Profil

Francois Jordan

Université de Mons - UMONS > Faculté des Sciences > Service de Physique de l'Univers, Champs et Gravitation

ORCID
0000-0002-3808-6343
Principaux co-auteurs référencés
Lazzarini, Serge (8)
Masson, Thierry (7)
Attard, Jeremy (3)
BOULANGER, Nicolas  (2)
Berghofer, Philipp (1)
Principaux mots-clés référencés
Gauge symmetries, symmetry breaking (1); General Mathematics (1); Mathematical Physics (1); Mathematics (all) (1); Mathematics - Mathematical Physics (1);
Principaux centres et unités de recherche référencés
AGIF - Algèbre, Géométrie et Interactions fondamentales (8)
Principales disciplines référencées
Physique (21)
Mathématiques (7)
Philosophie & éthique (2)
Aérospatiale, astronomie & astrophysique (2)
Architecture (1)

La plus téléchargée
37 téléchargements
Francois, J., Parrini, N., & Boulanger, N. (2021). Note on the bundle geometry of field space, variational connections, the dressing field method, & presymplectic structures of gauge theories over bounded regions. Journal of High Energy Physics. doi:10.1007/JHEP12(2021)186 https://hdl.handle.net/20.500.12907/25469

La plus citée

22 citations (Scopus®)

Francois, J. (01 July 2019). Artificial versus Substantial Gauge Symmetries: A Criterion and an Application to the Electroweak Model. Philosophy of Science, 86 (3), 472-496. https://hdl.handle.net/20.500.12907/39727

Berghofer, P., Francois, J., Friederich, S., Gomes, H., Hetzroni, G., Maas, A., & Sondenheimer, R. (2023). Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches. Cambridge University Press. doi:10.1017/9781009197236
Editorial reviewed

Francois, J. (24 June 2022). Twisted gauge fields. Advances in Theoretical and Mathematical Physics, 25 (6), 1389 - 1447. doi:10.4310/ATMP.2021.v25.n6.a2
Peer reviewed

Francois, J., Parrini, N., & Boulanger, N. (2021). Note on the bundle geometry of field space, variational connections, the dressing field method, & presymplectic structures of gauge theories over bounded regions. Journal of High Energy Physics. doi:10.1007/JHEP12(2021)186
Peer reviewed vérifié par ORBi

Francois, J. (23 March 2021). Bundle geometry of the connection space, covariant Hamiltonian formalism, the problem of boundaries in gauge theories, and the dressing field method. Journal of High Energy Physics, 2021 (3), 225. doi:10.1007/JHEP03(2021)225
Peer reviewed vérifié par ORBi

Francois, J. (2021). Differential geometry of gauge theories: an introduction [Paper presentation]. XVI Modave Summer School in Mathematical Physics, Bruxelles, Belgium.

Francois, J. (06 November 2020). Artificial vs substantial gauge symmetries: Criterion and application to the electroweak model [Paper presentation]. Conceptual and Phenomenological Reflections on Gauge Symmetries, the Brout-Englert-Higgs Mechanism, Particles, and Observables, Graz University, Austria.

Francois, J. (2020). The 2019 Nobel prize in physics 2.

Francois, J., Masson, T., & Lazzarini, S. (10 February 2020). Cartan Connections and Atiyah Lie Algebroids. Journal of Geometry and Physics, 148, 103541.
Peer reviewed vérifié par ORBi

Francois, J. (2019). The 2019 Nobel prize in physics 1.

Francois, J. (03 September 2019). Twistors as generalised gauge fields from a gauge symmetry reduction [Paper presentation]. Twistors and Loops Meeting in Marseille, CIRM, Marseille, France.

Francois, J., & Attard, J. (15 July 2019). Tractors and Twistors from conformal Cartan geometry: a gauge theoretic approach I. Tractors. Advances in Theoretical and Mathematical Physics, 22 (8), 1831 - 1883.
Peer reviewed

Francois, J. (01 July 2019). Artificial versus Substantial Gauge Symmetries: A Criterion and an Application to the Electroweak Model. Philosophy of Science, 86 (3), 472-496.
Peer reviewed vérifié par ORBi

Francois, J. (21 June 2019). Gauge theories and differential geometry: Connecting the dots [Paper presentation]. Be.HEP summer solstice meeting 2019, Liège, Belgium.

Francois, J. (2019). Dilaton from Tractor and Matter Field from Twistor. Journal of High Energy Physics.
Peer reviewed vérifié par ORBi

Boulanger, N., Francois, J., & Lazzarini, S. (2019). A classification of global conformal invariants. Journal of Physics. A, Mathematical and Theoretical. doi:10.1088/1751-8121/ab01af
Peer reviewed vérifié par ORBi

Francois, J., Attard, J., Lazzarini, S., & Masson, T. (2018). The dressing field method of gauge symmetry reduction, a review with examples: in Foundations of Mathematics and Physics One Century After Hilbert. In Foundations of Mathematics and Physics One Century After Hilbert. Springer.

Francois, J., & Attard, J. (2017). Tractors and Twistors from conformal Cartan geometry: a gauge theoretic approach. II. Twistors. Classical and Quantum Gravity.
Peer reviewed vérifié par ORBi

Francois, J. (25 April 2016). Weyl gravity and Cartan geometry. Physical Review. D, 93, 085032.
Peer reviewed vérifié par ORBi

Francois, J., Lazzarini, S., & Masson, T. (15 March 2016). Becchi-Rouet-Stora-Tyutin structure for the mixed Weyl-diffeomorphism residual symmetry. Journal of Mathematical Physics, 57, 033504.
Peer reviewed vérifié par ORBi

Francois, J., Lazzarini, S., & Masson, T. (04 September 2015). Residual Weyl symmetry out of conformal geometry and its BRST structure. Journal of High Energy Physics, 09(2015)195.
Peer reviewed vérifié par ORBi

Francois, J., Lazzarini, S., & Masson, T. (12 February 2015). Nucleon spin decomposition and differential geometry. Physical Review. D, 91, 045014.
Peer reviewed vérifié par ORBi

Francois, J., Masson, T., & Lazzarini, S. (2014). Gauge field theories: various mathematical approaches: in Mathematical Structures of the Universe. In Mathematical Structures of the Universe. Copernicus Center Press.

Francois, J. (2014). Reduction of gauge symmetries: a new geometrical approach [Doctoral thesis, Université de Mons]. ORBi UMONS-University of Mons. https://orbi.umons.ac.be/handle/20.500.12907/24729

Francois, J., Lazzarini, S., Masson, T., & Fournel, C. (01 January 2014). Gauge invariant composite fields out of connections, with examples. International Journal of Geometric Methods in Modern Physics, 11 (03), 1450016.
Peer reviewed vérifié par ORBi

Contacter ORBi UMONS