![]() ![]() | Berghofer, P., Francois, J., Friederich, S., Gomes, H., Hetzroni, G., Maas, A., & Sondenheimer, R. (2023). Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches. Cambridge University Press. doi:10.1017/9781009197236 ![]() |
![]() ![]() | Francois, J. (24 June 2022). Twisted gauge fields. Advances in Theoretical and Mathematical Physics, 25 (6), 1389 - 1447. doi:10.4310/ATMP.2021.v25.n6.a2 ![]() |
![]() ![]() | Francois, J., Parrini, N., & Boulanger, N. (2021). Note on the bundle geometry of field space, variational connections, the dressing field method, & presymplectic structures of gauge theories over bounded regions. Journal of High Energy Physics. doi:10.1007/JHEP12(2021)186 ![]() |
![]() ![]() | Francois, J. (23 March 2021). Bundle geometry of the connection space, covariant Hamiltonian formalism, the problem of boundaries in gauge theories, and the dressing field method. Journal of High Energy Physics, 2021 (3), 225. doi:10.1007/JHEP03(2021)225 ![]() |
![]() ![]() | Francois, J. (2021). Differential geometry of gauge theories: an introduction [Paper presentation]. XVI Modave Summer School in Mathematical Physics, Bruxelles, Belgium. |
Francois, J. (06 November 2020). Artificial vs substantial gauge symmetries: Criterion and application to the electroweak model [Paper presentation]. Conceptual and Phenomenological Reflections on Gauge Symmetries, the Brout-Englert-Higgs Mechanism, Particles, and Observables, Graz University, Austria. |
Francois, J. (2020). The 2019 Nobel prize in physics 2. |
![]() ![]() | Francois, J., Masson, T., & Lazzarini, S. (10 February 2020). Cartan Connections and Atiyah Lie Algebroids. Journal of Geometry and Physics, 148, 103541. ![]() |
Francois, J. (2019). The 2019 Nobel prize in physics 1. |
Francois, J. (03 September 2019). Twistors as generalised gauge fields from a gauge symmetry reduction [Paper presentation]. Twistors and Loops Meeting in Marseille, CIRM, Marseille, France. |
![]() ![]() | Francois, J., & Attard, J. (15 July 2019). Tractors and Twistors from conformal Cartan geometry: a gauge theoretic approach I. Tractors. Advances in Theoretical and Mathematical Physics, 22 (8), 1831 - 1883. ![]() |
![]() ![]() | Francois, J. (01 July 2019). Artificial versus Substantial Gauge Symmetries: A Criterion and an Application to the Electroweak Model. Philosophy of Science, 86 (3), 472-496. ![]() |
Francois, J. (21 June 2019). Gauge theories and differential geometry: Connecting the dots [Paper presentation]. Be.HEP summer solstice meeting 2019, Liège, Belgium. |
![]() ![]() | Francois, J. (2019). Dilaton from Tractor and Matter Field from Twistor. Journal of High Energy Physics. ![]() |
![]() ![]() | Boulanger, N., Francois, J., & Lazzarini, S. (2019). A classification of global conformal invariants. Journal of Physics. A, Mathematical and Theoretical. doi:10.1088/1751-8121/ab01af ![]() |
Francois, J., Attard, J., Lazzarini, S., & Masson, T. (2018). The dressing field method of gauge symmetry reduction, a review with examples: in Foundations of Mathematics and Physics One Century After Hilbert. In Foundations of Mathematics and Physics One Century After Hilbert. Springer. |
![]() ![]() | Francois, J., & Attard, J. (2017). Tractors and Twistors from conformal Cartan geometry: a gauge theoretic approach. II. Twistors. Classical and Quantum Gravity. ![]() |
![]() ![]() | Francois, J. (25 April 2016). Weyl gravity and Cartan geometry. Physical Review. D, 93, 085032. ![]() |
Francois, J., Lazzarini, S., & Masson, T. (15 March 2016). Becchi-Rouet-Stora-Tyutin structure for the mixed Weyl-diffeomorphism residual symmetry. Journal of Mathematical Physics, 57, 033504. ![]() |
Francois, J., Lazzarini, S., & Masson, T. (04 September 2015). Residual Weyl symmetry out of conformal geometry and its BRST structure. Journal of High Energy Physics, 09(2015)195. ![]() |
Francois, J., Lazzarini, S., & Masson, T. (12 February 2015). Nucleon spin decomposition and differential geometry. Physical Review. D, 91, 045014. ![]() |
Francois, J., Masson, T., & Lazzarini, S. (2014). Gauge field theories: various mathematical approaches: in Mathematical Structures of the Universe. In Mathematical Structures of the Universe. Copernicus Center Press. |
Francois, J. (2014). Reduction of gauge symmetries: a new geometrical approach [Doctoral thesis, Université de Mons]. ORBi UMONS-University of Mons. https://orbi.umons.ac.be/handle/20.500.12907/24729 |
Francois, J., Lazzarini, S., Masson, T., & Fournel, C. (01 January 2014). Gauge invariant composite fields out of connections, with examples. International Journal of Geometric Methods in Modern Physics, 11 (03), 1450016. ![]() |