Louisy, E., Fontaine, G., Gaucher, V., Bonnet, F., Stoclet, G., Comparative studies of thermal and mechanical properties of macrocyclic versus linear polylactide. Polym. Bull. 78 (2021), 3763–3783.
Avérous, L., Chapter 21 - polylactic acid: synthesis, properties and applicationsn. Belgacem, M.N., Gandini, A., (eds.) Monomers, Polymers and Composites from Renewable Resources, 2008, Elsevier, Amsterdam, 433–450.
Kim, D.Y., Lee, J.B., Lee, D.Y., Seo, K.H., Plasticization effect of poly(lactic acid) in the poly(butylene adipate–co–terephthalate) blown film for tear resistance improvement. Polymers, 12(9), 2020, 1904.
Martin, O., Avérous, L., Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:14 (2001), 6209–6219.
Müller, A.J., Ávila, M., Saenz, G., Salazar, J., CHAPTER 3 crystallization of PLA-based materials, poly(lactic acid) science and technology: processing, properties, additives and applications. The Royal Society of Chemistry, 2015, 66–98.
Brüster, B., Montesinos, A., Reumaux, P., Pérez-Camargo, R.A., Mugica, A., Zubitur, M., Müller, A.J., Dubois, P., Addiego, F., Crystallization kinetics of polylactide: reactive plasticization and reprocessing effects. Polym. Degrad. Stab. 148 (2018), 56–66.
Jiang, L., Shen, T., Xu, P., Zhao, X., Li, X., Dong, W., Ma, P., Chen, M., Crystallization modification of poly(lactide) by using nucleating agents and stereocomplexation. e-Polymers, 16, 2016, 1.
Tsuji, H., Takai, H., Fukuda, N., Takikawa, H., Non-isothermal crystallization behavior of Poly(L-lactic acid) in the presence of various additives. Macromol. Mater. Eng. 291:4 (2006), 325–335.
Nam, J.Y., Sinha Ray, S., Okamoto, M., Crystallization behavior and morphology of biodegradable Polylactide/Layered silicate nanocomposite. Macromolecules 36:19 (2003), 7126–7131.
Kovalcik, A., Pérez-Camargo, R.A., Fürst, C., Kucharczyk, P., Müller, A.J., Nucleating efficiency and thermal stability of industrial non-purified lignins and ultrafine talc in poly(lactic acid) (PLA). Polym. Degrad. Stab. 142 (2017), 244–254.
He, L., Song, F., Li, D.-F., Zhao, X., Wang, X.-L., Wang, Y.-Z., Strong and tough polylactic acid based composites enabled by simultaneous reinforcement and interfacial compatibilization of microfibrillated cellulose. ACS Sustain. Chem. Eng. 8:3 (2020), 1573–1582.
Anderson, K.S., Hillmyer, M.A., Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47:6 (2006), 2030–2035.
Schmidt, S.C., Hillmyer, M.A., Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J. Polym. Sci. B Polym. Phys. 39:3 (2001), 300–313.
Tsuji, H., Poly(lactic acid) stereocomplexes: a decade of progress. Adv. Drug Deliv. Rev. 107 (2016), 97–135.
Nofar, M., Sacligil, D., Carreau, P.J., Kamal, M.R., Heuzey, M.-C., Poly (lactic acid) blends: processing, properties and applications. Int. J. Biol. Macromol. 125 (2019), 307–360.
Giacobazzi, G., Rizzuto, M., Zubitur, M., Mugica, A., Caretti, D., Müller, A.J., Crystallization kinetics as a sensitive tool to detect degradation in poly(lactide)/poly(e-caprolactone)/ PCL-co-PC copolymers blends. Polym. Degrad. Stab., 168, 2019, 108939.
Di Lorenzo, M.L., Androsch, R., Accelerated crystallization of high molar mass poly(l/d-lactic acid) by blending with low molar mass poly(l-lactic acid). Eur. Polym. J. 100 (2018), 172–177.
Haque, F.M., Grayson, S.M., The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 12:5 (2020), 433–444.
Liénard, R., De Winter, J., Coulembier, O., Cyclic polymers: advances in their synthesis, properties, and biomedical applications. J. Polym. Sci. 58:11 (2020), 1481–1502.
Tezuka, Y., Cyclic and topological polymers: ongoing innovations and upcoming breakthroughs. React. Funct. Polym., 148, 2020, 104489.
Golba, B., Benetti, E.M., De Geest, B.G., Biomaterials applications of cyclic polymers. Biomaterials, 120468, 2020.
Pérez, R.A., Córdova, M.E., López, J.V., Hoskins, J.N., Zhang, B., Grayson, S.M., Müller, A.J., Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(e-caprolactone)s. React. Funct. Polym. 80 (2014), 71–82.
Pérez-Camargo, R.A., Mugica, A., Zubitur, M., Müller, A.J., Crystallization of cyclic polymers. Auriemma, F., Alfonso, G.C., de Rosa, C., (eds.) olymer Crystallization I: From Chain Microstructure to Processing, 2017, Springer International Publishing, Cham, 93–132.
Zaldua, N., Liénard, R., Josse, T., Zubitur, M., Mugica, A., Iturrospe, A., Arbe, A., De Winter, J., Coulembier, O., Müller, A.J., Influence of chain topology (Cyclic versus Linear) on the nucleation and isothermal crystallization of Poly(l-lactide) and Poly(d-lactide). Macromolecules 51:5 (2018), 1718–1732.
Tezuka, Y., Ohtsuka, T., Adachi, K., Komiya, R., Ohno, N., Okui, N., A defect-free ring polymer: size-controlled cyclic Poly(tetrahydrofuran) consisting exclusively of the monomer unit. Macromol. Rapid Commun. 29:14 (2008), 1237–1241.
Kitahara, T., Yamazaki, S., Kimura, K., Effects of topological constraint and knot entanglement on the crystal growth of polymers proved by growth rate of spherulite of cyclic polyethylene. KOBUNSHI RONBUNSHU 68:10 (2011), 694–701.
Nam, S., Leisen, J., Breedveld, V., Beckham, H.W., Dynamics of unentangled cyclic and linear poly(oxyethylene) melts. Polymer 49:25 (2008), 5467–5473.
Cooke, J., Viras, K., Yu, G.-E., Sun, T., Yonemitsu, T., Ryan, A.J., Price, C., Booth, C., Large cyclic poly(oxyethylene)s: chain folding in the crystalline state studied by raman spectroscopy, X-rayscattering, and differential scanning calorimetry. Macromolecules 31:9 (1998), 3030–3039.
Zardalidis, G., Mars, J., Allgaier, J., Mezger, M., Richter, D., Floudas, G., Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains. Soft Matter 12:39 (2016), 8124–8134.
Su, H.-H., Chen, H.-L., Díaz, A., Casas, M.T., Puiggalí, J., Hoskins, J.N., Grayson, S.M., Pérez, R.A., Müller, A.J., New insights on the crystallization and melting of cyclic PCL chains on the basis of a modified Thomson-gibbs equation. Polymer 54:2 (2013), 846–859.
Pérez, R.A., López, J.V., Hoskins, J.N., Zhang, B., Grayson, S.M., Casas, M.T., Puiggalí, J., Müller, A.J., Nucleation and antinucleation effects of functionalized carbon nanotubes on cyclic and linear Poly(e-caprolactones). Macromolecules 47:11 (2014), 3553–3566.
López, J.V., Pérez-Camargo, R.A., Zhang, B., Grayson, S.M., Müller, A.J., The influence of small amounts of linear polycaprolactone chains on the crystallization of cyclic analogue molecules. RSC Adv. 6:53 (2016), 48049–48063.
Schäler, K., Ostas, E., Schröter, K., Thurn-Albrecht, T., Binder, W.H., Saalwächter, K., Influence of chain topology on polymer dynamics and crystallization. investigation of linear and cyclic Poly(e-caprolactone)s by 1H solid-state NMR methods. Macromolecules 44:8 (2011), 2743–2754.
Lee, K.S., Wegner, G., Linear and cyclic alkanes (CnH2n 2, CNH2n) with n > 100. Synthesis and evidence for chain-folding. Makromol. Chem. Rapid 6:3 (1985), 203–208.
Bielawski, C.W., Benitez, D., Grubbs, R.H., An “Endless” route to cyclic polymers. Science 297:5589 (2002), 2041–2044.
Córdova, M.E., Lorenzo, A.T., Müller, A.J., Hoskins, J.N., Grayson, S.M., A comparative study on the crystallization behavior of analogous linear and cyclic Poly(e-caprolactones). Macromolecules 44:7 (2011), 1742–1746.
Shin, E.J., Jeong, W., Brown, H.A., Koo, B.J., Hedrick, J.L., Waymouth, R.M., Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic Poly(e-caprolactone)s. Macromolecules 44:8 (2011), 2773–2779.
Ryu, W., Xiang, L., Jeon, T., Ree, M., Melt density, equilibrium melting temperature, and crystallization characteristics of highly pure cyclic poly(e-Caprolactone)s. Polymer, 207, 2020, 122899.
Takeshita, H., Poovarodom, M., Kiya, T., Arai, F., Takenaka, K., Miya, M., Shiomi, T., Crystallization behavior and chain folding manner of cyclic, star and linear poly(tetrahydrofuran)s. Polymer 53:23 (2012), 5375–5384.
Ono, R., Atarashi, H., Yamazaki, S., Kimura, K., Molecular weight dependence of the growth rate of spherulite of cyclic poly(e-caprolactone) polymerized by ring expansion reaction. Polymer, 194, 2020, 122403.
Iyer, K., Muthukumar, M., Langevin Dynamics Simulation of Crystallization of Ring Polymers, 148(24), 2018, 244904.
Xiao, H., Luo, C., Yan, D., Sommer, J.-U., Molecular dynamics simulation of crystallization cyclic polymer melts as compared to their linear counterparts. Macromolecules 50:24 (2017), 9796–9806.
Liu, R.-J., Zhou, Z.-P., Liu, Y., Liang, Z.-P., Ming, Y.-Q., Hao, T.-F., Nie, Y.-J., Differences in crystallization behaviors between cyclic and linear polymer nanocomposites. Chin. J. Polym. Sci. 38:9 (2020), 1034–1044.
Subramanian, G., Shanbhag, S., Conformational properties of blends of cyclic and linear polymer melts. Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 77(1 Pt 1), 2008, 14.
Subramanian, G., A topology preserving method for generating equilibrated polymer melts in computer simulations. J. Chem. Phys., 133, 2010, 164902.
Tsalikis, D.G., Mavrantzas, V.G., Size and diffusivity of polymer rings in linear polymer matrices: the key role of threading events. Macromolecules 53:3 (2020), 803–820.
Tsalikis, D.G., Mavrantzas, V.G., Threading of ring Poly(ethylene oxide) molecules by linear chains in the melt. ACS Macro Lett. 3:8 (2014), 763–766.
Wang, W., Biswas, C.S., Huang, C., Zhang, H., Liu, C.-Y., Stadler, F.J., Du, B., Yan, Z.-C., Topological effect on effective local concentration and dynamics in linear/linear, ring/ring, and linear/ring miscible polymer blends. Macromolecules 53:2 (2020), 658–668.
Subramanian, G., Shanbhag, S., Self-diffusion in binary blends of cyclic and linear polymers. Macromolecules 41:19 (2008), 7239–7242.
Subramanian, G., Shanbhag, S., Conformational free energy of melts of ring-linear polymer blends. Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 80(4 Pt 1), 2009, 21.
Kruteva, M., Allgaier, J., Richter, D., Direct observation of two distinct diffusive modes for polymer rings in linear polymer matrices by pulsed field gradient (PFG) NMR. Macromolecules 50:23 (2017), 9482–9493.
Shin, E.J., Jones, A.E., Waymouth, R.M., Stereocomplexation in cyclic and linear polylactide blends. Macromolecules 45:1 (2012), 595–598.
Kapnistos, M., Lang, M., Vlassopoulos, D., Pyckhout-Hintzen, W., Richter, D., Cho, D., Chang, T., Rubinstein, M., Unexpected power-law stress relaxation of entangled ring polymers. Nat. Mater. 7:12 (2008), 997–1002.
Coulembier, O., Dubois, P., 4-Dimethylaminopyridine-based Organoactivation: From Simple Esterification to Lactide Ring-opening “Living” Polymerization, 50(9), 2012, 1672–1680.
Coulembier, O., De Winter, J., Josse, T., Mespouille, L., Gerbaux, P., Dubois, P., One-step synthesis of polylactide macrocycles from sparteine-initiated ROP. Polym. Chem. 5:6 (2014), 2103–2108.
Turnbull, D., Fisher, J.C., Rate of Nucleation in Condensed Systems, 17(1), 1949, 71–73.
Becker, R., Döring, W., Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, 416(8), 1935, 719–752.
Lorenzo, A.T., Arnal, M.L., Albuerne, J., Müller, A.J., DSC isothermal polymer crystallization kinetics measurements and the use of the avrami equation to fit the data: guidelines to avoid common problems. Polym. Test. 26:2 (2007), 222–231.
Avrami, M., Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 9:2 (1941), 177–184.
Lauritzen, J.I., Hoffman, J.D., Theory of formation of polymer crystals with folded chains in dilute solution. J. Res. Natl. Bur. Stand., Sect. A 64A:1 (1960), 73–102.
Hoffman, J.D., Lauritzen, J.I., Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J. Res. Natl. Bur. Stand., Sect. A 65A:4 (1961), 297–336.
OriginLab. Crystallization fit. https://www.originlab.com/fileExchange/details.aspx?fid=597, 2021 (Accessed March 09, 2021 2021).
Lorenzo, A.T., Müller, A.J., Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J. Polym. Sci. B Polym. Phys. 46:14 (2008), 1478–1487.
Okui, N., Umemoto, S., Kawano, R., Mamun, A., Temperature and molecular weight dependencies of polymer crystallization. Reiter, G., Strobl, G.R., (eds.) rProgress in Understanding of Polymer Crystallization, 2007, Springer Berlin Heidelberg, Berlin, Heidelberg, 391–425.