
When GitHub meets CRAN: An Analysis of
Inter-Repository Package Dependency Problems

Alexandre Decan, Tom Mens, Maëlick Claes and Philippe Grosjean
COMPLEXYS Research Institute

University of Mons, Belgium
Email: { first . last } @ umons.ac.be

Abstract—When developing software packages in a software
ecosystem, an important and well-known challenge is how
to deal with dependencies to other packages. In presence of
multiple package repositories, dependency management tends
to become even more problematic. For the R ecosystem of
statistical computing, dependency management is currently
insufficient to deal with multiple package versions and inter-
repository package dependencies. We explore how the use of
GitHub influences the R ecosystem, both for the distribution
of R packages and for inter-repository package dependency
management. We also discuss how these problems could be
addressed.

Keywords-software repository mining; software ecosystem;
package dependency management; software evolution; software
distribution; GitHub; CRAN

I. INTRODUCTION

There are many popular languages, tools and environ-
ments for statistical computing. On the commercial side,
among the most popular ones are SAS, SPSS, Statistica and
Stata. On the open source side, the R language and its ac-
companying software environment for statistical computing
(www.r-project.org) is a strong competitor, regardless of how
popularity is measured [1].

R forms a package-based software ecosystem. Its package
management system provides an easy way to install third-
party code and datasets alongside tests, documentation and
examples [2]. The main R distribution installs a few base
and recommended packages.

Thousands of additional packages are developed and
distributed through different repositories. CRAN, the Com-
prehensive R Archive Network (see cran.r-project.org), con-
stitutes the official R repository offering both source and
precompiled stable packages compatible with the latest ver-
sion of the R environment. Getting one’s package accepted
on CRAN can, however, be a painful process, due to the
strict quality policy imposed by CRAN. In addition, the
large number of available non-archived packages (> 7,400
in November 2015) is becoming a bottleneck [2] and leads
to package dependency problems: “the number of packages
on CRAN and other repositories has increased beyond what
might have been foreseen, and is revealing some limitations
of the current design. One such problem is the general lack
of dependency versioning in the infrastructure.” [3]

R packages can also be distributed on other official
repositories such as BioConductor (bioconductor.org) and
several smaller repositories such as Omegahat. There are
also commercial R packages being sold by companies
such as Revolution Analytics. Finally, many open source
R packages are being developed on public version control
repositories such as R-Forge (dedicated to R packages) and
GitHub (general purpose).

Given the increasing popularity of GitHub as a platform
for distributed software development (> 10 million reposi-
tories since December 2013, of which several thousands of
actively maintained R packages) this paper sets out to ex-
plore how GitHub is used for developing and distributing R
packages. Leek’s blog [4] summarises some of the concerns:
“one of the best things about the R ecosystem is being able
to rely on other packages so that you don’t have to write
everything from scratch. But there is a hard balance to strike
with keeping the dependency list small.”

To study how GitHub is influencing the R ecosystem, in
particular with respect to package dependencies, we focus
on the following two research questions:
RQ1: To which extent do R developers distribute their

packages on GitHub?
Driven by its increasing popularity, we analyze the devel-
opment and the distribution of R packages on GitHub. We
observe that more and more new packages are hosted on
GitHub. While CRAN already distributes many of them, we
bring supporting evidence that GitHub is increasingly used
as a distribution platform for R packages.
RQ2: To which extent do R packages suffer from inter-

repository dependency problems?
While the metadata of each R package specifies its de-
pendencies to other packages, this is currently insufficient
to deal with multiple package versions and inter-repository
package dependencies. We confirm our observations through
e-mail interviews with several R package maintainers that
are actively involved on GitHub.

In particular, we illustrate that many R packages hosted
on GitHub are subject to inter-repository dependency prob-
lems prohibiting their automatic installation. Based on our
observations, we provide actionable guidelines for the R
development community to deal with the aforementioned

problems. In particular, to address inter-repository package
dependency management, R package users and developers
would benefit from a package installation manager that relies
on a central listing of available packages, and a package
dependency manager that provides built-in support for inter-
repository dependency version constraint satisfaction.

The remainder of this paper is organized as follows.
Section II presents related work. Section III explains the data
extraction process. Section IV provides an overview of the
R package ecosystem on GitHub and CRAN, and addresses
the first research question. Section V deals with the second
research question. Section VI discusses the threats to validity
of our research, Section VII presents future work, and
Section VIII concludes.

II. RELATED WORK

In previous work [5], we explored the ecosystem of R
packages, and found that such packages are developed and
distributed through a variety of platforms, including CRAN,
BioConductor, GitHub, R-Forge and many others. For the
distribution of R packages, CRAN is the official source,
while for their development GitHub has become the most
popular choice. This is why CRAN and GitHub are the focus
of the current paper.

In [6], we studied the maintainability of CRAN packages
in terms of errors discovered by the R CMD check tool,
and how this relates to package dependencies and package
updates. Based on these insights we created a web-based
dashboard for helping CRAN package maintainers to deal
with such issues [7]. However, we did not consider depen-
dencies to external package sources such as GitHub.

Other researchers have studied the evolution of R pack-
ages, though mainly restricted to the official CRAN dis-
tribution. Ooms [3] discussed the problems with depen-
dency management of R packages, and proposed ways to
overcome these problems. Germán et al. [8] studied the
evolution of CRAN by comparing the characteristics, growth,
dependencies and community structure of core packages and
user-contributed packages. They also analyzed the user and
developer communities by studying mailing list traffic.

While not being specifically related to R packages,
GitHub has become an even more popular subject of re-
search. Without aiming to be complete, we point to some
relevant references here. Dabbish et al. [9] focused on the
social and community aspects of GitHub. Blincoe et al.
[10] used user-specified cross-references between projects
to identify ecosystems in GitHub. Vasilescu et al. [11]
compared the involvement on GitHub with the activity on
Stack Overflow. Vasilescu et al. [12] studied a large sample
of GitHub projects developed in Java, Python and Ruby.
They compared direct code modifications (commits) with
indirect ones (pull requests) and related this to success or
failure of continuous integration with TRAVIS-CI. Thung et
al. [13] used the PageRank algorithm to identify influential

developers and projects on a subnetwork of GitHub. Yu et
al. [14] studied patterns of communities found in Github’s
social network.

Software package dependency analysis has been the sub-
ject of study of many researchers. Santana et al. [15] visu-
ally explored socio-technical relationships between software
projects of an ecosystem. Gonzalez-Barahona et al. [16]
studied the evolution of the size of Debian packages and
the importance of the programming languages used by the
applications contained in these packages. Germán et al. [17]
described how to model and visualize dependencies between
software components needed to build and run applications.
Bavota et al. [18] carried out an empirical study of the
evolution of inter-project dependencies in a subset of the
Apache ecosystem, consisting of 147 projects. Abate et
al. [19], [20] also studied problems related to package
dependency management and package installation in the
context of the Linux Debian package distribution.

Many of the solutions proposed above are likely to be ap-
plicable to R packages as well, but do not take into account
the presence of multiple co-existing package distributions.

III. DATA EXTRACTION

Every R package has a DESCRIPTION file presenting its
metadata. Fig. 1 shows an example of such a file. Among
others, this file lists the packages it depends upon. For our
analysis, we consider as dependencies the packages that are
listed in the Depends and Imports fields only, as these are
the ones that are required to install and load a package.

Package: SciViews
Type: Package
Title: SciViews GUI API - Main package
Imports: ellipse
Depends: R (>= 2.6.0),

stats, grDevices, graphics, MASS
Enhances: base
Version: 0.9-5
Date: 2013-03-01
Author: Philippe Grosjean
License: GPL-2

Figure 1. Part of the DESCRIPTION file of the R SciViews package.

In order to answer our research questions, we extracted
historical metadata from R packages hosted on CRAN and
GitHub:

CRAN – The metadata of R packages on CRAN was
retrieved using extractoR, a publicly available R package
(github.com/ecos-umons/extractoR) that we already devel-
oped and used in earlier work [6]. It downloads the CRAN
package sources, extracts their contents and stores the DE-
SCRIPTION file metadata into data.frame objects. Using
this tool we collected, since September 2013, the metadata of
7,871 packages with their associated versions and dependen-
cies. This represents 49,393 distinct DESCRIPTION files.

We explored in detail the state of CRAN on 1st June 2015,
which consists of 6,706 unarchived CRAN packages (whose
history totalizes 44,459 distinct DESCRIPTION files).

GitHub – We collected from GitHub all repositories
related to R that had a Push event that occurred between
1st January 2015 and 1st June 2015. We excluded all
forks. This resulted in a huge list of candidate repositories
that could contain R packages, R scripts, datasets, etc. To
identify which ones contain R packages, we looked for
the presence of a DESCRIPTION file in the repository. We
restrict the repositories to the ones for which we found such
a DESCRIPTION file at the root of the repository, because
this is where R tools that aim to install R packages from
GitHub (such as devtools::install github) expect a package
to be located. We are fully aware that, by doing so, we
ignored a number of relevant R packages hosted on GitHub.
Importantly, we filtered out the repositories belonging to
the GitHub accounts cran and rpkg, as these two accounts
were used to mirror (part of) the contents of CRAN. This
resulted in 4,512 distinct R packages on GitHub, totaling
50,368 distinct DESCRIPTION files on GitHub (considering
all versions of each such file).

In addition to this historical package metadata, we also
identified R package maintainers that were active on GitHub.
Through email we interviewed five of them (three male and
two female to avoid gender bias) that were not affiliated in
any way to the authors of this article, with respect to our
research questions. To confirm our observations, anonymized
and sanitised excerpts of these email messages have been
inserted (with permission) at various places in this paper
(marked with [21]).

In order to facilitate replicating our study, a GitHub
repository (github.com/ecos-umons/SANER2016) has been
created. It contains all the above datasets, Python notebooks,
as well as a technical report containing the email interviews
with R package maintainers.

IV. RQ1: TO WHICH EXTENT DO R DEVELOPERS
DISTRIBUTE THEIR PACKAGES ON GitHub?

The R environment exists since 1993, and has continued
to grow in popularity ever since. A similar thing can be said
for the much more recent GitHub platform for distributed
software development. Since its introduction in April 2008 it
has become one of the most popular development platforms.
It hosts over 10 million repositories since December 2013.

Because of CRAN’s longevity, its size and its historical
role of being the official distribution platform for R pack-
ages, developers often choose to distribute their packages
on CRAN. As reported by Karl Broman in his insightful
R package tutorial [22], “The main advantage to getting
your package on CRAN is that it will be easier for users to
install (with install.packages). Your package will also be
tested daily on multiple systems.”

Some aspects of CRAN’s package policy, however, turn
out to be quite restrictive in practice. For example, CRAN
imposes cross-platform compatibility, it does not allow pack-
ages to have dependencies outside of CRAN, it imposes
packages to stay up-to-date with CRAN’s most current
environment and with the latest version of R. This refrains,
or even prohibits, certain package developers of getting their
packages on CRAN:

• “It can be a painful process, so you want to get your
package in order before you submit.” [22]

• “Even with our current policy of aiming for back-
compatibility we get a lot of complaints that we are
asking too much.” [23]

• “The non-transparent nature of the CRAN submission
/ rejection process is particularly at issue.” [24]

Moreover, the argument of getting a significantly in-
creased visibility when distributing one’s package on CRAN
is questionable [22]: “It used to be that putting your package
on CRAN also gave it some exposure, but with >6000
packages, that’s no longer quite true. To get the word out
about your package, I’d recommend twitter, writing a blog,
or writing a paper [...].” As such, there is no longer a strict
need to rely on CRAN as the official platform for distributing
R packages.

Distributing software through GitHub is commonplace.
For example, numerous Javascript and CSS packages are,
sometimes exclusively, distributed on GitHub and can be
installed with dedicated tools like NPM and Bower. One of
the big advantages of distributing a package on GitHub is
that it allows developers to make use of, and to focus on, a
single platform for both package development and package
distribution. Moreover, GitHub integrates other useful ser-
vices, e.g., bug tracking, feature requests, task management,
wikis, etc.

GitHub is also becoming an important and integral part of
the R package ecosystem. Even maintainers of established
CRAN packages are use GitHub as a development platform:
“I do have some [packages] on CRAN that are not on
GitHub but that’s because I did not get to it yet. I plan
to have all of my CRAN packages in GitHub.” [21]

Due to GitHub’s primary purpose, it is mainly being used
for developing R packages, facilitated by dedicated tools.
In addition to this, Hadley Wickham’s devtools package
makes it easy to install R packages from GitHub and other
forges, through various functions to download and install R
packages. For example, the function install github allows
R packages to be installed directly from GitHub. By default,
the latest package version will be installed, but optional
parameters can be used to install a specific version. Another
useful tool is Dirk EddelBuettel’s drat package, which can
be used to create one’s own repository of R packages stored
in GitHub. Using these tools, R packages could also use
GitHub as a distribution platform.

To analyze the extent to which GitHub is used as a pack-
age distribution platform, we intend to show that GitHub is
becoming more and more important, and that despite the fact
GitHub packages distributed on CRAN are generally older
than other GitHub packages, there are numerous packages
including instructions to install them from GitHub. In order
to achieve this goal we study the following subquestions:

• RQ1a: How important has GitHub become for R
packages? We provide evidence that the number of
new R packages on GitHub is growing faster than the
number of new R packages on CRAN.

• RQ1b: How old are GitHub R packages distributed
on CRAN? We provide evidence that GitHub packages
that are not distributed on CRAN are younger than those
distributed on CRAN and form a distinct population. We
also show that the age of a package cannot be used as a
major discriminent in a model to predict the distribution
of a package.

• RQ1c: Which GitHub R packages are distributed on
GitHub? We show that many GitHub packages contain
instructions to install them from GitHub and that thus
many of them are expected to be distributed on GitHub.

RQ1a: How important has GitHub become for R packages?

According to githut.info, in the last quarter of 2014, R was
the 12th most represented language on GitHub (in terms of
number of active repositories). This is a major increase w.r.t.
the last quarter of 2013, when R was only ranked 22nd.

5796 3602910

CRAN
GitHub

Figure 2. Number of R packages by source

Fig. 2 shows the number of GitHub and CRAN packages
on June 1, 2015. At this date, CRAN still hosts more
packages than GitHub. There are 910 packages belonging
to both package repositories. This represents 14.0% of all
CRAN packages that are also available on GitHub, and
20.2% of all GitHub packages that are also distributed on
CRAN. This large overlap can be explained by the fact that
both repositories still serve different purposes for a part
of the R packages. One can expect that those R packages
are developed on GitHub, while their stable releases are
published on CRAN. This is for example the case for

Amelia, ggplot2, dplyr, ... Our interviews with R package
maintainers that were active on both GitHub and CRAN
confirmed this way of working.

Jan
2012

Jan
2013

Jan
2014

Jan
2015

Jul Jul Jul
0

100

200

300

400

500

pa

ck
ag

es

Introduction of
package namespace

CRAN
GitHub

Figure 3. Number of new R packages, by month

Fig. 3 shows the number of newly created R packages, by
month, on each platform. For CRAN, we see a more or less
stable trend for the monthly number of new packages, with
an exception of a big peak in the second half of 2012, due to
the introduction of package namespaces in R. In contrast, for
GitHub we see an increasing trend in the monthly number
of new packages. Even more, since July 2014 the number
of new R packages on GitHub appears to be surpassing
those on CRAN. Since early 2015, the number of newly
created packages is even more than three times higher on
GitHub than on CRAN.

Summary. GitHub already hosts many R packages, and
there is an important acceleration of the number of new
packages appearing on GitHub each month.

RQ1b: How old are GitHub R packages distributed on
CRAN?

It is difficult to identify if a GitHub package is still in its
development stage or if it is ready to be distributed.

We expect GitHub to be used as a development platform
and CRAN as a distribution platform, so many packages will
only end up in CRAN after some time, if they are considered
to be sufficiently stable for being distributed and pass all
necessary checks. This is, we expect that GitHub packages
that are distributed on CRAN are older than GitHub packages
that are not distributed on CRAN.

We define the age of a GitHub packages as the time
between its very first version and the latest known commit.
We compared the age of GitHub packages to see if this
criterion can be used to distinguish packages that are already
distributed on CRAN from those which are not.

Fig. 4 shows the distribution of the age of all 4,512
GitHub R packages, as well as the distribution of those 3,602

0

500

1000

1500

2000

ag
e

(in
 d

ay
s)

also on CRAN not on CRAN both

Figure 4. Violin plot (using a kernel density estimate) of the distribution
of the age of GitHub packages.

R packages not found on CRAN, and the distribution of the
902 R packages also available on CRAN.

We statistically compared the age of the sample of GitHub
packages that are distributed on CRAN with the age of
the sample of those that are not. Since the samples were
not normally distributed, we carried out a one-sided non-
parametric Mann-Whitney-U test.

It is used to test the null hypothesis that the distribution of
both populations are equal, or alternatively, whether observa-
tions in one population tend to be larger than observations
in the other. We choose as alternative hypothesis that the
population of GitHub packages distributed on CRAN is
older than the population of GitHub packages that are not
distributed on CRAN. The motivation behind this choice is
quite logical: we expect GitHub to be used as a development
platform and CRAN as a distribution platform, so many
packages will only end up in CRAN after some time, if they
are considered to be sufficiently stable for being distributed
and pass all necessary checks.

As expected, the null hypothesis was rejected with sig-
nificance level α = 0.01. More specifically, we observed
that the majority of the packages (>75%) that are not
distributed on CRAN are younger than the median of
GitHub packages that are distributed on CRAN. While the
median age of GitHub packages distributed on CRAN is 448
days old, only 42.5% out of the 1,107 GitHub packages that
are older than 448 days are actually distributed on CRAN.
This is, the age of a package cannot be used as a major
discriminant in a model to predict its distribution on CRAN.

Summary. GitHub packages distributed on CRAN are
older than GitHub packages not distributed on CRAN,
and constitute a distinct population. However, the age
of a GitHub package cannot fully explain its distribu-
tion status.

RQ1c: Which GitHub R packages are distributed on
GitHub?

We would like to study how many R packages are
expected to be distributed and installed from GitHub. It is,
however, difficult to identify if a GitHub package is still in
its development stage or if it is ready for distribution. As far
as we know, there is no sound and complete characterisation
of when an R package is ready to be distributed on GitHub.

As an approximation, we looked for specific installation
instructions from GitHub within all of the README files
at the root of their GitHub repositories. We analyzed these
README files using a regular expression corresponding to
the use of the function install github. Our results could
include false positives (e.g., “this package cannot be installed
using install github(...)”). However, a manual verification
of our results for many packages did not reveal such false
positives.

We are also aware that our approach may be inaccurate,
since R packages being distributed on GitHub may not nec-
essarily have a README file that mentions install github.
Therefore, we can only compute a lower bound of the
proportion of R packages that are distributed on GitHub.
We obtained that 40.9% of all R packages on GitHub
have a README file that contains instructions to install
the package from GitHub. These packages correspond to
44.9% of the GitHub packages that are also on CRAN, and
to 39.9% of the GitHub packages that are not on CRAN.

Summary. Many GitHub packages are intended to be
distributed on GitHub as they contain instructions to
install them from GitHub.

Discussion

The success of GitHub as a development platform for soft-
ware packages seems obvious. It is more difficult, however,
to quantify the use of GitHub as a distribution platform.
Many package developers are already resorting to GitHub
to distribute their software or libraries using tools like NPM
or Bower. In addition to these tools, many packages can be
downloaded directly from GitHub without having to rely on
a package manager.

For R packages in particular, however, there is no com-
monly accepted package manager for GitHub. There are
neither automatic processes nor absolute assertions than can
be used to identify which of the R packages on GitHub are
intended to be distributed.

Nevertheless, the interviews with R package maintainers
confirmed that they actively use GitHub for distributing
packages, for a variety of reasons. For example, some
R package maintainers decide to host their packages on
GitHub rather than CRAN, because their packages depend on
external packages that are not accepted by CRAN. This is the
case for the ANTsR package (stnava.github.io/ANTsR/) that

depends on cmake, as well as some packages that depend
on commercial packages not available in CRAN.

From a quantitative point of view, we found many R
packages that are distributed on GitHub, providing specific
installation instructions. We also found that packages that
are only available on GitHub are younger than the GitHub
packages that are also distributed on CRAN.

Conclusion. R package developers are using GitHub
as a distribution platform for R packages.

V. RQ2: TO WHICH EXTENT DO R PACKAGES SUFFER
FROM INTER-REPOSITORY DEPENDENCY PROBLEMS?

The R package devtools provides a wrapper around R’s
built-in installation manager to facilitate the installation of R
packages from different sources. Unfortunately, repositories
such as GitHub have no central listing of available R
packages. GitHub contains millions of Git projects filled
with content from various programming languages. Even
if we limit GitHub projects to those tagged with the R
language, the vast majority does not contain an R package.

The lack of a central listing of packages prevents devtools
to automatically find and install dependencies. Additionally,
the same package can be hosted on multiple repositories
and in different versions, making the problem of dependency
resolution even more difficult.

To analyze the extent to which R packages hosted on
GitHub are subject to inter-repository dependency problems
we show that, while CRAN is the main source of packages
to depend upon, the CRAN packages required by GitHub
packages are the ones that are updated the most frequently.
It shows that GitHub packages suffer from inter-repository
problems because there are many packages with error status
on CRAN caused by backward incompatible changes in the
dependencies. In order to achieve this goal we study the
following subquestions:

• RQ2a: In which repository are package dependencies
satisfied? We provide evidence that, while CRAN is the
main source of packages to depend upon, many GitHub
packages have dependencies to packages not provided
by CRAN.

• RQ2b: Are CRAN packages more frequently updated
than GitHub packages? We provide evidence that
CRAN packages required by GitHub packages are more
prone to be updated than CRAN packages not required
by GitHub packages.

• RQ2c: How often do package updates cause backward
incompatible changes? We provide evidence that many
CRAN package become broken due to CRAN packages
updates. We show how this problem is addressed on
CRAN and maintainers of GitHub packages do not
benefit from CRAN’s solution.

RQ2a: In which repository are package dependencies sat-
isfied?

We determined in which repository the dependencies of
R packages hosted in CRAN or GitHub are satisfied. The
results are summarised in Fig. 5. For each edge from
repository A to repository B, the blue label on top represents
the percentage of R packages from A that have a dependency
satisfied by B, and the red label below the edge represents
the percentage of dependencies of R packages in A that
are satisfied by B. For example, 70.6% of all R packages
on GitHub depend on at least one package in CRAN, while
85.3% of all declared dependencies in R packages on GitHub
are satisfied by CRAN packages. Note that, if a package is
hosted by both CRAN and GitHub, we count it as a CRAN
package, because for dependency satisfaction we privilege
the officially distributed package over its development ver-
sion.

Other repositories

CRAN GitHub

0.5

1.5

98.0

85.3

10
.7

4.00.8

1.8

61.5

70.6

11
.8

8.6

Figure 5. Inter-repository package dependencies for CRAN and GitHub.
In blue: percentage of packages. In red: percentage of dependencies.

Because of the constraints imposed by CRAN’s daily
R CMD check, CRAN is self-contained. 98.0% of its
dependencies are satisfied within CRAN. Another 1.5% is
satisfied by BioConductor and Omegahat, which are package
distributions that are taken into account by the R CMD
check.

The presence of 0.8% CRAN packages that depend on
GitHub packages (totalling 0.5% of CRAN’s package de-
pendencies) may seem to contradict this assertion, as the R
CMD check does not allow the installation of packages from
GitHub. However, these 0.8% dependencies target packages
that are distributed on BioConductor or Omegahat, and for
which a development version is available on GitHub.

This implies that nearly all CRAN packages satisfy their
dependencies within CRAN. In addition, 70.6% of the R
packages on GitHub depend on a package belonging to
CRAN (totalling 85.3% of GitHub’s package dependencies).
This strongly suggests that CRAN is at the center of the
ecosystem, and that it is nearly impossible to install R
packages hosted on GitHub without relying on CRAN.

Considering R packages on GitHub, 8.6% of them have
a dependency in GitHub and 11.8% have a dependency
that is not in CRAN or GitHub. The union of these R

packages on GitHub represents 767 GitHub packages that
have a dependency not available on CRAN, and thus 767
GitHub packages that cannot be automatically installed
currently. This represents 17.0% (767 out of 4,512) of all
GitHub packages, and 20.8% (748 out of 3,602) of all
exclusive GitHub packages (that have no counterpart on
CRAN).

Because of CRAN’s historically central position, its
longevity and its important size in terms of number of
packages, contributors might choose to develop packages
depending only on CRAN packages. However, this does not
appear to be the case. Indeed, we found that there are three
times more GitHub packages requiring a package that is
not available on CRAN in June 2015 than in June 2014.

Summary. A majority of GitHub packages needs to
rely on CRAN to have their dependencies satisfied,
and a non-negligeable proportion of GitHub packages
cannot currently be installed automatically due to the
lack of a central listing of available packages.

RQ2b: Are CRAN packages more frequently updated than
GitHub packages?

Because CRAN is self-contained, its packages do not
suffer from inter-repository dependency problems. These
packages may, however, be affected by updates of the
packages on which they depend. The solution imposed by
CRAN to deal with package dependency updates is a contin-
uous integration process based on the R CMD check tool.
All CRAN packages are tested daily on different operating
systems by running over 50 individual checks for common
problems in the package structure, metadata, documentation,
data, code, etc. If the check discovers an error in a CRAN
package, its maintainer is notified and asked to resolve
the problems before the next major R release. Failing to
resolve the error will result in archiving the problematic
package. As such, as it will no longer be included in the
CRAN release until a new version is provided that passes
the CRAN check. Moreover, all packages depending on
it will fail the automatic installation. The above process
requires CRAN package maintainers to quickly react to
backward incompatible changes, and to adapt their packages
to avoid obsolescence. This way, CRAN tries to ensure that
all unarchived packages are mutually consistent.

Although devtools provides a function, called in-
stall version to manually install a specific version of a
CRAN package, it can be tedious to install such a version
since one also needs to rely on a compatible version of its
dependent packages. By default, only the latest available
version of each dependency is automatically installed. Also,
while maintainers could specify constraints on the required
version of dependent packages, they rarely do it because
those constraints are silently ignored by the R installer
anyway.

As package updates may introduce backward incompati-
ble changes and as there is no built-in automated support in
R for specifying, retrieving and installing a specific version
of a package dependency, a package dependency update
requires the depending package to be updated as well to
avoid it becoming obsolete. As GitHub packages are not
concerned by the systematic integration process of CRAN,
CRAN packages updates are more problematic for GitHub,
exhibiting a typical case of the inter-repository dependency
update problem.

Fig. 5 showed that 70.6% of all GitHub packages depend
on a package belonging to CRAN. So how likely is it that a
CRAN package gets updated? And does this differ between
packages that are required by other CRAN packages and
packages that are required by GitHub packages?

To respond to these questions, we use the statistical
technique of survival analysis to estimate the probability of
not updating a CRAN package for a certain amount of time.
Survival analysis [25] creates a model estimating the survival
rate of a population over time, considering the fact that some
elements of the population may leave the study, and that for
some other elements the event of interest does not occur
during the observation period. In our case, the observed
event is the moment on which an R package gets updated.
The survival curve is shown in Fig. 6 using a Kaplan-Meier
estimator.

0 50 100 150
delay (in days)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
ob

ab
ili

ty

Required by
Both
CRAN only
GitHub only
None

Figure 6. Probability that a CRAN package is not updated

For this survival analysis we considered all CRAN pack-
age updates over a six month period (from December 2014
to June 2015), representing a total population of 3,740
individuals. We observe that, starting from 36 days, those
packages that are at least required by GitHub packages are
more likely to be updated than the others. We confirmed
this hypothesis using a one-sided non-parametric Mantel-
Cox statistical test with significance level α = 0.05. This
test compares whether the generation process of observed
events of the two populations are equal.

The null hypothesis states that both samples have identical

survival and hazard functions. The null hypothesis was
rejected with p-value = 0.03 when comparing “GitHub
only” and “CRAN only” populations, and was rejected with
p-value < 0.001 when comparing “Both” and “CRAN only”
populations.

This provides statistical evidence that the population of
CRAN packages that are at least required by GitHub pack-
ages is significantly more prone to be updated than the
population of CRAN packages that are only required by
CRAN packages.

Summary. CRAN packages that are required by some
GitHub packages are more prone to be updated than
other CRAN packages.

RQ2c: How often do package updates cause backward
incompatible changes?

Package dependencies may be problematic in practice,
since package updates may have undesired consequences
on dependent packages. We will refer to this as backward
incompatible changes.

For CRAN, based on the daily results of the R CMD
check over a two-year period, we found that 41% of
the errors in CRAN packages are caused by backward
incompatible changes in one of its dependencies [6]. For
each update of a required package, we analyzed the status of
all its dependent packages to identify if the update leads to
an error status and thus, includes a backward incompatible
change. We retrieved the status of the R CMD check from
December 2014 to June 2015, for all CRAN packages that
have dependent packages and for all of their dependent
packages.

It would be desirable to report similar findings for GitHub
packages depending on CRAN packages. Unfortunately,
there are no historical R CMD check results for R packages
on GitHub. In the future, this could perhaps be solved by
building upon infrastructures such as R-Hub (github.com/
r-hub), a recent proposal accepted by the R Consortium, that
aims to automate and facilitate the checking or R packages
that are not yet in CRAN.

For CRAN, Fig. 7 shows the total number of package
updates and the number of package updates that lead to
backward incompatible changes. These numbers are aggre-
gated by two-week periods. The dashed red line represents
the proportion of backward incompatible updates relative
to the number of package updates. Over a total of 1,710
required packages, 643 packages (37.6%) were updated at
least once, for a total of 1,029 updates. We identified 46
packages (7.2%) for which 59 updates (5.7%) caused a total
of 84 errors in 60 different dependent packages. On average,
this represents one backward incompatible change per
20 updates.

While these numbers are already relatively high, they
only represent an underapproximation of the actual number

Dec Jan
2015

Feb Mar Apr May Jun
0

20

40

60

80

100

120

140 updates
backward inc. updates

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14right y-axis
proportion

Figure 7. Number (left axis) and proportion (right axis) of updates for
required CRAN packages

of updates that include a backward incompatible change.
We assumed that a package update contains a backward
incompatible change if the R CMD check for a package
that depends on it results in an error on the same day. This
implies that we are strongly dependent on the quality and
on the coverage of the tests executed by the R CMD check.

The CRAN community has identified dependency updates
as a concern that needs to be addressed:

• “One recent example was the forced roll-back of the
ggplot2 update to version 0.9.0, because the introduced
changes caused several other packages to break.” [3]

• “It is more and more of a pain if the package I’m
depending on breaks. If it is just something I was doing
for fun, it’s not that big of a deal. But if it means I have
to rewrite/recheck/rerelease my R package than that is
a much bigger headache.” [4]

• “[...] If I have to load a Depends package, it adds a
significant burden: I have to check for conflicts every
time I take a dependency on a new package. With
Imports, the package is free of side-effects [...]” [26]

All interviewed R package maintainers active on GitHub
share this concern:

• “[...] the risk of things breaking at some point due to
the fact that a version of a dependency has changed
without you knowing about it is immense. That actually
cost us weeks and months in a couple of professional
projects I was part of.” [21]

• “A better systematic for dependency management to-
gether with making your codebase more robust against
changes in dependencies is the thing that I actu-
ally spend most of my time cracking my brain about
[...]” [21]

• “I had one case where my package heavily depended
on another package and after a while that package was
removed from CRAN and stopped being maintained. So
I had to remove one of the main features of my package.

Now I try to minimize dependencies on packages that
are not maintained by “established” maintainers or by
me [...]” [21]

• “There have actually been a few times when I have
rewritten a function in my own package because of
that difficulty, especially with packages that themselves
have many dependencies. The biggest issue we have is
multiple layers of dependencies, some of which are on
CRAN and some of which are not. That can be difficult
to keep in sync, but usually, if your package is not on
CRAN, you can just keep it using the older dependency
for a while until you have time to sort that issue.” [21]

• “It’s a bit of a hassle when your package depends on
other development versions, but there are changes in
the latest version of devtools to make this easier.” [21]

Summary. Many dependent R packages become bro-
ken due to backward incompatible package updates.

Discussion
Since more and more packages are being developed and

distributed outside of CRAN, we argue that inter-repository
dependency management will become a major concern for
the R community.

R package users and developers could benefit from a
package installation manager that relies on a central listing
of available packages. It is definitely feasible to achieve such
a tool, since popular package managers for other languages
such as JavaScript (e.g., bower and npm) and Python (e.g.,
pip) also offer a central listing of packages, facilitating their
distribution through several repositories including GitHub.

To reduce the problem of backward incompatible changes
in R packages hosted on GitHub due to CRAN package
updates, package maintainers could deploy continuous in-
tegration processes (such as Travis CI) on their GitHub
projects, in order to benefit from an equivalent of CRAN’s
daily R CMD check. However, we observed that only
23.6% of the considered R packages hosted on GitHub have
defined a configuration for Travis CI. Even with such a
continuous integration process, the lack of a built-in support
for dependency constraints satisfaction in R still forces
developers to react to all the backward incompatible changes
in each dependency of their package, even if the dependent
package is stable or no more under development.

R package maintainers active on GitHub confirm the
need for more systematic package dependency management:
“I personally think it’s REALLY relevant to at least be
ABLE to be very specific and rigid with regard to your
dependencies. And I think the R universe could provide
better tools to fit the needs of developers and professionals
out there in a better way. But in that regard I like efforts
such as Packrat and checkpoint very very much.” [21]

People from the R community have started to explore
ways to improve how CRAN and the current R package

management system work together [3]. Inspired by the way
in which Debian Linux and npm manage their package
distributions, two solutions are proposed. The first solution
consist of having a testing and a development branch of the
CRAN distribution. The development distribution contains
the most recent but also more unstable packages, while the
testing distribution is regularly frozen in order to release a
stable snapshot of CRAN with each new version of R . While
this solution would certainly benefit CRAN, it does not solve
the problems for R packages hosted on GitHub. R package
maintainers are already adopting such a solution, but at an
individual level: “Yes. I usually have a cran branch which
matches the CRAN version. A master branch (or one that I
set as default) would be the current development version.
I might have some experimental branches as well.” [21]
Having standardised support for this would benefit the
community as a whole.

A second, more general, solution would consist in fun-
damental changes to the way in which R installs and loads
packages: each package should be allowed to specify the
version of its dependencies it requires, and provide a way
to install and load multiple versions of the a package at the
same time.

Conclusion. Better built-in support for dependency
constraints satisfaction in R would turn out to be a
major improvement, both for CRAN and GitHub R
communities.

VI. THREATS TO VALIDITY

Our analysis relied on information extracted from Git and
GitHub. Many pitfalls should be taken into consideration
when doing so [27], [28]. Some of them can be avoided,
others or inherent to the limitations of the considered version
control systems or hosting services. For example, how
should forking be taken into account? In our analysis, we
excluded all forks. We based ourselves on the packages still
existing in GitHub in June 2015. We were not able to extract
historical information from GitHub repositories that have
been removed before that date.

For R packages hosted on GitHub, we assumed that their
DESCRIPTION file always resides in the root directory of
each Git repository, because this is where functions like
devtools::install github expect packages to be located, and
because this avoided inclusion of repositories containing R
code but that are not R packages. It may, however, have lead
to the exclusion of some R packages. We also found that
some GitHub accounts containing R packages (in particular,
accounts cran and rpkg) actually served as partial mirrors
of CRAN, or as a mean to expose R code to GitHub. These
accounts were excluded from our analysis, but we have no
guarantee that other accounts may also be mirrors of R
packages developed or distributed elsewhere.

It is not trivial to determine whether an R package avail-
able on GitHub is ready for distribution. For all identified R

packages we checked whether they were ready for release
by verifying the presence of a README file with specific
installation instructions. Although a manual verification did
not reveal any false positives, there may have been false
negatives that we have not considered.

With respect to RQ2, we know that the CMD check on
many R packages on CRAN results in an error status without
an update of any of their dependencies (for example, if the
language R itself or one of the base R packages evolves).
This could influence the results for packages with many
dependencies, as there are potentially more situations in
which at least one dependent package gets broken at the
same time of an update of its dependency.

VII. FUTURE WORK

Our study of inter-repository dependency problems can be
extended in many ways. We only considered the subset of R
packages contained in CRAN and in GitHub, that together
account for more than 10,000 distinct R software packages.
We could extend our analysis to other, smaller R packages
sources, like BioConductor or R-Forge.

While we have confirmed many of our findings by con-
tacting a few R package maintainers active on GitHub
through e-mail, these results are not necessarily represen-
tative for the entire community. We are therefore planning
a more extensive survey to get better insight in the use of
GitHub as a package distribution platform and its impact on
the R ecosystem.

Since recently, a number of tools and solutions are being
proposed to address some of the problems that the R
community is encountering related to package management.
Emerging examples are: packrat, miniCRAN, drat, check-
point and the recently funded R-Hub project. In the future,
it would be useful to investigate how the take-up of such
tools is reshaping the R community and affecting the way
in which R packages are being managed.

We also aim to extend our package analysis by taking
into account social metadata. For example, we could use the
package author information to carry out a socio-technical
analysis of the R package ecosystem. Similarly, we could
take into account other data sources pertaining to R package
development, such as mailing lists, issue trackers, activity on
Q&A websites such as Stack Overflow, download statistics,
and many more. These additional data sources would allow
us to answer a whole range of new questions such as the
following. Do we observe a difference in author activity and
collaboration depending on the considered forge (CRAN or
GitHub)? How much overlap exists between the communi-
ties of GitHub and CRAN authors of R packages? It would
also be interesting to find out how the increasing usage of
GitHub as a distribution platform impacts legacy distribution
platforms like CRAN or BioConductor, with respect to their
activity and their contributors.

The approach followed in this article could be generalised
easily to other software ecosystems. However, we believe
that some results are specific to the R package ecosystem
due to the centrality of CRAN and its stringent requirements
for package acceptance. It would be interesting to study
other ecosystems (e.g. Perl modules available on CPAN and
GitHub), and compare the differences and similarities with
the R ecosystem.

VIII. CONCLUSION

In this article we explored to software ecosystem of
R packages, focusing on the problem of inter-repository
package dependencies in particular. Driven by its increasing
popularity, we empirically studied the use GitHub as an
alternative or complement to CRAN for R package devel-
opment and distribution. We confirmed our observations
through e-mail interviews with five R package maintainers
that are active on GitHub.

We observed that more and more R packages are hosted
on GitHub. While the GitHub packages distributed on CRAN
tend to be older than those that are not, their age cannot
fully explain whether they are distributed through CRAN.
Additionally, many R package developers make use of
GitHub as a distribution platform. Their packages contain
instructions to be installed from GitHub, and are often
exclusively distributed through GitHub.

In order to be able to install an R package, its dependent
packages need to be available as well. While R provides
an easy built-in way to install packages, this solution,
in combination with the way in which CRAN distributes
packages, is neither sufficient nor satisfactory to handle
GitHub package dependencies [3]. Through interviews with
R package maintainers on GitHub, we observed that the lack
of support for dependency constraints in R is already a major
concern. Contrarily to CRAN, distributed GitHub packages
are not systematically monitored by a continuous integration
process like the R CMD check in CRAN.

We showed that R packages hosted on GitHub suffer
from inter-repository dependency problems. While most of
the dependencies are provided by CRAN, many GitHub
packages cannot be installed automatically due to a lack
of central listing of all available packages. We also showed
that CRAN package updates cause backward incompatible
changes. Because CRAN packages that are required by
GitHub packages are more prone to be updated, this problem
is potentially worse for GitHub packages. We showed how
this problem is currently addressed on CRAN, and how it
affects GitHub packages.

To conclude, the R package-based software ecosystem
would strongly benefit from an automatic package installa-
tion and dependency management tool, like the ones that
are currently available for other package-based software
ecosystems. The need for such automated tools for the R
ecosystems was relatively low a few years ago, since CRAN

was, together with BioConductor, the major distribution
platform for R packages. Today, this is no longer the case,
since development platforms play an increasingly important
role in the distribution of R packages.

ACKNOWLEDGMENTS

This research was partially funded by research project
AUWB-12/17-UMONS-3 “Ecological Studies of Open
Source Software Ecosystems” financed by the Ministère
de la Communauté française - Direction générale de
l’Enseignement non obligatoire et de la Recherche scien-
tifique; as well as by research credit J.0023.16 “Analysis
of Software Project Survival” financed by the F.R.S.-FNRS,
Belgium.

We express our gratitude to Alexander Serebrenik for his
very insightful comments on a draft version of this article.
We thank Janko Thyson, Hana Sevcikova, Jessica Thomp-
son, Hadley Wickham and Karl Broman for answering to
some of our questions through e-mail.

REFERENCES

[1] R. A. Muenchen, “The popularity of data analysis software,”
r4stats.com, Tech. Rep., 2015, last consulted on 8 April 2015.
[Online]. Available: http://r4stats.com/articles/popularity/

[2] K. Hornik, “Are there too many R packages?” Austrian
Journal of Statistics, vol. 41, no. 1, pp. 59–66, 2012.

[3] J. Ooms, “Possible directions for improving dependency
versioning in R,” R Journal, vol. 5, no. 1, pp. 197–206, Jun.
2013.

[4] J. Leek, “How i decide when to trust an R package,” http:
//simplystatistics.org/?p=4409, November 2015.

[5] A. Decan, T. Mens, M. Claes, N. Tabout, and P. Grosjean, “On
the development and distribution of R packages: An empirical
analysis of the R ecosystem,” in Int’l Workshop on Software
Ecosystems (IWSECO 2015). Co-located with ECSAW ’15.
ACM , 2015.

[6] M. Claes, T. Mens, and P. Grosjean, “On the maintainability
of CRAN packages,” in Int’l Conf. on Software Maintenance,
Reengineering, and Reverse Engineering, 2014, pp. 308–312.

[7] ——, “maintaineR: A web-based dashboard for maintainers
of CRAN packages,” in Int’l Conf. Software Maintenance and
Evolution, 2014.

[8] D. M. Germán, B. Adams, and A. E. Hassan, “The evolution
of the R software ecosystem,” in European Conf. Software
Maintenance and Reengineering, 2013, pp. 243–252.

[9] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb,
“Social coding in GitHub: transparency and collaboration
in an open software repository,” in Int’l Conf. Computer
Supported Cooperative Work, 2012, pp. 1277–1286.

[10] K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in
GitHub and a method for ecosystem identification using
reference coupling,” in 12th Working Conference on Mining
Software Repositories, ser. MSR, 2015, pp. 202–211.

[11] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow
and GitHub: Associations between software development and
crowdsourced knowledge,” in SocialCom. IEEE, 2013, pp.
188–195.

[12] B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik,
and M. van den Brand, “Continuous integration in a social-
coding world: Empirical evidence from GitHub,” in Int’l
Conf. Software Maintenance and Evolution, Sept 2014, pp.
401–405.

[13] F. Thung, T. F. Bissyandé, D. Lo, and L. Jiang, “Network
structure of social coding in GitHub,” in CSMR, 2013, pp.
323–326.

[14] Y. Yu, G. Yin, H. Wang, and T. Wang, “Exploring the
patterns of social behavior in GitHub,” in Int’l Workshop on
Crowd-based Software Development Methods and Technolo-
gies, 2014, pp. 31–36.

[15] F. W. Santana and C. M. L. Werner, “Towards the analysis
of software projects dependencies: An exploratory visual
study of software ecosystems,” in Int’l Workshop on Software
Ecosystems (IWSECO), ser. CEUR Workshop Proceedings,
vol. 987. CEUR-WS.org, 2013, pp. 7–18.

[16] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J.
Amor, and D. M. Germán, “Macro-level software evolution:
a case study of a large software compilation,” Empirical
Software Engineering, vol. 14, no. 3, pp. 262–285, Mar. 2009.

[17] D. M. Germán, J. M. González-Barahona, and G. Robles,
“A model to understand the building and running inter-
dependencies of software,” in Working Conf. Reverse Engi-
neering, 2007, pp. 140–149.

[18] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and
S. Panichella, “The evolution of project inter-dependencies
in a software ecosystem: the case of Apache,” in Int’l Conf.
Software Maintenance, 2013, pp. 280–289.

[19] P. Abate, R. D. Cosmo, R. Treinen, and S. Zacchiroli, “De-
pendency solving: A separate concern in component evolution
management,” Journal of Systems and Software, vol. 85,
no. 10, pp. 2228–2240, 2012.

[20] ——, “A modular package manager architecture,” Informa-
tion & Software Technology, vol. 55, no. 2, pp. 459–474,
2013.

[21] T. Mens, “Anonymized e-mail interviews with R package
maintainers active on CRAN and GitHub,” University of
Mons, Tech. Rep., 2016.

[22] K. Broman, “R package primer – a minimal tutorial,” http:
//kbroman.org/pkg primer/, 2015.

[23] R devel mailing list, “R package dependency issues when
namespace is not attached,” http://r.789695.n4.nabble.com/
R-tt4629828.html, 2015.

[24] GitHub ANTsR issue 8, “ANTsR: towards CRAN &
standardization of development,” https://github.com/stnava/
ANTsR/issues/8, 2015.

[25] I. Samoladas, L. Angelis, and I. Stamelos, “Survival analysis
on the duration of open source projects,” Information &
Software Technology, vol. 52, no. 9, pp. 902–922, 2010.

[26] StackOverflow, “Writing robust R code: names-
paces, masking and using the ‘::’ operator,”
http://stackoverflow.com/questions/10947159/
writing-robust-r-code-namespaces-masking-and-using-the-operator,
2015.

[27] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M.
Germán, and P. T. Devanbu, “The promises and perils of
mining Git,” in Working Conf. Mining Software Repositories.
IEEE Computer Society, 2009, pp. 1–10.

[28] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
Germán, and D. Damian, “The promises and perils of mining
GitHub,” in Working Conf. Mining Software Repositories,
2014, pp. 92–101.

[29] J. D. Hunter, “Matplotlib: A 2D graphics environment,”
Computing In Science & Engineering, vol. 9, no. 3, pp. 90–
95, 2007.

