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ABSTRACT

Nonnegative Matrix Factorization (NMF) and its variants have recently been successfully used as dimensionality
reduction techniques for identification of the materials present in hyperspectral images. In this paper, we present
a new variant of NMF called Nonnegative Matrix Underapproximation (NMU): it is based on the introduction
of underapproximation constraints which enables one to extract features in a recursive way, like PCA, but
preserving nonnegativity. Moreover, we explain why these additional constraints make NMU particularly well-
suited to achieve a parts-based and sparse representation of the data, enabling it to recover the constitutive
elements in hyperspectral data. We experimentally show the efficiency of this new strategy on hyperspectral
images associated with space object material identification, and on HYDICE and related remote sensing images.

Keywords: Hyperspectral Images, Nonnegative Matrix Factorization, Underapproximation, Dimensionality
Reduction, Classification, Spectral Mixture Analysis

1. INTRODUCTION

A crucial aspect of hyperspectral image analysis is the identification of materials present in an object or scene
being imaged. Dimensionality reduction techniques such as PCA are widely used as a preprocessing step in order
to reducing the computational cost while keeping the pertinent information. In this context, it is often preferable
to take advantage of the intrinsic properties of hyperspectral data: each image corresponds to a wavelength and
the spectral signature of each pixel results from the additive combination of the nonnegative spectral signatures
of its constitutive materials. Taking these nonnegativity constraints into account enhances interpretability of the
extracted factors. This can be done using the Nonnegative Matrix Factorization1 (NMF) technique, generally
formulated as the following optimization problem: given a m × n real nonnegative matrix M and a positive
integer r < min(m, n), find two real nonnegative matrices U and V of dimensions m × r and n × r in order to
minimize the sum of the squared entries of M − UV T :

min
U,V
||M − UV T ||2F such that U ≥ 0 and V ≥ 0. (NMF)

NMF has been successfully used in many other applications, e.g., images processing, text mining, air emission
control, microarray data analysis, clustering, etc.2

Assuming that the matrix M is constructed as follows: each 2D image corresponding to a wavelength is
vectorized and is a column mj of M and each row mi of M corresponds to the spectral signature of a pixel; the
above decomposition can be interpreted as follows

mi ≈
∑

k

ui
k vT

k ∀i,
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i.e., the spectral signature of each pixel (mi, a row of M) is approximated with a nonnegative linear combination
(with weights ui

k, representing abundances) of end-members signatures (vk, columns of V ) which hopefully
correspond to the signatures of the constituent materials of the hyperspectral image.

(NMF) is an additive linear model for nonnegative data and has been observed to be particularly well-suited to
achieve a parts-based and sparse representation, enhancing interpretability of the decomposition. This model∗

has been successfully applied for identification of the materials and the spectral unmixture in hyperspectral
images.5, 6 However, NMF features some drawbacks. In particular,

1. NMF is a NP-hard nonlinear optimization problem with many local minimizers;7 In practice, NMF is
solved using iterative schemes based on nonlinear optimization techniques, see8 and references therein.

2. The optimal solution is in general non-unique† which makes the problem ill-posed;9 Additional con-
straints are often added to reduce the degrees of freedom, e.g., smoothness,5 sparsity,10 orthogonality,11, 12

minimum-volume,13 sum-to-one constraint of the rows of U ,14 etc.

3. One needs to recompute a solution from scratch when the rank of the approximation is modified.

In this paper, we use Nonnegative Matrix Underapproximation, a new variant of NMF which overcomes some
of its drawbacks‡ (2. and 3. above), as a dimensionality reduction technique to analyze hyperspectral data. In
Section 2, we formulate NMU as an optimization problem using �2-norm minimization, and present an algorithm
to solve it. We then give some theoretical evidences that NMU is in fact able to detect materials in hyperspectral
data and illustrate this on a simple example. In Section 3, we explain why �1-norm based minimization is
theoretically more appealing since it is potentially able to extract the materials in hyperspectral data in a more
efficient and robust way. An algorithm is proposed with the same computational complexity as the one presented
in Section 2. Finally, in Section 4, we experimentally show the efficiency of these new strategies on hyperspectral
images associated with space object material identification, and on HYDICE remote sensing images.

Notation 1. R
m×n is the set of real matrices of dimension m by n; for A ∈ R

m×n, we note ai the ith column
of A, aj the jth row of A, and aj

i the entry at position (i, j); for b ∈ R
m×1 = R

m, we note bi the ith entry
of b. R

m×n
+ is the set R

m×n with component-wise nonnegative entries. supp(x) denotes the support of x, i.e.,
the set on nonzero entries of x; ||.||0 is the �0-‘norm’ where ||x||0 is the cardinality of supp(x). AT is the
transpose of A. ||.||2 is the �2-norm with ||b||22 = bT b; ||.||F is the related matrix norm called Frobenius norm
with ||A||2F =

∑
i,j(a

j
i )

2 and 〈A, B〉 =
∑

i,j aj
i b

j
i the corresponding scalar product. ||.||1 is the �1-norm with

||A||1 =
∑

i,j |aj
i |.

2. NONNEGATIVE MATRIX UNDERAPPROXIMATION

Combining the Perron-Frobenius and Eckart-Young theorems,16 it is easy to find an optimal nonnegative rank-
one approximation of a nonnegative matrix. Therefore, the rank-one NMF problem can be solved in polynomial
time (e.g., taking the absolute value of the first rank-one factor generated by the singular value decomposition).
One would then be tempted to use this result to compute a NMF one rank-one factor at a time. However, when
the first rank-one approximation is subtracted from the original matrix, we obtain a residual which contains
negative entries which makes the recursive approach unpractical. Adding underapproximation constraints makes
this idea possible; solving at each step

min
x∈R

m
+ , y∈R

n
+

||M − xyT ||2F such that xyT ≤M, (NMU)

∗(NMF) is closely related to an older approach based on the geometric interpretation of the distribution of spectral
signatures: they are located inside a low-dimensional simplex which vertices are the pure pixel signatures (i.e., the
signatures of each individual material).3, 4

†Any invertible matrix D such that V D ≥ 0 and D−1W ≥ 0 generates an equivalent solution.
‡Unless P = NP, drawback 1. can not be ‘resolved’ since the underlying problem of spectral unmixing is of combinatorial

nature15 and can be shown to be equivalent to a NP-hard problem.7
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and ending up with R = M − xyT ≥ 0 which can be underapproximated as well, etc. This problem is referred
to as Nonnegative Matrix Underapproximation and has been introduced in.17, 18 It has been shown to achieve
better part-based representation of nonnegative data because the underapproximations constraints require the
extracted part to really be common features of the original data. We will see how this property enables NMU
to extract constitutive materials in hyperspectral images.

Since only a rank-one matrix is computed at each step, (NMU) is in general well-posed in the sense that the
optimal solution is unique (up to a scaling factor)§. In fact, for any rank-one nonnegative matrix A, there exists
one and only one (u, v) ≥ 0 such that ||u||2 = 1 and A = uvT . In our experiments, we observed that NMU is
much less sensitive to initialization and that, in general, when we allow several restarts of the algorithm with
different initializations, it ends up with similar solutions (hopefully, close to the optimum). This is (in general)
not the case with the standard NMF formulation because of non-uniqueness.9

2.1 Algorithm for Rank-One Nonnegative Underapproximation

(NMU) is convex in x and y separately, and the corresponding optimal solutions can actually be trivially com-
puted:

x∗ = argminx≥0,xyT≤M ||M − xyT ||F , x∗
i = min

{j | yj �=0}

{ mi
j

yj

}
∀i, (2.1)

and,

y∗ = argminy≥0,xyT≤M ||M − xyT ||F , y∗
j = min

{i |xi �=0}

{ mi
j

xi

}
∀j, (2.2)

and correspond to the stationary conditions of (NMU). However, alternating optimization does not generate
satisfactory results: the algorithm will stop after one or two updates of x and y and it is not able to locate good
solutions; potentially far away from the initialization. The reason is that feasibility is imposed at each step, and
that solutions are rapidly blocked on the boundary of the feasible domain.

A Lagrangian relaxation scheme has been proposed18 to solve (NMU). It works as follows: let Λ ∈ R
m×n
+

be the Lagrangian multipliers associated with the underapproximation constraints and write the corresponding
Lagrangian dual problem as:

sup
Λ ∈ R

m×n
+

min
x ∈ R

m
+

y ∈ R
n
+

||M − xyT ||2F + 2
〈
Λ, M − xyT

〉
= ||(M − Λ)− xyT ||2F − ||Λ||2F . (2.3)

A possible way to solve (2.3) is to alternate optimization¶ over x, y and Λ: the optimal solution for x and y
can be written in closed-form (cf. steps 6 and 7 of Algorithm 1) while Λ is updated with a subgradient type
update (step 10). If Λ is too large, it might happen that x and/or y are set to zero leading to a trivial stationary
point. We propose to reduce the value of Λ if that happens and to set x and y to their old values (step 12).
(x, y) are initialized with the optimal rank-one solution of the unconstrained problem (i.e., the optimal rank-one
approximation of the residual, step 2, corresponding to Λ = 0); Λ is initialized with the nonnegative part of
the residual matrix (step 4). Since the algorithm is not guaranteed to generate a feasible solution‖, only the
nonnegative part of the residual is considered (step 15). Note that the updates of x and y share some similarities
with the power method (applied to M − Λ, with projection on the nonnegative orthant) which computes the
maximum singular value and its corresponding left and right singular vectors.

§Note that (NMF) with r = 1 is also well-posed; in fact, the optimal solution is unique if the maximum singular value of
M (σ1(M)) is strictly greater than the second biggest singular value (σ2(M) < σ1(M)), cf. singular value decomposition.16

¶The problem of optimizing both x and y reduces to a rank-one nonnegative factorization problem (same problem as
(NMF), where M might have negative entries; in this case M − Λ) which is NP-hard.19

‖This feature is actually an advantage for practical applications. In fact, this gives the algorithm some flexibility
when dealing with noisy data. However, one can obtain a feasible stationary point by using updates (2.1) and (2.2) as a
post-processing step.
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Algorithm 1 Lagrangian NMU (L-NMU)

Require: M ∈ R
m×n
+ , r > 0, maxiter.

Ensure: (U, V ) ∈ R
m×r
+ × R

n×r
+ s.t. UV T � M .

1: for k = 1 : r do
2: [x, y] = optimal rank-one approximation(M);
3: uk ← x; vk ← y;
4: Λ← max(0,−(M − xyT ));
5: for p = 1 : maxiter do

6: x← max
(
0, (M−Λ)y

||y||22

)
;

7: y ← max
(
0, (M−Λ)T x

||x||22

)
;

8: if x 
= 0 and y 
= 0 then
9: uk ← x; vk ← y;

10: Λ← max(0, Λ− 1
p (M − xyT ));

11: else
12: Λ← Λ

2 ; x← uk; y ← vk;
13: end if
14: end for
15: M = max(0, M − ukvT

k );
16: end for

2.2 Hyperspectral Data Analysis in the Ideal Case

If we assume that each pixel contains only one material, the corresponding matrix has the following form:

Assumption 1. M ∈ R
m×n
+ with M = UV T where

1. U ∈ {0, 1}m×r is a binary matrix of dimension m by r, with r ≤ min(m, n), and its columns are orthogonal:

uT
i uj = 0, ∀i 
= j and uT

i ui 
= 0, ∀i,

i.e., there is one and only one nonzero element in each row of U and

ui
k = 1 ⇐⇒ pixel i contains material k.

2. V ∈ R
n×r
+ is full-rank.

Of course, recovering U and V in these settings is trivial and, in practice, because of blurring effects, limited
resolution and mixed materials, the spectral signature of each pixel will be a mixture of spectral signatures of
several materials (in particular, pixels located at the boundary of materials) plus noise. However, classifying each
pixel in a single category amounts to approximating M with a matrix satisfying Assumption 1. This problem is
referred to as orthogonal NMF (oNMF) and is equivalent to k-means clustering.11

We now show that the underapproximation technique is able to retrieve the underlying structure in the
ideal case, when each pixel corresponds to only one material. It will shed some light on the behavior of the
above recursive algorithm based on underapproximations and justify its efficiency when dealing with non-ideal
hyperspectral images.

2.2.1 First Rank-One Factor

As for PCA, the first rank-one factor of NMU will reduce the error the most and will already be a fairly good
approximation of the hyperspectral data.
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Lemma 2.1. Let (x, y) be a nontrivial stationary point of (NMU) (i.e., x 
= 0 and y 
= 0), then the residual
R = M − xyT has at least one zero by row and by column.

Proof. It follows directly from Equations (2.1) and (2.2).

Lemma 2.2. Let (x, y) be a nontrivial stationary point of (NMU) for M = UV T satisfying Assumption 1, then
the residual R = M − xyT can be written as R = UV ′T for some V ′ ≥ 0.

Proof. Because columns of U are binary and orthogonal, each row of M is equal to a column of V . Therefore,
the entries of x corresponding to the rows of M equal to each other must take the same value, i.e., ∀i ∈
{1, 2, . . . , r}, ∀k, l ∈ supp(vi) : xk = xl. In fact, one can check that for y 
= 0, solution of Equation (2.1) is
unique. It follows that x = Ud, for some d ∈ R

r
+, and then R = UV T − UdyT = U [V − ydT ]T . The facts that R

is nonnegative and that U is orthogonal implies that V ′ = [V − ydT ]T ≥ 0.

Corollary 1. Let (x, y) be a nontrivial stationary point of (NMU) and M > 0, then x > 0 and y > 0.
Moreover, the residual R = M − xyT can be written as R = UV ′T for some V ′ ≥ 0 with at least one zero by row
and by column in V ′.

Proof. Positivity of x and y follows directly from Equations (2.1) and (2.2) while structure of the residual
matrix R is a consequence of Lemma 2.1 and 2.2.

Typically, it is very unlikely for two columns of V ′ to have the same support. In fact, the number of zeros in
each column of V ′ is at least in O(n

k ) since there is a zero in each row of V ′ and, for two columns to have the
same sparsity pattern I, one needs

vi(I) = α vj(I), since vi(I)− diy(I) = vj(I)− djy(I) = 0, (2.4)

for some constant α > 0. If |I| > 1 (i.e., v′i and v′j have more that one zero element which is likely since they are
expected to have O(n

k ) zeros, n
 r), it is not likely for Equation (2.4) to happen because vi and vj are linearly
independent. For example, if vi and vj were randomly generated, the probability would be equal to zero.

Conclusion. After the first NMU reduction, the residual R can be written in the same form as M = UV T (cf.
Assumption 1) with R = UV ′T , and it is highly probable that the columns of V ′ will have different sparsity
patterns.

2.2.2 Next Rank-One Factors

Assuming that the columns of V in Assumption 1 have different sparsity patterns, we show that the recursion
outlined above will eventually locate each material individually.

Theorem 2.3. Let (x, y) be a nontrivial stationary point of (NMU) for M = UV T satisfying Assumption 1 and
the columns of V have different sparsity patterns. Then R = M − xyT = UV ′, with x = Ud for some d ∈ R

r
+ so

that V ′ = V − ydT ≥ 0. Moreover,

supp(x) = ∪i∈Ω suppi(ui), for some Ω ⊂ {1, 2, . . . , r},

and
|Ω| = 1 ⇐⇒ one column of V ′ is equal to zero ⇐⇒ y = α vi for some i, α > 0.

Proof. The first part is a consequence of Corollary 1.

Clearly, v′i is equal to zero for some i if and only if y = αvi for some positive constant α. Moreover, y = αvi

implies that |Ω| = 1 because of the underapproximation constraints and since the columns of V have different
sparsity patterns, cf. Equation (2.1). Finally, it is clear that for |Ω| = 1, the solution obtained with Equation (2.2)
is y = αvi.
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Theroem 2.3 implies that, at each step of the NMU recursion, a set of materials are extracted together.
Moreover, since the recursive approach outlined above will eventually end up with a zero matrix (say, after ru

steps), we will have that

M =
ru∑

i=1

xiy
T
i ,

and, under the different sparsity pattern assumption, ∀1 ≤ i ≤ r, ∃1 ≤ j ≤ ru s.t. supp(xj) = supp(ui). In
fact, for the residual R = UV ′ to be equal to zero, all the columns of V ′ must be identically zero. This feature
of the NMU recursion will be experimentally verified in Section 4.

Remark 1. The different sparsity pattern assumption is a sufficient but not a necessary condition for exact
recovery. In fact, if two columns of V ′ have the same sparsity pattern and they are extracted together, it is likely
that the corresponding optimal solution will not be exactly equal to one of these two columns (because there are
linearly independent) and therefore, at the next step, they will have a different sparsity pattern.

2.3 Illustration of Basis Recovery with NMU
Let us construct the following synthetic data: 4 binary orthogonal images of 5× 5 pixels (which are the columns
of U , U ∈ {0, 1}25×4, see left image of Figure 2) are randomly mixed (V ∈ R

25×4 is randomly generated) to
generate a 25 × 25 matrix M = UV T satisfying Assumption 1. Figure 1 displays a sample of the 25 images
contained in the columns of M , which then result from the nonnegative linear combination of the columns of U .
Figure 2 displays the original images and the basis elements obtained with NMF and NMU. We observe that

Figure 1. Sample of images of the data matrix M : clean (left) and with mixed pixels (right).

Figure 2. From left to right: 4 original images (i.e., columns of U), basis elements obtained with NMF and with NMU.

NMF is not able to extract perfectly the 4 original basis elements (even though the objective function is equal
to zero; the reason is the non-uniqueness of the solution: NMF retrieves a mixture of the basis elements) while
NMU is able to do the extraction.

2.4 Hyperspectral Data Analysis in the Non-Ideal Case
As we already mentioned, practical problems don’t have the nice structure mentioned in Assumption 1 and the
spectral signature of most pixels results from an additive linear combination of several materials. What can we
expect of NMU in that case? Since the data matrix is positive, the first rank-one factor will still be a mixture
of all materials (cf. Lemma 2.1). It seems more difficult to provide theoretical guarantees for the next factors
in more general settings and this will be a topic for further research. However, extracting a single constitutive
material would allow one to approximate all the pixels containing it (removing from their spectral signature this
component) and, since NMU aims at extracting components explaining the data as closely as possible in order to
reducing the error the most, this indicates that NMU is also incited to extract constitutive materials in non-ideal
cases.

For example, let us add to the matrix U in the illustration of the previous paragraph a randomly generated
matrix, uniformly distributed between 0 and 0.5. It means that each pixel is now a mixture of several materials
but one material is still predominant. Figure 3 displays the visual results: NMF performs even worse, while
NMU is still able to extract the original parts fairly well. It actually gives a soft clustering for each pixel, as it
will also be shown in Section 4.
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Figure 3. From left to right: 4 original images (i.e., columns of U), basis elements obtained with NMF and with NMU.

3. �0-PSEUDO-NORM MINIMIZATION AND �1-NORM RELAXATION

Ideally, each basis element extracted with the recursive approach outlined above should correspond to a different
material present in the hyperspectral image: we would like that each extracted rank-one factor corresponds to
only one material, i.e., that only a submatrix of M (a set of rows of M) corresponding to pixels containing the
same material is approximated at each step. Unfortunately, the �2-norm is not appropriate for this purpose: it
is very sensitive to ‘outliers’, i.e., it cannot neglect some entries of the matrix M and set only a subset of the
entries of the residual error to zero. It is more likely that it will try to approximate several materials at the same
time in order to avoid large entries in the residual error. For this reason, we will see that the �2-norm based
algorithm (Algorithm 1) first extracts (in general) several materials together.

If the �0-‘norm’ is used instead, i.e., if the number of zero entries in the residual is maximized, one can check
that for a matrix satisfying Assumption 1, this would lead to an exact recovery in r steps; because extracting
one material (i.e., taking y = vi for some i at each step) will lead to the highest number of zeros in the residual
R = M − xyT (rows corresponding to the extracted material are identically zero; plus one zero by row and
by column for the other ones). Unfortunately, �0-‘norm’ minimization is nonconvex, even when one factor is
fixed (i.e., ||M − xyT ||0 for x or y fixed). Moreover, in practice, because of noise and blur, �0-‘norm’ would not
be appropriate since rows of M representing the same material cannot be approximated exactly. However, its
convex relaxation, the �1-norm, is known to be less sensitive to outliers, i.e., it is disposed to let some entries of
the error large, in order to approximate better other entries. We will experimentally observe in Section 4 that
using �1-norm allows to extract materials individually in a more efficient manner, i.e., using a smaller number of
recursive steps.

3.1 Algorithm for �1-Norm Minimization
Using the idea of Lagrangian duality presented in Secton 2.1, we propose to solve∗∗

max
Λ∈R

m×n
+

min
x∈R

m
+ , y∈R

n
+

||(M − Λ)− xyT ||1. (3.1)

Fixing y and Λ and noting A = M − Λ, x can be optimized by solving the following m independent problems

min
xi≥0
||ai − xiy||1 =

∑

j

|ai
j − xiyj | =

∑

j ∈ supp(y)

yj

∣∣∣
ai

j

yj
− xi

∣∣∣ +
∑

j /∈ supp(y)

|ai
j |, (3.2)

which can be solved by computing the weighted median of z with zj = (ai
j/yj)∀j with weights yj . The same

can be done for y by symmetry, and we propose to replace updates of x and y in Algorithm 1 by

xi = max
(
0, weighted-median

( [(M − Λ)i(J)]
[y(J)]

, y(J)
))
∀i, J = supp(y),

and
yj = max

(
0, weighted-median

( [(M − Λ)j(I)]
[y(I)]

, y(I)
))
∀j, I = supp(x).

The weighted median of a n dimensional vector can be computed in O(n) operations, cf.20 and references therein,
so that the algorithm can be implemented in O(mn) operations per iteration. The �2-norm and �1-norm then
have the same computational complexity even though in practice the �1-norm based algorithm will be slower,
but only up to a constant factor.

∗∗Note that Λ does not correspond to the Lagrangian dual variables of minx≥0,y≥0,xyT≤M ||M − xyT ||1. However, this
formulation is closely related to the Lagrangian relaxation and allows us to use the same derivations as in Algorithm 1.

Proc. of SPIE Vol. 7695  76951A-7

Downloaded from SPIE Digital Library on 03 Aug 2012 to 129.97.93.204. Terms of Use:  http://spiedl.org/terms



4. APPLICATION TO HYPERSPECTRAL DATA

In this section, Algorithm 1 (�2-norm based minimization) and its modification for �1-norm proposed in Section 3
are used as dimensionality reduction techniques for hyperspectral data in order to achieve classification (selecting
from the basis elements the different clusters), and spectral unmixing (using nonnegative least squares). We
analyze the Urban HYDICE images and the Hubble space telescope images. We perform up to 100 iterations of
both algorithms (i.e., maxiter = 100) at each step of the recursion.

4.1 Classification and Spectral Unmixing
NMU can be used as a standard dimensionality reduction technique and any type of post-processing procedure
can be used to extract the constitutive parts of spectral data, e.g., k-means, nearest neighbor, etc. However, we
have shown why NMU is potentially able to extract these parts automatically. Therefore, the simplest approach
would be to visually select each cluster from the generated basis elements. We stick to this approach and select,
from the basis elements, each individual cluster: from the U matrix obtained with NMU, we only keep a subset
of the columns, each corresponding to an individual material.

The second post-processing step is to normalize U . In fact, as NMF, NMU is invariant to the scaling of the
columns of U (∀k ukvT

k = (αuk)(α−1vk)T ∀α > 0). Moreover, in the context of hyperspectral image analysis,
rows of U have a physical interpretation: ui

j is the abundance of material j in pixel i. Therefore, ui
j ≤ 1 ∀i, j

and the columns of U are normalized with

uj =
uj

maxi(ui
j)
∀j.

This means that, for each rank-one factor extracted with the NMU procedure, the maximum abundance of
each pixel for the corresponding spectral signature vk is at most 1. Moreover, since rows of U correspond to
abundances,

∑
j ui

j = 1 ∀i and we can scale the rows of U as follows

ui ← ui

||ui||1 + ε
, ε ≪ 1,

so that they sum to one (except if they are identically zeros). This allows us to equilibrate the relative impor-
tance of each pixel in each basis element. With this procedure, we end up with a soft clustering: each pixel i is
constituted of several materials vj ’s with the corresponding abundances given by ui.

Once the pixels have been classified, one might be interested in recovering the spectral signatures of each
individual material (corresponding to the columns of matrix V in the decomposition M ≈ UV T ), called the
end-members. A standard approach is to solve a nonnegative least squares problem of the form

min
V ≥0
||M − UV T ||2F , (NNLS)

where U represents the basis vectors, with dedicated algorithms.21

4.2 Urban HYDICE Image
We consider first the Urban hyperspectral image†† taken with HYper-spectral Digital Imagery Collection Ex-
periment (HYDICE) air-borne sensors. We analyze the data where the noisy bands have been removed (162
bands left, originally 210). Figures 4 and 5 gives some basis elements of the NMU decomposition based on �2-
and �1-norms. The Urban data is mainly constituted of 6 types of materials: road, dirt, trees, roofs, grass and
metal.22 Table 1 gives the index of the NMU basis elements corresponding to a single material. Figure 6 displays
the results of the spectral unimxing procedure for both NMU algorithms (�2 and �1) which are compared to 6
end-members obtained in.22

In this example, NMU performs relatively well and is able to detect all the materials individually, which
can then be used to classify the pixels and finally recover the end-member signatures. We also note that, as
announced, the �2-norm based algorithm needs more recursion than �1-norm to extract all materials (23 vs. 17).

††Available at http://www.agc.army.mil/hypercube/.
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Figure 4. Some basis elements (columns of matrix U) for the Urban dataset extracted with the �2-norm based NMU;
dark tones indicate a high value of an entry (0 is white, 1 black); numbers indicate the position of the factor in the NMU
decomposition.

Figure 5. Some basis elements of NMU for the Urban dataset extracted with the �1-norm based NMU, identified as in
Figure 4.

4.3 Simulated Hubble Space Telescope
Figure 7 displays some sample images of the Hubble database which consists of 100 spectral images of the Hubble
telescope, 128× 128 pixels each, with added blur and noise‡‡.5 It is constituted of 8 materials, see Figure 8.

‡‡Point spread function on 5 by 5 pixels and with standard deviation of 1 and white Gaussian noise σ = 1% of the
values of M and Poisson noise σ = 1% of the mean value of M .
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Clusters Road Dirt Trees Roofs Grass Metal
�2 basis # 18 23 3 4 6 8
�1 basis # 16 17 2 5 6 7

Table 1. Basis elements obtained: cluster selection.

Figure 6. End-members extraction: NMU with �2 (gray solid) and NMU with �1 (dashed) vs. 6 end-members from the
image using N-FINDR523 plus manual adjustment (dark solid) from.22 The x-axis gives the wavelength bands while y-axis
gives the reflectance values (intensities of reflected light).

Figure 7. Sample of images in the Hubble tensor with blur and noise.

Figure 8. 8 Materials of the Hubble teleschope. From left to right: Aluminum, Solar Cell, Green Glue, Copper Stripping,
Honeycomb Side, Honeycomb Top, Black Rubber Edge and Bolts.

Figure 9 shows the basis elements obtained with NMU, Table 2 gives the classification of the basis elements
and Figure 10 shows the end-members extraction: original vs. noisy and blurred. Spectral signatures of black
rubber edge and bolts are not recovered very accurately (or not at all in the case of the �2-norm). The reason
is that they are the smallest and thinest parts: they get mixed with surrounding materials which make them
difficult to extract. Moreover, for the bolts, its spectral signature is very similar to the one of copper stripping
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Figure 9. Basis elements of NMU for Hubble telescope with �2-norm (left) and �1-norm (right) with added blur and noise.

Clusters Aluminum Solar Cell Glue Copper H. Side H. Top Edge Bolts
�2 basis # 2 3 4 6 7 8 13 11
�1 basis # 2 3 4 7 6 9 11 8

Table 2. Basis elements obtained: cluster selection for the Hubble telescope database with noise and blur, see Figure 9.

Figure 10. End-Members with noise and blur. NMU with �2 (gray solid) and NMU with �1 (dashed) vs. 8 true end-members
(black solid).

and therefore, when noise and blur are added, they are extracted together (basis elements 11 for �2-norm and 8
for �1-norm).

As for the Urban dataset, the �2-norm extracts more mixed materials and therefore needs more recursions
to get all the parts separated than the �1-norm, which seems to do a better job (especially for the black rubber
edge).
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5. SUMMARY AND FURTHER WORK

In this paper, we have presented the approximate nonnegative matrix factorization problem with underapprox-
imation constraints, called Nonnegative Matrix Underapproximation (NMU), which can be used to design a
recursive procedure to approximate nonnegative data. We then gave theoretical and experimental evidences
showing that NMU is able to perform soft-clustering of hyperspectral data. A main advantage of NMU is that
no sparsity parameters have to be tuned and parts-based representation is naturally achieved.

It would be interesting to compare NMU with other dimensionality reduction techniques such as PCA, NMF,
ICA, etc. Another direction of research would be to design an automatic classification algorithm, based on
the properties of NMU, to classify the pixels. It would be particularly interesting to study these properties in
more depth and see if it possible to obtain stronger theoretical guarantees for the factors generated by NMU. In
future work, comparisons of our NMU method will be made with the recent development of variational iterative
methods for deblurring, denoising, and segmentation by Li, Ng, and Plemmons.24
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