1βn

…þ P45β2β3β4β5…βn þ P34β2β3β4…βn − Pn;3β2β3…βn: ð4:31Þ

Now we shall use the Bianchi identities. First, we apply the
Bianchi identity to the first line in (4.31) to obtain
P̄n;n−2β2…βn−2βn−1βn. Then we add this expression to
the second line in (4.31) and then apply the Bianchi identity
again. Proceeding this way we see that the sum of terms
proportional to P̄n;1 vanishes. Next, we repeat the same
procedure for the terms proportional to P̄n−1;1 in (4.28) and
obtain that their sum is equal to zero as well, and so on.
Finally, we see that all the terms except for the one which is
proportional to p21 cancel out. Collecting the intermediate
results together we find the final expression for the n-point
tree amplitude to be (4.19), as conjectured.
The final conclusion here is that all n-point amplitudes

with one off-shell leg have a remarkably simple form and
vanish on shell. Hence, at tree level, chiral theory is
consistent with the numerous no-go theorems like
Weinberg’s low energy theorem and Coleman-Mandula’s
theorem that imply S ¼ 1 once at least one massless higher
spin particle is in the game. From the explicit calculations
above it is clear that (i) it is important to have all spins in the
spectrum without any upper/lower bounds and gaps, and
(ii) the coupling constants must have a very particular
dependence on spins, Cλ1;λ2;λ3 ∼ 1=Γðλ1 þ λ2 þ λ3Þ. This
situation was referred to as coupling conspiracy [6]. The
fact that the tree-level amplitudes vanish on shell indicates
that there should not be any nontrivial cuts of the loop

diagrams and, hence, the loop corrections are expected to
have a better UV behavior.

V. VACUUM BUBBLES

It is easy to show that all vacuum corrections vanish in
accordance with the naive expectation that vacuum parti-
tion function for higher spin gravities should be one, Z ¼ 1,
which indicates that the total regularized number of degrees
of freedom vanishes. This is in accordance with similar
findings both in flat and AdS spaces [15–24].

A. Determinants

The simplest vacuum corrections probe the spectrum of a
theory via determinants of the kinetic operators. First, let us
consider the free higher spin theory in four-dimensional flat
space [21]. The action is the sum over all spins of the
kinetic terms of massless fields:

S ¼
X
s

Z
d4xϕa1…as□ϕa1…as ;

δϕa1…as ¼ ∂a1ξa2…as þ perm:; ð5:1Þ

where we have already partially gauged fixed the action, so
that both the fields and the gauge parameters are transverse
and traceless. The partition function is

ð5:2Þ
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where the determinants are of the Laplacian −∂2 defined on
symmetric traceless transverse tensors, see e.g., [16,21].
The numerator in the formula corresponds to ghosts, i.e., to
pure gauge degrees of freedom. The determinant of a free
scalar field stays aside since it is not a gauge field.
On one hand it is tempting to choose a regularization for

the infinite product such that the ghost of the spin-s field
cancels the spin-(s − 1) contribution in the denominator.
This would give Z1-loop ¼ 1, as a result. On the other hand it
is the same problem as determining the value of the infinite
sum 1 − 1þ 1 − � � �. Indeed, for theories with infinitely
many fields a prescription of how to sum over the spectrum
has to be given by hand and this is one of the instances
where higher spin gravity reveals its “stringy” nature.
However unlike string theory, where summation goes over
relevant Riemann surfaces, we do not have any geometric
understanding of how the sum over spins needs to be done.
Therefore, we have to come up with some plausible idea

of what the total number of degrees of freedom is. The
prescription of [21] that gives Z ¼ 1 instructs us to count
degrees of freedom as follows:

ν0 ¼
X
λ

1 ¼ 1þ 2
X
λ>0

λ ¼ 1þ 2ζð0Þ ¼ 0; ð5:3Þ

where 1 is for the scalar field and 2 per each massless field.
Although this regularization seems to be ad hoc, the success
[17,18,22–24,73] of the zeta function regularization [74,75]
in the study of determinants of higher spin theories on AdS
background provides a strong support for (5.3).
Let us recall that the kinetic operators of massless

spinning fields on AdSd have spin-dependent masslike
terms and the naive cancellation, as above, is not possible.
The determinants can be computed via spectral zeta
function [76–81] and the spin sums can be taken with
the help of the zeta function. One can perform the one-loop
computations for various spectra of fields and on various
backgrounds (Euclidian, thermal, and global AdSd). The
final result is highly nontrivial and is consistent with the
AdS=CFT expectations. Therefore, the zeta function regu-
larization seems to be well tested, which justifies (5.3).

B. Higher vacuum loops

The two-loop diagram vanishes due to the chirality of
interactions: assuming some combination of helicities
λi¼1;2;3 assigned to the left vertex of

we find the opposite triplet, i.e., −λi¼1;2;3, entering the right
vertex. However, 1=Γ½Λ� and 1=Γ½−Λ� factors coming from
the product of the two couplings cannot both be nonzero.
Hence, the diagram vanishes. The same arguments as above

show that the three-loop diagrams also vanish: there is no
such assignment of helicities that makes all 1=Γ½…� factors
nonzero at the same time.

It is easy to see that this is true for all loops. Indeed, the total
helicity is as follows: the sum over all ends of the
propagators must be zero since there are no external legs
and the propagator connects helicities of opposite sign. The
same sum can be represented as a sum over triplets of
helicities entering the vertices. In order for a vacuum
diagram to be nonzero each triplet must have positive total
helicity, otherwise the coupling constant is zero. Therefore,
in this case we shall have a finite sum of positive numbers
that equals zero, which is impossible. Therefore, all vacuum
diagrams with more than one loop vanish identically.

VI. LOOPS WITH LEGS

We shall discuss the behavior of n-legged loop diagrams
by examining the tadpole, self-energy, vertex correction,
and the four-point amplitude at one loop. Then, we give a
general argument for multiloop amplitudes. An important
thing to remember is that vanishing of tree-level amplitudes
should eliminate all log divergences that would lead to cuts
otherwise. In the higher spin case it always makes sense to
check explicitly if an argument developed for low spin
theories works for higher spin ones as well. We also would
like to see if there are any power divergences and how
slightly different regularizations work.

A. Tadpole

The light-cone approach is not suitable for the compu-
tation of one-point functions, like tadpole. Nevertheless,
tadpoles for the external lines with nonzero helicity must
vanish by Lorentz invariance. A tadpole for the scalar field
also vanishes due to the absence of the relevant vertex in the
action. Lastly, if the external helicity is zero and the internal
one is some μ, then at the vertex we still have
Γð0þ μ − μÞ−1 ¼ 0. Therefore,

B. Self-energy

We recall that the UðNÞ-version of chiral theory is
studied for concreteness. All general conclusions below
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are also true for the other cases, which can be treated in a
similar way. For a given N we can first have a look at the
planar diagrams, which are simpler. For the self-energy
diagram, there are contributions from planar and nonplanar
diagrams:

+

Here, k1; k0; q are dual momenta5 and the external momen-
tum is related to k as p1 ¼ k1 − k0. The loop momentum
is p ¼ q − k0.
We start our analysis by considering the simplest self-

energy diagram. In order to avoid confusing and cumber-
some notation, we introduce sources hBA that can be
contracted with fields. As a result each amplitude acquires
factors Trðhh…Þwhich keeps track of the color indices. We
adopt the “world-sheet friendly” regularization [59,60,82],
which is used in a number of theories in light-cone gauge.

The one-loop self-energy reads

Γself ¼ NTrðh1h2Þ
X
ω

ðlpÞΛ2−2

βλ11 β
λ2
2 ΓðΛ2 − 1Þ

×
Z

d4q
ð2πÞ4

P̄2
q−k0;p1

δΛ2;2

ðq − k0Þ2ðq − k1Þ2

− Trðh1ÞTrðh2Þ
X
ω

ð2lpÞΛ2−2

βλ11 β
λ2
2 ΓðΛ2 − 1Þ

×
Z

d4q
ð2πÞ4

P̄Λ2

q−k0;p1

ðq − k0Þ2ðq − k1Þ2
; ð6:1Þ

where d4q ¼ dq−dβd2q⊥ and Λ2 ¼ λ1 þ λ2. Avery impor-
tant feature of all loop diagrams is that the very last sum
over helicities factors out, i.e., after we sum over all but one
helicity running in the loop the resulting expression does
not depend on the very last helicity to be summed over.
Therefore, each loop diagram has an overall factor
ν0 ¼

P
ω 1, which we have already faced in (5.3). Let

us evaluate the leading contribution, i.e., the first term,

Γleading
self ¼ NTrðh1h2Þ

X
ω

ðlpÞΛ2−2

βλ11 β
λ2
2 ΓðΛ2 − 1Þ

Z
d4q
ð2πÞ4

P̄2
q−k0;p1

δΛ2;2

ðq − k0Þ2ðq − k1Þ2
: ð6:2Þ

Here, we observe that the integrand is nonvanishing only when Λ2 ¼ 2. To regulate this integral, one can introduce a cutoff
exp½−ξq2⊥�, where q⊥ ≡ ðq; q̄Þ is the transverse part of q. Then, using Schwinger parametrization and integrating out q−

gives us δðβðT1 þ T2Þ − T1βk0 − T2βk1Þ. Next, we replace6

β ¼ T1βk0 þ T2βk1
T1 þ T2

; ð6:3Þ

and as a result the expression (6.2) reads (omitting the prefactor)

Γleading
self ∼

Z
P̄2
q−k0;p1

exp

�
−ðT þ ξÞ

�
qa −

T1ka0 þ T2ka1
T þ ξ

�
2

−
T1T2p21

T
−
ξðT1ka0 þ T2ka1Þ2

TðT þ ξÞ
�
; ð6:4Þ

where we integrate over q and over Ti that are the Schwinger’s parameters, T ¼ T1 þ T2. It is now safe to set p21 on shell and
ξ ¼ 0 in the last two terms in the exponential in the expression (6.4). Hence, we are left with a Gaussian integral

Γleading
self ∼

Z
d2qa

16π2

�
ðq̄ − k̄0Þβ1 − p̄1

�
T1βk0 þ T2βk1

T1 þ T2

− βk0

��
2

e−ðTþξÞðqa−T1k
a
0
þT2k

a
1

Tþξ Þ2 : ð6:5Þ

We can evaluate (6.5) noting that

Z
d2q⊥e−Aq

2⊥ ¼ π

A
;

Z
d2q⊥ðq̄Þne−Aq2⊥ ¼ 0 ðfor n ≥ 1Þ: ð6:6Þ

6Note that whenever we write βki , it means we consider the kþi component of the dual four-momentum.

5More detail about dual momenta can be found in [59,60,67,82]; see also Appendix D.
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As a result, we get

Γleading
self ¼

X
ω

ðlpÞΛ2−2NTrðh1h2ÞδΛ2;2

βλ1−11 βλ2−12 Γ½Λ2 − 1�

Z
1

0

dx
Z

∞

0

dT
16π2

ξ2½xk̄0 þ ð1 − xÞk̄1�2
ðT þ ξÞ3

⟶
ξ→0

ν0
ðlpÞΛ2−2NTrðh1h2ÞδΛ2;2

32π2βλ1−11 βλ2−12 Γ½Λ2 − 1�

Z
1

0

dx½xk̄0 þ ð1 − xÞk̄1�2

¼ ν0δΛ2;2
ðlpÞΛ2−2NTrðh1h2Þðk̄20 þ k̄0k̄1 þ k̄21Þ

96π2βλ1−11 βλ2−12 Γ½Λ2 − 1� ; ð6:7Þ

where we made a change of variables x ¼ T1=T. Here, the
x integral in (6.7) is perfectly finite and Γleading

self is remi-
niscent of the Πþþ amplitude in [59,60,83]. The important
feature of the computation above is that the loop diagrams
have the number of physical degrees of freedom ν0 as an
overall factor, which guarantees that the contribution above
vanishes and does not require a counterterm. We note that

the Lorentz invariance forbids helicity flips for an isolated
spinning particle. Therefore, if we were to find a non-
vanishing contribution to Γleading

self we would have to in-
troduce local counterterms to cancel it.
Let us also consider the subleading term for the self-

energy correction by repeating the procedure given above.
The subleading contribution before taking the T integral is

Γsub
self ¼ ν0

ð2lpÞΛ2ð−Þλ1Trðh1ÞTrðh2Þ
16π2Γ½Λ2 − 1�

Z
1

0

dx
Z

∞

0

dT
ξΛ2 ½xk̄0 þ ð1 − xÞk̄1�Λ2

ðT þ ξÞΛ2þ1
; ð6:8Þ

which can be obtained using the holomorphic integral (6.6). Equation (6.8) assumes thatΛ2 > 1. We now have a convergent
integral and the result is

Γsub
self ¼ ν0

ð−Þλ1ð2lpÞΛ2Trðh1ÞTrðh2ÞðΛ2 − 1Þ
16π2Γ½Λ2 þ 1�

Z
1

0

dx½xk̄0 þ ð1 − xÞk̄1�Λ2

¼ ν0
ð−Þλ1ð2lpÞΛ2Trðh1ÞTrðh2ÞðΛ2 − 1Þ

16π2Γ½Λ2 þ 2� ×
k̄Λ2þ1
0 − k̄Λ2þ1

1

k̄0 − k̄1
; ðΛ2 ≥ 0Þ: ð6:9Þ

Since Λ2 > 1 the potentially dangerous nonlocal contribution is zero. The kinematic part of Γsub
self is finite and, hence, Γsub

self
vanishes again due to the factorization of ν0, which takes place regardless of the value of Λ2. This implies that the self-
energy correction of chiral theory does not break Lorentz invariance.
Finally let us mention that, alternatively, one can use the original momentum pi and the loop momentum p together with

the cutoff exp½−ξp2⊥� for the loop computations. In the case of the self-energy the corresponding integral reads

Γsub
self ¼ ν0

ð2lpÞΛ2

βλ11 β
λ2
2 Γ½Λ2 − 1�

Z
d4p
ð2πÞ4

P̄Λ2

p1

p2ðpþ p1Þ2

¼ ν0
ð2lpÞΛ2ð−Þλ1Trðh1ÞTrðh2Þ

16π2Γ½Λ2 − 1�
Z

1

0

dx
Z

∞

0

dT
ξΛ2 ½xp̄1�Λ2

ðT þ ξÞΛ2þ1

¼ ν0
ð2lpÞΛ2ð−Þλ1Trðh1ÞTrðh2ÞðΛ2 − 1Þ

16π2Γ½Λ2 þ 1�
Z

1

0

dx½xp̄1�Λ2

¼ ν0
ð2lpÞΛ2ð−Þλ1Trðh1ÞTrðh2ÞðΛ2 − 1Þ

16π2Γ½Λ2 þ 2� p̄Λ2

1 ; ðΛ2 ≥ 0Þ: ð6:10Þ
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C. Vertex correction

The next case is to consider the vertex correction diagrams

The dual momenta in this case are q; ki with i ¼ 0, 1, 2. The loop momentum can be chosen to be p ¼ q − k0 and the
relation between the external momenta and dual regional momenta are pi ¼ ki − ki−1 with k3 ≡ k0. In other words, with
clockwise order pi is the difference between the outgoing dual momenta and the ingoing dual momenta as depicted in the
above figures. We keep the third leg off shell, i.e., p23 ≠ 0, and find the leading contribution to be

Γlead
ver ¼ ν0

Ωlead
3 ðlpP̄12ÞΛ3−3Q
3
i¼1 β

λi
i Γ½Λ3 − 2�

Z
d4q
ð2πÞ4

P̄q−k0;p1
ðP̄q−k1;p2

þ P̄12ÞP̄q−k2;p3

ðq − k0Þ2ðq − k1Þ2ðq − k2Þ2
: ð6:11Þ

The subleading terms come with a twist at one of the three vertices and they read

Γsub
ver ¼ −N verTrðh1ÞTrðh2h3Þ

Z
d4q
ð2πÞ4

P̄q−k0;p1
ðP̄q−k1;p2

þ P̄12ÞP̄q−k2;p3
ðP̄12 − 2P̄q−k0;p1

ÞΛ3−3

ðq − k0Þ2ðq − k1Þ2ðq − k2Þ2

−N verTrðh2ÞTrðh3h1Þ
Z

d4q
ð2πÞ4

P̄q−k0;p1
ðP̄q−k1;p2

þ P̄12ÞP̄q−k2;p3
ð−2P̄q−k1;p2

− P̄12ÞΛ3−3

ðq − k0Þ2ðq − k1Þ2ðq − k2Þ2

−N verTrðh3ÞTrðh1h2Þ
Z

d4q
ð2πÞ4

P̄q−k0;p1
ðP̄q−k1;p2

þ P̄12ÞP̄q−k2;p3
ðP̄12 − 2P̄q−k2;p3

ÞΛ3−3

ðq − k0Þ2ðq − k1Þ2ðq − k2Þ2

whereN ver ¼ ν0
ðlpÞΛ3−3Q

3

i¼1
β
λi
i Γ½Λ3−2�

. Next, let us show how to evaluate the integral for the leading contribution. Proceeding as in

Sec. VI B and Appendix D, we arrive at

Γlead
ver ¼ ν0

Ωlead
3 ðlpP̄12ÞΛ3−3

16π2
Q

3
i¼1 β

λi
i Γ½Λ3 − 2�

Z Q
3
i¼1 dTi

TðT þ ξÞ e
−
T1T3p

2
3

T

Y3
i¼1

�
Tiþ2K̄
T

− ξ
βið
P

3
i¼1 Tik̄i−1Þ

TðT þ ξÞ
�
; ð6:12Þ

where Ωlead
3 ¼ NTrðh1h2h3Þ and

K̄≡ ðk̄1 − k̄0Þβ2 − ðk̄2 − k̄1Þβ1 ¼ P̄12: ð6:13Þ

It is important to note that the integral in (6.11) is finite without the need for the cutoff exp½−ξq2⊥�. In (6.12), we identify
T4 ¼ T1 and T5 ¼ T2. Now, it is safe to take ξ → 0, and we obtain

Γlead
ver ¼ ν0

Ωlead
3 ðlpÞΛ3−3P̄Λ3

12

16π2ΓðΛ3 − 2Þ
Z

dT1dT2dT3Q
3
i¼1 β

λi
i

T1T2T3

T5
e−

T1T3p
2
3

T

¼ ν0
Ωlead

3 ðlpÞΛ3−3P̄Λ3

12

16π2ΓðΛ3 − 2ÞQ3
i¼1 β

λi
i

Z
xþy<1

dxdy
Z

∞

0

dTxyð1 − x − yÞe−Txð1−x−yÞp23

¼ ν0
Ωlead

3 ðlpÞΛ3−3P̄Λ3

12

96π2
Q

3
i¼1 β

λi
i ΓðΛ3 − 2Þp23

: ð6:14Þ

To obtain the above result, instead of using dual momenta, one can also start with the original momenta pi. In terms of these
variables the vertex correction reads
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Γlead
ver ¼

X
ω

Ωlead
3 ðlpÞΛ3−3P̄Λ3−3

12Q
3
i¼1 β

λi
i ΓðΛ3 − 2Þ

Z
d4p
ð2πÞ4

P̄p1ðP̄p2 þ P̄12ÞP̄p3

p2ðpþ p1Þ2ðpþ p1 þ p2Þ2
: ð6:15Þ

Omitting the prefactor and proceeding as before, we find the integral in (6.15) to be

π

TðT þ ξÞ
Y3
i¼1

�
Tiþ2P̄12

T
− ξ

βi½ðT2 þ T3Þp̄1 þ T3p̄2�
TðT þ ξÞ

�
⟶
ξ→0 πT1T2T3P̄3

12

T5
; ð6:16Þ

which is the same as (6.14). One can immediately recog-
nize that the final result is reminiscent of the Γþþþ
amplitude for QCD [59,60,83] in the large-N limit. It
contains the part of self-dual Yang-Mills theory dressed
with the chiral theory factor.7 The overall factor ν0 makes
the vertex correction vanish.
Although we do not compute the integral for the

subleading terms of the vertex correction, the following
arguments show that these terms are finite. Indeed, higher
power of q̄ entering the Gaussian integral of type (6.6) will
give zero and improve the UV behavior of the integral. The
only place where one can potentially get a divergence is the
T integral. The T integral will have the formZ

∞

0

dT
ξa

ðT þ ξÞb : ð6:17Þ

It will pick up poles of the form 1=ξb−a−1 whenever
b ≥ aþ 2. However, due to simple power counting and the

magic of the holomorphic integral (6.6), we shall find
convergent integrals. The ν0 factor will make all of the
subleading terms vanish due to the zeta function
regularization.

D. Four-point amplitude

Next, we consider the one-loop diagram with four
external legs in the large-N limit. The large-N limit
simplifies computations as we do not need to consider
contributions coming from nonplanar diagrams. Let us take
a look at the relevant one-loop diagrams and prove that they
are UV finite.

1. Box and trianglelike diagrams

We take first the vertex insertions into the four-point
function and choose (1234) color order as an example:

Similarly,

ΓΔð2341Þ ¼
ν0ðlpÞΛ4−4αΛ4−4

4

ΓðΛ4 − 3ÞQ4
i¼1 β

λi
i

P̄23P̄3
41

96π2s223
¼ −

ν0ðlpÞΛ4−4αΛ4−4
4

ΓðΛ4 − 3ÞQ4
i¼1 β

λi
i

P̄2
41P̄12P̄34

96π2s12s23
; ð6:18aÞ

ΓΔð3412Þ ¼
ν0ðlpÞΛ4−4αΛ4−4

4

ΓðΛ4 − 3ÞQ4
i¼1 β

λi
i

P̄34P̄3
12

96π2s234
¼ −

ν0ðlpÞΛ4−4αΛ4−4
4

ΓðΛ4 − 3ÞQ4
i¼1 β

λi
i

P̄2
12P̄23P̄41

96π2s12s23
; ð6:18bÞ

7It would be interesting to see if one can apply the hidden self-duality of chiral theory [68] to simplify the computations in this section.
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ΓΔð4123Þ ¼
ν0ðlpÞΛ4−4αΛ4−4

4

ΓðΛ4 − 3ÞQ4
i¼1 β

λi
i

P̄41P̄3
23

96π2s241
¼ −

ν0ðlpÞΛ4−4αΛ4−4
4

ΓðΛ4 − 3ÞQ4
i¼1 β

λi
i

P̄2
23P̄34P̄12

96π2s12s23
: ð6:18cÞ

As it was discussed in [59,60] for the QCD case, one can reduce the more complicated box integral to the trianglelike
integral. We would like to see if this can be done for the higher spin case. The box contribution reads

Γ□ ¼
X
ω

ν0ðlpÞΛ4−4αΛ4−4
4Q

4
i¼1 β

λi
i ΓðΛ4 − 3Þ

Z
d4p
ð2πÞ4

P̄p1ðP̄p2 þ P̄12ÞðP̄p3 þ P̄34ÞP̄p4

p2ðpþ p1Þ2ðpþ p1 þ p2Þ2ðp − p4Þ2
: ð6:19Þ

Since p is off shell, we can use the following identity:

P̄piPpi ¼ −
βiβ

2
ðpþ piÞ2 þ

βiðβi þ βÞp2
2

ð6:20Þ
to arrive at

P̄p1

ðpþ p1Þ2
¼ −

ββ1
2Pp1

þ β1ðβ1 þ βÞp2
2Pp1ðpþ p1Þ2

;
P̄p4

ðp − p4Þ2
¼ ββ4

2Pp4
−

β4ðβ − β4Þp2
2Pp4ðp − p4Þ2

: ð6:21Þ

We can reduce the box integral to a trianglelike integral by cancelling out one propagator in the denominator using (6.20).
Next, we multiply Γ□ by two for a moment, then

2Γ□ ¼ ν0ðlpÞΛ4−4αΛ4−4
4Q

4
i¼1 β

λi
i ΓðΛ4 − 3Þ

Z
d4p
ð2πÞ4

�ðP̄p2 þ P̄12ÞðP̄p3 þ P̄34Þ
p2ðpþ p1 þ p2Þ2

�
ββ4P̄p1

2Pp4ðpþ p1Þ2
−

ββ1P̄p4

2Pp1ðp − p4Þ2
�

þ ðP̄p2 þ P̄12ÞðP̄p3 þ P34Þ
ðpþ p1Þ2ðpþ p1 þ p2Þ2ðp − p4Þ2

�
β1ðβ þ β1ÞP̄p4

2Pp1
−
β4ðβ − β4ÞP̄p1

2Pp4

��
:

Using Bianchi-like identity β½iP̄jk� ¼ 0, we find

ββ4
2Pp4

¼ P̄41

s41
þ β24Pp1

2Pp4P41

; −
ββ1
2Pp1

¼ P̄41

s41
þ β21Pp4

2Pp1P41

: ð6:22Þ

Then, after some straightforward algebra, the box integral becomes

2Γ□ ¼ ν0N□

P̄41

s41

Z
d4p
ð2πÞ4

ðP̄p2 þ P̄12ÞðP̄p3 þ P̄34Þ
p2ðpþ p1 þ p2Þ2

�
P̄p1

ðpþ p1Þ2
þ P̄p4

ðp − p4Þ2
−
ðP̄p4 þ P̄p1 − P̄41Þp2
ðpþ p1Þ2ðp − p4Þ2

�
þ Γ□;

where N□ ¼ ðlpÞΛ4−4αΛ4−44Q
4

i¼1
β
λi
i ΓðΛ4−3Þ

. Hence,

Γ□ ¼ ν0N□

P̄41

s41

Z
d4p
ð2πÞ4

ðP̄p2 þ P̄12ÞðP̄p3 þ P̄34Þ
p2ðpþ p1 þ p2Þ2

�
P̄p1

ðpþ p1Þ2
þ P̄p4

ðp − p4Þ2
−
ðP̄p4 þ P̄p1 − P̄41Þp2
ðpþ p1Þ2ðp − p4Þ2

�

¼ ν0N□

�
P̄41½P̄2

12ðP̄23 þ P̄34Þ þ ðP̄12 þ P̄23ÞP̄2
34�

96π2s12s23
þ P̄41P̄3

23

96π2s241

�
: ð6:23Þ

The last term in (6.23) cancels against the triangle ΓΔð4123Þ diagram. Finally, we obtain

ð6:24Þ

which is similar to the QCD result for the Γþþþþ
4 amplitude [59], see also [67].
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2. The bubbles

As discussed in [59], the sum over bubbles, trianglelike and box diagrams should add up to zero in the case of an all-plus
four-point one-loop amplitude for QCD. We would like to see whether chiral theory has a similar property. First, let us look
at the bubble insertions into the internal propagator, which come in two channels, s and t, for UðNÞ factors:

Here, we divided the space of dual momenta ki into four regions. The external momenta pi can be read off by using two
adjacent regional dual momenta. For example, p1 ¼ k1 − k0, p2 ¼ k2 − k1, etc. In general, whenever we have a closed loop,
we can “put” the dual momentum q inside it and the loop momentum can be obtained as the difference between q and the
nearest dual regional momentum. In the above figure, p ¼ q − k0. Now, it is a matter of a direct calculation to show the
“internal” self-energy diagram with the four external legs labeled in clockwise order to be

Γin
○
ð1234Þ ¼

X
ω

ðlpÞΛ4−4αΛ4−4
4Q

4
i¼1 β

λi
i ΓðΛ4 − 3Þ

P̄12P̄34ðβ1 þ β2Þðβ3 þ β4Þðk̄20 þ k̄0k̄2 þ k̄22Þ
96π2s212

¼ −
X
ω

ðlpÞΛ4−4αΛ4−4
4Q

4
i¼1 β

λi
i ΓðΛ4 − 3Þ

P̄41P̄23ðβ1 þ β2Þðβ3 þ β4Þðk̄20 þ k̄0k̄2 þ k̄22Þ
96π2s12s23

: ð6:25Þ

Similarly,

Γin
○
ð2341Þ ¼

X
ω

ðlpÞΛ4−4αΛ4−4
4Q

4
i¼1 β

λi
i ΓðΛ4 − 3Þ

P̄23P̄41ðβ2 þ β3Þðβ4 þ β1Þðk̄21 þ k̄1k̄3 þ k̄23Þ
96π2s223

¼ −
X
ω

ðlpÞΛ4−4αΛ4−4
4Q

4
i¼1 β

λi
i ΓðΛ4 − 3Þ

P̄12P̄34ðβ2 þ β3Þðβ4 þ β1Þðk̄21 þ k̄1k̄3 þ k̄23Þ
96π2s12s23

: ð6:26Þ

Next, we move to the graphs where we have vacuum
bubbles on the external legs. In this case, we have in total
eight diagrams. Take the following diagram as an example:

Here, the loop momentum is p ¼ q − k0 and external
momenta remain to be the same as pi ¼ ki − ki−1. We
denote the result of the bubble insertion into the ith leg as
Γi
○
. It reads (remember that we have two different channels

for each diagram due to the color ordering)

Γ1
○
¼ −

X
ω

ðlpÞΛ4−4αΛ4−4
4Q

4
i¼1 β

λi
i ΓðΛ4 − 3Þ

P̄23P̄34β
2
1ðk̄20 þ k̄0k̄1 þ k̄21Þ
96π2s12s23

;

ð6:27aÞ

Γ2
○
¼ −

X
ω

ðlpÞΛ4−4αΛ4−4
4Q

4
i¼1 β

λi
i ΓðΛ4 − 3Þ

P̄34P̄41β
2
2ðk̄21 þ k̄1k̄2 þ k̄22Þ
96π2s12s23

;

ð6:27bÞ

Γ3
○
¼ −

X
ω

ðlpÞΛ4−4αΛ4−4
4Q

4
i¼1 β

λi
i ΓðΛ4 − 3Þ

P̄41P̄12β
2
3ðk̄22 þ k̄2k̄3 þ k̄23Þ
96π2s12s23

;

ð6:27cÞ

Γ4
○
¼ −

X
ω

ðlpÞΛ4−4αΛ4−4
4Q

4
i¼1 β

λi
i ΓðΛ4 − 3Þ

P̄12P̄23β
2
4ðk̄23 þ k̄3k̄0 þ k̄20Þ
96π2s12s23

:

ð6:27dÞ
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Equivalently, we can write them as

Γ1
○
¼ −ν0N□

P̄23P̄34ðβ1β3P̄41P̄12 þ β1ðβ1 þ β4ÞP̄12P̄34 þ β1ðβ1 þ β2ÞP̄23P̄41Þðk̄20 þ k̄0k̄1 þ k̄21Þ
96π2s12s23

;

Γ2
○
¼ −ν0N□

ðβ2β3P̄41P̄12 þ β2ðβ1 þ β2ÞP̄23P̄41Þðk̄21 þ k̄1k̄2 þ k̄22Þ
96π2s12s23

;

Γ3
○
¼ −ν0N□

P̄41P̄12β
2
3ðk̄22 þ k̄2k̄3 þ k̄23Þ
96π2s12s23

;

Γ4
○
¼ −ν0N□

ðβ3β4P̄41P̄12 þ β4ðβ1 þ β4ÞP̄12P̄34Þðk̄23 þ k̄3k̄0 þ k̄20Þ
96π2s12s23

:

Collecting the results and remembering that pi ¼ ki − ki−1, we obtain

Γbubbles ¼
X4
i¼1

Γi
○
þ 2Γin

○
¼ −ν0

ðlpÞΛ4−4αΛ4−4
4

96π2ΓðΛ4 − 3ÞQλi
i¼1 β

λi
i

P̄12P̄23P̄34P̄41

s12s23
: ð6:28Þ

Finally, we proved the higher spin analog of the QCD relation:

ð6:29Þ

Therefore, the four-point function at one loop does not have
any UV divergences since it can be reduced to UV
convergent integrals we have already analyzed. The com-
plete four-point amplitude vanishes due to the same ν0
factor.

E. Sun diagrams and multiloop amplitudes

For multiloop amplitudes in the large-N limit, one can
start with the sunlike diagrams that have some of the legs
off shell and then glue them together. The kinematic part of
the sunlike

diagrams can be simply written as (for the moment we omit
the overall βλii factors)

X
fωig

P̄λ1þω1−ωn
p1;p;−p−p1

Γðλ1 þ ω1 − ωnÞ
P̄λ2−ω1þω2
p2;pþp1;−p−p1−p2

Γðλ2 − ω1 þ ω2Þ

� � � P̄λn−ωn−1þωn
pn;p−pn;−p

Γðλn − ωn−1 þ ωnÞ
¼
X
ωn

αΛn−n
n Kn

ΓðΛn − ðn − 1ÞÞ ; ð6:30Þ

where i ¼ 1;…n and Kn is the kinematic part that contains
P̄pi; P̄ij. Putting the propagator and coupling constant
together, one gets the following general form for the
one-loop diagram with n-external legs, some of which
can be off shell,

Γn ¼ ν0
ðlpÞΛn−nαΛn−n

n

ΓðΛn − ðn − 1ÞÞQn
i¼1 β

λi
i

×
Z

d4p
ð2πÞ4

KnðP̄Þ
p2ðpþ p1Þ2…ðp − pnÞ2

; ð6:31Þ

with certain numeratorKnðP̄Þ. The factorization of the sum
over helicities ν0 is crucial to make the contribution vanish
even though we do not evaluate the integral explicitly. It
should not be hard to show that it is UV finite.
Consequently, all multiloop amplitudes should vanish
confirming that S ¼ 1.
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VII. CONCLUSIONS AND DISCUSSION

The results of the present paper strengthen those of [6]
and provide further details. Chiral theory reveals a remark-
able cancellation of UV divergences and should be an
example of a quantum consistent higher spin gravity, which
is the very first and the only higher spin model with
propagating massless higher spin fields at present where
quantum corrections can be computed.
The tree-level amplitudes can be shown to vanish on

shell, which is a result of highly nontrivial cancellations in
the total sum over Feynman diagrams. This is required by
the Weinberg low energy theorem. The chirality of
interactions restricts all spin sums on the internal lines
in such a way that they are always over a finite range
(assuming the external helicities are fixed). In generic
higher spin theories we would expect an infinite sum over
all spins already for tree-level diagrams. This does not
happen for chiral theory and infinite spin sums show up
only at the loop level.
The loop diagrams that we have analyzed turn out to

consist of two factors: the UV convergent integral and a
purely numerical factor ν0 ¼

P
λ 1. The UV convergence is

a very important property that again relies on the presence
of higher spin fields. This effect is reminiscent of N ¼ 4
Yang-Mills theory [84,85], in which the supersymmetry
forces one momentum to eventually factor out and makes
the integrals convergent. Higher spin symmetry amplifies
this effect. Chiral theory has infinitely many nonrenorma-
lizable interactions, which include the two-derivative grav-
iton self-coupling. Higher spin symmetry forces enough
momenta to factor out in every loop integral and makes all
loop integrals free of UV divergences. Overall factor ν0 is
to be expected in any theory with infinitely many fields and
some value needs to be assigned to the sum. It is natural to
set ν0 ¼ 0, which is achieved via the zeta-function regu-
larization. Such an assignment is consistent both with the
Weinberg theorem and with the large web of results on one-
loop determinants in holographic higher spin theories.
As a result, we see that S ¼ 1 for Minkowski chiral

theory, as expected. However, once the cosmological
constant is turned on the holographic S-matrix turns out
to be nontrivial [5]. Therefore, we consider Minkowski
chiral theory as a useful toy model to check the cancellation
of UV divergences thanks to higher spin symmetry. It is
exactly the effect that higher spin gravities have long been
expected to have.
The class of chiral higher spin gravities has been

extended to incorporate Yang-Mills gaugings. Even though
we do not see any immediate relation to string theory, it is
quite surprising that higher spin fields can be made charged
with respect to the spin-one field via the method that is very
similar to the Chan-Paton approach.
Higher spin symmetry seems to be powerful enough as to

make a graviton be part of a quantum consistent theory.
Nevertheless, it should be possible to combine higher spin

symmetry with supersymmetry and construct supersym-
metric chiral theories [86,87].8

Chiral theory is the only class at present with propagat-
ing massless higher spin fields and an action. Nevertheless,
there is a handful of other higher spin models with action
that are of great interest.9 There are topological theories in
three dimension: purely massless [101–104] and conformal
[105–107]. Another class is 4d conformal higher spin
gravity [108–110], which is an extension of conformal
gravity. There also has been some progress in two dimen-
sions [111]. Topological models are, of course, free of UV
divergences. There are encouraging results on quantum
checks for conformal higher spin gravity [112,113] that
indicate that the conformal higher spin symmetry also
makes S-matrix trivial in flat space. The 2dmodels of [111]
involve propagating matter fields with interactions medi-
ated via topological higher spin fields, thereby providing
interesting toy models for quantum checks. Lastly, it would
be very important to directly verify that AdS4 chiral theory
is free of UV divergences.

ACKNOWLEDGMENTS

We would like to thank Sudarshan Ananth, Nicolas
Boulanger, Andrea Compoleoni, Dario Francia, Gregory
Korchemsky, Kirill Krasnov, Ruslan Metsaev, Julian
Miczajka, Yasha Neiman, Jan Plefka, Dmitry
Ponomarev, Radu Roiban, Adam Schwimmer, Stefan
Theisen, Arkady Tseytlin, and Edward Witten for useful
discussions and comments. The work of E. S. was sup-
ported by the Russian Science Foundation Grant No. 18-
72-10123 in association with the Lebedev Physical
Institute. The work of T. T. is supported by the
International Max Planck Research School for
Mathematical and Physical Aspects of Gravitation,
Cosmology and Quantum Field Theory. The work of
M. T. was supported by the Quantum Gravity Unit of
the Okinawa Institute of Science and Technology Graduate
University (OIST). M. T. would like to thank the
Department of Mathematics, the University of Auckland
for their kind hospitality during the last stage of the project.

APPENDIX A: CRASH COURSE ON LIGHT
FRONT APPROACH

The main idea of the light cone approach is that any
classical or quantum field theory in flat space should
provide a realization of the Poincare algebra

8See also e.g., [88–90] for recent progress for interacting
supersymmetric higher spin theories on flat and AdS spaces.

9We do not discuss formal higher spin gravities, i.e., formally
consistent equations of motion, which are available for many
cases [91–98]. The general solution of this problem is given in
[98]. Other interesting proposals include [99,100].
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½PA; PB� ¼ 0; ðA1aÞ

½JAB; PC� ¼ PAηBC − PBηAC; ðA1bÞ

½JAB; JCD� ¼ JADηBC − JBDηAC − JACηBD þ JBCηAD;

ðA1cÞ

where generators of Lorentz transformations are JAB

and generators of translations are PA. We refer to
[3,35,36,52,64,114] for more details. In free field theory
the generators are known to be bilinear in the fields.
Interactions, whether classical or quantum, append some
of the generators with nonlinear corrections. The generators
that get deformed by the interactions are called dynamical;
the rest of the generators are called kinematical. An
important observation is that the number of dynamical
generators depends on how we quantize the fields: those
generators need to be deformed that do not preserve the
Cauchy surface. The usual choice is x0 for time and the
quantization surface is taken to be a spacial slice. The least
number of dynamical generators is achieved for the light-
like surface, e.g., xþ ¼ 0. Then, xþ is treated as time and
H ¼ P− is the Hamiltonian. The ten generators of the
Poincare algebra split as

kinematical∶ Pþ; Pa; Jaþ; Jþ−; Jab ∶7; ðA2Þ

dynamical∶ P−; Ja− ∶3: ðA3Þ

It is sufficient to construct the Poincare algebra at xþ ¼ 0
and then evolve all the generators according to
_G ¼ i½H;G�. Therefore, the equations to be solved are

½Ja−; Jc−� ¼ 0; ½Ja−; P−� ¼ 0: ðA4Þ

As a historical note, it is these equations from which the
critical dimension and the intercept of string theory where
first obtained [37]. It is convenient to work with partial
Fourier transforms

Φðx; xþÞ ¼ ð2πÞ−d−1
2

Z
eþiðx−pþþx·pÞΦðp; xþÞdd−1p; ðA5Þ

Φðp; xþÞ ¼ ð2πÞ−d−1
2

Z
e−iðx−pþþp·xÞΦðx; xþÞdd−1x: ðA6Þ

In four dimensions a massless spin-s particle leads to two
helicity (�s) states Φ�sðp; xþÞ. The classical Poisson
brackets are

½Φμðp; xþÞ;Φλðq; xþÞ� ¼ δμ;−λ
δ3ðpþ qÞ

2pþ : ðA7Þ

Here μ; λ;… are helicity labels, μ ¼ �s and s ¼ 0; 1; 2;….
The kinematical generators that will not be affected by
interactions are10

P̂þ ¼ β; P̂ ¼ p; ˆ̄P ¼ p̄; ðA8aÞ

Ĵzþ ¼ −β
∂
∂p̄ ; Ĵz̄þ ¼ −β

∂
∂p ;

Ĵ−þ ¼ −Nβ − 1 ¼ −
∂
∂β β; ðA8bÞ

Ĵzz̄ ¼ Np − Np̄ − λ; ðA8cÞ

where Np ¼ p∂p is the Euler operator. The dynamical
generators at the free level are

H2 ¼ −
pp̄
β

;
Ĵz−2 ¼ ∂

∂p̄
pp̄
β þ p ∂

∂β þ λ p
β ;

Ĵz̄−2 ¼ ∂
∂p

pp̄
β þ p̄ ∂

∂β − λ p̄
β :

ðA9Þ

The Poincare algebra is then realized by charges

Qξ ¼
Z

pþd3pΦ−μ
−pOξðp; ∂pÞΦμ

p; ðA10Þ

that act via commutators

δξΦμðp; xþÞ ¼ ½Φμðp; xþÞ; Qξ�: ðA11Þ

At the interaction level one assumes the following expan-
sion for the dynamical generators:

H ¼ H2 þ
X
n

Z
d3nqδ

�X
qi

�
hq1;…;qn
λ1…λn

Φλ1
q1…Φλn

qn ;

ðA12aÞ

Jz− ¼ Jz−2 þ
X
n

Z
d3nqδ

�X
qi

�

×

�
jq1;…;qn
λ1…λn

−
1

n
hq1;…;qn
λ1…λn

�X
k

∂
∂q̄k
��

Φλ1
q1…Φλn

qn ;

ðA12bÞ

Jz̄− ¼ Jz̄−2 þ
X
n

Z
d3nqδ

�X
qi

�

×

�
j̄q1;…;qn
λ1…λn

−
1

n
hq1;…;qn
λ1…λn

�X
k

∂
∂qk
��

Φλ1
q1…Φλn

qn ;

ðA12cÞ

10Note that β is used instead of pþ in order to simplify
notation. The spacial momenta are complexified to p and p̄. Also,
xþ ¼ 0 from now on.
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The Poincare algebra is maintained up to the cubic order
[1,2] provided that

hλ1;λ2;λ3 ¼ Cλ1;λ2;λ3
P̄λ1þλ2þλ3

βλ11 β
λ2
2 β

λ3
3

þ C̄−λ1;−λ2;−λ3
P−λ1−λ2−λ3

β−λ11 β−λ22 β−λ33

;

ðA13aÞ

jλ1;λ2;λ3 ¼ þ 2

3
Cþλ1;þλ2;þλ3

P̄þλ1þλ2þλ3−1

βþλ1
1 βþλ2

2 βþλ3
3

χλ1;λ2;λ3 ; ðA13bÞ

j̄λ1;λ2;λ3 ¼ −
2

3
C̄−λ1;−λ2;−λ3

P−λ1−λ2−λ3−1

β−λ11 β−λ22 β−λ33

χλ1;λ2;λ3 ; ðA13cÞ

where

χ ¼ β1ðλ2 − λ3Þ þ β2ðλ3 − λ1Þ þ β3ðλ1 − λ2Þ: ðA14Þ

Here Cλ1;λ2;λ3 and C̄−λ1;−λ2;−λ3 are a priori independent
coupling constants that, as usual, are not fixed by the cubic
analysis.
Chiral theory results from the nontrivial fact that the

following Hamiltonian makes the Poincare algebra valid to
all orders [3]:

H ¼
Z

Φ−λ
−pðpp̄ÞΦλ

p þ
Z ðlpÞλ1þλ2þλ3−1

Γðλ1 þ λ2 þ λ3Þ
P̄λ1þλ2þλ3

βλ11 β
λ2
2 β

λ3
3

×Φλ1
p1
Φλ2

p2
Φλ3

p3
δ3ðp1 þ p2 þ p3Þ: ðA15Þ

The essential part here is that the Poincare algebra at the
quartic order is violated by three types of terms [1,2]: CC,
C̄ C̄ and CC̄. The CC terms can be made zero by fine-
tuning the coupling constants to be the Γ function [1,2] and
a detailed analysis can be found in [3]. All the other terms
vanish for chiral theory where C̄ ¼ 0. In the action (2.2)
given in the main text, we give that the action corresponds
to the Hamiltonian above.

APPENDIX B: KINEMATIRCS

We collect below some identities that are used for the
calculations in the main text. Suppose we are interested in
some quantities in four dimensions, e.g., Hamiltonian or
off-shell amplitudes, that can depend on N external
momenta. The Poincare algebra implies that transverse
momenta should appear only in the following two combi-
nations:

Pkm ¼ pkβm − pmβk; P̄km ¼ p̄kβm − p̄mβk: ðB1Þ

Also, it can be shown that only N − 2 out of NðN − 1Þ=2
combinations Pij are independent and likewise for P̄. In
particular, for the three-point case there is just one
independent transverse momenta (and its conjugate),

Pa
12 ¼ … ¼ Pa

¼ 1

3
½ðβ1 − β2Þp3 þ ðβ2 − β3Þp1 þ ðβ3 − β1Þp2�: ðB2Þ

All Pij are antisymmetric under permutations:

σ123P ¼ P; σ12P ¼ σ23P ¼ σ13P ¼ −P; ðB3Þ

where the conservation of the total momenta has been used.
Also, for three points we have

−
X
i

pip̄i

βi
¼ PP̄

β1β2β3
¼ P · P

2β1β2β3
: ðB4Þ

We have a number of useful identities, such as the Bianchi-
like identities:

X
i

Pa
i ¼ 0; β½iPa

jk� ≡ 0; Pa
i½jP

a
kl� ≡ 0: ðB5Þ

Other kinematic identities include

X
j

PijP̄jk

βj
¼ −

1

2
βiβk

X
j

p2j
βj

; ðB6Þ

X
j

PijP̄jk

βj
¼ −βiβk

X
j

pjp̄j; ðB7Þ

PijP̄ij ¼ −
1

2
βiβjðpi þ pjÞ2 for p2i ; p

2
j ¼ 0 ðB8Þ

and one of the most important for dealing with one off-shell
leg is [sik ¼ ðpi þ pkÞ2]

P̄ikPik¼−
βiβk
2

sikþ
1

2
βiðβkþβiÞp2k; p2i ¼0; p2k≠0:

ðB9Þ

APPENDIX C: YANG-MILLS/CHAN-PATON
GAUGING

As is explained in Appendix A, see also [1–3], the main
equation to be solved within the light-cone approach reads

½H3ðP̄Þ; Ja−3 � ¼ 0: ðC1Þ

Assuming that the fields take values in some matrix algebra
with generators T that may depend on helicity λ

ΦλðpÞ≡Φλ
aðpÞTa;λ ≡ ðΦλ

pÞAB; ðC2Þ

we would like to see what are the restrictions on T from
(C1). The explicit form of the cubic Hamiltonian H3 is
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H3 ¼
X
λi

Z
Dpδ3

�X
i

pi

�
hλi3 ðpiÞTr½Φλ1

p1
Φλ2

p2
Φλ3

p3
�;

hλi3 ¼ Cλ1;λ2;λ3
P̄λ1þλ2þλ3

βλ11 β
λ2
2 β

λ3
3

; ðC3Þ

where the measure is Dp ¼Q3
i¼1 d

3pi. Similarly, the
dynamical boost generator J3

J3 ¼
X
λi

Z Y3
i¼1

d3piδ
3

�X
i

pi

��
jλi3 ðpiÞ −

hλi3 ðpiÞ
3

×

�X
k

∂
∂pk

��
Tr
Y3
i¼1

Φλi
pi ; ðC4Þ

where

jλi3 ¼ 2

3
Cλ1;λ2;λ3

P̄λ1þλ2þλ3−1

βλ11 β
λ2
2 β

λ3
3

χλ1;λ2;λ3 and

χ ¼ ðλ1 − λ2Þβ3 þ ðλ2 − λ3Þβ1 þ ðλ3 − λ1Þβ2: ðC5Þ
Then, the constraint (C1) gives

½H3; J3� ¼
X
λi;μj

Z
DpDqδ3

�X
j

qj

�

×

�
j
μj
3 ðqjÞ −

h
μj
3 ðqjÞ
3

�X
k

∂
∂qk
��

× δ3
�X

i

pi

�
hλi3 ðpiÞ

�Y3
i¼1

Φλi
pi ;
Y3
j¼1

Φμj
qj

�
: ðC6Þ

Since both h3 and j3 are cyclic invariant, the fields can be
put back to the same color order. Hence, the Poisson
bracket in (C6) can be written as

�Y3
i¼1

Φλi
pi ;
Y3
j¼1

Φμj
qj

�
¼
Y2
i;j¼1

Φλi
piΦ

μj
qj ½Φλ3

p3
;Φμ3

q3 �; ðC7Þ

where we choose to contract fields Φλ3
p3

and Φμ3
q3 in H3 and

J3. Now we are ready to analyze Eq. (C1) for the case of
various gauge groups.

1. UðNÞ gauging
We first look at the case where fields are uðNÞ valued,

ΦλðpÞ≡Φλ
aðpÞTa ≡ ðΦλ

pÞAB; ðC8Þ

so that the trace in (2.3) is over uðNÞ indices. The Poisson
bracket can be defined as

½ðΦλ
pÞAB; ðΦμ

qÞCD� ¼
δλ;−μδ3ðpþ qÞ

2qþ
× ½θλδCBδAD�; ðC9Þ

where θλ is some phase factor to be determined later.
Equation (C1) leads to

0 ¼
X
ω

Symð−ÞωθωTrðΦ1Φ2Φ3Φ4Þ

×

�ðλ1 þ ω − λ2Þβ1 − ðλ2 þ ω − λ1Þβ2
β1 þ β2

Cλ1;λ2;ωCλ3;λ4;−ωP̄λ1þλ2þω−1
12 P̄λ3þλ4−ω

34

�
; ðC10Þ

where Φi ≡ΦλiðpiÞ. Next, we let θω ¼ eixω be an arbitrary phase factor and determine the value of x so that the coupling
constant (2.8) is a solution of (C10). Note that the symmetrized sum in (C10) appears from the contraction between fields
[3] that preserve all possible color orderings. If we denote TrðΦiΦjΦkΦlÞEði; j; k; lÞ as ½i; j; k; l�, where E is the kinematic
part of (C10), then we have in total six partial color-ordered contributions (or partial contributions for short) appearing
in (C1). In terms of ½i; j; k; l� these contributions are

0 ¼ ½1; 2; 3; 4� þ ½1; 3; 4; 2� þ ½1; 4; 2; 3� þ ½1; 3; 2; 4� þ ½1; 2; 4; 3� þ ½1; 4; 3; 2�: ðC11Þ

In order to satisfy (C10) each of the terms in (C11) has to vanish separately since it is impossible for different partial
contributions to cancel each other. Let us take ½1; 2; 3; 4� as an example. It is a combination of the following permutations
that preserve the color-ordering of TrðΦ1Φ2Φ3Φ4Þ:

½1; 2; 3; 4� ¼ f1; 2; 3; 4g þ f2; 3; 4; 1g þ f3; 4; 1; 2g þ f4; 1; 2; 3g; ðC12Þ

where the curly brackets fi; j; k; lg notation is for permutations where i, j, k, l are indices of left-over external sources. First
of all, when we consider the permutation f1; 2; 3; 4g → f3; 4; 1; 2g with ω → −ω, the two terms combine as
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X
ω

eixω
P̄λ1þλ2þω−1
12

Γðλ1 þ λ2 þ ωÞ
P̄λ3þλ4−ω−1
34

Γðλ3 þ λ4 − ωÞTrðΦ1Φ2Φ3Φ4Þ

×

�
eixωðλ1 − λ2ÞP̄34 þ e−ixωðλ3 − λ4ÞP̄12 þ ω

�
eixω

β1 − β2
β1 þ β2

P̄34 þ e−ixω
β3 − β4
β1 þ β2

P̄12

��
: ðC13Þ

Secondly, for the combination of f2; 3; 4; 1g !ω→−ωf4; 1; 2; 3g, we get

X
ω

eixω
P̄λ2þλ3þω−1
23

Γðλ2 þ λ3 þ ωÞ
P̄λ4þλ1−ω−1
41

Γðλ4 þ λ1 − ωÞTrðΦ2Φ3Φ4Φ1Þ

×
�
eixωðλ2 − λ3ÞP̄41 þ e−ixωðλ4 − λ1ÞP̄23 þ ω

�
eixω

β2 − β3
β2 þ β3

P̄41 þ e−ixω
β4 − β1
β2 þ β3

P̄23

��
: ðC14Þ

Now, as we noted, ½1; 2; 3; 4� should vanish by itself. This is only possible if x ¼ π or θω ¼ ð−Þω. In this case, the
expressions given above get simplified and one finally obtains

½1; 2; 3; 4� ¼ TrðΦ1Φ2Φ3Φ4ÞðP̄12 − P̄23 þ P̄34 − P̄41Þ ×
ðP̄12 þ P̄34ÞΛ4−3

ΓðΛ4 − 1Þ
× ½λ1ðP̄23 þ P̄34Þ − λ2ðP̄34 þ P̄41Þ þ λ3ðP̄41 þ P̄12Þ − λ4ðP̄12 þ P̄23Þ� ¼ 0: ðC15Þ

In order to obtain the above result we used momentum
conservation and the identity P̄12 þ P̄34 ¼ P̄23 þ P̄41.
Without having a common factor ðP̄12 þ P̄34ÞΛ4−4 ¼
ðP̄23 þ P̄41ÞΛ4−4, one cannot make another choice for θω
to have (2.8) as the solution of ½1; 2; 3; 4� ¼ 0. For other
partial contributions in (C11), one can also see that they
vanish if θω ¼ ð−Þω. Hence, θω ¼ ð−Þω is the unique
solution of (C1) for UðNÞ chiral HiSGRA that has (2.8)
as the coupling constants.

2. SOðNÞ and USpðNÞ gauging
In the case where fields have SOðNÞ=USpðNÞ color

indices, the trace is understood as

TrðΦλ1
p1…Φλn

pnÞ¼Φ1
AB1

Φ2
B1B2

…Φn
BnA

; Φi≡Φλi
pi : ðC16Þ

For the SOðNÞ case the invariant tensor is δAB and the most
general Poisson brackets read

½ðΦλ
pÞAB; ðΦμ

qÞCD� ¼
δλ;−μδ3ðpþ qÞ

2qþ
× ½δACδBD þ θλδADδBC�:

ðC17Þ

Here, θλ is a phase factor that enters the Poisson brackets.
The constraint (C1) reads

0 ¼
X
ω

Symð−Þω½θλ3θλ4TrðΦ1Φ2Φ4Φ3Þ þ θωTrðΦ1Φ2Φ3Φ4Þ�

×

�ðλ1 þ ω − λ2Þβ1 − ðλ2 þ ω − λ1Þβ2
β1 þ β2

Cλ1;λ2;ωCλ3;λ4;−ωP̄λ1þλ2þω−1
12 P̄λ3þλ4−ω

34

�
: ðC18Þ

Now, we shall repeat the same procedure as for theUðNÞ case in order to determine the values of the phase factor θλi ¼ eixλi.
However, unlike the UðNÞ case, the SOðNÞ case contains an extra trace that comes from the Möbius twist in the Poisson
brackets (C17). As a consequence, there will be mixing between different ½i; j; k; l� partial contributions. First, let us look at
f1; 2; 3; 4g !ω→−ωf3; 4; 1; 2g in ½1; 2; 3; 4�

X
ω

eiπωP̄λ1þλ2þω−1
12 P̄λ3þλ4−ω−1

34

Γðλ1 þ λ2 þ ωÞΓðλ3 þ λ4 − ωÞ

×

�
Trð1234Þ

�
eixωðλ1 − λ2ÞP̄34 þ e−ixωðλ3 − λ4ÞP̄12 þ ω

eixωðβ1 − β2ÞP̄34 þ e−ixωðβ3 − β4ÞP̄12

β1 þ β2

�

þ Trð1243Þeixðλ3þλ4Þ
�
ðλ1 − λ2ÞP̄34 þ ðλ3 − λ4ÞP̄12 þ ω

ðβ1 − β2ÞP̄34 þ ðβ3 − β4ÞP̄12

β1 þ β2

��
; ðC19Þ
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where we denote TrðijklÞ≡ TrðΦiΦjΦlΦkÞ for simplicity. Similarly, the permutation f2; 3; 4; 1g⟶ω→−ωf4; 1; 2; 3g in
½1; 2; 3; 4� reads

X
ω

eiπωP̄λ2þλ3þω−1
23 P̄λ4þλ1−ω−1

41

Γðλ2 þ λ3 þ ωÞΓðλ4 þ λ1 − ωÞ

×

�
Trð2341Þ

�
eixωðλ2 − λ3ÞP̄41 þ e−ixωðλ4 − λ1ÞP̄12 þ ω

eixωðβ2 − β3ÞP̄41 þ e−ixωðβ4 − β1ÞP̄23

β2 þ β3

�

þ Trð2314Þeixðλ1þλ4Þ
�
ðλ2 − λ3ÞP̄41 þ ðλ4 − λ1ÞP̄23 þ ω

ðβ2 − β3ÞP̄41 þ ðβ4 − β1ÞP̄23

β2 þ β3

��
: ðC20Þ

One can notice that there are additional contributions [compared to the UðNÞ case] in Eq. (C20) that combine two
traces inside ½1; 2; 3; 4�: namely Tr(2314) and an “exotic” one Tr(1243). Hence, ½1; 2; 3; 4� cannot vanish by itself and we
need to include some contributions from other ½i; j; k; l� in order to satisfy (C18). Consider the permutation
f1; 3; 2; 4g !ω→−ωf2; 4; 1; 3g in ½1; 3; 2; 4�

X
ω

eiπωP̄λ1þλ3þω−1
13 P̄λ2þλ4−ω−1

24

Γðλ1 þ λ3 þ ωÞΓðλ2 þ λ4 − ωÞ

×

�
Trð1324Þ

�
eixωðλ1 − λ3ÞP̄24 þ e−ixωðλ2 − λ4ÞP̄13 þ ω

eixωðβ1 − β3ÞP̄24 þ e−ixωðβ2 − β4ÞP̄13

β1 þ β3

�

þ Trð3124Þeixðλ1þλ3Þ
�
ðλ1 − λ3ÞP̄24 þ ðλ2 − λ4ÞP̄13 þ ω

ðβ1 − β3ÞP̄24 þ ðβ2 − β4ÞP̄13

β1 þ β3

��
: ðC21Þ

Then, we have in total six different color-ordered
terms. Considering the combination of permutations
f1; 2; 3; 4g !ω→−ωf3; 4; 1; 2g and f2;3;4;1g !ω→−ωf4;1;2;3g
one can see, that we need to set x ¼ π or θλi ¼ ð−Þλi to
get (C15) for Tr(1234) color ordering. Next, the contribu-
tions coming from Trð1243Þð−Þωθλ4θλ3 and Tr(1324) also
cancel each other with this choice of the phase factors in
(C17). A similar argument applies for Trð2314Þð−Þωθλ4θλ1
and Trð3124Þð−Þωθλ3θλ1 . Hence, even though ½i; j; k; l�
cannot vanish by themselves in the case of SOðNÞ gauging,
the total contribution does vanish by combining all the
partial contributions together. This indicates that θω ¼
ð−Þω is the right choice for the phase factors in the Poisson
bracket (C17).
Finally, in the case of USpðNÞ gauging, the Poisson

bracket reads

½ðΦλ
pÞAB;ðΦμ

qÞCD�¼
δλ;−μδ3ðpþqÞ

2qþ
×½CACCBDþθλCADCBC�;

ðC22Þ

where CAB is the antisymmetric invariant tensor:

CAB ¼ −CBA; CABCCB ¼ δCA: ðC23Þ
The C matrices are used to raise and lower indices as
VA ¼ CABVB, VBCBA ¼ VA. Finally, the trace for the
USpðNÞ case can be understood as

TrðΦΦ…Þ ¼ ΦA
BΦB

C…: ðC24Þ

The commutator (C1) reads

0 ¼
X
ω

Symð−Þωþ1½θλ3θλ4TrðΦ1Φ2Φ4Φ3Þ

þ θωTrðΦ1Φ2Φ3Φ4Þ�

×

�ðλ1 þ ω − λ2Þβ1 − ðλ2 þ ω − λ1Þβ2
β1 þ β2

× Cλ1;λ2;ωCλ3;λ4;−ωP̄λ1þλ2þω−1
12 P̄λ3þλ4−ω

34

�
: ðC25Þ

Repeating the same procedure as in the SOðNÞ case with
the requirement that (2.8) is the solution of (C25), one
obtains θω ¼ ð−Þωþ1.
To summarize, the SOðNÞ=USpðNÞ-valued fields have

the following properties under interchanging SOðNÞ=
USpðNÞ indices:

SOðNÞ∶ ðΦλ
pÞAB ¼ ð−ÞλðΦλ

pÞBA; ðC26Þ
USpðNÞ∶ ðΦλ

pÞAB ¼ ð−Þλþ1ðΦλ
pÞBA: ðC27Þ

Here, fields with odd-spin in SOðNÞ=USpðNÞ cases have
odd/even parity, while fields with even spin have even/odd
parity. Fields with odd spins always take values in the
adjoint representation.
It is important to stress that, the constraint (C1) with the

coupling constants (2.8) can only be satisfied with the
above choices of θω for UðNÞ- and SOðNÞ=USpðNÞ-
gauged chiral HiSGRA. Interestingly enough the allowed
gauge groups as well as the allowed representations
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coincide with the allowed Chan-Paton symmetry groups
and the representations in open string theory [58].

APPENDIX D: WORLDSHEET-FRIENDLY
REGULARIZATION

Systematic calculations in the light-cone gauge have
been performed in [59,60] for the pure QCD case and we
borrowmost of this technology for the chiral theory case. In
practice we face integrals of the following type:

Z
d4q
ð2πÞ4 Fðβ; q

aÞ 1Q
iðq − kiÞ2

; ðD1Þ

where the polynomial prefactor F depends on external
momenta (not shown here), and the loop momentum q.

Importantly, the q− component does not enter the vertex
and therefore is not present in the integral (D1). Also, in
practice F is such that the integration over angular variables
in the qa plane vanishes. The regularization proposed in
[59,60] is to introduce the Gaussian cutoff in the transverse
part of the loop momentum q, i.e., q⊥ ≡ qa:

I ¼
Z

d4q
ð2πÞ4 Fðβ; q⊥Þ

1Q
iðq − kiÞ2

e−ξq
2⊥ : ðD2Þ

The integral can be performed by using the Schwinger trick
with parameters Ti as the first step and then doing the
Gaussian integral over q⊥. Integration over q− gives a delta
function:

I ¼ 2π2

2ð2πÞ4
Z

dβF

�
β;
X
i

Tiki=ðT þ ξÞ
�
δ

�X
Tiβ −

X
Tiβ

þ
i

�

× exp

�
2
X

Tiðβ − βþi Þk−i −
X

Tik2i⊥ þ 1P
Ti þ ξ

�X
Tiki⊥

�
2
�
: ðD3Þ

If there are no IR divergences, we can safely solve for β. It is also convenient to change variables as Ti ¼ Txi,
P

xi ¼ 1,
which gives Jacobian Tn−1. This way we get

I ¼
Z

Tn−1dT
Q

dxi
T2ð4πÞ2 F

�
β ¼

X
xiβ

þ
i ; q⊥ ¼ T

T þ ξ

X
xiki⊥

�
δ

�X
xi − 1

�
π

T þ ξ
ðD4Þ

× exp

�
−T
X
i≤j

xixjðki − kjÞ2 −
Tξ

T þ ξ

�X
xiki⊥

�
2
�
: ðD5Þ

In a lucky case when the integral is not divergent at all, we simply find

I ¼ 1

ð4πÞ2
Z

Tn−3dT
Y

dxiF

�
β ¼

X
xiβi; qa ¼

X
xikai

�
δ

�X
xi − 1

�
exp

�
−
1

2
T
X
i;j

xixjðki − kjÞ2
�
: ðD6Þ

Sometimes we use dual momenta. For example, consider
the self-energy diagram:

We choose the direction of the dual loop momentum ki to be
clockwise. A dual momentum is related to the original
momentumas follows.Take the first external leg and represent
the corresponding four-momentum p1 as p1 ¼ k1 − k0, then
follow the same pattern for the other external momenta by
defining pi ¼ ki − ki−1 at each of the vertices. The loop

momentum p is defined as the difference between q with its
nearest dual regional momentum ki, where q is the dual
momentum that is bounded by a loop. In our example,
p ¼ q − k0. We often use these rules of labeling dual
momenta for computations of the quantum correction at
one loop in Sec. VI.

APPENDIX E: SIX-POINT AMPLITUDE

The combinatorics of Feynman graphs grows rapidly
with the number of external legs. Nevertheless, the six-
point tree-level amplitude can be dealt with directly, which
provides an additional check of our recursive formula in the
main text. We find the following topologies where the
number in front of each topology accounts for how many
diagrams are there.
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These four topologies give

Â1ð123456Þ ¼
P̄12ðP̄13 þ P̄23ÞðP̄14 þ P̄24 þ P̄34ÞP̄56

ΓðΛ6 − 3ÞQ6
i¼1 β

λi
i s12s123s56

αΛ6−4
6 ;

Â2ð123456Þ ¼
P̄12P̄34ðP̄61 þ P̄62 þ P̄51 þ P̄52ÞP̄56

ΓðΛ6 − 3ÞQ6
i¼1 β

λi
i s12s34s56

αΛ6−4
6 ;

Â3ð123456Þ ¼
P̄12ðP̄13 þ P̄23ÞðP̄61 þ P̄62 þ P̄63ÞP̄45

ΓðΛ6 − 3ÞQ6
i¼1 β

λi
i s12s123s45

αΛ6−4
6 ;

Â4ð456123Þ ¼
P̄23ðP̄13 þ P̄12ÞðP̄45 þ P̄46ÞP̄56

ΓðΛ6 − 3ÞQ6
i¼1 β

λi
i s23s456s56

αΛ6−4
6 :

Let us omit αΛ6−4
6 =ΓðΛ6 − 3ÞQ6

i¼1 β
λi
i for a moment and focus on the prefactors. A short computation shows that

A1ð123456Þ þ A4ð456123Þ ¼
β1β

2
2β3P̄56ðP̄14 þ P̄24 þ P̄34Þ

4s56P12P23

¼ β1β
2
2β3P̄56ðP̄45 þ P̄46Þ
4s56P12P23

and similarly for other permutations. Together with the contribution from diagrams of the second topology

Â2ð123456Þ ¼
β1β2β3β4ðP̄61 þ P̄62 þ P̄51 þ P̄52ÞP̄56

4P12P34s56
¼ β1…β4ðP̄13 þ P̄14 þ P̄23 þ P̄24ÞP̄56

4P12P34s56
;

Â2ð234561Þ ¼
β2β3β4β5ðP̄12 þ P̄13 þ P̄62 þ P̄63ÞP̄61

4P23P45s61
¼ β2…β5ðP̄24 þ P̄25 þ P̄34 þ P̄35ÞP̄61

4P23P45s61
:

Grouping terms proportional to P̄56=s56, one gets

β1…β4
P̄56

4s56

�
β2ðP̄45 þ P̄46Þ
β4P12P23

þ β3ðP̄51 þ P̄61Þ
β1P23P34

þ P̄61 þ P̄51 þ P̄62 þ P̄52

P12P34

�
;

¼ β1…β4
P̄56

4s56

β2β3
P12P23P34

�
−
ðβ5 þ β6Þp26

2β6
þ P̄56P56

β5β6

�
¼ −

β1β
2
2β

2
3β4P̄56

8P12P23P34

:

Similarly, for terms proportional to P̄61=s61, we get

β2…β5
P̄61

4s61

�
β3ðP̄51 þ P̄56Þ
β5P23P34

þ β4ðP̄62 þ P̄12Þ
β2P34P45

þ P̄12 þ P̄13 þ P̄62 þ P̄63

P23P45

�
;

¼ β2…β5
P̄61

4s61

β3β4
P23P34P45

�
−
ðβ6 þ β1Þp26

2β6
þ P̄61P61

β6β1

�
¼ −

β2β
2
3β

2
4β5P̄61

8P23P34P45

:

The remaining terms combine into

−
β1…β5
8P12P45

�
β4ðP̄61 þ P̄62Þ

P34

þ β2ðP̄46 þ P̄56Þ
P23

�
¼ β1…β5

8P12P45

β2β4
P23P34

�
β6β3p26
2β6

þ β3P̄61P12

β1β2
þ β3P̄56P45

β4β5

�

Summing all of the above partial results together, we get a concise expression for the six-point amplitude:

Að123456Þ ¼ αΛ6−4
6

16ΓðΛ6 − 3ÞQ6
i¼1 β

λi−1
i

β2β3β4p26
β6P12P23P34P45

: ðE1Þ
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