[1] Rabetafika, H.N., Paquot, M., Dubois, P., Les polymères issus du végétal : matériaux à propriétés spécifiques pour des applications ciblées en industrie plastique. Biotechnol. Agron. Soc. Environ. 10 (2006), 185–196.
[2] Kuczynski, J., Boday, D.J., Bio-based materials for high-end electronics applications. Int. J. Sustain. Dev. World Ecol. 19 (2012), 557–563, 10.1080/13504509.2012.721404.
[3] Wertz, J.T., Mauldin, T.C., Boday, D.J., Polylactic acid with improved heat deflection temperatures and self-healing properties for durable goods applications. ACS Appl. Mater. Interf. 6 (2014), 18511–18516, 10.1021/am5058713.
[4] Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.M., Dubois, P., New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. 63 (2009), 100–125, 10.1016/j.mser.2008.09.002.
[5] Morgan, A.B., Gilman, J.W., An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 37 (2013), 259–279, 10.1002/fam.
[6] Harley, K.G., Marks, A.R., Chevrier, J., Bradman, A., Sjödin, A., Eskenazi, B., PBDE concentrations in women's serum and fecundability. Environ. Health Perspect. 118 (2010), 699–704, 10.1289/ehp.0901450.
[7] Chevrier, J., Harley, K.G., Bradman, A., Gharbi, M., Sjödin, A., Eskenazi, B., Polybrominated diphenyl ether (PBDE) flame retardants and thyroid hormone during pregnancy. Environ. Health Perspect. 118 (2010), 1444–1449, 10.1289/ehp.1001905.
[8] Levchik, S.V., Weil, E.D., A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 24 (2006), 345–364, 10.1177/0734904106068426.
[9] Bourbigot, S., Fontaine, G., Flame retardancy of polylactide: an overview. Polym. Chem. 1 (2010), 1413–1422, 10.1039/c0py00106f.
[10] Halpern, Y., Mott, D.M., Niswander, R.H., Fire retardancy of thermoplastic materials by intumescence. Ind. Eng. Chem. Prod. Res. Dev. 23 (1984), 233–238.
[11] Bourbigot, S., Duquesne, S., Fontaine, G., Bellayer, S., Turf, T., Samyn, F., Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants. Mol. Cryst. Liq. Cryst., 486, 2008, 10.1080/15421400801921983 325/[1367]–339/[1381].
[12] Fontaine, G., Bourbigot, S., Intumescent polylactide: a nonflammable material. J. Appl. Polym. Sci. 113 (2009), 3860–3865, 10.1002/app.
[13] Zhan, J., Song, L., Nie, S., Hu, Y., Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym. Degrad. Stab. 94 (2009), 291–296, 10.1016/j.polymdegradstab.2008.12.015.
[15] Reti, C., Casetta, M., Duquesne, S., Bourbigot, S., Delobel, R., Flammability properties of intumescent PLA including starch and lignin. Polym. Adv. Technol. 19 (2008), 628–635, 10.1002/pat.
[16] Feng, J.X., Su, S.P., Zhu, J., An intumescent flame retardant system using beta-cyclodextrin as a carbon source in polylactic acid (PLA). Polym. Adv. Technol. 22 (2011), 1115–1122, 10.1002/pat.1954.
[17] De Chirico, A., Armanini, M., Chini, P., Cioccolo, G., Provasoli, F., Audisio, G., Flame retardants for polypropylene based on lignin. Polym. Degrad. Stab. 79 (2003), 139–145.
[18] Lewis, N.G., Yamamoto, E., Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41 (1990), 455–496, 10.1146/annurev. pp. 41.060190.002323.
[19] Glasser, W.G., Classification of lignin according to chemical and molecular structure. ACS Symp. Ser. Am. Chem. Soc. Chapter 9 (2000), 216–238, 10.1021/bk-2000-0742.ch009.
[20] Shen, D.K., Gu, S., Bridgwater, A.V., The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr. Polym. 82 (2010), 39–45, 10.1016/j.carbpol.2010.04.018.
[21] Zhang, Y., Xiao, R., Tai, X., Huang, Q., Hu, H., Zhang, R., Xiao, X., Tai, Q., Huang, H., Hu, Y., Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid). Polym. Eng. Sci. 52 (2012), 2620–2626, 10.1002/pen.
[22] Zhang, R., Xiao, X., Tai, Q., Huang, H., Yang, J., Hu, Y., Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly(lactic acid) system. High Perform. Polym. 24 (2012), 738–746, 10.1177/0954008312451476.
[23] Zhang, R., Xiao, X., Tai, Q., Huang, H., Yang, J., Hu, Y., The effect of different organic modified montmorillonites (OMMTs) on the thermal properties and flammability of PLA/MCAPP/lignin systems. J. Appl. Polym. Sci. 127 (2013), 4967–4973, 10.1002/app.38095.
[24] Xing, W., Yuan, H., Zhang, P., Yang, H., Song, L., Hu, Y., Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: preparation, thermal stability, fire performance and mechanical properties. J. Polym. Res. 20 (2013), 1–12, 10.1007/s10965-013-0234-1.
[25] Zhu, H., Peng, Z., Chen, Y., Li, G., Wang, L., Tang, Y., Pang, R., Khan, Z.U.H., Wan, P., Preparation and characterization of flame retardant polyurethane foams containing phosphorus–nitrogen-functionalized lignin. RSC Adv. 4 (2014), 55271–55279, 10.1039/C4RA08429B.
[26] Yu, Y., Fu, S., Song, P., Luo, X., Jin, Y., Lu, F., Wu, Q., Ye, J., Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym. Degrad. Stab. 97 (2012), 541–546, 10.1016/j.polymdegradstab.2012.01.020.
[27] Ferry, L., Dorez, G., Taguet, A., Otazaghine, B., Lopez-Cuesta, J.M., Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polym. Degrad. Stab. 113 (2015), 135–143, 10.1016/j.polymdegradstab.2014.12.015.
[29] Fourneau, C., Étude de Feux de Substances Chimiques en Conditions Sous-Ventilées à l'Aide d'un Cône Calorimètre. 2013, Université de Mons.
[30] Fox, S.C., McDonald, A.G., Chemical and thermal characterization of three industrial lignins and their corresponding lignin esters. BioResources 5 (2010), 990–1009.
[31] Chakar, F.S., Ragauskas, A.J., Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20 (2004), 131–141, 10.1016/j.indcrop.2004.04.016.
[32] Nada, A.M.A., Kassem, N.F., Mohamed, S.H., Characterization and properties of ion exchangers produced from lignin precipitated after peroxyacid pulping. Bioresources 3 (2008), 538–548.
[33] Meister, J.J., Modification of lignin. J. Macromol. Sci. Part C - Polym. Rev. 42 (2002), 235–289.
[34] Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., Jeelani, S., Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 4 (2015), 26–32, 10.1016/j.jmrt.2014.10.009.
[35] Brebu, M., Vasile, C., Thermal degradation of lignin—a review. Cellul. Chem. Technol. 44 (2010), 353–363 .
[36] Brebu, M., Tamminen, T., Spiridon, I., Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J. Anal. Appl. Pyrol. 104 (2013), 531–539, 10.1016/j.jaap.2013.05.016.
[37] Li, J., Li, B., Zhang, X., Su, R., The study of flame retardants on thermal degradation and charring process of manchurian ash lignin in the condensed phase. Polym. Degrad. Stab. 72 (2001), 493–498, 10.1016/S0141-3910(01)00049-0.