S. A. Argyros and R. G. Haydon, A hereditarily indecomposable L8-space that solves the scalar-plus-compact problem, Acta Math. 206 (2011), no. 1, 1-54, DOI 10.1007/s11511-011-0058-y. MR2784662 O7360
C. Ambrozie and V. Müller, Invariant subspaces for polynomially bounded operators, J. Funct. Anal. 213 (2004), no. 2, 321-345, DOI 10.1016/j.jfa.2003.12.004. MR2078629 O7391
C. Badea and G. Cassier, Constrained von Neumann inequalities, Adv. Math. 166 (2002), no. 2, 260-297, DOI 10.1006/aima.2001.2035. MR1895563 O7403
F. Bayart and É . Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics, vol. 179, Cambridge University Press, Cambridge, 2009, DOI 10.1017/CBO9780511581113. MR2533318 O7361, 7368
S. W. Brown, B. Chevreau, and C. Pearcy, On the structure of contraction operators. II, J. Funct. Anal. 76 (1988), no. 1, 30-55, DOI 10.1016/0022-1236(88)90047-X. MR923043 O7360, 7364, 7391, 7401
N. L. Carothers, A short course on Banach space theory, London Mathematical Society Student Texts, vol. 64, Cambridge University Press, Cambridge, 2005. MR2124948 O7374
I. Chalendar and J. Esterle, Le problème du sous-espace invariant (French), Development of mathematics 1950-2000, Birkhäuser, Basel, 2000, pp. 235-267. MR1796843 O7360
I. Chalendar and J. R. Partington, Modern approaches to the invariant-subspace problem, Cambridge Tracts in Mathematics, vol. 188, Cambridge University Press, Cambridge, 2011, DOI 10.1017/CBO9780511862434. MR2841051 O7360
J. B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR1070713 O7403
C. C. Cowen, An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators, J. Functional Analysis 36 (1980), no. 2, 169-184, DOI 10.1016/0022-1236(80)90098-1. MR569252 O7408
R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR1211634 O7375
T. Eisner, A "typical" contraction is unitary, Enseign. Math. (2) 56 (2010), no. 3-4, 403-410, DOI 10.4171/LEM/56-3-6. MR2769030 O7360
T. Eisner and T. Má trai, On typical properties of Hilbert space operators, Israel J. Math. 195 (2013), no. 1, 247-281, DOI 10.1007/s11856-012-0128-7. MR3101250 O7360, 7362, 7363, 7364, 7366, 7374, 7400, 7406
P. Enflo, On the invariant subspace problem for Banach spaces, Acta Math. 158 (1987), no. 3-4, 213-313, DOI 10.1007/BF02392260. MR892591 O7360
R. Godement, Thé orèmes taubé riens et thé orie spectrale (French), Ann. Sci. É cole Norm. Sup. (3) 64 (1947), 119-138 (1948). MR0023242 O7366
S. Grivaux and M. Roginskaya, On Read's type operators on Hilbert spaces, Int. Math. Res. Not. IMRN, posted on 2008, Art. ID rnn 083, 42, DOI 10.1093/imrn/rnn083. MR2439560 O7363
S. Grivaux and M. Roginskaya, A general approach to Read's type constructions of operators without non-trivial invariant closed subspaces, Proc. Lond. Math. Soc. (3) 109 (2014), no. 3, 596-652, DOI 10.1112/plms/pdu012. MR3260288 O7360, 7361, 7363
S. Grivaux, É . Matheron, and Q. Menet, Linear dynamical systems on Hilbert spaces: Typical properties and explicit examples, Mem. Amer. Math. Soc. 269 (2021), no. 1315, 0, DOI 10.1090/memo/1315. MR4238631 O7360, 7362, 7364, 7368, 7383, 7397, 7398, 7400
K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear chaos, Universitext, Springer, London, 2011, DOI 10.1007/978-1-4471-2170-1. MR2919812 O7361
D. W. Hadwin, E. A. Nordgren, H. Radjavi, and P. Rosenthal, An operator not satisfying Lomonosov's hypothesis, J. Functional Analysis 38 (1980), no. 3, 410-415, DOI 10.1016/0022-1236(80)90073-7. MR593088 O7407
P. R. Halmos, A Hilbert space problem book, 2nd ed., Graduate Texts in Mathematics, vol. 19, Springer-Verlag, New York-Berlin, 1982. Encyclopedia of Mathematics and its Applications, 17. MR675952 O7402
C.-H. Kan, A class of extreme Lp contractions, p " 1, 2, 8 and real 2 2 extreme matrices, Illinois J. Math. 30 (1986), no. 4, 612-635. MR857215 O7375
T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR1335452 O7374
A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995, DOI 10.1007/978-1-4612-4190-4. MR1321597 O7365, 7366, 7379, 7398
J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459-466. MR105017 O7374
F. Leó n-Saavedra and V. Müller, Rotations of hypercyclic and supercyclic operators, Integral Equations Operator Theory 50 (2004), no. 3, 385-391, DOI 10.1007/s00020-003-1299-8. MR2104261 O7393
J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR0500056 O7367, 7400
V. I. Lomonosov, Invariant subspaces of the family of operators that commute with a completely continuous operator (Russian), Funkcional. Anal. i Priložen. 7 (1973), no. 3, 55-56. MR0420305 O7360
R. A. Martí nez-Avendaño and P. Rosenthal, An introduction to operators on the Hardy-Hilbert space, Revised and enlarged edition, Graduate Texts in Mathematics, vol. 237, Springer, New York, 2007. O7402
V. Müller, Power bounded operators and supercyclic vectors. II, Proc. Amer. Math. Soc. 133 (2005), no. 10, 2997-3004, DOI 10.1090/S0002-9939-05-07829-9. MR2159778 O7363, 7364, 7393, 7400, 7401
H. Radjavi and P. Rosenthal, Invariant subspaces, 2nd ed., Dover Publications, Inc., Mineola, NY, 2003. MR2003221 O7360
C. J. Read, A solution to the invariant subspace problem, Bull. London Math. Soc. 16 (1984), no. 4, 337-401, DOI 10.1112/blms/16.4.337. MR749447 O7360, 7363
C. J. Read, A solution to the invariant subspace problem on the space l1, Bull. London Math. Soc. 17 (1985), no. 4, 305-317, DOI 10.1112/blms/17.4.305. MR806634 O7360, 7363
C. J. Read, The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel J. Math. 63 (1988), no. 1, 1-40, DOI 10.1007/BF02765019. MR959046 O7360
C. J. Read, The invariant subspace problem on some Banach spaces with separable dual, Proc. London Math. Soc. (3) 58 (1989), no. 3, 583-607, DOI 10.1112/plms/s3-58.3.583. MR988104 O7360, 7363
W. Rudin, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959), 855-859, DOI 10.2307/2033608. MR116184 O7392
B. Sz.-Nagy, C. Foias, H. Bercovici, and L. Ké rchy, Harmonic analysis of operators on Hilbert space, Revised and enlarged edition, Universitext, Springer, New York, 2010, DOI 10.1007/978-1-4419-6094-8. MR2760647 O7403
R. Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75), 269-294, DOI 10.4064/fm-82-3-269-294. MR363912 O7398