![]() ![]() | Ragonnet, R., Hughes, A. E., Shipman, D. S., Meehan, M. T., Henderson, A. S., BRIFFOTEAUX, G., Melab, N., Tuyttens, D., McBryde, E. S., & Trauer, J. M. (January 2025). Estimating the impact of school closures on the COVID-19 dynamics in 74 countries: A modelling analysis. PLoS Medicine, 22 (1), 1004512. doi:10.1371/journal.pmed.1004512 ![]() |
![]() ![]() | Gobert, M., Briffoteaux, G., Gmys, J., Melab, N., & Tuyttens, D. (November 2024). Observations in applying Bayesian versus evolutionary approaches and their hybrids in parallel time-constrained optimization. Engineering Applications of Artificial Intelligence, 137, 109075. doi:10.1016/j.engappai.2024.109075 ![]() |
![]() ![]() | Ducobu, F., Kugalur-Palanisamy, N., Briffoteaux, G., Gobert, M., Tuyttens, D., Arrazola, P.-J., & Rivière, E. (16 April 2024). Identification of the Constitutive and Friction Models Parameters via a Multi-Objective Surrogate-Assisted Algorithm for the Modeling of Machining—Application to Arbitrary Lagrangian Eulerian Orthogonal Cutting of Ti6Al4V. Journal of Manufacturing Science and Engineering, 146 (6). doi:10.1115/1.4065223 ![]() |
![]() ![]() | Briffoteaux, G., Melab, N., Mezmaz, M., & Tuyttens, D. (2024). Investigating surrogate-based hybrid acquisition processes. Application to Covid-19 contact mitigation. Applied Soft Computing, 151, 111134. doi:10.1016/j.asoc.2023.111134 ![]() |
![]() ![]() | Briffoteaux, G. (2022). Parallel surrogate-based algorithms for solving expensive optimization problems [Doctoral thesis, UMONS - Université de Mons]. ORBi UMONS-University of Mons. https://orbi.umons.ac.be/handle/20.500.12907/44381 |
![]() ![]() | KUGALUR PALANISAMY, N., RIVIERE LORPHEVRE, E., Gobert, M., Briffoteaux, G., Tuyttens, D., Arrazola, P.-J., & DUCOBU, F. (06 June 2022). Identification of the Parameter Values of the Constitutive and Friction Models in Machining Using EGO Algorithm: Application to Ti6Al4V. Metals, 12 (6), 976. doi:10.3390/met12060976 ![]() |
Briffoteaux, G. (2022). pySBO , Python platform for Surrogate-Based Optimization. |
![]() ![]() | Briffoteaux, G., Ragonnet, R., Tomenko, P., Mezmaz, M., Melab, N., & Tuyttens, D. (2022). Comparing Parallel Surrogate-Based and Surrogate-Free Multi-objective Optimization of COVID-19 Vaccines Allocation. In B. Dorronsoro (Ed.), Optimization and Learning - 5th International Conference, OLA 2022, Proceedings. Springer Science and Business Media Deutschland GmbH. doi:10.1007/978-3-031-22039-5_16 ![]() |
![]() ![]() | Briffoteaux, G., Melab, N., Mezmaz, M., & Tuyttens, D. (2022). Hybrid Acquisition Processes in Surrogate-Based Optimization. Application to Covid-19 Contact Reduction. In M. Mernik & M. Črepinšek (Eds.), Bioinspired Optimization Methods and Their Applications - 10th International Conference, BIOMA 2022, Proceedings. Springer Science and Business Media Deutschland GmbH. doi:10.1007/978-3-031-21094-5_10 ![]() |
![]() ![]() | Briffoteaux, G., Ragonnet, R., Mezmaz, M., Melab, N., & Tuyttens, D. (2021). Evolution Control Ensemble Models for Surrogate-Assisted Evolutionary Algorithms. In HPCS proceedings. IEEE. ![]() |
![]() ![]() | Briffoteaux, G., Ragonnet, R., Mezmaz, M., Melab, N., & Tuyttens, D. (22 July 2020). Evolution Control for parallel ANN-assisted simulation-based optimization: Application to Tuberculosis Transmission Control. Future Generation Computer Systems, 113 (December 2020), 454-467. doi:10.1016/j.future.2020.07.005 ![]() |
Briffoteaux, G., Gobert, M., Ragonnet, R., Gmys, J., Mezmaz, M., Melab, N., & Tuyttens, D. (2020). Parallel Surrogate-assisted Optimization: Batched Bayesian Neural Network-assisted GA versus q-EGO. Swarm and Evolutionary Computation. ![]() |
![]() ![]() | Briffoteaux, G., Ragonnet, R., Mezmaz, M., Melab, N., & Tuyttens, D. (19 February 2020). Towards Dynamic Selection of Evolution Controls in Parallel Bayesian Neural Network-assisted Genetic Algorithm [Paper presentation]. International Conference on Optimization and Learning OLA'2020 17-19 February, Cadiz, Spain. ![]() |
![]() ![]() | Briffoteaux, G., Melab, N., Mezmaz, M., & Tuyttens, D. (2018). An adaptive evolution control based on confident regions for surrogate-assisted optimization. In 2018 International Conference on High Performance Computing & Simulation, HPCS 2018, Orleans, France, July 16-20, 2018. IEEE. doi:10.1109/HPCS.2018.00130 ![]() |