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We discuss the theoretical attempts at explaining the glory effect and describe a simple setup that

permits visualization of the glory ray.

L. INTRODUCTION

When traveling by air on a sunny day, it may happen that
you can see, out the window, the shadow of the airplane on
the clouds below. This shadow may be surrounded by a
halo of spectral colors: a phenomenon known as the “glory
effect.”

Many descriptions of this optical phenomenon can be
found. As far as we know, one of the earliest was written in
the 16th century by Benvenuto Cellini in his autobiogra-
phy': from the top of a hill with the sun behind him, he
noticed that the shadow of his head on the wet grass was
crowned with a bright halo.

Two centuries later, Thomas De Quincey® spoke about a
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German hill, the *“Brocken” from the top of which, when
the sun is behind him and near the horizon, the observer
can see his magnified silhouette on the clouds, provided
that there is some water vapor in the air. In the 19th cen-
tury, Gaston Tissandier, a well-known balloonist, noticed
several times that the shadow of his balloon on the clouds
below was surrounded by a shiny halo.”

The conditions under which these colored halos are gen-
erally seen has led to giving them the name of *pilot’s bow”
or “Brocken bow" and also the name of ““glory effect” be-
cause of the extraordinary brightness surrounding the
shadow.

After a brief discussion of the phenomenon (Sec. II) we
present the earliest attempts at scientifically explaining the
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glory (Sec. III); these descriptions used geometrical optics,
as it was thought that water drops could reflect the light
intensively. However, these explanations were deficient in
many respects and physicists were led to use wave theory
instead. This approach will be covered in Sec. VI. The re-
sults of a simulation of the glory by a method first proposed
by H. C. Bryant and N. Jarmie® will then be reviewed (Sec.
V). In Sec. IV, we present the simple setup we used to take a
photograph of the light backscattered by a water droplet
and we show a picture on which the glory ray may be
identified.

I1. SHORT DESCRIPTION OF THE GLORY

At the end of last century, C. T. R. Wilson built the first
cloud chamber hoping that he would be able to create in the
laboratory the necessary natural conditions for the obser-
vation of the glory. He gave up in order to experiment with
tracks of charged particles in a water-saturated atmosphere
and eventually developed the famous “cloud chamber,”
which played such an important role as a detector of
charged particles in nuclear and particle physics. The pres-
ence of water drops whenever the glory effect was observed
and the occurrence of the colors of the spectrum around the
shadow of objects led to believe that this phenomenon was
similar to the rainbow. But a critical detailed description of
the classical rainbow and of the glory allows a clear distinc-
tion between these two phenomena. The ring of the first
rainbow makes invariably an angle of 42° with the direction
of the shadow received by the observer.® In the case of the
glory the angular diameter is inversely proportional to the
diameter of the water drops responsible for the phenom-
enon; besides the observer must make an angle of precisely
180° with the direction of the rays of light impinging on the
drops if he is to observe the effect.

Figure 1 is a good illustration of the first rainbow. A
water droplet of about 2 mm in diameter is hung on a hypo-
dermic needle (of about 0.5 mm in diameter). A narrow
beam from a He-Ne laser reaches the drop at half height.
The plane of the picture is perpendicular to the needle; one
can see the incident beam (which is thicker), the rays com-
ing out of the droplet after the first rainbow making an
angle of 138° (i.e., 180°—42°) with respect to the direction of
the incident beam. This corresponds to the angle of 42° as
seen by the observer.

With this method it is not possible to observe the rays of
the second rainbow, nor the glory rays because the photons

Fig. 1. Rainbow.
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that impress the film are scattered by the particles of the
surrounding air. Compared to the other beams the back-
scattered light has too weak an intensity so that we cannot
record it on the film.

III. GEOMETRICAL OPTICS

Let us consider the path of an incident light ray inside a
spherical water droplet with a refractive index », coming in
with an incident angle &, varying from O to 90°. Passing
from air into the sphere the ray will be refracted and will
form an angle @, with the normal, which is obtained from
Snell’s law (see Fig. 2):

sinf, = n siné,,

where we write for simplicity that n,;, = 1. Each ray inside
the sphere forms an isosceles triangle with two radii of the
sphere; consequently it will get out of the sphere, backscat-
tered, at any point in the succession of the reflections, with
an angle 8, equal to the incidence angle.

We can easily formulate the relation between &, and 6,
after a certain number of internal reflections. If p is the
number of internal reflections + 1, and ¢ the number of
complete circles made by the ray, we get the following
formula:

6, =6,p+ (2t +2—pm/2. (1)

With this formula and Snell’s law we conclude that water
droplets can produce a backscattered ray only after four
internal reflections (the refractive index of water is 1.33).
As one of the first characteristics of the Brocken spectrum
is that it is particularly bright, we see that geometrical op-
tics cannot give a satisfactory explanation to the glory
phenomenon.

A deeper understanding of the physics involved is
necessary.

IV. WAVE THEORY

H. C. van de Hulst® was the first to suggest a new hy-
pothesis: the glory is the result of surface waves provoked
by grazing incident rays that enter the drop and “get out”
after one internal reflection by hanging on themselves at
the surface. The path along the surface will be rather short
(an arc of 15°, see Fig. 2). But the assumption of van de
Hulst was not justified in a quantitative manner.

The scattering theory of a plane wave by a transparent
sphere was given by Nussenzveig.” He based his theory on

v
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Fig. 2. Path of a light ray in a water droplet.
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the formal analogy—at a given energy—between the equa-
tion for light propagation
2

Vit = =2 e,
lolle)

which for a monochromatic wave of angular frequency w,
with @ (r,7) = @(r)e ~ ' becomes

Ve r) + (0*/A)p (r) = 0, (2)
and the eigenvalues equation for the Hamiltonian of a free
particle of mass m,

— (A*/2m)V?¥ (r) = EW¥(r)
or

V¥ (r) + (2mE /A )W (r) = 0. (3)

We are only interested in the optical properties of the scat-
tering sphere: the only change to bring to Eq. (2) when light
spreads into the sphere of radius @ concerns the light veloc-
ity ¢, which becomes ¢’ = ¢/n if n is the refractive index of

the sphere.
Equation (2) becomes, for r<a,
Vi (r) + (n*w?/c*)p (1) = 0. (4)

To extend the analogy with the motion of a particle of mass
m the coefficient of the second term in Eq. (3) must be
changed in the domain r<a, i.e., the particle has to be sub-
jected to a constant potential ¥,, so that Eq. (3) becomes
VA (r) + [2m(E — Vo)/#2]¥ (r) = 0. (5)
The set of Eqgs. (2)-(4) and (3)—{5) formally correspond to
each other if

2mE /% = w*/c?

and if
2m(E — V,)/% 2 = 0¥/,
ie., if
n=1—Vy/E. (6)

A potential well (¥, < 0) corresponds to a sphere with a
refractive index > 1. We can see that the phase velocity of
the light ¢’ = ¢/n in the sphere is smaller than the light
velocity in vacuum.

Also the velocity of a particle of mass m,

(2E)l/2
v=[(—) ,
m

in vacuum becomes

o (2B 2N
m

in the sphere (if ¥, <0). Therefore a diminuation of the
light phase velocity is associated with an increase of the
velocity of the particle of mass m.

Nussenzveig’s theory is based on this analogy. Studying
light scattering by a transparent sphere is equivalent to
studying the scattering of a particle of mass m by a poten-
tial well that extends to the same sphere. The techniques of
the scattering theory can thus be used here.

In the case of a square potential well the scattering am-
plitude may easily be written with the help of a partial wave
expansion. We get for an incident beam of wave number k,

k)= — 5 1+ 41 - S,(k)]P,(cos), (7
=0
where P, (cos@ | is the Legendre polynomial of order /, and
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where S)(k ) is determined by the continuity conditions at
r = a for the wave function and for its first derivative.

Nussenzveig applies to this expansion a modified form of
the Watson transformation introduced to solve the prob-
lem of light scattering by an opaque sphere.* With this
transformation one obtains the scattering amplitude by cal-
culating the contributions of the singularities of the .S func-
tion in the complex plane of angular momentum rather
than from the series (7).

We thus have to calculate

£18.6)= éﬁ“ —SB)IP, 1alcosd e
or

i = i [
r60)=2 (-1 [ t-suan

M= —

—iwa A dA
cosmA

XP; 1plcosf e ™ ™A dA, (8)

where S = ka, and where S (1,8) and P, (cos6 ) are the ana-
lytical continuation in the complex plane of S)(k) and
P;(cosd ), and where the contour C is shown in Fig. 3.

The integration contour C may be deformed so that the
integral (8) is determined by the contributions of the singu-
larities (the poles) of S (4,8 ) in the complex plane A. Numer-
ous works have been devoted to this problem.®

For the case we are interested in, Nussenzveig showed
that these poles belong to two different classes, respective-
ly, along the curves ¥, and y, of Fig. 3. At the limit 85 1, the
poles situated on ¥, (corresponding to surface effects) are
separated from each other by an interval of the order of
B'"*» 1, and their series converges rapidly since formula (8)
showsthat the residue obtained fromapoleind = 4 ' + id "
18 proportional to e ~ ™",

The poles of class y, situated near the real axis and associat-
ed to the interior of the potential give contributions whose
series is only slowly converging (the imaginary part of pole
A remains about constant), and the direct application of the
modified Watson transformation is faced with this difficul-
ty. One can get around it by introducing an other expansion
used by Debye. The construction of this new expansion
relies on geometrical optics: the path of a ray is treated in
terms of surface interactions between two unbounded me-
dia. Transmission and reflection coefficients for every
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Fig. 3. Poles of §{4,8 ) in the A plane {along the curves ¥, and y,), and the
integration contour,
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spherical wave of order / are a priori introduced in the wave
function, and their expression is determined thanks to the
continuity conditions on the surface of the same wave func-
tion and of its first derivative. These conditions being the
same that were used to determine S, (k ) in formula (7), both
forms are identifiable; and S, (k ) can be deduced with re-
spect to the transmission and reflection coefficients. The
Debye expansion is thus obtained, and its interpretation is
easy; a term of order j is associated to the path of a ray that
has been reflected (j — 1) times into the sphere, after it has
entered and before it comes out. The Watson transforma-
tion may then be applied to each term of the Debye expan-
sion, their only singularities being poles of class y;.

With this procedure one obtains the behavior at high
frequency of the scattering amplitude in every direction,
and in particular a quantitative analysis of the glory.

The results essentially confirm the predictions of van de
Hulst: the contributions associated to the “Regge poles™
can be interpreted in terms of surface waves, which domi-
nate if we study the backward scattering (for a sphere of
radius @ with an incident beam of light of wave number k
with 8 = ka of the order of 130, the ratio of the *‘geometri-
cal” contribution to the “‘surface waves” contribution is
0.07: when S is increasing, the relative importance of the
surface waves is decreasing). However, for a complete de-
scription of the glory it is necessary 10 take into account
terms of order greater than 2 in the Debye expansion: al-
though their contribution is important, rays having been
once reflected into the sphere are not enough to explain all
the characteristics of the glory, and in particular the peri-
odicity of the backward intensity when 3 varies.

Mathematically the increase of the backward intensity

comes from the asymptotic form of the Legendre polyno-
mials when € goes to 7. The matter is thus a phenomenon of
geometrical nature, analogous to “Poisson’s bright spot.”"?

This may intuitively be explained as follows: the expo-
nential decrease of the surface waves amplitude is due to
the fact that at every point on its way on a main circle of the
sphere a constant proportion of the energy escapes tangen-
tially; light rays are thus sent in all directions of a plane
@ = constant, if we adopt a spherical coordinates system
where z is the direction of the incident beam, @ is the incli-
nation angle, and @ the azimuthal angle.

Looking schematically at the light as surface waves
along main circles, an incident ray situated in the plane
@ = @ scatters into rays of direction (6,§) where & takes all
possible values.

Inversely an observer who is in a direction (8 '¢’) will
receive two rays originating from the decomposition of
only the two incident rays situated into the plane ¢ = ¢’
and touching the drop at the points r = @,6 = 7/2, ¢ = @',
andg = ¢’ + 7. Butif @' = O(this direction being the com-
mon intersection of all the planes ¢ = const) the beam leav-
ing the drop will not come from the decomposition of two
rays only, but it will come from all rays knocking tangen-
tially the drop whatever may be the angle @ of the contact
point. It is thus logical that the ratio between backward
intensity and the intensity in any direction be proportional
to the length of the impact circle, i.e., 277a. This fact is seen
by the factor that appears in the backward-scattering am-
plitude, 3 being the only dimensionless factor proportional
to a. This factor is obtained by Nussenzveig’s theory.

The above representation explains also why the intensity
backscattered by greater drops is no longer dominated by

A

7

Fig. 4. Setup used to photograph a backscattered ray.
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-* laser
a : screen (thickness : 0.95 mm)
b : hole (diameter : 0.04 mm )

c i drop

1 : incident beam (diameter = 0.6 mm
before the screen)

7 . transmission at the first internal
reflection

1+ first rainbow

4 : Glory ray

5 ; imaae of the Glory ray
f : imane of the dron
T film
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Fig. 5. Geometrical contribution of order 0.

surface waves but by geometrical contributions. In this
case the path on the surface (i.e., an arc of 15°) is too long
and the exponential decay cuts off the surface effects.

Several facts mentioned above may be experimentally
tested. As will be described below.

We first checked by a simulation that the diffraction fig-
ure obtained, when it is assumed that the light source is
composed of many circumferences (representing the
boundaries of a droplet), consists of rings with predicted
intensities proportional to J§(u) where u = 6. We then
build a setup that allows to see the glory rays backwards
and that shows that these rays leave the droplet
tangentially.

V.SIMULATION OF THE GLORY

The theories described above imply in the hypothesis of
surface waves that the backscattered light beam leaves the
drop tangentially: it thus originates from the boundaries of
this drop. This situation may be experimentally simulated,
by replacing the drops by the ensemble of the emergence
points of the surface waves. To do this one “draws™ trans-
parent rings on an opaque screen that is lighted from the
back by a laser beam.

These rings behave like a cross section of the spherical
surface of the drops. This type of simulation has been de-
scribed previously.* We observe in the direction of the inci-
dent beam, a diffraction pattern illustrating the addition of
the contributions of all drops to the coronae of the glory
figure, i.e., a figure made of, respectively, bright and dark
concentric rings.

The angular distribution of the intensity of the rings ob-
served on a film follows a law in J }(kae) as for the real
phenomenon where J, is the Bessel function of order 0 and
€ the angle where the rings are observed.

VI. EXPERIMENTAL OBSERVATIONS

It is possible by means of a simple setup to single out the
light backscattered by the water droplets, 1.¢., the rays that
participate to the glory pattern when the drop is no longer
isolated for experimental convenience, but integrated in a

Y

Fig. 6. Geometrical contribution of order 1.
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Fig. 7. Photograph of the backscattered ray.

cloud where all the contributions are added.

The setup used is shown on Fig. 4.

A droplet of pure water hanging on a thin hypodermic
needle receives on its boundary the beam of a He—Ne laser
(we used a 0.5-mW Spectra Physics laser). The monochro-
matic light passes through a hole perforated in a screen
placed between the drop and the light source to receive the
picture of the back of the drop.

This screen is thus the “observer,” and a small mirror on
it sends the rays back to a film in a camera [we used a
Canon FT, with a Macro lens FD 50-mm f/3.5].

Let us remark that this setup, as shown on Fig. 5, does
not allow the observation of the geometrical contributions
of order 0 and 1 (see Figs. 5 and 6) since the beam impinges
on the drop’s boundary.

We obtain a picture of the back of the droplet (see Fig. 7);
its shape stands out against a halo coming from several
parasitic reflections.

On the left of this shape a very bright spot corresponds to
the diffusion in all direction of the incident beam on the
boundary of the drop.

Part of this beam goes into the drop, is once reflected and
goes out at a point situated behind the plane of the picture,
and is thus invisible in our observations. From this exit
point surface waves are emitted in all directions.

Although this setup does not allow one to decide which
are the parts due to the “geometrical” and to the “surface”
contributions in the backscattered light, it nevertheless al-
lows one to conclude that a glory pattern is formed from
the light rays backscattered by each of the water drops.
Furthermore, the illumination of a band on the right
boundary of the drop may be interpreted as the backwards
emergence of surface waves, in the direction where the con-
tribution of these suiface waves is the more intense.

VII. CONCLUSIONS

The interest in light phenomena such as the glory or the
rainbow widely extends the field of optics: the wave—parti-
cle duality, whose role in the rigorous analysis of the glory
has been illustrated above, allows the transposing of a few
characteristics of the light phenomenon—particularly the
ideas of surface wave, or of surface interaction—to the
study of particle scattering. Surface wave is useful for the
description of the behavior of high-energy particles hitting
a nucleus.

For example, experiences of a—*""Ca scattering'' show a
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strong increase of backscattered intensity, and the shape of
the differential cross section at backward angles is similar
to the one of the glory.

The attempts at explaining this backward cross section
in terms of resonances lead to failure. On the other hand, a
semiclassical procedure'? showed that a good description
of the phenomenon can be given by using a potential the-
ory, and that the internal wave (“‘reflected” wave) is respon-
sible for the backscattered intensity.

The analytic expression for the differential cross section
is in this case analogous to the expression for the glory: the
scattering amplitude is proportional to a Bessel function of
order 0. It is thus reasonable to think that the mechanisms
governing heavy-ion scattering, on one hand, and the glo-
ry, on the other, are of the same nature.

We feel that whenever possible, as, for example, in a
course on optics, it is useful to point out areas of physics
where the same technics may be applied for the “‘explana-
tion” of seemingly unrelated experimental phenomena.
The case of the glory and of heavy-ion scattering may be
such an example.

"“There is one thing I must not leave out—perhaps the greatest that ever
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