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ABSTRACT

Nonnegative matrix factorization and its variants are powerful techniques for the analysis of hyperspectral images
(HSI). Nonnegative matrix underapproximation (NMU) is a recent closely related model that uses additional
underapproximation constraints enabling the extraction of features (e.g., abundance maps in HSI) in a recursive
way while preserving nonnegativity. We propose to further improve NMU by using the spatial information:
we incorporate into the model the fact that neighboring pixels are likely to contain the same materials. This
approach thus incorporates structural and textural information from neighboring pixels. We use an ¢;-norm
penalty term more suitable to preserving sharp changes, and solve the corresponding optimization problem using
iteratively reweighted least squares. The effectiveness of the approach is illustrated with analysis of the real-world
cuprite dataset.

Keywords: Hyperspectral Images, Nonnegative Matrix Factorization, Underapproximation, Dimensionality
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1. INTRODUCTION

A hyperspectral image (HSI) is a three-dimensional tensor datacube, providing the electromagnetic reflectance
of a scene at varying wavelengths. HSI are digital images in which each pixel has not just the usual three
visible bands of light (red at 650nm, green at 550nm, and blue at 450nm), but hundreds of wavelengths. The
spatial information in the scene is generally a two dimensional grayscale image, while the wavelength parameter
is recorded in the third dimension. HSI analysis is widely used in remote sensing, and applications also exist
in areas such as medical imaging and environmental studies. The spectral vector at every spatial location
can be (approximately) linearly expressed as combination of a set of common vectors, called endmembers or
spectral signatures of materials in the scene. A hyperspectral tensor datacube is a set of nonnegative mixtures
of endmembers, which are also nonnegative. A primary objective in analyzing HSI is to recover the endmembers
(unmixing) and mixture coefficients (abundance maps) from a hyperspectral datacube using matrix factorization
methods. This can enable identification of, for example, objects, species of trees and vegetation, crop health,
mineral and soil composition, moisture content, and pollution quantities. Three-dimensional tensor factorization
methods can also be used,!»2 but we concentrate here on matrix models.

The standard linear mixing model for hyperspectral image processing and analysis is based on the following
general assumption: the spectral signature of each pixel results from the additive linear combination of the spec-
tral signatures of the materials present in this pixel (called endmembers). More precisely, assume we construct a
matrix M such that each entry m;; of M is equal to the reflectance® of the i*! pixel at the ;"' wavelength (i.e.,
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each row m] of M corresponds to the spectral signature of a pixel and each column m; of M to an image at a
given wavelength), then the model reads

Mi: ~ i Uik Vk: VZ,

k=1

where r is the number of materials present in the hyperspectral image. In fact, the spectral signature of each
pixel (M;., a row of M) is approximated by a nonnegative linear combination (with weights U;;, > 0, representing
abundances) of endmembers’ signatures (Vi. > 0) approximating the true signatures of the constituent materials
of the hyperspectral image. This corresponds exactly to the nonnegative matrix factorization (NMF) model:
given M € R7*" and an integer r < min(m, n), solve

min |M —UV|% suchthat U >0 and V >0. (1.1)
UGRT”X‘I"VGR‘I'XTL

However, NMF is typically not able to separate all end-members correctly because of the non-uniqueness of
the solution.? In order to improve NMF performances for hyperspectral image analysis, one should incorporate
prior information into the model, and take into account the characteristics of the solutions to make the problem
more well-posed, e.g., sparsity of the abundance matrix and piecewise smoothness of the spectral signatures,*
orthogonality,® minimum-volume,® and sum-to-one constraints on the abundances.”

Nonnegative matrix underapproximation (NMU)® is a recent closely related model that uses additional un-
derapproximation constraints enabling the recursive extraction of abundance maps in HSI. At the first step,
NMU requires solving the following optimization problem

in ||M — a2y’ |3 h that zy” < M 1.2
L oin [ zy" || such that zy” < M, (1.2)
where M € R™*" is the given nonnegative data matrix. Then, the residual matrix R = M —zy” > 0 is computed

and the same procedure is applied on R. After r steps, we obtain an approximate NMF solution of rank ». NMU
has several advantages over NMF:

1. Tt is well-posed (the solution is, under some mild assumption, unique?).
2. The factorization rank does not have to be chosen a priori.

3. It produces sparser solution leading to a better decomposition into parts.®

Moreover, it was theoretically and experimentally shown to be able to extract automatically constitutive materials
in HSL.9"!! However, sometimes, NMU fails at extracting all endmembers and mixes some of them. A possible
way to improve NMU performances is to add prior information into the model. It was shown'? how adding
sparsity constraint on the abundance matrix makes it able to extract endmembers in a more efficient way.

In this paper, we propose to add spatial information into NMU, i.e., we incorporate in the model the fact
that neighbor pixels are likely to contain the same materials, and can thus incorporate structural and textural
information from neighboring pixels. We refer to this method as spatial NMU, and apply the technique on the
cuprite dataset and show that it performs better than NMU, and competes favorably with the popular Vertex
Component Analysis (VCA) method.'?

2. SPATTAL NONNEGATIVE MATRIX UNDERAPPROXIMATION

The objective of this section is to design an algorithm to solve NMU problem (1.2) while taking the local
information into account. The typical approach is to add a regularization term into the objective function. We

propose here to use the following
m
> 2 lmi—al,

i=1 jeEN(4)
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where N (i) is the set of neighboring pixels of pixel i. The ¢;-norm is suitable for image analysis because it is
able to preserve the edges (using the £2-norm would smooth them out), see'® > and the references therein where
the same penalty term is used for HSI.

Let us construct the ‘neighbor’ matrix N as follows. Each pair (4, j) of neighboring pixels with 1 <i < j < m,
i € N(j) and j € N(i) corresponds to a row (say at position k) of matrix N € REX™ with
N(k,i)=1and N(k,j) = —1, (2.1)

so that .

> lwi—al=2| Nz

i=1 jEN(4)
Notice that K, the number of neighboring pairs, is proportional to the number of pixels in the image. In this
paper, we define the neighboring pixels as the adjacent pixels (hence each pixel has at most four neighbors and
K <4m).
2.1 Lagrangian Dual
In Ref.,8 approximate solutions of NMU (1.2) are obtained by solving the Lagrangian dual

max min L(z,y,A) = | M~ oy3 + 23 (@y" — M)Ay, (2.2)

A>0 2>0,y> —
]

where A € R"*" is the matrix containing the Lagrangian multipliers. This is achieved by applying the following
alternating scheme

L. x < argming L(7,y, A) = max (0, %)

2. y < argmings, L(z, §, A) = max (07 (M—A)Tw>.

Tz
3. A+ max(0, A+ ap(zy” — M)), where ay, is a square summable but not summable sequence (e.g., ax = 1),
as used in online algorithms.'® This is projected gradient step since VA L(Z,y, A) = 2(xy” — M).

In order to increase the spatial coherence, we are going to modify the update of x to take into account the
regularization term ||[Nz|;.

Equivalent Lagrangian Relaxation
For a fixed A, the problem, ming>¢ >0 L(x, y, A), is called a Lagrangian relaxation of (1.2). Let us introduce

a variable o > 0 and fix the norms of x and y to one to obtain the following equivalent problem

min  —202T (M — A)y + o2 ||zy” ||%, such that |z]|s = ||ly|l2 = 1. (2.3)
c>0,2>0,y>0 ———
=1

For any fixed (z, y), the minimum of (2.3) is achieved at o* (z, y) = max(0, 27 (M —A)y). Assuming z7 (M —A)y >
0 (otherwise o is equal to zero and we have a trivial solution), (2.3) is equivalent to

T — = =
 ax o (M — A)y, such that ||z]|2 = ||ly]l2 = 1. (2.4)

In order to improve the spatial coherence in x, we add the regularization term described in the previous section
and, for a fixed y, our goal is to solve

T M
max X M — A - = N.T .
z>0,||z]|2=1 ( )y 2 || Hl

In the following, we use iteratively re-weighted least squares and a simple gradient scheme to find an approximate
solution to this subproblem.
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2.2 Iteratively Re-Weighted Least Squares (IRWLS)
Consider problems of the type

T H
ma; Ay — =||Nz|1, 2.5
pplhax @ Ay 5 IVl (255)

and assume for now that the optimal objective function value is positive (see Section 2.3 for a discussion). Then
we can replace the constraint ||x|2 = 1 with ||z|l2 < 1 (in fact, the constraint will be active at optimality since
multiplying 2 by a constant factor multiplies the objective function by the same factor). Unfortunately, the
term || Nz||; is non-differentiable and computationally difficult to work with. In this paper, we propose to use
iteratively re-weighted least squares (IRWLS):!7 assuming the vector z is positive, we have that

2’12 2
Izl = |zl = > = = [lwo 23,
; |ZZ|

%

1
V=il
2z at the previous iteration. Denote z(F) as z at the k" iteration. Then ||z||; is approximated at the (k + 1)t

iteration with |2/ , where w® = (|2 +¢)7%3 for a small positive constant €. In (2.5), |[Nz||; is then
w (k) 7 7

replaced at the (k + 1)* iteration with

where w; = , Vi, and ‘o’ is the component-wise product. IRWLS fixes the weight w based on the value of

[Nzl & w® o (Na)|3 = [WO N3 = 2T (VWO W® N,

where w" = (|N2®)|; +€)=1/2 i, () is the k' iterate, and W) = diag(w®) (i.e., W® is a diagonal matrix
whose diagonal entries are given by the entries of w(®)). Hence the subproblem (2.5) is now a convex quadratic
program:
T KT
=x'Ay—S2'B 2.6
X flz)=a"Ay - 5 «" Bu, (2.6)
where B = NTW(k)TW(k)N = 0 at the (k + 1)'M iteration. For this preliminary work, we propose to solve
problem (2.6) with a simple projected gradient scheme!® which guarantees the objective function to decrease:

z+ P (:c—i— %Vf(m)) , Vf(x)=Ay— uBz,

where L is the Lipschitz constant of V f(z) (which is equal to the largest eigenvalue of B), and P is the projection
onto the set {x € R™ | x > 0,]||z||2 < 1}, given by

max(z,0) B
Py = Tmatom i llmax(z,0)ll2 > 1,
max(z,0) otherwise.

Since B is a very large (but sparse) K-by-K matrix, it is computational costly to compute exactly its largest
eigenvalue. Instead, since B is sparse, we propose to use several steps of the power method (see step 12 of
Algorithm 1). Notice that the power method underestimates the Lipschitz constant, which allows the algorithm
to initially take larger steps. In the worst-case, this scheme requires O(%) iterations, where € is the desired
accuracy for the objective function. In further work, we plan to use a fast gradient method requiring only

@) (\/§> iterations.1®

REMARK 1. We have also implemented a subgradient method to solve (2.5) similarly as in Ref.,’# but convergence
was much slower and the step length strategy is much more difficult to handle.

REMARK 2. Because the {1-norm penalty term |Nz||1 is a regularization term and since the ultimate goal is
to increase the spatial coherence in the solution, the fact that ||Nzl||1 is somehow loosely approximated is not
crucial, while it makes the subproblems much more easily solvable.

Finally, Algorithm 1 gives the pseudocode for the proposed alternating scheme for increasing the spatial
coherence in NMU solutions: A and y are updated similarly as in the original NMU algorithm while x is updated
as described above by taking into account the ¢1-norm penalty term. We initialize (x,y, A) with an approximate
solution of (2.2) using the algorithm from Ref. The code is available at https://sites.google.com/site/
nicolasgillis/.
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Algorithm 1 NMU incorporating spatial information

Require: M € RTX", r > 0, maxiter, A > 0, € > 0, iter.
Ensure: (U,V) € RT*" x R s.t. UVT < M.

1: Generate the matrix N; % see Equation (2.1)
2: fork =1:rdo
3: z =rand(); % Estimate of the eigenvector of B associated with the largest eigenvalue

4 % Intialization of (z,y) with an approximate solution to NMU (1.2), see Ref.”
5: [, y, A] = rank-one underapproximation(M);
6: ukex;vkey;qﬂ—m;yem;
7 w; = (I[Nz|; + €)% W = diag(w); % Initialization of IRWLS weights
8 for p = 1 : maxiter do
9: A=M —A;
10: % Update of =
11: B = (WN)T(WN);
12: for | = 1: iter, 2= Bz; z = m; end % Power method
13: L =2"Bz; % Approximated Lipschitz constant
14: forl =1 :|| itenr do
Ayl .
15: = A
16: Vf(x) = Ay — uBx;
17 z+ P(z+ £V f(z));
18: end for
19: % Update of y
20: Y < max (O, (M — A)T:Z?); if y#£0, y<« m; endif
21: % Update of A and save (z,y)
22: if £ # 0 and y # 0 then
23: o = 2T Ay; up + x; v, < oy;
24: A <+ max (O,A — % (M — ukvg));
25: % Update the IRWLS weights
26: w; = (|Nz|; + 6)—0.5; W = diag(w);
27: else
A, u v
28 A3 MR Y s
29: end if
30: end for
31: M = max(0, M — uiv}l);
32: end for

2.3 Heuristic for the Choice of the Penalty Parameter p

In the previous section, we assumed that the optimal objective function value of problem (2.5) was nonnegative
so that the solution 2 is not forced to zero (which would lead to a trivial solution). If the current iterate z(*)
has norm one, then we ideally would like the next iterate P (z(¥) + %Vf(z(k))) to have norm one as well, i.e.,
the gradient direction does not point towards zero. A necessary and sufficient (but rather strong) condition is
to require z(k)TVf(x(k)) > 0 (in fact, the gradient of the constraints Y, z7 — 1 < 0 is 2z) from which we would
have to take p such that ua:(k)TB:c(k) < x(k)TAy(k). Based on this observation, we have tried different heuristics
and it seems that the following choice works best:

14yl

M, for some \ € [O, 1]

p=A
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In contrast, we observed that fixing the value of y a priori is rather difficult and requires one to take different
values at each step of the NMU recursion. A value of A between 0.1 and 0.5 seems to work well in practice (see
Section 3). A more detailed analysis and a better choice for the parameter u are topics for further research.

3. NUMERICAL EXPERIMENTS - CUPRITE DATASET

We now apply NMU and spatial NMU on the cuprite dataset!. Cuprite is a mining area in southern Nevada
with mostly mineral and very little vegetation, located approximately 200km northwest of Las Vegas, see, e.g.,'3
for more information and http://speclab.cr.usgs.gov/PAPERS. imspec.evol/aviris.evolution.html. It
consists of 188 images, each having 250 x 191 pixels, and is composed of about 20 different materials (minerals).
We use the following parameters for Algorithm 1: maxiter = 100, A = 0.1, ¢ = 1073, and iter = 10. Figures 1
and 2 display the first 16 basis elements obtained with NMU and spatial NMU respectively, while Figure 3
displays other basis elements extracted by spatial NMU further in the recursion. Spatial NMU clearly generates
a better decomposition, being able to separate more materials and obtaining basis elements with less noise
and better spatial coherence. Moreover, spatial NMU preserves the edges of the constitutive materials. These
properties can be easily observed, for example, on the seventh basis elements obtained with NMU and spatial
NMU (Chalcedony).

Notice that some basis elements obtained with spatial NMU are still rather noisy; in particular the tenth and
twelfth basis elements. Increasing the penalty p allows one to improve upon these results, see Figure 4, where
we used A = 0.3 (instead of A = 0.1) allowing the extracted materials to appear much more clearly.

Table 1 gives the materials present in the the basis elements extracted by spatial NMU. Some materials are
particularly well separated: Hematite (a2), Alunite (a3), Chalcedony (b3), Kaolinite (b4), Muscovite (c1 and
£2), Montmorillonite (¢3), Alunite-K (d3) and Koalinite wxl (e4), while others remain mixed, e.g., jarosite (fl)
is mixed with some Hematite. (In future work, we plan to include both sparsity and spatial information which
will allow us to separate materials in a more efficient way.)

(1) ©) (3) 4)
. . . Kaolinite #1
(a) Mixture Hematite Alunite Goethite
Muscovite Amorphous iron oxydes ..
(b) Montmorillonite Goethite Chalcedony Kaolinite 71
Hematite
(c) Muscovite Muscovite Montmorillonite Kaolinite #2
Buddingtonite
Alunite-K Muscovite . . . .
(d) Goothite Kaolinite 3 Alunite-K Fine-grained Hematite
(e) Hematite Nontronite Nontronite Kaolinite wxl
() Jarosite Muscovite Buddingtonite Desert Varnish

Table 1. Classification: materials present in the abundance maps generated by spatial NMU, see Figures 2 and 3.

Because of the recursive procedure in generating U and V by NMU, the factor V' does not correspond directly
to the spectral signatures of the extracted materials, cf. the discussion in.'?> Many approaches are possible to
obtain the spectral signatures from the abundance maps. We propose here a simple strategy: we take the
weighted average of the spectral signatures of the pixels present in the corresponding abundance map, i.e., for
the ith abundance map u;, we take

S; = Z U}ﬂ‘m{.
k

Figure 5 displays some of the spectral signatures hence obtained, compared with the spectral signatures from
the USGS library (http://speclab.cr.usgs.gov/spectral.lib06/) and the ones obtained with the Vertex
Component Analysis (VCA) algorithm.'® Spatial NMU performs similarly as VCA and is able to extract some

fAvailable at http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
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materials that were not extracted by VCA (e.g., Chalcedony and Jarosite) and generate spatially more coherent
abundance maps (the ones obtained from the VCA spectral signatures are much more noisy and difficult to
interpret, see'?).

4. CONCLUSIONS

In summary, we have extended the original nonnegative matrix underapproximation model by formulating the
spatial closeness of hyperspectral pixels using an /1-norm regularization term. Thus the material constitutions
of neighboring pixels are constrained to be similar, which effectively reduces the noise often seen in abundance
maps produced by linear unmixing models. Since /;-norm penalty terms are generally difficult to work with, we
relaxed it with iteratively re-weighted least squares to convert it into a convex quadratic program, which is then
solved with a projected gradient scheme. Experiments on the Cuprite dataset show comparatively better results,
especially in terms of the sharpness of abundance maps, and even shows extracted materials not obtained by the
VCA algorithm. Future work will include refinement of our spatial NMU algorithm and numerical evaluations
on additional hyperspectral datasets.
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Figure 1. First 16 abundance maps extracted by NMU. (Light tones indicate a high degree of membership.)
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Figure 2. First 16 abundance maps extracted by spatial NMU (A = 0.1), see Table 1 for the classification. (Light tones
indicate a high degree of membership.)
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Figure 3. Other abundance maps extracted by Spatial NMU (A = 0.1), see Table 1 for the classification. (Light tones
indicate a high degree of membership.)

(i) (i) (iii) (iv)
Figure 4. (i) Tenth basis element obtained with spatial NMU for A = 0.1, and (ii) for A = 0.3. (iii) Twelfth basis
element obtained with spatial NMU for A = 0.1, and (iv) for A = 0.3.
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Figure 5. Spectral signatures from the USGS library (continuous black curves), spectral signatures obtained with spatial

NMU (dashed-dotted red curves), and with VCA (dashed blue curves).
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