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Abstract. Given a nonnegative matrix M , the orthogonal nonnegative
matrix factorization (ONMF) problem consists in finding a nonnegative
matrix U and an orthogonal nonnegative matrix V such that the product
UV is as close as possible to M . The importance of ONMF comes from
its tight connection with data clustering. In this paper, we propose a
new ONMF method, called ONP-MF, and we show that it outperforms
other ONMF algorithms in terms of accuracy on several datasets in text
clustering and hyperspectral unmixing.

1 Introduction

We consider the orthogonal nonnegative matrix factorization (ONMF) problem,
which can be formulated as follows. Given an m-by-n nonnegative matrix M
and a factorization rank k (with k < n), solve

min
U∈Rm×k,V ∈Rk×n

||M − UV ||2F (1a)

subject to U ≥ 0, V ≥ 0, (1b)

V V T = Ik, (1c)

where ‖·‖F denotes the Frobenius norm, (1b) means that the entries of matrices
U and V are nonnegative, and Ik stands for the k×k identity matrix. The ONMF
problem (1) can be viewed as the well-known nonnegative matrix factorization
(NMF) problem, (1a)-(1b), with an additional orthogonality constraint, (1c),
that considerably modifies the nature of the problem. In particular, it is readily
seen that constraints (1b) and (1c) imply that V has at most one nonzero entry in
each column; we let ij denote the index of the nonzero entry (if any) in column j
of V . Therefore, any solution (U∗, V ∗) of (1) has the following property: for j =
1, . . . , n, index ij is such that column ij of U∗ achieves the smallest angle with
column j of data matrix M . Hence it is clear that the ONMF problem relates
to data clustering and, indeed, empirical evidence suggests that the additional
orthogonality constraint (1c) can improve clustering performance compared to
standard NMF or k-means [1, 2].



Current approaches to ONMF problems are based on suitable modifications
of the algorithms developed for the original NMF problem. They enforce non-
negativity of the iterates at each step, and strive to attain orthogonality at
the limit (but never attain exactly orthogonal solutions). This can be done us-
ing a proper penalization term [3], a projection matrix formulation [2] or by
choosing a suitable search direction [1]. Note that, for a given data matrix M ,
different methods may converge to different pairs (U, V ), where the objective
function (1a) may take different values. Furthermore, under random initializa-
tion, which is used by most NMF algorithms [4], two runs of the same method
may yield different results. This situation is due to the multimodal nature of the
ONMF problem (1)—it may have multiple local minima—along with the inabil-
ity of practical methods to guarantee more than convergence to local, possibly
nonglobal, minimizers. Hence, ONMF methods not only differ in their compu-
tational cost, but also in the quality of the clustering encoded in the returned
pair (U, V ) for a given problem.

In this paper, we propose a new ONMF method, referred to as orthogonal
nonnegatively penalized matrix factorization (ONP-MF), that relies on a strat-
egy reversal: instead of enforcing nonnegativity of the iterates at each step and
striving to attain orthogonality at the limit, ONP-MF enforces orthogonality of
its iterates while obtaining nonnegativity at the limit. A resulting advantage
of ONP-MF is that rows of factor V can be initialized directly with the right
singular vectors of M , whereas the other methods require a prior alteration of
the singular vectors that makes them nonnegative [4]. We show that, on some
clustering problems, the new algorithm outperforms other clustering methods,
including ONMF-based methods, in terms of clustering quality.

The proposed ONP-MF is introduced in Section 2, numerical experiments
are presented in Section 3, and conclusions are drawn in Section 4. An early
account of ONP-MF can be found in the technical report [5], where additional
numerical experiments are presented.

2 The ONP-MF algorithm

For an optimization problem such as (1), a standard bound-constrained La-
grangian approach [6, Algorithm 17.4] would typically only incorporate the or-
thogonality constraint (1c) in the augmented Lagrangian, while nonnegativity
constraints (1b) would be enforced explicitly. This yields an algorithm in the
spirit of the current approaches mentioned in the introduction. However, prob-
lem (1) is special in that the equality constraints (1c) take a gentle form. Indeed,
the feasible set for (1c), St(k, n) := {V ∈ R

k×n : V V T = Ik}, is a well-known
manifold termed Stiefel manifold ; see, e.g., [7, 8]. In particular, as we will see,
enforcing the orthogonality constraint (1c) can be done at a low computational
cost. This prompts us to take a reverse approach and enforce the orthogonality
constraint (1c) while incorporating the nonnegativity constraints on V in the
augmented Lagrangian. The nonnegativity constraints on U remain explicitly
enforced. We now work out the optimization scheme in more details.



Consider the following augmented Lagrangian, defined for a matrix of La-
grange multipliers Λ ∈ R

k×n
+ associated to the nonnegativity constraints on V :

Lρ(U, V, Λ) =
1

2
||M − UV ||2F + 〈Λ,−V 〉+

ρ

2
||min(V, 0)||2F , (2)

where ρ is the (positive) quadratic penalty parameter. Observe that, regardless
of the value of ρ, the solutions (U, V ) of ONMF (1) are the solutions of

min
U≥0,V V T=Ik

max
Λ≥0

Lρ(U, V, Λ).

We propose a simple alternating scheme to update variables U , V , Λ while
explicitly enforcing U ≥ 0 and V V T = Ik:

1. For V and Λ fixed, the optimal U can be computed by solving a nonnegative
least squares problem, i.e., by letting U ← argminX∈R

m×k

+

‖M − XV ‖2F .

We use the efficient active-set method proposed in [9].1

2. For U and Λ fixed, we update matrix V by means of a projected gradi-
ent step. Computing the projection of a matrix V̂ onto the feasible set
St(k, n) of orthogonal matrices amounts to solving the following problem:
ProjSt(V̂ ) = argminX ||V̂ −X ||2F s.t. XXT = Ik. When V̂ has full (row)

rank, the solution is unique and given by (V̂ V̂ T)−1/2V̂ , which can be rec-
ognized as the orthonormal factor of a reverse polar decomposition of V̂ ;
see, e.g., [10] or [11, §3.3]. Our projected gradient scheme then reads:

V ← ProjSt

(

V − β∇V Lρ(U, V, Λ)
)

, (3)

where the step length β is chosen with a backtracking line search as in [12].

3. Finally, Lagrange multipliers are updated in order to penalize the negative
entries of V : Λ ← max (0, Λ− αV ). As −V is the gradient of function
Λ 7→ Lρ(U, V, Λ), this update is a (projected) gradient step with step
length α. We choose a predefined step length sequence α = α0/t, where t
is the iteration count and α0 > 0 is a constant parameter, that satisfies the
usual “square summable but not summable” condition of online gradient
methods [13, (5.1)].

To initialize the algorithm, we set Λ to zero and choose for the rows of V the
first k right singular vectors of the data matrix M , which can be obtained with
a singular value decomposition (SVD). The quadratic penalty parameter ρ is
initially fixed to a given small value ρ0 and then increased after each iteration
using ρ← Cρ for some C > 1. The parameters of ONP-MF are chosen as follows:
α0 = 100, ρ0 = 0.01 and C = 1.01 for all datasets. Our alternating procedure
will be referred to as orthogonal nonnegatively penalized matrix factorization
(ONP-MF).

1Software: http://www.cc.gatech.edu/∼hpark/nmfsoftware.php.



3 Numerical Experiments

In this section, we report some preliminary numerical experiments that illustrate
the clustering ability of ONP-MF in comparison with various state-of-the-art al-
gorithms (a more detailed comparison is under investigation, and not possible
here due to the space limitation). First, we compare ONP-MF with two recently
proposed methods for ONMF: CHNMF from Choi [1] and PNMF from Yang and
Oja [2] (Euclidean variant). Next, since our ONP-MF is initialized deterministi-
cally using an SVD whereas the other ONMF algorithms (CHNMF and PNMF)
are initialized with randomly generated factors, we propose a fairer comparison
by also endowing CHNMF and PNMF with an SVD-based initialization [4] (SVD
cannot be used directly because its factors are not necessarily nonnegative). We
call the resulting algorithms CH(SVD) and P(SVD), respectively. Finally, we
also report the results from two standard EM clustering algorithms, namely k-
means and spherical k-means (SKM) (see, e.g., [14]). ONMF algorithms are run
until an algorithm-specific stopping condition is met, or a maximum number of
iterations is reached. All three ONMF algorithms have roughly the same com-
putational cost, linear in m and n (that is, O(mn) operations per iteration),
although it appears that ONP-MF is slightly slower in practice; see [5] for more
details on stopping conditions, scalability and learning times. However, as we
will see below, ONP-MF has the advantage that a single SVD initialization is
very effective. For all algorithms but ONP-MF, 30 runs with randomly generated
initializations were executed for each dataset.

3.1 Text clustering

We selected nine well-known preprocessed document databases described in [15].
Each dataset is represented by a term-by-document matrix of varying charac-

Table 1: Average accuracy obtained by the different algorithms (best in bold).
Dataset k-means SKM CHNMF CH(SVD) PNMF P(SVD) ONP-MF
classic 0.627 0.575 0.543 0.559 0.534 0.548 0.538
ohscal 0.286 0.435 0.333 0.339 0.343 0.353 0.340
hitech 0.319 0.492 0.411 0.414 0.443 0.471 0.470
reviews 0.441 0.676 0.523 0.494 0.533 0.503 0.510
sports 0.395 0.452 0.431 0.491 0.443 0.410 0.500

la1 0.359 0.475 0.519 0.444 0.568 0.660 0.658
la2 0.330 0.483 0.435 0.422 0.472 0.510 0.528

k1b 0.681 0.647 0.750 0.606 0.755 0.782 0.790

teristics. As a performance indicator, we use the accuracy: given a clustering
{πi}

k
i=1 and the true classes {Li}

k
i=1 of the n elements of the dataset, we have

Accuracy = max
P∈[1,2,...,k]

1

n

(

k
∑

i=1

|πi ∩ LP (i)|

)

∈ [0, 1],

where [1, 2, . . . , k] is the set of permutations of {1, 2, . . . , k}. Accuracies obtained
by the tested algorithms are reported in Table 1 (for algorithms with random



initialization, average accuracy is displayed). ONP-MF achieved the best per-
formance on three out of eight datasets (best method, tied with SKM), and
its performance was within 5% of the best on five out of eight datasets (best
method according to this criterion, the second best being P(SVD) with four
out of eight). In particular, ONP-MF performs in average better than all other
ONMF algorithms on these datasets.

3.2 Hyperspectral Unmixing

A hyperspectral image is a set of images of the same object or scene taken at
different wavelengths. Each image is acquired by measuring the reflectance (i.e.,
the fraction of incident electromagnetic power reflected) of each individual pixel
at a given wavelength. Our goal is to recognize the different materials appearing
in the image, such as grass, metal, etc. More precisely, we want to cluster the
columns of the wavelength-by-pixel reflectance matrix so that each cluster (a set
of pixels) corresponds to a particular material. In this paper, we report results
for a dataset on which superior performance of ONP-MF is particularly obvious;
more results can be found in the technical report [5]. The dataset is a synthetic
dataset from [16], see Figure 1 (top row), in clean conditions (i.e., without noise
or blur). It represents the Hubble telescope and is made up of eight different
materials, each having a specific spectral signature. Recall that each randomly
initialized algorithm is run 30 times, and we display the best solution obtained
(w.r.t. the error). Figure 1 displays the clustering obtained by the different
algorithms. Unlike the other methods, ONP-MF is able to successfully recover
all eight materials without any visible mixing (using a single initialization).

Fig. 1: Hubble dataset. On the left: sample images and true materials; from top
to bottom: k-means, SKM, CHNMF, CH(SVD), PNMF, P(SVD), ONP-MF.



4 Conclusion

We have proposed ONP-MF, an ONMF method that, in contrast with exist-
ing methods, enforces the orthogonality condition (1c) at each iteration while
obtaining nonnegativity of the factors at the limit. In spite of the simple im-
plementation of the concept, based on an alternating scheme applied to an aug-
mented Lagrangian, the new method is observed to outperform other clustering
algorithms in terms of solution quality on several datasets. Since initialization
is known to be an important component in the design of successful NMF meth-
ods [4], we believe that initializing the V factor with the unaltered right singular
vectors of the data matrix, which is allowed by the workings of ONP-MF but im-
possible with other ONMF methods, plays an instrumental role in the clustering
performance of ONP-MF observed in numerical experiments.
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