Article (Scientific journals)
Electro-plasmonic-assisted biosensing of proteins and cells at the surface of optical fiber.
Lobry, Maxime; Loyez, Médéric; Debliquy, Marc et al.
2023In Biosensors and Bioelectronics, 220, p. 114867
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S0956566322009071-main.pdf
Publisher postprint (7.38 MB)
Request a copy

All documents in ORBi UMONS are protected by a user license.

Send to



Details



Keywords :
Biosensing; Cancer biomarker; Cancer cells; Electro-plasmonic; Fiber bragg grating; Optical fiber; Surface plasmon resonance; Gold; Proteins; Humans; Surface Plasmon Resonance/methods; Proteins/analysis; Optical Fibers; Biosensing Techniques/methods; A.Fibres; Cancer biomarkers; Gold-coated; Limit of detection; Plasmonic biosensors; Plasmonics; Surface-plasmon resonance; Biosensing Techniques; Biotechnology; Biophysics; Biomedical Engineering; Electrochemistry; General Medicine
Abstract :
[en] An electro-plasmonic biosensor is used to attract proteins and cells on the surface of a fiber optic probe by controlled biomolecular migration. Concentrating targets on a high performance plasmon-assisted fiber grating sensor leads to a drastic enhancement of the limit of detection. This architecture relies on a biofunctionalized gold coated tilted fiber Bragg grating (TFBG) that operates as a working electrode to enable electrophoresis in the probed medium. The applied electric field triggers the attraction of proteins over a distance of almost 250 μm from the sensor surface, which is more than two orders of magnitude larger than the intrinsic penetration depth of the plasmon wave. Quantitative determination of target analytes was performed by cyclic voltammetry measurements using the gold coated fiber as an electrode, simultaneously with optical transmission measurements of the underlying fiber grating. In our work, these electro-plasmonic optrodes were used against a clinically-relevant biomarker in breast cancer diagnosis, namely HER2 (Human Epidermal Growth Factor Receptor-2). In vitro assays confirm that their limit of detection lies in the subpicomolar range for proteins, which is beyond reach of similar sensors without voltammetry. The improved detection limit is further facilitated by an improvement of the signal-to-noise ratio of the read-out process. Whole cell capture is finally demonstrated by the same micro-system.
Research center :
CRIM - Ingénierie des matériaux
Disciplines :
Chemical engineering
Author, co-author :
Lobry, Maxime  ;  Université de Mons - UMONS
Loyez, Médéric  ;  Université de Mons - UMONS > Faculté des Science > Service de Protéomie et Microbiologie
Debliquy, Marc ;  Université de Mons - UMONS
Chah, Karima ;  Université de Mons - UMONS
Goormaghtigh, Erik;  Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Bld du Triomphe 2, 1050, Brussels, Belgium
Caucheteur, Christophe ;  Université de Mons - UMONS
Language :
English
Title :
Electro-plasmonic-assisted biosensing of proteins and cells at the surface of optical fiber.
Publication date :
15 January 2023
Journal title :
Biosensors and Bioelectronics
ISSN :
0956-5663
eISSN :
1873-4235
Publisher :
Elsevier Ltd, England
Volume :
220
Pages :
114867
Peer reviewed :
Peer Reviewed verified by ORBi
Research unit :
F502 - Science des Matériaux
Research institute :
Research Institute for Materials Science and Engineering
Funders :
Fonds De La Recherche Scientifique - FNRS
Funding text :
This work was financially supported by the Fonds de la Recherche Scientifique - F.R.S. - FNRS under Grants of Maxime Lobry, Médéric Loyez and Christophe Caucheteur and Grant nO001518F (EOS-convention 30467715).
Available on ORBi UMONS :
since 06 January 2023

Statistics


Number of views
16 (4 by UMONS)
Number of downloads
0 (0 by UMONS)

Scopus citations®
 
13
Scopus citations®
without self-citations
12
OpenCitations
 
7

Bibliography


Similar publications



Contact ORBi UMONS